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A Space–Time Finite Element Method for the
Linear Bidomain Equations

Olaf Steinbach and Huidong Yang

Abstract In this work, we study a Galerkin–Petrov space–time finite element
method for a linear system of parabolic–elliptic equations with in general anisotropic
conductivity matrices, which may be considered as a simplified version of the non-
linear bidomain equations. The discretization is based on a stable space–time vari-
ational formulation employing continuous and piecewise linear finite elements in
both spatial and temporal directions simultaneously. We show stability of the space–
time formulation on both the continuous and discrete level for such a coupled prob-
lem under a rather general condition on the conductivity matrices. We further dis-
cuss the construction of a monolithic algebraic multigrid (AMG) method for solving
the coupled linear system of algebraic equations globally. Numerical experiments
are performed to demonstrate the convergence of the space–time finite element ap-
proximations, and the performance of the AMG method with respect to the mesh
discretization parameter. Finally, we apply the space–time finite element method to
the nonlinear bidomain equations in order to show the applicability of the proposed
approach.

1 Introduction

The modelling of the electrical activity of the human heart relies on the Maxwell
equations when neglecting the time derivative in Faraday’s law. Hence we may use
a scalar potential to describe the electric field, where the potential inside a cell is
called intracellular potential, while the potential exterior to a cell is called extracel-
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lular potential. When the cells are at rest, there is a potential difference across the
cell membrane which is called the transmembrane potential. Hence, using the con-
tinuity equation and Ohm’s law, and considering the ionic current exciting the cell,
this results in a coupled system of nonlinear parabolic and elliptic partial differential
equations, and a system of ordinary differential equations to describe the ionic cur-
rent via cellular state variables. For a more detailed discussion of the mathematical
model we refer to, e.g., [6, 10, 25].

As model problem we consider the simplified linear bidomain equations to find
the transmembrane potential uT and the extracellular potential ue satisfying the lin-
ear parabolic–elliptic system

Cm∂tuT (x, t)−divx[Mi(x)∇xuT (x, t)]−divx[Mi(x)∇xue(x, t)] = si(x, t), (1)
−divx[Mi(x)∇xuT (x, t)]−divx[(Mi(x)+Me(x))∇xue(x, t)] = se(x, t) (2)

for (x, t) ∈ Q := Ω × (0,T ), where Ω ⊂ Rn is assumed to be Lipschitz, n = 2,3,
with homogeneous Dirichlet boundary conditions uT = 0 and ue = 0 on the lateral
boundary Σ := ∂Ω × (0,T ), and a given initial condition uT = 0 in Ω , t = 0. Note
that inhomogeneous data can be handled via a standard homogenisation approach
by using a suitable extension. Moreover, si and se are some given current sources,
Mi and Me are, in general anisotropic, conductivity matrices, that are assumed to be
symmetric and positive definite, and satisfying

µ (Mi(x)v,v)≤ (Me(x)v,v)≤ µ (Mi(x)v,v) for all v ∈ Rn (3)

uniformly for x ∈ Ω for some 0 < µ ≤ µ . Finally, Cm is the capacitance of the cell
membrane.

In this simplified model we have neglected the nonlinear coupling term among
the two potentials and the third variable, a vector of cellular state variables, via
dropping the nonlinear ionic current term and the related nonlinear system of or-
dinary differential equations. In [6], a similar linear model problem is considered,
with Robin boundary conditions instead of Dirichlet conditions. Admittedly, the
bidomain reaction–diffusion system in its simplified form (1)–(2) will be a reason-
able starting point towards the construction of robust monolithic algebraic multigrid
(AMG) methods for the fully coupled nonlinear bidomain equations. For general
concepts of AMG methods, we refer to [1, 2, 20].

As it is well known, most conventional methods for discretizing the nonlinear
bidomain equations, i.e. the coupled parabolic–elliptic equations and the system of
ordinary differential equations to describe the ionic current, are proper combinations
of explicit/implicit time stepping methods and finite element methods with respect
to the temporal and spatial directions, respectively; see, e.g., [3, 4, 10, 13, 14, 15,
16, 17, 18, 19, 22, 27].

Recently, a space–time discontinuous Galerkin finite element discretization on
arbitrary simplex meshes has been employed to approximate the solution of the
bidomain equations and the coupled electro–mechanical system [6, 7]. Such a
space–time discontinuous Galerkin scheme has been investigated for the heat equa-
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tion in [11, 12], by treating the time as another variable, and adding an upwind with
respect to the time derivative.

