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Abstract

We study the constructive and numerical solution of minimizing the energy for
the Gauss variational problem involving the Newtonian potential. As a special case,
we also treat the corresponding condenser problem. These problems are considered
for two two–dimensional compact, disjoint Lipschitz manifolds Γj ⊂ R

3 , j = 1, 2,
charged with measures of opposite sign. Since this minimizing problem over an
affine cone of Borel measures with finite Newtonian energy can also be formulated
as the minimum problem over an affine cone of surface distributions belonging to
the Sobolev–Slobodetski space H−

1

2 (Γ) , Γ := Γ1 ∪ Γ2, which allows the application
of simple layer boundary integral operators on Γ, a penalty approximation for the
Gauss variational problem can be used. The numerical approximation is based on
a Galerkin–Bubnov discretization with piecewise constant boundary elements. To
the discretized problem, the projection–iteration is applied where the matrix times
vector operations are executed with the fast multipole method. For the condenser
problem, we solve the dual problem which reduces in our case to solving two linear
boundary integral equations. Here the fast multipole method provides an efficient
solution algorithm. We finally present some convergence studies and error estimates.
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1 Introduction

Carl Friedrich Gauss investigated in [5] the variational problem of minimizing the energy
of the Newtonian potential over non negative charges on the boundary surface of a given
domain. The sign condition was given up in connection with boundary integral equation
methods where distributional boundary charges have been introduced for solving boundary
value problems. (See e.g. Costabel’s article [4] and also [9].)

A different generalization of the original Gauss variational problem maintaining the
sign restriction but employing measures as charges has independently grown into an em-
inent branch of modern potential theory (see e.g. [14] and the extensive works [20]–
[26] and for two dimensions [15]). In this paper, we consider this so–called generalized
Gauss variational problem (from now on just Gauss problem) on two two–dimensional
non intersecting compact Lipschitz surfaces Γ1,Γ2 ⊂ R

3 which are loaded by measures
µ = µ1 − µ2 , µj ∈ M+(Γj) , j = 1, 2, and try to determine the corresponding equilib-
rium state also numerically by appropriate boundary element approximation. To this end,
we first show that every Borel measure with finite Newtonian energy defines uniquely a
distribution σ on Γ = Γ1 ∪ Γ2 belonging to the Sobolev–Sobodetski space H−

1

2 (Γ) such
that the linear functional defined by the measure and the one defined by the L2–duality
with σ coincide on C∞(Γ). Moreover, the minimizing Gauss problem over the measures

is equivalent to minimizing the energy over a corresponding affine cone in H−
1

2 (Γ) which
can be expressed in terms of the simple layer boundary integral operator on Γ. This allows
to approximate the Gauss problem by employing a penalty formulation. The latter cor-
responds to a nonlinear variational problem on the whole space H−

1

2 (Γ) whose solutions
provide error estimates depending on the penalizing parameter.

For the penalized variational problem, the use of piecewise constant boundary elements
on triangulations on Γ and corresponding Galerkin–Bubnov discretization results in a con-
vex, finite–dimensional minimization problem with a symmetric, positive definite system
matrix. The latter can be solved by the gradient–projection method applied to the discrete
system (see [6, Chapt. I]). For the corresponding matrix times vector multiplications, the
fast multipole method [13] is used. The convergence of the gradient–projection method
depends on the penalty parameter as well as on the boundary element’s mesh-width and
becomes very slow for large penalty and small mesh-width. In particular, the charges con-
verge faster for smaller penalty whereas the total charge values are better approximated
for larger penalty. Therefore we are using a cascading approach.

In [25], the dual problem to the Gauss problem is defined and it is shown that its
solution coincides with the one to the original Gauss problem if the latter exists. If the
exterior source of energy is zero then the Gauss problem becomes a condenser problem
for which the dual formulation is easier to treat (see [24, 26]). If the condenser consists
of just two plates without irregular points as considered here, and for the special weight
function g = 1, the dual problem simplifies significally since then the potential values of
the minimizing solution are constant on Γj , j = 1, 2 and sum up to 1. In this case, the dual
problem can be reduced to the solution of two linear boundary integral equations whose
solution provides the desired equilibrium state. The latter can be approximated also by
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piecewise constant charges, and the fast multipole boundary element method provides here
an efficient solution algorithm.

In applications, the numerical solution of the Gauss as well as of the condenser problem
is of great interest if for practical reasons in electrical engineering on Γ1 only nonnegative
and on Γ2 only nonpositive charges are allowed (see “capacitors” in [10]). The numerical
solution of the condenser problem also has applications in approximation theory and the
development of efficient numerical integration (see [7]).

We present numerical experiments for the Gauss as well as for the condenser problem.
In particular, we show that the cascading approach for the penalty method can be used
for the Gauss variational problem.

For the condenser problem, two types of examples a) and b) are presented where for
Γ2 surfaces are used which approximate an infinitely long surface. The corresponding
numerical results are in agreement with theoretical results in [20, 23], where under the
geometry of example b) it was shown that for the infinitely long surface an equilibrium
minimizing measure does not exist, in the contrary to example a).

2 The generalized Gauss variational problem

We are going to consider the Gauss problem in R3, i. e., the problem of minimizing the
Newtonian energy of signed Borel measures in the presence of an external field f . The
corresponding class of admissible measures (or charges) is supposed to be associated with
a condenser, which is treated here as an ordered pair A = (Γ1,Γ2) of two-dimensional
compact, Lipschitz manifolds Γ1,Γ2 ⊂ R3 such that

Γ1 ∩ Γ2 = ∅.

To formulate the problem, we need the following notation.
Let M = M(R3) be the σ-algebra of Borel measures ν on R3, equipped with the

vague topology, i. e., the topology of pointwise convergence on the class C0(R
3) of all real-

valued continuous functions on R3 with compact support (see, e. g., [2, 11]). The mutual
Newtonian energy of ν1, ν2 ∈ M is given by the formula

I(ν1, ν2) :=

∫

R3

∫

R3

dν1(x) dν2(y)

|x− y|

(certainly, if the integral on the right is well defined — as a finite number or ±∞). For
ν1 = ν2 we get the energy I(ν2) := I(ν2, ν2) of ν2, and for ν1 = δx — the value of the
potential of ν2 at x ∈ R3, denoted by Uν2

(x); namely,

Uν(x) :=

∫

R3

dν(y)

|x− y| , where ν ∈ M and x ∈ R
3.

Let E = E(R3) consist of all ν ∈ M(R3) with finite energy. Since the Newtonian
kernel |x − y|−1 is strictly positive definite (see, e. g., [11] and the references given there),
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the bilinear form I(ν1, ν2) defines on E a scalar product. Hence, E can be treated as a
pre-Hilbert space with the norm

‖ν‖E :=
√
I(ν).

Given a closed set F ⊂ R3, let M(F ) consist of all ν ∈ M(R3) supported by F , and let
M+(F ) be the convex cone of all non-negative ν ∈ M(F ). We also write

E+(F ) := M
+(F ) ∩ E .

