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Berichte aus dem
Institut für Angewandte Mathematik

Bericht 2025/5



Technische Universität Graz
Institut für Angewandte Mathematik
Steyrergasse 30
A 8010 Graz

WWW: http://www.applied.math.tugraz.at

© Alle Rechte vorbehalten. Nachdruck nur mit Genehmigung des Autors.



Paving the way to a T-coercive method
for the wave equation
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Abstract

In this paper, we take a first step toward introducing a space-time transformation
operator T that establishes T-coercivity for the weak variational formulation of the
wave equation in space and time on bounded Lipschitz domains. As a model prob-
lem, we study the ordinary differential equation (ODE) u′′+µu = f for µ > 0, which
is linked to the wave equation via a Fourier expansion in space. For its weak for-
mulation, we introduce a transformation operator Tµ that establishes Tµ-coercivity
of the bilinear form yielding an unconditionally stable Galerkin-Bubnov formulation
with error estimates independent of µ. The novelty of the current approach is the ex-
plicit dependence of the transformation on µ which, when extended to the framework
of partial differential equations, yields an operator acting in both time and space.
We pay particular attention to keeping the trial space as a standard Sobolev space,
simplifying the error analysis, while only the test space is modified. The theoretical
results are complemented by numerical examples.

1 Introduction

There has been an increased interest in finding space-time formulations for the wave
equation that lead to unconditionally stable discretizations. Some of them rely on
analyzing the exact mapping properties of the space-time wave operator in a varia-
tional setting [4, 5, 6, 8], including weak and least squares formulations. These often
lead to a setting beyond standard Sobolev spaces, that is cumbersome to discretize.
Others though, stay in the framework of Sobolev spaces, adding stabilization terms
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[3, 7], or applying special test functions [1, 2, 8]. The overall goal of all these ap-
proaches is to open the door to adaptivity in space and time simultaneously and
without additional computational cost.

In this paper, we follow the idea from [8] and consider a second order ordinary
differential equation (ODE) u′′ + µu = f with µ > 0. This ODE can be linked to
the wave equation and used to find a transformation operator such that one obtains
a coercive and continuous bilinear form for the corresponding variational formula-
tion. However, unlike previous approaches, we take pains to make sure the resulting
transformation also depends on µ, and thus, when extended to the partial differen-
tial equation framework, can lead to a transformation that not only acts on time,
but also on space. Moreover, we are interested in keeping standard Sobolev spaces
as our solution spaces, such that the error analysis of future space-time methods
and understanding of the solution is straightforward. With this purpose in mind,
we deliberately insist on using the arising transformation to change the test space.
Interestingly, this results in a variational formulation with a simple bilinear form,
while only the right-hand side becomes more involved.

This contribution focuses on the key ideas for finding this transformation and
therefore restricts attention to the ODE case. Ongoing and future work deals with
the extension to the actual wave equation.

2 Motivation

Let T > 0, µ > 0 and f : (0, T ) → R be given and let us consider the ordinary
differential equation to find u : [0, T ] → R such that

u′′(t) + µu(t) = f(t) for t ∈ (0, T ), u(0) = u′(0) = 0. (1)

For the weak form, we multiply by a smooth function v and integrate by parts to get∫ T

0

[
u′′(t)v(t) + µu(t)v(t)

]
dt =

∫ T

0

[
− u′(t)v′(t) + µu(t)v(t)

]
dt+ u′(T )v(T ).

Now, in order to get rid of the term u′(T ), about which we have no information, and
to ensure well-defined integrals, we need the spaces

H1
0,(0, T ) := {v ∈ H1(0, T )| v(0) = 0}, H1

,0(0, T ) := {v ∈ H1(0, T )| v(T ) = 0}.

With these, we consider the variational formulation: For f ∈ [H1
,0(0, T )]

′, find

u ∈ H1
0,(0, T ) such that for all v ∈ H1

,0(0, T )

bµ(u, v) :=

∫ T

0

[
− u′(t)v′(t) + µu(t)v(t)

]
dt =

∫ T

0
f(t)v(t) dt. (2)

Theorem 2.1. [10, Lemma 4.2.1, Lemmata 4.2.3–4.2.4] The bilinear form
bµ : H1

0,(0, T )×H1
,0(0, T ) → R defined in (2) satisfies
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(B1) Boundedness: For all u ∈ H1
0,(0, T ) and v ∈ H1

,0(0, T ) it holds that

|bµ(u, v)| ≤
(
1 +

4T 2µ

π2

)∥∥u′∥∥
L2(0,T )

∥∥v′∥∥
L2(0,T )

.

