
Technische Universität Graz

A time-adaptive space-time FMM for the heat
equation

R. Watschinger, G. Of

Berichte aus dem
Institut für Angewandte Mathematik

Bericht 2022/6

Technische Universität Graz

A time-adaptive space-time FMM for the heat
equation

R. Watschinger, G. Of

Berichte aus dem
Institut für Angewandte Mathematik

Bericht 2022/6

Technische Universität Graz
Institut für Angewandte Mathematik
Steyrergasse 30
A 8010 Graz

WWW: http://www.applied.math.tugraz.at

© Alle Rechte vorbehalten. Nachdruck nur mit Genehmigung des Autors.

A time-adaptive space-time FMM for the heat
equation

Raphael Watschinger, Günther Of

November 4, 2022

We present a new time-adaptive FMM for a space-time boundary element method
for the heat equation. The method extends the existing parabolic FMM by adding new
operations that allow for an efficient treatment of tensor product meshes which are
adaptive in time. We analyze the efficiency of the new operations and the approximation
quality of the related kernel expansions and present numerical experiments that reveal
the benefits of the new method.

1 Introduction
For the solution of initial boundary value problems of the transient heat equation or rather their
numerical approximation there exists a variety of different methods. Among them are boundary
element methods, see, e.g. [1, 5, 14]. Boundary element methods rely on a reformulation of the
initial boundary value problem as an integral equation on the boundary of the space-time domain,
which is then discretized. Typically tensor product discretizations with a fixed spatial mesh and
uniform time steps are considered. This is advantageous for several aspects. Due to the tensor
product structure of the mesh and the causality of the problem, the BEM matrices are lower
triangular block matrices. The uniformity in time leads to a block Toeplitz structure. Thus, only
one block per time step has to be computed and stored. These properties allow to use an efficient
blockwise forward elimination algorithm for the solution of the BEM systems.

However, the restriction to uniform meshes and the described solution procedure limit the range
of applications. Firstly, the level of parallelism of the time-sequential forward elimination procedure
is limited by the spatial components. This may be a bottleneck with modern hardware. In [7, 25]
the authors have presented BEM implementations for the heat equation, which are parallel in
space and time. Secondly, the concept prevents adaptivity. A huge number of uniform time steps
might be necessary to resolve some local aspects with respect to time. Here a discretization which
is adaptive in time can be advantageous. While local temporal aspects can be resolved much
better, the total number of time steps may be much lower. This reduces the total number of
degrees of freedom and the size of the system of linear equations. However, the block Toeplitz
structure is lost for varying time step sizes and more blocks have to be computed and stored.
This can efficiently be handled by a distributed parallelization.

A general difficulty when using standard BEM is that the occurring system matrices are
dense. Several fast and data-sparse algorithms have been developed to overcome this problem.
Typically these methods provide an efficient compression of the matrices and a fast realization
of matrix vector products, which leads to efficient solvers. Some examples for the heat equation

1

are algorithms based on Fourier series and FFT [9, 10], the parabolic fast multipole method
(pFMM) [18, 19, 22, 23], or a fast sparse grid method [12]. In this work we present a time-adaptive
FMM which stems from the pFMM. In its original form the pFMM combines the standard ideas
and principles of FMM algorithms, like clustering the computational domain and approximating
interactions in well-separated clusters by suitable truncated series expansions, with an efficient
forward elimination algorithm.

Just like most other fast BEM heat solvers, the pFMM was developed for uniform time steps.
While it can be applied for meshes with non-uniform time steps, the overall compression and
performance of the pFMM will be worse in this setting than for a uniform time discretization with
the same number of time intervals. In fact, there might be many blocks which are not compressed.
Here we will present a new variant of the parabolic FMM which performs well for widely varying
time step sizes. Similarly to the adaptive version [3, 4, 20] of the FMM for the Laplace kernel, we
will introduce certain one-sided expansions with respect to time and related FMM operations.
These operations are in the spirit of S2L (source to local, also called Q2L) and M2T (moment to
target, also called M2P) operations, which turned out to be efficient in cases where only a few
elements are contained in a cluster. The new operations enable the compression of additional
matrix blocks and improve the performance of the method. The new method is described without
the original forward elimination scheme to allow for parallelism in space and time as in [25].