The condenser A = (Γ1,Γ2) is supposed to be loaded by charges

µ = µ1 − µ2, where µj ∈ E+(Γj), j = 1, 2.

The collection of all those µ will be denoted by E(A); it is a convex cone in E .
Further, let g be a given continuous, positive function on Γ := Γ1∪Γ2 and a = (a1, a2) ∈

R
2 a given vector with aj > 0, j = 1, 2. Then the set of admissible charges for the Gauss

problem is given by

E(A, a, g) :=
{
µ ∈ E(A) :

∫

Γj

g dµj = aj , j = 1, 2
}
.

Observe that E(A, a, g) is an affine, convex cone in the pre-Hilbert space E .
In addition, let f denote a given continuous function on Γ, characterizing an exterior

source of energy. Then

Gf (µ) := I(µ) − 2

∫

Γ

f dµ

defines the value of the so-called Gauss functional at µ ∈ E(A).
The Gauss problem now reads:
Find µ0 that minimizes Gf (µ) in E(A, a, g), i. e., µ0 ∈ E(A, a, g) with

Gf(µ0) = inf
µ∈E(A,a,g)

Gf (µ) =: Gf (A, a, g). (2.1)

A minimizing measure µ0 is unique (if exists). This follows from the strict positive
definiteness of the Newtonian kernel and the convexity of the class of admissible measures;
see Lemma 6 in [22]. But what about the existence of µ0?

Assume for a moment that at least one of Γ1 and Γ2 is noncompact. Then it is not
clear at all that the equilibrium state in the Gauss variational problem can be attained.
Moreover, it has recently been shown by the third author that, in this case, a minimizing
measure µ0 in general does not exist; necessary and sufficient conditions for µ0 to exist
were given in [20, 21, 23].

However, in the case under consideration, where both Γ1 and Γ2 are assumed to be
compact, the Gauss variational problem has a (unique) solution in the cone E(A, a, g).
Indeed, this follows from the vague compactness of E(A, a, g) when combined with the fact
that the Gauss functional Gf is vaguely lower semicontinuous on E(A). Cf. [14].

Remark: If f = 0, g = 1 and Γ is only one connected manifold, then the potential Uµ0
(x)

is constant for x ∈ Γ, and dµ0 is given by the so-called natural layer or Robin density (see
[9]).
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3 The variational formulation in a trace space

In this section we show that for the compact plates Γ1, Γ2 given as two closed Lipschitz
surfaces in R3, the Gauss problem (2.1) is equivalent to a variational problem in a particular
Sobolev–Slobodetski space on Γ = Γ1 ∪ Γ2. Let Ω ⊂ R3 be the domain (bounded or

unbounded) with the boundary ∂R3Ω = Γ, and let H
1

2 (Γ) be the space of traces of the
Sobolev space H1(Ω) onto Γ (see [1]).

Note that Γ is Lipschitz. Let C∞(Γ) be the trace space on Γ of C∞(R3), and define for
ϕ ∈ C∞(Γ)

‖ϕ‖
H

1
2 (Γ)

:= inf
{
‖ϕ̃‖H1(Ω) where ϕ̃|Γ = ϕ

}
. (3.1)

Then C∞(Γ) is dense in the trace space H
1

2 (Γ), its closure with respect to the norm given
by (3.1) (see [1]).

Moreover, the surface measure ds on Γ is well defined and generates on C∞(Γ) the L2

scalar product,

(ϕ, ψ) :=

∫

Γ

ϕψ ds, where ϕ, ψ ∈ C∞(Γ). (3.2)

In fact, H
1

2 (Γ) is a Hilbert space equipped with the scalar product

((ϕ, ψ))
H

1
2 (Γ)

:= (ϕ, ψ) +

∫

Γ

∫

Γ

(
ϕ(x) − ϕ(y)

)(
ψ(x) − ψ(y)

)

|x− y|3 ds(x)ds(y) (3.3)

and the norms given by (3.1) and by ((ϕ, ϕ))
1

2

H
1
2 (Γ)

are equivalent (see [1, 7.48]).

The L2 scalar product (3.2) continuously extends to the duality between H
1

2 (Γ) and its

dual space H−
1

2 (Γ), which is equipped with the norm

‖ϕ‖
H−

1
2 (Γ)

:= sup
{
|(ϕ, ψ)| for ψ ∈ H

1

2 (Γ) with ‖ψ‖
H

1
2 (Γ)

≤ 1
}
. (3.4)

We denote that extension by the same symbol ( · , · ). Since Γ is Lipschitz, the function

space C∞(Γ) is dense in each of the spaces H
1

2 (Γ), L2(Γ), and H−
1

2 (Γ).
For the Gauss variational problem (2.1) we shall find an equivalent formulation which is

based on special distributions concentrated on Γ with densities ϕ ∈ H−
1

2 (Γ). These define

bounded linear functionals on H
1

2 (Γ) ⊃ C∞(Γ), whereas Borel measures µ ∈ M(Γ) define

bounded linear functionals on C(Γ); however, C(Γ) 6⊂ H
1

2 (Γ) 6⊂ C(Γ).

In H−
1

2 (Γ), let us define the affine cone

K(A, a, g) :=
{
ϕ = ϕ1 − ϕ2, where suppϕj ⊂ Γj, ϕ

j
∣∣
Γj
∈ H−

1

2 (Γj),

ϕj ≥ 0 and

∫

Γj

gϕj ds = aj , j = 1, 2
}
, (3.5)
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where a1, a2 are the two given positive constants. From now on, for the given positive
function g we require g ∈ C(Γ) ∩ H

1

2 (Γ). As we shall see, the solution of the Gauss
problem (2.1) can be obtained with the help of the simple layer potential operator

V ψ(x) :=

∫

Γ

ψ(y)

|x− y| ds(y) for x ∈ Γ, (3.6)

which for ψ ∈ H−
1

2 (Γ) is well defined almost everywhere on the Lipschitz surface Γ (see
[3, 9, 19]).

Let us collect some of the properties of V , for Lipschitz surfaces Γ proved by Costabel
[3] and Verchota [19], in the following theorem.

Theorem 3.1 For every σ ∈ [−1
2
, 1

2
], V is a linear, continuous, invertible mapping

V : H−
1

2
+σ(Γ) → H

1

2
+σ(Γ). (3.7)

Moreover, it is H−
1

2 (Γ)-elliptic; i.e., there exist constants c, cV > 0 depending on Γ only

such that

c ‖ψ‖2

H−
1
2 (Γ)

≥ ‖ψ‖2
V ≥ cV ‖ψ‖2

H−
1
2 (Γ)

for all ψ ∈ H−
1

2 (Γ) , (3.8)

where

‖ψ‖2
V := (ψ, V ψ).

Now we are in a position to characterize all the Borel measures of finite energy via distri-
butions in H−

1

2 (Γ).

Theorem 3.2 Let Σ ∈ M(Γ) have finite Newtonian energy

I(Σ) = ‖Σ‖2
E <∞.