On the other hand, iterative and parallel solution methods for the bidomain equa-
tions have been considerably studied in the past years, that are mainly based on time
stepping methods and operator splitting schemes. Related references on the splitting
solution methods for the bidomain equations can be found, e.g., in [10, 13, 26].

In [3], the system of ordinary differential equations is solved by a combination
of an exact solution of related scalar linear ordinary differential equations, and the
explicit Euler method for the remaining equations. The coupled reaction–diffusion
part is tackled as an elliptic problem via a NURBS–based isogeometric discretiza-
tion [5] in space and a semi–implicit scheme in time, i.e., an implicit Euler method
for the diffusion term, and an explicit treatment for the nonlinear reaction term. The
optimal convergence rate of two–level additive Schwarz preconditioners for the re-
sulting linear system is shown. Earlier results for multilelvel Schwarz precondition-
ers for the bidomain parabolic–parabolic and parabolic–elliptic formulations (both
become elliptic problems after temporal discretization) can be found in [14, 15]. A
similar operator splitting scheme has been used in [27], where the resulting discrete
bidomain elliptic equations at each time step are solved by a balancing Neumann–
Neumann preconditioned conjugate gradient method.

In [19], an explicit Euler method has been used to solve the parabolic equation
and nonlinear system of ordinary differential equations at each time step, and the
remaining elliptic problem is solved by an algebraic multigrid method.

Block factorized preconditioners for the coupled bidomain reaction–diffusion
2× 2 system in a semi–implicit time stepping method have been investigated in
[17, 18], where an AMG method is used to approximate the blocks.

Very recently, a monolithic scheme has been studied in [6] for the fully coupled
nonlinear bidomain equations, that are discretized by using a space–time discontin-
uous Galerkin finite element scheme in the space–time domain. On each Newton
iteration, the linearized system is reduced to the Schur complement equation with
respect to the two potential variables. Further, discrete stability conditions for both
the linear and nonlinear problems are shown therein, with respect to specially cho-
sen DG–norms.

In this work, we follow a continuous Galerkin–Petrov space–time finite element
discretization scheme [23] for approximating the solution of the model problem (1)–
(2) in the space–time domain. The resulting linear system of algebraic equations is
then solved by a monolithic AMG method.

The remainder of this paper is organized as follows. In Section 2, we present a
stable space–time variational formulation of the model problem (1)–(2), and in Sec-
tion 3 we discuss the related continuous Galerkin–Petrov space–time finite element
method. The monolithic algebraic multigrid method for the solution of the coupled
linear system of algebraic equations is discussed in Section 4. Some numerical re-
sults are provided in Sections 5 and 6 where we also consider the nonlinear system
including the ionic current. Finally, some conclusions are drawn in Section 7.
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2 Space–time variational formulations

Let us define the function spaces

X :=
{

v ∈ L2(0,T ;H1
0 (Ω))∩H1(0,T ;H−1(Ω)),v(x,0) = 0 for x ∈Ω

}
,

Y := L2(0,T ;H1
0 (Ω))

to consider the Galerkin–Petrov variational formulation of the Dirichlet boundary
value problem (1) and (2) to find (uT ,ue) ∈ X×Y such that

a(uT ,ue;vT ,ve) =
∫ T

0

∫
Ω

[
si vT + se ve

]
dxdt (4)

is satisfied for all (vT ,ve) ∈ Y ×Y where the bilinear form is given as

a(uT ,ue;vT ,ve) :=
∫ T

0

∫
Ω

[
Cm∂tuT vT +(Mi∇xuT ,∇xvT )+(Mi∇xue,∇xvT )

]
dxdt

+
∫ T

0

∫
Ω

[
(Mi∇xuT ,∇xve)+((Mi +Me)∇xue,∇xve)

]
dxdt .

To establish unique solvability of the space–time variational formulation (4) we
need to have a related stability estimate for the involved bilinear form. For this we
first consider an ellipticity estimate for the spatial part.