The paper is organized as follows: In Section 2 we briefly describe the considered boundary
element method for the heat equation. In Section 3 we discuss the kernel expansions of the
time-adaptive FMM. Besides the original expansion used in the pFMM, which consists of a
two-sided interpolation in time and an additional truncated Chebyshev expansion in space,
we introduce new temporally one-sided expansions for a more efficient algorithm. We analyze
the approximation errors of the different expansions and point out the advantages of the new
temporally one-sided space-time expansions in adaptive situations. In Section 4 we present the
new time-adaptive space-time FMM for the heat equation. It is based on the original FMM
algorithm [22] for the heat equation and enhanced by new operations. To enable these new
operations we modify the generation of the cluster tree in Section 4.1 by introducing additional
clusters and identify the related matrix blocks in the hierarchical structure in Section 4.2. The
original and new FMM operations are introduced in Sections 4.3 and 4.4, and the new time-
adaptive space-time FMM algorithm is presented in Section 4.5. In Sections 4.6 and 4.7 we
comment on the runtime complexity and storage requirements of its operations. Finally, we present
two numerical examples which are well-suited for adaptive temporal meshes and demonstrate the
gains of the new time-adaptive FMM for the heat equation.

2 Boundary integral equations and discretization
We consider the initial Dirichlet boundary value problem of the transient heat equation with the
heat capacity constant α > 0 for a bounded Lipschitz domain Ω ⊂ R3 with a boundary Γ = ∂Ω
as a model problem:

∂

∂t
u(x, t)− α∆u(x, t) = 0 for (x, t) ∈ Ω× (0, T),

u(x, 0) = u0(x) for x ∈ Ω, (1)
u(x, t) = g(x, t) for (x, t) ∈ Σ := Γ× (0, T).

Detailed descriptions on how to solve such a problem by using boundary integral equations and
related boundary element methods are provided in [5, 6]. Common approaches (direct via the

2

first boundary integral equation or indirect) require the solution of a boundary integral equation
of the form

V q = f on Σ. (2)
Here q is the unknown quantity of interest, and V is the single layer boundary integral operator
that has the integral representation

V q(x, t) =
∫ t

0

∫
Γ
Gα(x− y, t− τ)q(y, τ) dsy dτ for (x, t) ∈ Σ

with the fundamental solution of the heat equation

Gα(x− y, t− τ) =

1

(4πα(t− τ))3/2 exp
(
− |x− y|

2

4α(t− τ)

)
for τ < t,

0 for τ > t.

(3)

The right-hand side f in (2) depends on the chosen approach. In case of a direct approach

f = (1
2Id +K)g −M0u0, (4)

where K is the double layer boundary integral operator, see e.g. [6, Section 4.6], and M0 is the
trace of the initial potential, see [6, Section 4.2]. In case of an indirect approach f = g −M0u0.

For the numerical approximation of (2) we consider a Galerkin method. As a first step we
discretize the lateral boundary Σ by a space-time tensor product mesh Σh = Γh ⊗ Ih. Here,
Γh = {γjx}Ex

jx=1 is an admissible triangular surface mesh of Γ and Ih is a potentially adaptive
mesh for the time interval (0, T) with grid points tjt , jt = 0, 1, . . . , Et, sorted in ascending order
such that the jth

t temporal element is (tjt−1, tjt). The elements in the space-time mesh Σh are
tensor products of the form σjt,jx = γjx × (tjt−1, tjt).