(B2) Bounded invertibility: For all u ∈ H1
0,(0, T ) it holds that

2

2 + T
√
µ

∥∥u′∥∥
(0,T )

≤ sup
0̸=v∈H1

,0(0,T )

bµ(u, v)

∥v′∥(0,T )

.

(B3) Surjectivity: For all 0 ̸= v ∈ H1
,0(0, T ) there exists uv ∈ H1

0,(0, T ) such that
bµ(uv, v) ̸= 0.

The above theorem guarantees that the weak formulation (2) admits a unique
solution u ∈ H1

0,(0, T ) for all right-hand sides f ∈ [H1
,0(0, T )]

′ and fixed µ > 0. But,
the obtained bounds depend on µ > 0 and, in particular, they degenerate when
µ → ∞.

Our main contribution is to propose a formulation where we keep the solution
u ∈ H1

0,(0, T ) in the standard Sobolev space but get µ-independent bounds. For this,
we introduce

∥w∥H1
µ
:=

√
∥w′∥2(0,T ) + µ∥w∥2(0,T ),

which resembles the space-timeH1-norm, and defines an equivalent norm onH1
0,(0, T )

and H1
,0(0, T ). In what follows, we will construct a transformation operator Tµ :

H1
0,(0, T ) → H1

,0(0, T ) such that the bilinear form satisfies

∥u∥2H1
µ
= bµ(u,Tµ u).

3 A space-time transformation!? Well, it’s com-

plex...

In the following we slightly abuse notation and use ⟨·, ·⟩ to denote both the L2-inner
product and the L2-duality pairing. Now, using integration by parts, we get

⟨u′, v⟩+ ⟨u, v′⟩ = 0, ∀u ∈ H1
0,(0, T ), ∀v ∈ H1

,0(0, T ). (3)

We introduce the operators
D± := ±i∂t +

√
µ,

where i denotes the imaginary unit. Using (3), we have that

⟨D+ u,D+ v⟩ = −⟨u′, v′⟩+ µ⟨u, v⟩+ i
√
µ(⟨u′, v⟩+ ⟨u, v′⟩) = bµ(u, v).

Moreover, note that for any real valued function u ∈ H1
0,(0, T )

⟨D+ u,D− u⟩ = ⟨D+ u,D+ u⟩ =
∥∥ℜ(D+ u)

∥∥2
L2(0,T )

+
∥∥ℑ(D+ u)

∥∥2
L2(0,T )

= µ∥u∥2L2(0,T ) +
∥∥u′∥∥2

L2(0,T )
= ∥u∥2H1

µ
.
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Here, for any function w, ℜ(w) and ℑ(w) denote its real and imaginary parts, re-
spectively, while w corresponds to its complex conjugate.

The above motivates us to introduce the transformation operator

T µ :=
(
D+

)−1
D−, (4)

since for v = T µ u we then formally have that

bµ(u, v) = ⟨D+ u,D+ T µ u⟩ = ⟨D+ u,D− u⟩ = ∥u∥2H1
µ
.

3.1 The transformation operator: Its actual closed form
formula

We proceed to compute the transformation operator defined in (4) acting on a func-
tion in H1

0,(0, T ). Moreover, in order to stay consistent, we would like that the

operator T µ maps functions from H1
0,(0, T ) to functions with zero terminal condi-

tion.
As the solution of

D+ z := iz′ +
√
µz = q, in (0, T ), z(T ) = 0,

can be explicitly computed to be

z(t) =
((

D+
)−1

q
)
(t) = i

∫ T

t
ei
√
µ(t−s)q(s) ds,

we have that for any w ∈ H1
0,(0, T )

v(t) = (T µw)(t) =
((

D+
)−1

D−w
)
(t)

= i

∫ T

t
ei
√
µ(t−s)(−iw′(s) +

√
µw(s)) ds. (5)

3.2 A convenient REALization

We are only interested in testing with real valued functions v. However, for any real
valued function w ∈ H1

0,(0, T ), we see from (5) that T µw is complex valued. To
circumvent the use of complex functions, we now consider only the real part of the
transformation operator and define for w ∈ H1

0,(0, T )

Tµw(t):= ℜ(T µw(t)) =

∫ T

t

[
cos(

√
µ(t− s))w′(s)−√

µ sin(
√
µ(t− s))w(s)

]
ds.