Then there exists a unique element σ ∈ H−
1

2 (Γ) such that

Σ(φ) =

∫

Γ

φ dΣ = (φ, σ) for all φ ∈ C∞(Γ). (3.9)

Moreover,

‖Σ‖2
E = ‖σ‖2

V ≃ ‖σ‖2

H−
1
2 (Γ)

(3.10)

where ≃ denotes equivalence. We shall call σ the distribution in H−
1

2 (Γ) associated with Σ.

Proof: Let φ ∈ C∞(Γ), then ψ := V −1φ ∈ L2(Γ) since C∞(Γ) ⊂ H1(Γ) and

φ(x) = V ψ(x) =

∫

Γ

1

|x− y|ψ(y) ds(y)
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due to (3.7) for σ = 1
2
. Therefore,

Σ(φ) =

∫

Γ

φ dΣ =

∫

Γ

(∫

Γ

1

|x− y|ψ(y) ds(y)
)
dΣ(x)

and with Fubini’s theorem,

Σ(φ) =

∫

Γ

(∫

Γ

1

|x− y| dΣ(x)
)
ψ(y) ds(y) = I(Σ,Ψ), (3.11)

where Ψ,

Ψ(B) :=

∫

B

ψ(y) ds(y) for Borel sets B ⊂ Γ,

is a Borel measure on Γ because ψ ∈ L2(Γ) ⊂ L1(Γ). Moreover, since L2(Γ) ⊂ H−
1

2 (Γ), we
get

|I(Ψ,Ψ)| =
∣∣∣
∫

Γ

∫

Γ

1

|x− y|ψ(y) ds(y)ψ(x) ds(x)
∣∣∣

= (ψ, V ψ) ≤ ‖V ‖ψ‖2

H−
1
2 (Γ)

≤ c20‖φ‖2

H
1
2 (Γ)

<∞,

and the energy scalar product in (3.11) is thus well defined. Therefore,

|Σ(φ)| = |I(Σ,Ψ)| ≤ ‖Σ‖E ‖Ψ‖E ≤ cΣc0‖φ‖H
1
2 (Γ)

for all φ ∈ C∞(Γ),

where cΣ and c0 are not depending on φ. Since C∞(Γ) is dense in H
1

2 (Γ), Σ defines a

bounded linear functional on H
1

2 (Γ), and there exists a uniquely defined element σ ∈
H−

1

2 (Γ) such that (3.9) holds.
In order so show (3.10) we consider φ(y) := |x − y|−1 for any fixed x ∈ R3 \ Γ as a

function of y. Then φ ∈ C∞(Γ) and

UΣ(x) =

∫

Γ

1

|x− y| dΣ(y) = Σ(φ)

=

∫

Γ

1

|x− y|σ(y) ds(y) = V σ(x)

because of (3.9), and V σ(x) here denotes the simple layer potential for x 6∈ Γ. This relation
holds for every x 6∈ Γ, therefore the potentials UΣ and V σ coincide everywhere in Ω as well
as in Ωc = R3 \ Ω. As is well known (see, e. g., [11, Th. 1.20]),

‖Σ‖2
E =

1

4π

∫

R3

|∇UΣ|2 dx. (3.12)
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Hence, UΣ|Ω ∈ H1(Ω) and UΣ|Ωc ∈ H1(Ωc). Moreover, UΣ solves the following transmission
problem (see [9, Sec. 5.6.3] and [18]):

∆UΣ = 0 in Ω ∪ Ωc,

lim
Ω∋x→x0∈Γ

UΣ(x) = lim
Ωc∋x→x0∈Γ

UΣ(x) for almost all x0 ∈ Γ, (3.13)

∇UΣ

∣∣
Ω
·n∂Ω + ∇UΣ

∣∣
Ωc ·n∂Ωc = 4πσ ∈ H−

1

2 (Γ). (3.14)

In (3.13), almost everywhere means with respect to the surface measure on Γ and the limits
are supposed to be nontangential, while in (3.14) n∂Ω and n∂Ωc denote the interior unit
normal vectors with respect to Ω and Ωc, respectively, and the equality holds in the weak
sense. Then it follows (see [3]) that

(V σ, σ) =
1

4π

∫

Ω

|∇UΣ|2 dx+
1

4π

∫

Ωc

|∇UΣ|2 dx,

which is equivalent to ‖σ‖2

H−
1
2

and, furthermore, equals ‖Σ‖2
E due to (3.12). This completes

the proof of Theorem 3.2. �

Given ϕ ∈ H−
1

2 (Γ), write

Vf (ϕ) := ‖ϕ‖2
V − 2(f, ϕ).

As a consequence of Theorem 3.2, we conclude for the solution of the Gauss problem the
following.

Theorem 3.31 Let f, g ∈ C(Γ) ∩ H
1

2 (Γ) and g be strictly positive. Then the unique

solution µ0 ∈ E(A, a, g) of the Gauss problem (2.1) defines a bounded linear functional on

H
1

2 (Γ) and a unique element ϕ0 ∈ K(A, a, g) ⊂ H−
1

2 (Γ) with the properties

µ0(φ) = (ϕ0, φ) for all φ ∈ C∞(Γ)

and

Vf (ϕ0) = Gf (µ0) = Gf (A, a, g).
Moreover, ϕ0 is the minimizer on K(A, a, g) of the functional Vf , i. e.,

Vf (ϕ0) = min
ϕ∈K(A,a,g)

Vf (ϕ). (3.15)

Proof: Since A is compact, there exists a unique solution µ0 of the Gauss problem
in E(A, a, g) (see Sec. 1). Hence, I(µ0) < ∞. Because of Theorem 3.2, there exists

ϕ0 ∈ H−
1

2 (Γ) such that
Vf (ϕ0) = Gf (µ0) = Gf (A, a, g).

1A corresponding result for distributions is due to D. Medkova [12, Remark 7.11]

12



Since C∞(Γ) is dense inH−
1

2 (Γ) there exists a sequence ϕℓ ∈ C∞(Γ)∩K(A, a, g) converging

to ϕ0 in H−
1

2 (Γ). Therefore

Vf(ϕℓ) → Vf(ϕ0) = Gf (A, a, g).

Moreover, ϕds ∈ E(A, a, g) for all ϕ ∈ C∞(Γ) ∩ K(A, a, g) and so

Gf (A, a, g) ≤ inf
ϕ∈K(A,a,g)∩C∞(Γ)

Vf (ϕ) ≤ Vf (ϕℓ) for all ℓ ∈ N,

which implies with ℓ→ ∞

inf
ϕ∈K(A,a,g)∩C∞(Γ)

Vf(ϕ) = Vf (ϕ0) = Gf (A, a, g)

and (3.15) since C∞(Γ) is dense in H−
1

2 (Γ). �

In order to find a solution of the Gauss problem (2.1) with a suitable algorithm we
replace the affine cone K(A, a, g) by a cone K(Γ) with vertex at 0 by employing Lagrange
multipliers for the side conditions

∫
Γj

gϕj ds = aj , j = 1, 2.