Lemma 1. For uT ,ue,vT ,ve ∈ Y we consider the spatial bilinear form

aS(uT ,ue;vT ,ve) :=
∫ T

0

∫
Ω

[
(Mi∇xuT ,∇xvT )+(Mi∇xue,∇xvT )

]
dxdt (5)

+
∫ T

0

∫
Ω

[
(Mi∇xuT ,∇xve)+((Mi +Me)∇xue,∇xve)

]
dxdt

and Assumption (3). Then, for (vT ,ve) ∈ Y ×Y there holds the ellipticity estimate

aS(vT ,ve;vT ,ve)≥ cS ‖(vT ,ve)‖2
Y×Y

with the positive constant

cS = 1+
µ

2
−
√

µ2

4
+1 > 0,

and with respect to the norm

‖(vT ,ve)‖2
Y×Y :=

∫ T

0

∫
Ω

[
(Mi∇xvT ,∇xvT )+(Mi∇xve,∇xve)

]
dxdt .

Proof. Using Assumption (3) we have, for some γ > 0,
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aS(vT ,ve;vT ,ve) =

=
∫ T

0

∫
Ω

[
(Mi∇xvT ,∇xvT )+2(Mi∇xve,∇xvT )+((Mi +Me)∇xve,∇xve)

]
dxdt

≥
∫ T

0

∫
Ω

[
(Mi∇xvT ,∇xvT )+2(Mi∇xve,∇xvT )+(1+µ)(Mi∇xve,∇xve)

]
dxdt

=
∫ T

0

∫
Ω

[(
1− 1

γ

)
(Mi∇xvT ,∇xvT )+

(
1+µ− γ

)
(Mi∇xve,∇xve)

]
dxdt

+
∫ T

0

∫
Ω

(
Mi∇x

(
1
√

γ
vT +

√
γve

)
,∇x

(
1
√

γ
vT +

√
γve

))
dxdt

≥
(

1+µ− γ
∗
)∫ T

0

∫
Ω

[
(Mi∇xvT ,∇xvT )+(Mi∇xve,∇xve)

]
dxdt

if
1− 1

γ∗
= 1+µ− γ

∗

is satisfied, i.e.

γ
∗ =

µ

2
+

√
µ2

4
+1, cS = 1+µ− γ

∗ = 1+
µ

2
−
√

µ2

4
+1 > 0.

ut

In fact, the bilinear form (5) induces a norm in Y ×Y , i.e. for (vT ,ve) ∈ Y ×Y we
have

‖(vT ,ve)‖2
M := aS(vT ,ve;vT ,ve)

satisfying

cS ‖(vT ,ve)‖2
Y×Y ≤ ‖(vT ,ve)‖2

M ≤

1+
µ

2
+

√
µ

2

4
+1

 ‖(vT ,ve)‖2
Y×Y .

Hence we can define (wT ,we) ∈ Y ×Y as the unique solution of the variational
formulation

aS(wT ,we;vT ,ve) = a(uT ,ue;vT ,ve) for all (vT ,ve) ∈ Y ×Y, (6)

where (uT ,ue) ∈ X×Y is given. For the latter we introduce the norm

‖(uT ,ue)‖X×Y := sup
06=(vT ,ve)∈Y×Y

a(uT ,ue;vT ,ve)

‖(vT ,ve)‖M
, (7)

and where we can write the bilinear form, by using integration by parts, as

a(uT ,ue;vT ,ve) = 〈Cm∂tuT −divx[Mi∇xuT ]−divx[Mi∇xue],vT 〉Q
+〈−divx[Mi∇xuT ]−divx[(Mi +Me)∇xue],ve〉Q .
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Recall that 〈·, ·〉Q denotes the duality pairing as extension of the L2 inner product
in the space time domain. The norm (7) is indeed the adjoint norm of the partial
differential operator in (1) and (2) applied to (uT ,ue). Although the norm definition
(7) already implies a related stability condition, we will present a proof in order to
establish the forthcomming relation (9).

Lemma 2. For all (uT ,ue) ∈ X×Y there holds the stability condition

‖(uT ,ue)‖X×Y ≤ sup
06=(vT ,ve)∈Y×Y

a(uT ,ue;vT ,ve)

‖(vT ,ve)‖M
. (8)

Proof. For the unique solution (wT ,we) ∈ Y ×Y of the variational problem (6) we
first have

‖(wT ,we)‖2
M = aS(wT ,we;wT ,we)

= a(uT ,ue;wT ,we)≤ ‖(uT ,ue)‖X×Y‖(wT ,we)‖M,

i.e.
‖(wT ,we)‖M ≤ ‖(uT ,ue)‖X×Y .