Lemma 3.1. The operator Tµ : H1
0,(0, T ) → H1

,0(0, T ) is well-defined, bounded and

satisfies for all u ∈ H1
0,(0, T ) and all q ∈ L2(0, T )∫ T

0

[
−(Tµ u)

′(t) + µ

∫ T

t
(Tµ u)(s) ds

]
q(t) dt =

∫ T

0

[
u′(t) + µ

∫ T

t
u(s) ds

]
q(t) dt.
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Proof. By construction (Tµ u)(T ) = 0 and we compute

(Tµ u)
′(t) = −u′(t)−√

µ

∫ T

t

[
sin(

√
µ(t− s))u′(s) +

√
µ cos(

√
µ(t− s))u(s)

]
ds.

For fixed µ, all the terms on the right-hand side are bounded in L2(0, T ) if u ∈
H1

0,(0, T ), and thus Tµ is well defined. Using a triangle and Cauchy–Schwarz in-
equalities, we also get the bound

∥Tµ u∥H1
,0(0,T ) ≤

(
1 + T

√
µ

2

)
∥u∥H1

µ
, u ∈ H1

0,(0, T ). (6)

Furthermore, using that (Tµ u)
′(T ) = −u′(T ), we compute that

(Tµ u)
′′ + µTµ u = −u′′ + µu in [H1

0,(0, T )]
′.

Hence, for all w ∈ H1
0,(0, T ) we have

−⟨(Tµ u)
′, w′⟩+ µ⟨Tµ u,w⟩ = ⟨u′, w′⟩+ µ⟨u,w⟩,

where we applied the integration by parts formula (3). Next, we use that each
w ∈ H1

0,(0, T ) admits the representation w(t) =
∫ t
0 q(s) ds for some q ∈ L2(0, T ).

Thus, w′ = q and using the following integration by parts formula∫ T

0
p(t)

∫ t

0
q(s) ds dt =

∫ T

0

∫ T

t
p(s) ds q(t) dt, ∀p, q ∈ L2(0, T ), (7)

concludes the proof.

Remark 3.1. Note that, for µ = 0, T0w(t) = w(T ) − w(t) = HTw(t), which was
introduced in [8, Lemma 4.5] as a purely temporal transformation for the stabilization
of the wave equation. Hence, Tµ can be seen as an extension of HT to space-time.

4 Always Look on the Right Side of Life

Using the real transformation Tµ, we are now considering the variational formulation:
Given f ∈ [H1

,0(0, T )]
′, find u ∈ H1

0,(0, T ) such that

bµ(u,Tµw) = ⟨f,Tµw⟩, ∀w ∈ H1
0,(0, T ). (8)

We first prove that its application on the second argument of bµ does not introduce
complicated expressions or additional terms.

Lemma 4.1. For all u,w ∈ H1
0,(0, T ) it holds that

bµ(u,Tµw) = ⟨u′, w′⟩+ µ⟨u,w⟩.

In particular, bµ is bounded and Tµ-coercive, i.e.,

bµ(u,Tµw) ≤ ∥u∥H1
µ
∥w∥H1

µ
, and bµ(u,Tµ u) = ∥u∥2H1

µ
.
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Proof. As u ∈ H1
0,(0, T ) there exists q ∈ L2(0, T ) such that u(t) =

∫ t
0 q(s) ds. Using

(7) and Lemma 3.1, we then compute for all w ∈ H1
0,(0, T )

bµ(u,Tµw) =

∫ T

0

[
−u′(t)(Tµw)

′(t) + µu(t)(Tµw)(t)
]
dt

=

∫ T

0
q(t)

(
−(Tµw)

′(t) + µ

∫ T

t
(Tµw)(s) ds

)
dt

=

∫ T

0
q(t)

(
w′(t) + µ

∫ T

t
w(s) ds

)
dt

=

∫ T

0
u′(t)w′(t) + µu(t)w(t) dt.

The main result is now the following.

Theorem 4.2. The variational formulation (8) admits a unique solution u ∈ H1
0,(0, T )

for all f ∈ [H1
,0(0, T )]

′. In particular, for all

f ∈ F := {f ∈ [H1
,0(0, T )]

′ : ⟨f,Tµw⟩ ≤ C∥w∥H1
µ
, ∀w ∈ H1

0,(0, T )}.
with some C > 0 independent of µ, the solution u satisfies the µ-independent bound

∥u∥H1
µ
≤ C. (9)

Proof. By Lemma 4.1 the bilinear form bµ is Tµ-coercive and bounded. Moreover,
for fixed µ > 0, using (6) we get

⟨f,Tµw⟩ ≤ ∥f∥[H1
,0(0,T )]′∥Tµw∥H1

,0(0,T ) ≤
(
1 + T

√
µ

2

)
∥f∥[H1

,0(0,T )]′∥w∥H1
µ
.