Then we arrive at the following problem:
Find

ϕ̺ ∈ K(Γ) :=
{
ϕ ∈ H−

1

2 (Γ), where ϕ = ϕ1 − ϕ2,

suppϕj ⊂ Γj , ϕ
j
∣∣
Γj
∈ H−

1

2 (Γj), and ϕj ≥ 0
}
, (3.16)

which is the minimizer of

Vf,̺(ϕ) := Vf(ϕ) +
̺

2

2∑

j=1

∣∣∣
∫

Γj

gϕjds− aj

∣∣∣
2

. (3.17)

Namely,

Vf,̺(ϕ̺) = min
ϕ∈K(Γ)

Vf,̺(ϕ) =: Vf,̺(A, a, g).

Here ̺ > 0 is a penalty parameter to be chosen later on appropriately.

Lemma 3.4 If ϕ0 ∈ H−
1

2 (Γ) defines the solution of the problem (2.1) due to Theorem 3.2,

and ϕ̺ ∈ H−
1

2 (Γ) is the minimizer of (3.17), then we have

Vf,̺(A, a, g) ≤ Gf(A, a, g), (3.18)

and with

C :=
1

cV

{
cD‖f‖H

1
2 (Γ)

+
[
c2D‖f‖2

H
1
2 (Γ)

+ cV Gf (A, a, g)
]1

2

}
(3.19)
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the a priori estimates for ϕ0 and ϕ̺:

‖ϕ0‖H−
1
2 (Γ)

≤ C and ‖ϕ̺‖H−
1
2 (Γ)

≤ C, (3.20)

where cD is the duality constant in

|(χ, ψ)| ≤ cD‖χ‖H−
1
2 (Γ)

‖ψ‖
H

1
2 (Γ)

. (3.21)

Proof: Since ϕ0 ∈ K(A, a, g) ⊂ K(A) and
∫
Γj

gϕj
0 ds = aj for j = 1, 2, we get

Vf,̺(ϕ̺) = Vf(ϕ̺) +
̺

2

2∑

j=1

∣∣∣
∫

Γj

gϕj
̺ds− aj

∣∣2

≤ Vf,̺(ϕ) + 0 = Gf (A, a, g),

i.e., (3.18). Then, with (3.8), we obtain

cV ‖ϕ̺‖2

H−
1
2 (Γ)

≤ ‖ϕ̺‖2
V = Vf,̺(A, a, g) + 2(f, ϕ̺) −

̺

2

2∑

j=1

∣∣∣
∫

Γj

gϕj
̺ds− aj

∣∣2

≤ Gf (A, a, g) + 2cD‖f‖H
1
2 (Γ)

‖ϕ̺‖H−
1
2 (Γ)

.

So, with C defined by (3.19) the second inequality in (3.20) follows.
For ϕ0 we have the same estimate due to

cV ‖ϕ0‖2

H−
1
2 (Γ)

≤ Gf (A, a, g) + 2cD‖f‖H
1
2 (Γ)

‖ϕ0‖H−
1
2 (Γ)

.

�

Theorem 3.5 Let ϕ0 be the minimizer of (2.1) and ϕ̺ be the minimizer of (3.17). Then

for

ϕ̃j
̺ = αjϕ

j
̺, where α−1

j = a−1
j

∫

Γj

ϕj
̺ g ds, (3.22)

we find the following estimates:

|δj | ≤ δ ≤
√

2 ̺−
1

2

{
Gf (A, a, g) + 2C‖f‖

H
1
2 (Γ)

}
=: C1̺

−
1

2 , (3.23)

where

δj :=

∫

Γj

ϕj
̺ gds− aj , δ2 = δ2

1 + δ2
2 ,

and

‖ϕ̺̃ − ϕ0‖H−
1
2 (Γ)

≤
√
C2δ ≤ C3̺

−
1

4 , (3.24)
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where

C2 =

√
2

a0

[
19C2‖V ‖ + 2cDC‖f‖H

1
2 (Γ)

]
,

C3 := (C1C2)
1

2 , and a0 := min{a1, a2} .

Here, ‖V ‖ denotes the norm of the operator V : H−
1

2 (Γ) → H
1

2 (Γ). Moreover,

Vf (A, a, g) ≤ Gf (A, a, g) ≤ Vf(A, a, g) −
̺2

2

2∑

j=1

δ2
j

+
2∑

j=1

{
(α2

j − 1)(V ϕj
̺, ϕ

j
̺) − 2(αj − 1)(f, ϕj

̺)
}

+ (α1α2 − 1)
{
(V ϕ1

̺, ϕ
2
̺) + (V ϕ2

̺, ϕ
1
̺)

}

≤ Vf(A, a, g) +O(̺−
1

4 ) . (3.25)

The proof of Theorem 3.5 will be given in the Appendix.
Theorem 3.5 shows that the solution of the Gauss problem (2.1) can be approximated

by the solutions of the minimizing problem (3.17) by choosing ̺ in (3.17) large enough.
The advantage of (3.17) lies in the fact that for (3.17) the cone K(Γ) is a cone with vertex
0 and not an affine cone as in (2.1). For solving (3.17) we shall use the gradient projection
method to be described in Section 5.

4 The condenser problem

This section deals with the case where f = 0, g = 1, and a1 = a2 = 1. Observe that then
Gf (A, a, g), being equal to the minimum of the energy over the class of all µ ∈ E(A) with

µ(Γj) = 1 for j = 1, 2, is actually equal to
[
capA

]−1
, where capA denotes the Newtonian

capacity of the condenser A. Hence,

Λ := ΛA :=
[
capA

]
µ0

is actually the Newtonian equilibrium measure on A.
On the other hand, it follows from results of the third author (see [20, 24, 26]) that ΛA,

the Newtonian equilibrium measure on A, can also be obtained as the (unique) solution to
the (dual) minimal energy problem over the class of all Borel measures ν of finite energy
supported by Γ such that

Uν(x) =

{
C(ν) for all x ∈ Γ1,
C(ν) − 1 for all x ∈ Γ2,

(4.1)

where C(ν) is a constant depending on ν. What is important is that the measures ν,
admissible in the dual variational problem, are no longer required to belong to E(A); that
is, the measures ν

∣∣
Γj

, j = 1, 2, are allowed to be signed.

In view of Theorem 3.2, this leads us to the following formulation in H−
1

2 (Γ).
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Theorem 4.1 Let λ = λ1 − λ2 ∈ H−
1

2 (Γ) with suppλj ⊂ Γj, j = 1, 2, be the distribution

associated with the Newtonian equilibrium measure Λ = ΛA. Then λ is also the minimizer

of the energy

‖σ‖2
V = (σ1, V σ1 − V σ2) + (σ2,−V σ1 + V σ2) (4.2)

over the set H−
1

2 (Γ) consisting of all σ = σ1 − σ2 ∈ H−
1

2 (Γ) with supp σj ⊂ Γj satisfying

the system of boundary integral equations

V σ1 − V σ2 = c on Γ1 ,

−V σ1 + V σ2 = 1 − c on Γ2 ,
(4.3)

where c ∈ R is a parameter.