On the other hand,

‖(uT ,ue)‖X×Y = sup
06=(vT ,ve)∈Y×Y

a(uT ,ue,vT ,ve)

‖(vT ,ve)‖M

= sup
06=(vT ,ve)∈Y×Y

aS(wT ,we,vT ,ve)

‖(vT ,ve)‖M
≤ ‖(wT ,we)‖M,

implying
‖(wT ,we)‖M = ‖(uT ,ue)‖X×Y .

Hence we conclude

‖(uT ,ue)‖2
X×Y = ‖(wT ,we)‖2

M = aS(wT ,we;wT ,we) = a(uT ,ue;wT ,we), (9)

and therefore

‖(uT ,ue)‖X×Y =
a(uT ,ue;wT ,we)

‖(wT ,we)‖M
≤ sup

06=(vT ,ve)∈Y×Y

a(uT ,ue;vT ,ve)

‖(vT ,ve)‖M

follows. ut

Since the norm (7) is defined as adjoint norm of the partial differential operator
applied on (uT ,ue) we may ask for equivalent norms which are probably simpler to
handle. Hence we introduce the space

Y0 :=
{
(vT ,ve) ∈ Y ×Y :

〈Mi∇xvT ,∇xφe〉L2(Q)+ 〈(Mi +Me)∇xve,∇xφe〉L2(Q) = 0 ∀φe ∈ Y
}
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and the norm

‖Cm∂tuT‖Y ′ := sup
06=(vT ,ve)∈Y0

〈Cm∂tuT ,vT 〉Q
‖(vT ,ve)‖M

. (10)

Corollary 1. For (uT ,ue) ∈ X×Y there holds the stability condition

1√
2

[
‖(uT ,ue)‖2

M +‖Cm∂tuT‖2
Y ′

]1/2
≤ sup

06=(vT ,ve)∈Y×Y

a(uT ,ue;vT ,ve)

‖(vT ,ve)‖M
. (11)

Proof. We start to consider, by using (9),

‖(uT ,ue)‖2
X×Y = a(uT ,ue;wT ,we)

= a(uT ,ue;uT ,ue)+a(uT ,ue;wT −uT ,we−ue)

= 〈Cm∂tuT ,uT 〉L2(Q)+aS(uT ,ue;uT ,ue)+aS(wT ,we;wT −uT ,we−ue)

≥ aS(uT ,ue;uT ,ue)+aS(wT ,we;wT −uT ,we−ue)

= aS(uT ,ue;uT ,ue)+aS(wT −uT ,we−ue;wT −uT ,we−ue)

+aS(uT ,ue;wT −uT ,we−ue)

≥ ‖(uT ,ue)‖2
M +‖(wT −uT ,we−ue)‖2

M−‖(uT ,ue)‖M‖(wT −uT ,we−ue)‖M

≥ 1
2

[
‖(uT ,ue)‖2

M +‖(wT −uT ,we−ue)‖2
M

]
.

It remains to compute

‖(wT −uT ,we−ue)‖2
M = aS(wT −uT ,we−ue;wT −uT ,we−ue)

= aS(wT ,we;wT −uT ,we−ue)−aS(uT ,ue;wT −uT ,we−ue)

= a(uT ,ue;wT −uT ,we−ue)−aS(uT ,ue;wT −uT ,we−ue)

= 〈Cm∂tuT ,wT −uT 〉Q
= 〈Cm∂tuT ,zT 〉Q,

where (zT ,ze) := (wT −uT ,we−ue)∈Y ×Y is the unique solution of the variational
problem

aS(zT ,ze;vT ,ve) = 〈Cm∂tuT ,vT 〉Q for all (vT ,ve) ∈ Y ×Y, (12)

i.e. ∫ T

0

∫
Ω

[
(Mi∇xzT ,∇xvT )+(Mi∇xze,∇xvT )

]
dxdt =

∫ T

0

∫
Ω

Cm∂tuT vT dxdt,∫ T

0

∫
Ω

[
(Mi∇xzT ,∇xve)+((Mi +Me)∇xze,∇xve))

]
dxdt = 0 .

Hence we conclude

‖(zT ,ze)‖2
M = aS(zT ,ze;zT ,ze) = 〈Cm∂tuT ,zT 〉Q,
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i.e.

‖(zT ,ze)‖M =
〈Cm∂tuT ,zT 〉Q
‖(zT ,ze)‖M

≤ sup
06=(vT ,ve)∈Y0

〈Cm∂tuT ,vT 〉Q
‖(vT ,ve)‖M

=: ‖Cm∂tuT‖Y ′ .