Hence, by the Lemma of Lax-Milgram, there exists a unique solution u ∈ H1
0,(0, T )

for all f ∈ [H1
,0(0, T )]

′. The bound (9) for f ∈ F now follows from

∥u∥2H1
µ
= bµ(u,Tµ u) = ⟨f,Tµ u⟩ ≤ C∥u∥H1

µ
.

Remark 4.1. For w ∈ H1
0,(0, T ), using (7) and the Cauchy–Schwarz inequality, we

get

⟨f,Tµw⟩ =
∫ T

0

[
w′(t)C(t, f) +

√
µw(t)S(t, f)

]
dt

≤ ∥w∥H1
µ

(∫ T

0

[
C(t, f)2 + S(t, f)2

]
dt

)1/2

where C(t, f) =
∫ t
0 cos(

√
µ(t− s))f(s) ds and S(t, f) =

∫ t
0 sin(

√
µ(t− s))f(s) ds. For

f ∈ L2(0, T ) we can now proceed as in [8, Lemma 4.9], to compute∫ T

0

[
C(t, f)2 + S(t, f)2

]
dt ≤ T 2

2
∥f∥2(0,T ),

showing that L2(0, T ) ⊂ F and (9) holds with C = T√
2
∥f∥(0,T ).
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5 Discretization

We consider the conforming trial space Xh := S1
h(0, T )∩H1

0,(0, T ) of piecewise linear
finite elements defined on a uniform decomposition of the interval (0, T ) into N ∈ N
elements of mesh size h = T/N . The discrete variational formulation reads: Given
f ∈ [H1

,0(0, T )]
′, find uh ∈ Xh such that

bµ(uh,Tµwh) = ⟨u′h, w′
h⟩+ µ⟨uh, wh⟩ = ⟨f,Tµwh⟩, ∀wh ∈ Xh. (10)

Due to the Tµ-coercivity, (10) admits a unique solution uh ∈ Xh. By Lemma 4.1
and the linearity of Tµ we have Galerkin orthogonality and immediately derive Cea’s
Lemma and thus the best-approximation error estimate for u ∈ Hs(0, T )

∥u− uh∥H1
µ
≤ inf

wh∈Xh

∥u− wh∥H1
µ
≤ c(hs−1 + µhs)|u|Hs , s ∈ [1, 2].

As an illustrative example, we consider T = 1, and the function

u(t) = t2(T − t)3/4 ∈ Hs(0, T ), s <
5

4

solving (1) for f ∈ H−σ(0, T ), σ > 3
4 . The solutions for µ ∈ {1, 105} are depicted in

Figure 1, and the convergence rates are listed in Table 1. We see, that the method is
stable w.r.t. to µ and gives optimal orders of convergence in H1 right from the start.
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(a) µ = 1
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(b) µ = 105

Figure 1: Exact solution u and reconstruction uh for different µ on N = 32 elements.

6 Conclusions

We proposed a novel transformation operator for an ODE that is related to a space-
time FEM formulation of the wave equation, resulting in a Galerkin-Bubnov formula-
tion that is unconditionally stable and coercive. We can theoretically prove stability
and best approximation error estimates independent of µ. This opens the door for a
space-time transformation that leads to a coercive formulation. Related results will
be published elsewhere.
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µ = 1 µ = 1000 µ = 105

N h ∥u− uh∥L2 eoc |u− uh|H1 eoc |u− uh|H1 eoc |u− uh|H1 eoc

4 0.250 2.13e-02 0.00 3.19e-01 0.00 3.29e-01 0.00 3.30e-01 0.00
8 0.125 7.70e-03 1.47 2.23e-01 0.52 2.26e-01 0.54 2.29e-01 0.53
16 0.063 2.89e-03 1.41 1.62e-01 0.46 1.63e-01 0.47 1.67e-01 0.46
32 0.031 1.13e-03 1.35 1.23e-01 0.39 1.24e-01 0.40 1.27e-01 0.39
64 0.016 4.57e-04 1.31 9.80e-02 0.33 9.80e-02 0.34 1.00e-01 0.34
128 0.008 1.88e-04 1.28 7.99e-02 0.30 7.98e-02 0.30 8.08e-02 0.31
256 0.004 7.81e-05 1.27 6.60e-02 0.27 6.60e-02 0.27 6.62e-02 0.29
512 0.002 3.26e-05 1.26 5.51e-02 0.26 5.51e-02 0.26 5.51e-02 0.28

Table 1: Errors and order of convergence for different µ ∈ {1, 1000, 105}.
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