Theorem 4.2 The distribution λ = λ1 − λ2 associated with the Newtonian equilibrium

measure Λ = ΛA can be obtained with the following procedure:

Solve the system of boundary integral equations

V σ̇1 − V σ̇2 = 1 on Γ1 ,

V σ̇1 + V σ̇2 = −1 on Γ2

(4.4)

for σ̇ = σ̇1 − σ̇2 ∈ H−
1

2 (Γ), where supp σ̇j ⊂ Γj. With

C := (σ̇2, 1) d−1 ∈ R,

where

d := (σ̇2, 1) − (σ̇1, 1), (4.5)

solve the following system of boundary integral equations for λ:

V λ1 − V λ2 = C on Γ1,

−V λ1 + V λ2 = 1 − C on Γ2.
(4.6)

Then λ = λ1 − λ2 is the desired solution.

Proof: Because of (4.3), the energy in (4.2) can also be written as

‖σ‖2
V = (σ1, c) − (σ2, c− 1),

where σ1, σ2 and the energy ‖σ‖2
V depend on c, the constant value of the potential V σ

on Γ1. The energy ‖σ‖2
V becomes minimal if

∂

∂c
‖σ‖2

V = 0 = (σ̇1, c) + (σ1, 1) − (σ̇2, c− 1) − (σ2, 1)

= c
[
(σ̇1, 1) − (σ̇2, 1)

]
+ (σ̇2, 1) + (σ1, 1) − (σ2, 1), (4.7)

16



where σ̇j := ∂σj
/
∂c.

Since the solution λ of the minimum problem in Theorem 4.1 is the distribution asso-
ciated with the Newtonian equilibrium measure ΛA, λ satisfies the conditions

(λj , 1) = capA for j = 1, 2,

the last two terms in (4.7) cancel each other and the equation (4.7) now reads

−c d+ (σ̇2, 1) = 0,

which gives the required value of C.
Taking at C the derivatives ∂

/
∂c of the solution of the minimum problem, we find

V λ̇1 − V λ̇2 = 1 on Γ1,

−V λ̇1 + V λ̇2 = −1 on Γ2 ,

i.e., system (4.4). Since the simple layer potential operator V on Γ1×Γ2 is strongly elliptic

(see [3, 9]), the system (4.4) has a unique solution λ̇ ∈ H−
1

2 (Γ). Then C is uniquely
determined provided d 6= 0, and with c := C we obtain λ as the (unique) solution of the
strongly elliptic boundary integral equation system (4.6). �

Lemma 4.3 The constant d = (λ̇2, 1) − (λ̇1, 1) is negative.

Proof: Without loss of generality, we can assume Γ2 to contain boundary limit points
of the unbounded component Ω∞ of R3 \ Γ, for if not, we replace the roles of Γ1 and Γ2.
Let us consider the simple layer potential Uλ̇ in R3 \ Γ, which has boundary values almost
everywhere on Γ. Then we conclude from (4.4) that

Uλ̇ = 1 a. e. on Γ.

Since Uλ̇ ∈ H−
1

2 (Γ), the normal derivative ∂Uλ̇

/
∂n exists almost everywhere on Γ and

belongs to H−
1

2 (Γ) (see [19]). Here, n denotes the interior normal vector with respect
to Ω∞. With the jump relation of the normal derivative of the simple layer potential Uλ̇

across Γ (see [3]) and since Uλ̇(x) = 1 for all x in the bounded components of R3 \ Γ, we
find

∂Uλ̇

∂n
= −λ̇1 on Γ1,

∂Uλ̇

∂n
= λ̇2 on Γ2.

Since Uλ̇(x) = O(|x|−1) for |x| → ∞, Green’s theorem can be applied to Uλ̇ in Ω∞, which
yields

d = (λ̇2, 1) − (λ̇1, 1) =
( ∂Uλ̇

∂n
, Uλ̇

)
= −

∫

Ω∞

|∇Uλ̇|2 dx < 0,

since Uλ̇ is not constant in Ω∞. �
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5 The approximation of the Gauss problem by the

use of piecewise constant charges

Since the minimizing problem (3.17) is quadratic, one could compute the minimizer by
using the gradient–projection method:

ϕk+1 := PK(ϕk − ηV′
f,̺ϕk) , k = 0, 1, . . . (5.1)

where PK is the H−1/2(Γ)–orthogonal projection onto K(Γ) (see [6, I(3.13)]), and V′
f,̺ the

Frechet derivative of the functional Vf,̺ in (3.17). But a numerical realization of PK is as
difficult as solving the original problem (3.17) itself. Therefore we shall apply a gradient-
projection iteration to the discretized formulations instead.

For solving (3.17) numerically, let us use a quasiregular family of triangulations Th of
the surface Γ = Γ1 ∪ Γ2 (see [17, Chap.10]), where h denotes the maximum mesh width
of the elements in Th. On the triangulation, we introduce piecewise constant functions
S0

h(Γ) ⊂ L2(Γ) ⊂ H−1/2(Γ) as the trial as well as the test space. Correspondingly, we
define

Kh(Γ) :=
{
ϕh ∈ S0

h(Γ) where ϕh = ϕ1
h − ϕ2

h with suppϕj
h ⊂ Γj and ϕj

h ≥ 0
}
. (5.2)

The finite–dimensional approximation to (3.4) then reads:
Find the minimizer ϕ̺h ∈ Kh(Γ) of the quadratic functional

Vf,̺(ϕh) :=
{

(V ϕ1
h, ϕ

1
h) − (V ϕ1

h, ϕ
2
h) − (V ϕ2

h, ϕ
1
h) + (V ϕ2

h, ϕ
2
h)

− 2(f, ϕ1
h) + 2(f, ϕ2

h)

+
̺

2

(( ∫

Γ1

gϕ1
hds− a1

)2
+

( ∫

Γ2

gϕ2
hds− a2

)2
)}

on ϕh ∈ Kh(Γ) . (5.3)

If M denotes the number of elements in Th, which here is also the dimension of S0
h,

then minimizing (5.3) on Kh(Γ) defines a quadratic programming problem with M linear
constraints given by (5.2). Since the bilinear form

Vf,̺(ϕ) = ‖ϕ‖2
V +

̺

2

(
(g, ϕ1)2 + (g, ϕ2)2

)

in (5.3) is H−
1

2 (Γ)–elliptic Theorem 5.2 in [6] implies convergence.

Lemma 5.1 For any ̺ ≥ 0 fixed, the solutions ϕ̺h of (5.3) converge with h→ 0 strongly

in H−
1

2 (Γ) to ϕ̺, the minimizer of Vf,̺ in (3.17).