On the other hand,

‖Cm∂tuT‖Y ′ = sup
06=(vT ,ve)∈Y0

〈Cm∂tuT ,vT 〉Q
‖(vT ,ve)‖M

= sup
06=(vT ,ve)∈Y0

aS(zT ,ze;vT ,ve)

‖(vT ,ve)‖M
≤ ‖(zT ,ze)‖M

implies
‖Cm∂tuT‖Y ′ = ‖(zT ,ze)‖M ,

where (zT ,ze) ∈ Y ×Y solves the variational problem (12), i.e. the norm (10) is
induced by the Schur complement operator of the system (12) when eliminating ze
from the second equation. ut

Remark 1. Instead of the parabolic–elliptic system (1) and (2) we may also consider
the related Schur complement system when eliminating the extracellular potential
ue. This results in a parabolic evolution equation with the bounded and elliptic Schur
complement operator, and applying arguments as for the standard heat equation, see,
e.g., [23], we would conclude a similar stability estimate as given in (11).

3 A Galerkin–Petrov space–time finite element method

We decompose the space–time cylinder Q=Ω×(0,T )⊂Rn+1 into simplicial finite
elements q`, i.e. Qh = ∪N

`=1q`. For simplicity, we assume that Ω is polygonal or
polyhedral, i.e., Q = Qh. The finite element spaces are given by Xh = S1

h(Qh)∩X
and Yh = Xh with S1

h(Qh) = span{ϕi}M
i=1 being the span of piecewise linear and

continuous basis functions ϕi.
The conforming discrete Galerkin–Petrov variational formulation of (4) is to find

(uT,h,ue,h) ∈ Xh×Yh ⊂ X×Y such that

a(uT,h,uh,e;vT,h,ve,h) =
∫ T

0

∫
Ω

[
si vT,h + se ve,h

]
dxdt (13)

is satisfied for all (vT,h,ve,h) ∈ Yh ×Yh, where we assume Xh ⊂ Yh. Analogously
as in [23, Theorem 3.1] we can show a discrete inf−sup condition which ensures
unique solvability of (13). Related to the variational formulation (12) we define an
approximate solution (zT,h,ze,h) ∈ Yh×Yh of the variational problem

aS(zT,h,ze,h;vT,h,ve,h) = 〈Cm∂tuT,h,vT,h〉Q for all (vT,h,ve,h) ∈ Yh×Yh, (14)
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and as in (10) we define the discrete norm

‖Cm∂tuT,h‖Y ′,h = ‖(zT,h,ze,h)‖M ≤ ‖(zT ,ze)‖M = ‖Cm∂tuT,h‖Y ′ .

Now we are in a position to prove, as in [23, Theorem 3.1], a discrete stability
condition for the bilinear form a(·, ·; ·, ·).

Theorem 1. Assume Xh ⊂ X, Yh ⊂ Y , and Xh ⊂ Yh. Then there holds the discrete
stability condition

1
2
√

2

[
‖(uT,h,ue,h)‖2

M +‖Cm∂tuT,h‖2
Y ′,h

]1/2
(15)

≤ sup
06=(vT,h,ve,h)∈Yh×Yh

a(uT,h,ue,h;vT,h,ve,h)

‖(vT,h,ve,h)‖M
for all (uT,h,ue,h) ∈ Xh×Yh.

Proof. For (uT,h,ue,h) ∈ Xh×Yh let (zT,h,ze,h) ∈ Yh×Yh be the unique solution of
the variational problem (14). We then consider

a(uT,h,ue,h;uT,h + zT,h,ue,h + ze,h) = 〈Cm∂tuT,h,uT,h〉Q +aS(uT,h,ue,h;uT,h,ue,h)

+〈Cm∂tuT,h,zT,h〉Q +aS(uT,h,ue,h;zT,h,ze,h)

≥ aS(uT,h,ue,h;uT,h,ue,h)+aS(zT,h,ze,h;zT,h,ze,h)+aS(uT,h,ue,h;zT,h,ze,h)

≥ ‖(uT,h,ue,h)‖2
M +‖(zT,h,ze,h)‖2

M−‖(uT,h,ue,h)‖M‖(zT,h,ze,h)‖M

≥ 1
2

[
‖(uT,h,ue,h)‖2

M +‖(zT,h,ze,h)‖2
M

]
≥ 1

2

[
‖(uT,h,ue,h)‖2

M +‖Cm∂tuT,h‖2
Y ′,h

]
.

On the other hand we have

‖(uT,h + zT,h,ue,h + ze,h)‖2
M ≤

(
‖(uT,h,ue,h)‖M +‖(zT,h,ze,h)‖M

)2

≤ 2
(
‖(uT,h,ue,h)‖2

M +‖(zT,h,ze,h)‖2
M

)
= 2

(
‖(uT,h,ue,h)‖2

M +‖Cm∂tuT,h‖2
Y ′,h

)
,

and therefore

a(uT,h,ue,h;uT,h + zT,h,ue,h + ze,h)

≥ 1
2
√

2

[
‖(uT,h,ue,h)‖2

M +‖Cm∂tuT,h‖2
Y ′,h

]1/2
‖(uT,h + zT,h,ue,h + ze,h)‖M .

follows which implies the assertion. ut

The discrete stability condition (15) implies unique solvability of the Galerkin–
Petrov finite element formulation (13). As in [23, Theorem 3.2] we then conclude
Cea’s lemma,
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‖(uT −uT,h,ue−ue,h)‖2

M +‖Cm∂t(uT −uT,h)‖2
Y ′,h

]1/2

≤ inf
(vT,h,ve,h)∈Xh×Yh

[
‖(uT − vT,h,ue− ve,h)‖2

M +‖Cm∂t(uT − vT,h)‖2
Y ′

]1/2
,

and as in [23, Theorem 3.3] we can prove the following convergence result.

Theorem 2. Let (uT ,ue) ∈ X ×Y and (uT,h,ue,h) ∈ Xh×Yh be the unique solutions
of the variational formulations (4) and (13), respectively. Let Yh = Xh = S1

h(Qh)∩X.
Assume (uT,h,ue,h) ∈ H2(Q)×H2(Q). Then there holds the energy error estimate

‖uT −uT,h‖L2(0,T ;H1
0 (Ω))+‖ue−ue,h‖L2(0,T ;H1

0 (Ω)) ≤ ch
[
|uT |H2(Q)+ |ue|H2(Q)

]
.

(16)

From the definition of the bilinear form

a(uT ,ue;vT ,ve) = 〈Cm∂tuT ,vT 〉Q +aS(uT ,ue;vT ,ve)

we conclude, by using Lemma 1,

a(vT,h,ve,h;vT,h,ve,h) = 〈Cm∂tvT,h,vT,h〉Q +aS(vT,h,ve,h;vT,h,ve,h)

≥ 1
2

Cm‖uT,h(T )‖2
L2(Ω)+‖(vT,h,ve,h)‖2

M > 0,

i.e. the stiffness matrix of the space time finite element variational formulation (4)
is positive definite which is desirable for algebraic multigrid methods [1, 2, 20].

4 A monolithic algebraic multigrid method

The coupled system of linear equations arises from the variational formulation (13),

Ax = b. (17)

Here x denotes the vector of coefficients of the finite element approximations for
the transmembrane potential uT and the extracellular potential ue. In fact, we use
a pointwise ordering of unknowns, which means at each node, we have two poten-
tial degrees of freedom. This approach has been utilized in the AMG methods for
solving fluid and elasticity problems in some monolithic fluid–structure interaction
solvers [9].

For coarsening, we use a simple matrix graph based AMG coarsening strategy
[8] to generate the hierarchical matrices on coarse levels, see the algorithm in [24,
Section 3.2.1] This coarsening strategy usually leads to a very low operator and grid
complexity, approximately 1.2 and 1.1, respectively, in our numerical experiments.
Here, grid complexity denotes the total number of degrees of freedom on all levels
divided by the number of degrees of freedom on the finest level; operator complexity



A Space–Time FEM for the Linear Bidomain Equations 11

is the total number of nonzero entries in all matrices on all levels, divided by the
number of nonzero entries on the finest level matrix. We refer to [2] for more details.
More sophisticated AMG coarsening strategies for the space–time finite element
discretization of parabolic equations are reported in [24], that may be considered for
such a coupled system in the near future, and help to improve the AMG convergence
rate. In addition, we need to have a proper smoother for such a coupled system.
For the current being, we employ blockwise ILU [21] as a smoother for such a
nonsymmetric system.

5 Numerical results

In the following numerical example we set Ω = (0,1)2 and T = 1, i.e., the com-
putational domain is a unit cube, Q = (0,1)3. For studying the estimated order of
convergence (eoc), we consider the exact solution

uT (x, t) = x1(1− x1)x2(1− x2)t(1− t),

ue(x, t) = sin(πx1)sin(πx2)sin(πt).