Because M , in general, is rather large, standard methods for finding the discrete min-
imizer of (5.3) requires long computing times (see [7], where just a few hundred degrees
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of freedom were used). On the other hand, (5.3) is of the type (3.8) in [6, Chap.I]. We
therefore write the Frechet derivative of (5.3) operating on ϕ̺h ∈ S0

h in variational form:

V
′

f,̺ = 2
[
(V ϕ1

̺h, χ
1
h) − (V ϕ1

̺h, χ
2
h) − (V ϕ2

̺h, χ
1
h) + (V ϕ2

̺h, χ
2
h)

+
̺

2
(g, ϕ1

̺h) · (g, χ1
h) +

̺

2
(g, ϕ2

̺h) · (g, χ2
h) (5.4)

−(f, χ1
h) + (f, χ2

h) −
̺

2
a1(g, χ

1
h) −

̺

2
a2(g, χ

2
h)

]

for all χ1
h ∈ S0

h(Γ1) , χ
2
h ∈ S0

h(Γ2).
This Frechet derivative can be realized by using a multipole approximation (see [13])

and is equivalent to a linear system

Ax − F = 0 ∈ R
M (5.5)

of M equations on M variables collected in the vector x ∈ RM , the coefficients of ϕ1
0h−ϕ2

0h

with respect to the corresponding basis defined by the characteristic functions of τℓ ∈
Th , ℓ = 1, . . . ,M .

Inserting the representations of ϕ1
h−ϕ2

h with the coefficients x into (5.3), the discretized
minimizing problem now reads:

Minimize

x⊤
A0x − 2f⊤x +

̺

2

{
(g⊤

1 x − a1)
2 + (g⊤

2 x − a2)
2
}

on x ∈ R
M
+ where R

M
+ = {y ∈ R

M | yj ≥ 0 , j = 1, . . . ,M} .
(5.6)

Here A0 =

(
V11,h −V12,h

−V21,h V22,h

)
is the Galerkin matrix of V on Γ1 × Γ2.

But this problem is a problem in RM with a positive definite symmetric matrix A and,
hence, of the type (3.8) in [6]. Therefore, we now may use the gradient projection method
[6, Chap.I (3.12)] in the Eucledian space RM :

x̃k+1 := xk − η
(
A0x

k +
̺

2
g g⊤xk − F

)
,

xk+1 := PR
M
+
x̃k+1 , k = 0, 1, . . .

(5.7)

where η is appropriately chosen, 0 < η < 2γh / ‖A‖2
RM ,RM , g =

(
g1

g2

)
and F = f +

̺
2
(a1g

⊤
1 , a2g

⊤
2 )⊤, and ‖A‖L2,L2

the spectral norm. The full matrix A = A0 + ̺
2
g(g⊤

1 , g
⊤
2 ) ∈

RM × RM satisfies a coerciveness inequality

x⊤
Ax ≥ γh‖x‖2

RM for all x ∈ R
M , (5.8)

with
γh = cV · c0 · h > 0 . (5.9)
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The projection PRM
+

is given by

(PR
M
+
y)j :=

{
yj if yj ≥ 0 and

0 if yj < 0 .
(5.10)

Obviously,
‖P

R
M
+
‖L2(RM ),L2(RM ) = 1

and, therefore, (5.7) converges in RM as the geometric series
∞∑

k=0

(1 − η)k.

Although all matrix times vector multiplications are executed with the fast multipole
approximation [13], because of (5.9) and as will be seen from the computations, the con-
vergence turns out to be rather slow.

5.1 Some computations with the projection iteration

As computational examples, we consider a sphere for Γ1 and for Γ2 a rotational symmetric
surface with radius R(x1) decaying to zero for x1 → ∞. The surfaces are given by

Γ1 ={x ∈ R
3 with |x+ (2, 0, 0)| = 1} ,

Γ2 ={x ∈ R
3 with x2

2 + x2
3 ≤ 1 for x1 = 0, x2

2 + x2
3 = R(x1) , (5.11)

for 0 < x1 < X, x2
2 + x2

3 ≤ R(X) for x1 = X} .

In particular, we choose
R(r) = (1 + r)−1 . (5.12)

The infinite rotational body is cut off at X = 4.
For first tests of the gradient–projection method, we consider the Gauss problem (2.1)

with g = 0.1, f(x) = 1000|x − x0|−1 where x0 = (−4.0, 0, 0)⊤, and use an approximation
of Γ1 and Γ2 (X = 4) with 2048 and 2088 triangles, respectively, see Fig. 1. We computed
the charges a1 = 848.8032 and a2 = 564.4113 for ̺ = 0 and then tried to recover the
charges for several values of ̺ ∈ {1, 10, 100, 1000} by employing the gradient-projection
iteration (5.7). We observed that η decreases rapidly for large ̺ and hence, a very slow
convergence. In addition, the residual is still large after millions of iteration steps for large
̺, but at the same time we observed a bad approximation of the charge distribution.

Next, we checked the convergence of the approximate total charges ã1 and ã2 for ̺ ∈
{0, 10, 100, 1000} in the case of active constraints for chosen values of a1 = 400 and a2 =
300. In Tab. 1, we observe convergence of the computed approximations to a1 and a2

for increasing ̺, which was proposed in (3.24). A relative accuracy of 10−4 was used as
stopping criterion in the gradient–projection method. For ̺ = 1000, however, the iteration
was stopped after 3 · 106 steps.
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̺ 0 10 100 1000
ã1 848.94 640.18 448.63 405.44
ã2 564.67 408.89 314.04 301.34

Table 1: Approximations ã1 and ã2 of a1 and a2 of the gradient–projection method for the
Gauss variational problem with a1 = 400 a2 = 300 g = 0.1.

Since the charges converge so slowly for large ̺, we now use a cascading approach. We
start with small values of ̺ to compute a good approximation of the charge distribution
with a few iteration steps. Then this approximation serves as an initial guess for a new
run of the gradient-projection method with a larger ̺ to improve the approximation of the
total charges. In each run, we limit the maximal number of iteration steps. Repeating
this approach several times, we get a good approximation with a significantly smaller total
number of iteration steps.

ã1 ã2 functional
gradient proj. method 405.4389 301.3350 −4.909957 · 106

cascading approach 405.4682 301.3556 −4.935061 · 106

Table 2: Results by the pure gradient–projection and by cascading for the Gauss variational
problem with g = 0.1, a1 = 400, a2 = 300.

For our example, we choose ̺ ∈ {10, 50, 100, 300, 500, 700, 800, 900, 950, 1000}, limit the
number of iteration steps in each run to 30000 and compare the results with the results
of the gradient-projection method for ̺ = 1000 and 3 · 106 iterations. In Table 2, we
see a good agreement of the values ã1 and ã2 of the gradient-projection method and the
cascading approach with a total of 3 · 105 iterations. In addition, the functional of the
approximate solution of the cascading approach is smaller. This is reflected even better in
Fig. 1. Altogether we get a much better approximation of the charge distribution by the
cascading approach than with the pure gradient-projection method.