We run simulations on 6 mesh refinement levels with tetrahedral elements. On the
coarsest level, there are 250 degrees of freedom (#Dofs). The mesh on the next level
is obtained by subdividing each tetrahedron on the previously coarser level into 8
smaller tetrahedra. On the finest level, there are 4,293,378 degrees of freedom.

The conductivity matrices are given by

Mi =

[
0.25 0.15
0.15 0.25

]
, Me =

[
4.95 0.05
0.05 4.95

]
,

which are diagonally dominant and therefore positive definite. To check assumption
(3) we compute µ = 12.5 and µ = 49.

The estimated order of convergence (eoc) in L2(0,T ;H1
0 (Ω))– and L2(Q)–norms

are shown in Table 1 and Table 2 for uT and ue, respectively. In the numerical re-
sults we obeserve an almost linear convergence rate in the L2(0,T ;H1

0 (Ω))–norm
as predicted by the theory. Further, we see a second order convergence rate in the
L2(Q)–norm for uT , and a bit less for ue.
For the AMG solver, we set the relative residual norm 10−11 as a stopping criterion.
In the smoothing steps, we apply Richardson iterations to the blockwise ILU pre-
conditioned system. For the current being, we set the relative residual error 0.08 as
a stopping criterion for the Richardson iterations in order to achieve multigrid con-
vergence. This requires different smoothing steps on different mesh levels. Future
work will concentrate on finding more robust smoothers for such coupled systems.
In Table 3, we show the number of AMG iterations (#It), the computational time
in seconds (s), the operator complexity (Opt Comp), and the grid complexity (Grid
Opt). As observed, we obtain a reasonable AMG performance in terms of AMG
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Table 1 Estimated order of convergence (eoc) of ‖uT −uT,h‖L2(0,T ;H1
0 (Ω)) and ‖uT −uT,h‖L2(Q)

#Dofs ‖uT −uT,h‖L2(0,T ;H1
0 (Ω)) eoc ‖uT −uT,h‖L2(Q) eoc

250 1.01e−1 − 1.96e−2 −
1,458 4.76e−2 1.09 8.15e−3 1.26
9,826 1.78e−2 1.42 2.29e−3 1.83
71,874 7.93e−3 1.16 5.65e−4 2.02
549,250 4.15e−3 0.93 1.40e−4 2.02
4,293,378 2.22e−3 0.90 3.60e−5 1.95

Table 2 Estimated order of convergence (eoc) of ‖ue−ue,h‖L2(0,T ;H1
0 (Ω)) and ‖ue−ue,h‖L2(Q)

#Dofs ‖ue−ue,h‖L2(0,T ;H1
0 (Ω)) eoc ‖ue−ue,h‖L2(Q) eoc

250 7.35e−1 − 1.02e−1 −
1,458 4.10e−1 0.84 3.69e−2 1.47
9,826 2.10e−1 0.96 1.14e−2 1.69
71,874 1.06e−1 1.00 3.60e−3 1.67
549,250 5.27e−2 1.00 1.83e−3 1.60
4,293,378 2.64e−2 1.00 4.02e−4 1.56

iterations. Although the operator/grid complexity is low, the computational time is
rather high due to the costly ILU smoother and various smoothing steps. This re-
quires further investigations.

Table 3 AMG performance

#Dofs #It Time (s) Opt Comp Grid Comp

250 4 0.003 s 1.33 1.22
1,458 5 0.025 s 1.24 1.21
9,826 6 0.8 s 1.19 1.18
71,874 7 18 s 1.17 1.16
549,250 12 497 s 1.16 1.15
4,293,378 18 14343 s 1.15 1.15

6 An extension to the nonlinear model

In this section, we extend the space–time finite element method for the linear model
to the fully nonlinear bidomain equations: Find the transmembrane potential uT , the
extracellular potential ue, and the cellular state variable ν , satisfying the system of
the nonlinear bidomain equations
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Cm∂tuT (x, t)+ I(uT (x, t),ν(x, t))

−divx[Mi(x)∇xuT (x, t)]−divx[Mi(x)∇xue(x, t)] = si(x, t), (18)
−divx[Mi(x)∇x(x, t)]−divx[(Mi(x)+Me(x))∇xue(x, t)] = se(x, t), (19)

∂tν(x, t)+H(uT (x, t),ν(x, t)) = sν(x, t) (20)

for (x, t) ∈ Q, with Dirichlet boundary conditions uT = gT , ue = ge on the lateral
boundary Σ := ∂Ω × (0,T ), and given initial conditions uT = u0, ν = ν0 in Ω ,
t = 0. Here, we use the FitzHugh–Nagumo (FHN) model

I(uT (x, t),ν(x, t)) = c1uT (x, t)(uT (x, t)−uth)(uT (x, t)−1)+ c2ν(x, t), (21)
H(uT (x, t),ν(x, t)) = b(dν(x, t),uT (x, t)) (22)

with given positive constants c1, c2, uth, b, and d.
In this example, the conductivity matrices are given by

Mi =

[
0.75 0.15
0.15 0.75

]
, Me =

[
1.25 0.30
0.30 1.25

]
,

and the constants are c1 = 0.175, c2 = 0.03, uth = 0.12, b = d = 10. We use the
exact solutions

uT (x, t) = x1(1− x1)x2(1− x2)t(1− t),

ue(x, t) = sin(πx1)sin(πx2)sin(πt),

ν(x, t) = cos(πx1)cos(πx2)cos(πt).

The estimated order of convergence (eoc) in L2(0,T ;H1
0 (Ω))– and L2(Q)–norms

are shown in Table 4, Table 5, and Table 6 for uT , ue and ν , respectively. As
in the numerical example for the linear case, we see a linear convergence rate in
the L2(0,T ;H1

0 (Ω))–norm. Further, we observe a quadratic convergence rate in the
L2(Q)–norm for Vtm, and a bit less for ue.

Table 4 Estimated order of convergence (eoc) of ‖uT −uT,h‖L2(0,T ;H1
0 (Ω)) and ‖uT −uT,h‖L2(Q)

#Dofs ‖uT −uT,h‖L2(0,T ;H1
0 (Ω)) eoc ‖uT −uT,h‖L2(Q) eoc

375 1.53e−2 − 9.60e−4 −
2,187 8.22e−3 0.90 2.90e−4 1.72
1,4739 3.99e−3 1.04 9.55e−5 1.60
107,811 1.96e−3 1.03 2.60e−5 1.87
823,875 9.74e−4 1.00 6.90e−6 1.91
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Table 5 Estimated order of convergence (eoc) of ‖ue−ue,h‖L2(0,T ;H1
0 (Ω)) and ‖ue−ue,h‖L2(Q)

#Dofs ‖ue−ue,h‖L2(0,T ;H1
0 (Ω)) eoc ‖ue−ue,h‖L2(Q) eoc

375 7.37e−1 − 1.08e−1 −
2,187 4.11e−1 0.84 3.98e−2 1.44
1,4739 2.11e−1 0.96 1.23e−2 1.69
107,811 1.06e−1 1.00 3.83e−3 1.68
823,875 5.28e−2 1.00 1.25e−3 1.61

Table 6 Estimated order of convergence (eoc) of ‖ν−νe,h‖L2(0,T ;H1
0 (Ω)) and ‖ν−νe,h‖L2(Q)

#Dofs ‖ν−νe,h‖L2(0,T ;H1
0 (Ω)) eoc ‖ν−νe,h‖L2(Q) eoc

375 9.74e−1 − 3.90e−2 −
2,187 4.61e−1 1.08 8.79e−3 2.15
1,4739 2.22e−1 1.05 2.08e−3 2.08
107,811 1.10e−1 1.02 5.08e−4 2.03
823,875 5.48e−2 1.00 1.28e−4 1.99

7 Conclusions

In this contribution we have applied a continuous Galerkin–Petrov space–time finite
element method [23] to a linear system of parabolic–elliptic equations, which may
be considered as a simplified model towards the fully coupled nonlinear bidomain
equations. It requires further development in order to apply such a space–time finite
method to the full model which includes the nonlinearity and the cellular state vari-
ables. Then, for an accurate resolution of the wave type potentials the use of adaptive
refined finite element meshes in the space–time domain seems to be mandatory, and
motivates the proposed approach.

Under a rather general condition on the conductivities we have shown the stabil-
ity of the space–time finite element method for the model problem. The linear order
of convergence for both potential variables with respect to the spatial energy norm
has been confirmed by numerical results.

A monolithic AMG method has been utilized to solve the coupled system of
algebraic equations up to about 4.3 million degrees of freedom, which on the one
hand, already shows quite nice performance with respect to the AMG iterations, and
on the other hand, demands further exploration on finding more robust and efficient
smoothers.
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