Figure 1: Approximate solution for ̺ = 1000 and the Problem (5.3) (a1 = 400 a2 = 300
g = 0.1) computed by the gradient-projection method and by cascading.

21



6 The approximation of the condenser problem

For the numerical solution of the two systems (4.4) and (4.6) with (4.5) we use the same
boundary triangulations Th of Γ = Γ1 ∪ Γ2 as in Section 5. But now as test and trial
functions in the Galerkin approximation we employ the full space S0

h and set

σh = (σ1
h − σ2

h) where σj
h =

∑

ℓ∈Ij

xℓχhℓ , xℓ ∈ R (6.1)

with χhℓ the characteristic function to the triangle τℓ ∈ Th ∩Γj where I1 = {1, . . . ,M1} for
the triangulation of Γ1 and I2 = {M1 + 1, . . . ,M} for the triangulation of Γ2. With the
Galerkin matrix A0 of V on Γ1 ×Γ2, the Galerkin equations to (4.4) now are equivalent to
the linear system

A0ẋ = g (6.2)

for the coefficients ẋ of

σ̇1
h =

∑

ℓ∈I1

ẋℓχhℓ on Γ1 and σ̇2
h =

∑

ℓ∈I2

ẋℓχhℓ on Γ2 .

Then the approximations of d in (4.5) and C are obtained by solving the Galerkin equations
of (4.6), i.e., the additional linear system

A0x = u (6.3)

for x, and

λh = λ1
h − λ2

h with λ1
h =

∑

ℓ∈I1

xℓχhℓ , λ
2
h =

∑

ℓ∈I2

xℓχhℓ ,

which is the desired approximation.
The solutions of the linear systems (6.2) and (6.3) are obtained with a preconditioned

conjugate gradient method as in [13] where the preconditioner to (6.2) as well as to (6.3)
is based on an artificial multilevel approach due to Steinbach in [16].

The corresponding matrix times vector multiplications are executed by using the fast
multipole method [13] for the simple layer potential operator.

Since for this condenser problem the two linear systems (4.4) and (4.6) in H−
1

2 (Γ) are
approximately solved by Galerkin’s method, standard a priori error estimates for h → 0
are available [8].

Lemma 6.1 Let λ̇ , λ ∈ Hs(Γ) with −1
2
≤ s ≤ 1, and −1 − s ≤ t ≤ s ≤ 1, and let the

family of triangulations be quasiregular. Then there hold the asymptotic a priori estimates

‖λ̇h − λ̇‖Ht(Γ) ≤ chs−t‖λ̇‖Hs(Γ) , ‖λh − λ‖Ht(Γ) ≤ chs−t‖λ̇‖Hs(Γ) ,

|Ch − C| ≤ ch2s+1 and |(capA)h − capA| ≤ ch2s+1 .
(6.4)

If the family of triangulations is not quasiregular then (6.4) holds only for −1 − s ≤ t ≤
−1

2
≤ s ≤ 1.

Since the constant right–hand sides in (4.4) and (4.6) are in C∞(Γ), the regularity, i.e. s
depends only on the regularity of Γ.
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6.1 Some computations for the condenser problem

For the computational examples of the condenser problem (4.4) and (4.6) with (4.5), we
choose a1 = 1 , a2 = 1 , f = 0, and g = 1.

In Table 3, we compare the solutions of the condenser problem for several levels of
discretization of the two bodies, which were considered in Sect. 5.1 and are given by (5.11)
and (5.12) for X = 4. The meshes are created by uniform refinement of the coarsest mesh
with 308 triangles, where the new vertices are projected onto Γ1 and Γ2. We consider the
approximate solution λ7 on the finest refinement level with about 5 million triangles as a
reference solution and compute an indicated error as

error := ‖λL − λ7‖L2(Γ)/‖λ7‖L2(Γ) .

We observe a reduction of the error but a low order of convergence eoc as predicted in (6.4).
But the convergence is a lot better for the approximation of the charges at the tip of Γ2,
which is of further interest in this example.

L M error eoc density
0 308 0.392 0.107 -1.510673
1 1232 0.364 0.128 -1.445448
2 4928 0.333 0.153 -1.429619
3 19712 0.299 0.184 -1.424071
4 78848 0.264 0.242 -1.421334
5 315392 0.223 0.242 -1.419588
6 1261568 0.168 0.405 -1.418401
7 5046272 -1.417603

Table 3: Convergence study for X = 4.

The charges at the tip of the rotational body Γ2 are defined by the integral

∫

x∈Γ2:x1>X−10−8

λh(x)dsx, (6.5)

for increasing values of the length X. For these computations, we use highly adaptive
meshes with 50240 up to 446372 triangles for the approximation of Γ1 and Γ2. In Table 4,
the charges at the tips of Γ2 are devided by the areas at the tips for several X. In addition,
the computed densities, which are given by the quotients of the charges and the areas of
the tips, indicate the existence of a limit, which was proven to exist in [20].

With these computations, however, we reach the limits of the currently available soft-
ware based on the fast and data-sparse realization of the single layer potential by the fast
multipole method. For larger X, additional techniques will be necessary such as, e.g.,
appropriate domain decomposition methods.
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X = 8 X = 16 X = 24 X = 32 X = 40 X = 48∫
x1>a

λhdsx -7.20e-2 -2.57e-2 -1.33e-2 -8.26e-3 -5.61e-3 -4.07e-3∫
x1>a

1dsx 3.88e-2 1.09e-2 5.02e-3 2.88e-3 1.87e-3 1.31e-3

density -1.86 -2.36 -2.65 -2.87 -3.00 -3.11
X = 56 X = 64 X = 72 X = 80 X = 88 X = 104∫

x1>a
λhdsx -3.11e-3 -2.45e-3 -1.98e-3 -1.65e-3 -1.39e-3 -1.02e-3∫

x1>a
1dsx 9.66e-4 7.43e-4 5.89e-4 4.78e-4 3.96e-4 2.85e-4

density -3.21 -3.30 -3.36 -3.45 -3.51 -3.57

Table 4: Charges (6.5) and their densities at the tips for a = X − 10−8

As a second example, we consider again two bodies given by (5.11), where now

R(r) = e−r for r ≥ 0. (6.6)

The solution for a discretization with 82364 boundary elements for X = 4 is given in Fig. 2.
The solution is positive on Γ1 and negative on Γ2 as required.

Figure 2: Charge density for 32768 and 49596 elements for X = 4.

Next, we investigate the asymptotic behavior of the charges at the tips forX ∈ {4, 6, 8}.
About 105 boundary elements were used for the discretization of Γ2 for each X. In Table 5,
the extremal values of these computations are given. The fast decrease of the minimum
observed at the tip, indicates already the divergence of the charges at the tips for X → ∞,
as predicted in [20].

The plots of the solution on the sphere Γ1 for X ∈ {4, 6, 8} show no visible difference.
We only can observe a slight increase of the maximal values, see Table 5. On the disc at
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a X = 4 X = 6 X = 8
min -16.9 -212.72 -853.54
max 1.5436 1.5530 1.5589

Table 5: Data range of the charges for X ∈ {4, 6, 8}.

x1 = 0, which is opposite to the sphere, the solutions do not change for X ∈ {4, 6, 8}. We
plotted the solution for X = 6 in Fig. 3 to indicate that the charge distributions have the
correct signs.

Figure 3: Charge density at the ball and the rotational body for X = 6

Since the radius R in (6.6) decreases exponentially, we had to adapt the meshsize of
the boundary elements also exponentially along the body. Otherwise, it was not possible
to run the simulations for X = 6 and X = 8. For larger X, the number of shape regular
elements increases so rapidly that the computations were not possible anymore.

As in our first example, we are interested in the charges (6.5) at the tips for several
cutoffs X. These values are divided by the areas of the tips, see Table 6 for X ∈ {4, 6, 8}.
The computed densities at the tips indicate their divergence for X → ∞ as predicted in
[20].

X = 4 X = 6 X = 8∫
x1>a

λhdsx -1.104028e-02 -1.387830e-03 -1.719754e-04∫
x1>a

1dsx 8.715729e-04 1.908049e-05 3.495920e-07

density -12,6 -72,7 -492

Table 6: Charges at the tips and densities for X ∈ {4, 6, 8} and a = X − 10−8.
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6.2 Convergence for h→ 0

For the convergence behavior for h → 0 and X fixed in Lemma 6.1, the regularity of
Γ and, hence, the value if s for λ , λ̇ ∈ Hs(Γ) is needed. In both examples Γ1 ∈ C∞

whereas Γ2 has an edge γ = {x = (0 , cosϕ , sinϕ)} , ϕ ∈ [0, 2π), where the tangent vectors
on Γ2 perpendicular to γ perform a jump of angle 7

8
π (with respect to Ω∞). Moreover,

our example is rotationally symmetric. Therefore λ and λ̇, the normal derivatives of Uλ

and Uλ̇, respectively, have the form r−4/7χ(r) where r is the distance from γ to y =(
x1, R(x1) cosϕ , R(x1) sinϕ

)
∈ Γ2 for x1 > 0, and to x =

(
0, (1− r) cosϕ , (1− r) sinϕ

)
∈

Γ2 for x1 = 0, and where χ is a smooth function of r. At the second edge of Γ2 at x1 = X,
the corresponding tangent vector’s jump is smaller and the solutions are less singular.
Using Fourier transform in R

2, it then follows that λ , λ̇ ∈ Hs(Γ) for s < 1
14

. Consequently,
we find from Lemma 6.1 that

‖λ̇h − λ̇‖Ht(Γ) + ‖λh − λ‖Ht(Γ) ≤ ch1/14−t for − 15

14
≤ t ≤ s <

1

14

and

|Ch − C| + |(capA)h − capA| ≤ chs′ with s′ <
8

7
.

A Appendix

Proof of Theorem 3.5: With Lemma 3.4 we find

Vf,̺(ϕ̺) = Vf,̺(ϕ) +
̺

2
δ2 ≤ Gf(A, a, g) ,

hence,
̺

2
δ2 ≤ Gf(A, a, g) + 2(f, ϕ̺) ≤ {Gf(A, a, g) + 2‖f‖

H
1
2 (Γ)

C} ,

and (3.23) follows.

For ϕ̃j
̺ = αj · ϕj

̺ with
∫
Γj

ϕ̃j
̺gds = aj > 0, we have ϕ̺̃ ∈ K(A, a, g). Consequently,

Gf (A, a, g) ≤ Vf,̺(ϕ̺̃) .

With ψ := ϕ̺̃ − ϕ0 we have

ϕ0 + tψ = (1 − t)ϕ0 + tϕ̺̃ ∈ K(A, a, g)

for all t ∈ [0, 1] and, therefore,

d

dt
F (t)|t=0 ≥ 0 where F (t) := Vf,̺(ϕ0 + tψ) − Vf,̺(ϕ0) (A.1)
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since at t = 0 the minimum is attained. For the second derivative we find
( d
dt

)2

F (t) = 2‖ψ‖2
V .

Then with the Taylor formula about t = 0 for the quadratic function F (t) at t = 1 and
with (A.1) and (3.18), we obtain the inequality

1

2
· 2‖ψ‖2

V ≤ F (0) +
dF

dt
(0) +

1

2
F ′′(0) = F (1) = ‖ϕ̺̃‖2

V − ‖ϕ0‖2
V − 2(f, ϕ̺̃ − ϕ0)

‖ψ‖2
V ≤

2∑

j=1

{
(α2

j − 1)(V ϕ̃j
̺, ϕ̃

j
̺) − (αj − 1)2(f, ϕj

̺)
}

+ (α1α2 − 1)
(
(V ϕ1

̺, ϕ
2
̺) + (V ϕ2

̺, ϕ
1
̺)

)

+ Vf,̺(ϕ̺) −
̺2

2

2∑

j=1

δ2
j − Gf (A, a, g) ;

≤
2∑

j=1

|αj − 1|
{
(|αj − 1| + 2)(V ϕj

̺, ϕ
j
̺) + 2|(f, ϕj

̺)|
}

+ |α1α2 − 1| |(V ϕ1
̺, ϕ

2
̺) + (V ϕ2

̺, ϕ
1
̺)| . (A.2)

With ϕ̃j
̺ = αjϕ

j
̺ and aj = αj

∫
Γj

ϕj
̺ds we have

−δj = aj −
∫

Γj

ϕj
̺gds = (αj − 1)

∫

Γj

ϕj
̺gds ,

∫

Γj

ϕj
̺gds = aj + δj ≥ aj − |δj| .

Hence,

‖ψ‖2
V ≤

2∑

j=1

|δj |
aj − |δj|

{( |δj|
aj − |δj |

+ 2
)
‖ϕj

̺‖2

H−
1
2 (Γ)

‖V ‖ + 2cD‖f‖H
1
2 (Γ)

‖ϕj
̺‖H−

1
2 (Γ)

}

+2
|δ1|(a2 + |δ2|) + |δ2|(a1 + |δ1|)

(a1 − |δ1|)(a2 − |δ2|)
‖V ‖‖ϕ1

̺‖H−
1
2 (Γ)

‖ϕ2
̺‖H−

1
2 (Γ)

.

With a0 = min{aj} > 0 we now require δ ≤ 1
2
a0, hence, ̺ ≥

(
2C1

a0

)2

, and get

‖ψ‖2
V ≤

√
2

a0

(
(3 + 16)C2‖V ‖ + 2cDC‖f‖H

1
2 (Γ)

)
δ = C2δ ,

where C2 is given by this relation. With (3.8) and (3.23) we obtain

‖ψ‖2

H−
1
2 (Γ)

≤ C2C1̺
−

1

2 ,
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the desired estimate (3.24) .
The inclusion (3.25) follows from (3.16) since ‖ψ‖2

V ≥ 0. �
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