We want to find a piecewise constant approximation

qh(y, τ) =
Et∑
jt=1

Ex∑
jx=1

qjt,jxϕ
0,0
jt,jx

(y, τ)

of q in (2) with basis functions ϕ0,0
jt,jx

which are one on a space-time boundary element σjt,jx and
zero otherwise. The system of linear equations of the considered Galerkin method for this purpose
is

Vhq = f , (5)
where q is the vector of the coefficients qjt,jx and f is the corresponding vector of the right-hand
side. We assume that the coefficients are ordered by the temporal index jt first and then by the
spatial index jx. The entries of the Galerkin matrix Vh are given by

Vh[(kt − 1)Ex + kx, (jt − 1)Ex + jx] =
∫ tkt

tkt−1

∫
γkx

∫ tjt

tjt−1

∫
γjx

Gα(x− y, t− τ) dsy dτ dsx dt

for kx, jx = 1, . . . , Ex and kt, jt = 1, . . . , Et. Due to the causality of the heat kernel this matrix
has lower triangular block structure. More details on the discretization and computation of the
matrix entries of Vh are given in [26].

Note that system (5) is huge and that the matrix Vh is dense except for its lower triangular
block structure. Thus, a standard BEM is limited to small problems. In general a data-sparse
method such as the FMM is necessary to solve large-scale problems. In the following sections we
will introduce a new variant of the FMM which is well suited for the treatment of meshes that are
adaptive in time.

3

3 Standard and temporally one-sided kernel expansions
The FMM presented in this paper is based on suitable separable approximations of the heat
kernel (3) that combine an interpolation in time with a truncated Chebyshev expansion in space.
In addition to the expansion described in [17, 23] we consider two new temporally one-sided
expansions. All three expansions are introduced and analyzed in the following.

We start by fixing the notation. Tm(x) = cos(m arccos(x)) are the Chebyshev polynomials of
order m on [−1, 1]. The Chebyshev nodes {ξ(m)

k }mk=0 of order m+ 1 on [−1, 1] are the roots of
Tm+1. For an interval I = [a, b] we define the transformed Chebyshev nodes ξ(m)

I,k := ϕI(ξ(m)
k)

with the affine map ϕI(x) := (a(1− x) + b(1 + x))/2 from [−1, 1] to I. Let Pm(I) be the space
of polynomials on I whose degrees are less than or equal to m. When interpolating a function
f ∈ C(I) by polynomials in Pm(I) we use the transformed Chebyshev nodes as interpolation
points and obtain

I(m)
I [f] =

m∑
k=0

f(ξ(m)
I,k)LI,k,

where I(m)
I : C(I)→ Pm(I) denotes the interpolation operator and {LI,k}mk=0 are the Lagrange

polynomials

LI,k(t) :=
m∏
j=0
j 6=k

t− ξ(m)
I,k

ξ
(m)
I,j − ξ

(m)
I,k

.

When considering two intervals I1 and I2 and a function f ∈ C(I1 × I2) we define the one-sided
interpolation operator I(m)

dir,I1
as the operator that interpolates f only in I1, i.e.

I(m)
dir,I1

:= I(m)
I1
⊗ Id.

Similarly we set I(m)
dir,I2

:= Id⊗I(m)
I2

. In addition, we consider the two-sided interpolation operator
I(m)
I1×I2

: C(I1 × I2)→ Pm(I1)⊗ Pm(I2) which interpolates f in both variables and is defined by
I(m)
I1×I2

:= I(m)
I1
⊗ I(m)

I2
. We will use interpolation for the approximation of the heat kernel (3) in

the temporal variables t and τ .
In the spatial variables x and y we will use a truncated Chebyshev expansion as in [17, 23].

For this purpose we define the transformed Chebyshev polynomials T[a,b],k := Tk ◦ ϕ−1
[a,b] for an

interval [a, b]. For a box [a, b] =
∏3
j=1[aj , bj] ⊂ R3 and a multi-index κ ∈ N3

0 we define in addition
the tensor products

T[a,b],κ(x) :=
3∏
j=1

T[aj ,bj],κj
(xj). (6)

Let X1 = [a, b] and X2 = [c,d] be two boxes in R3. A function f ∈ C(X1×X2) can be represented
by the Chebyshev series

f(x,y) =
∑
κ∈N3

0

∑
ν∈N3

0

fκ,νTX1,ν(x)TX2,κ(y), (7)

where fκ,ν are the appropriate expansion coefficients that can be computed by using the orthogo-
nality of the Chebyshev polynomials in a properly weighted inner product as in the 1D case, see

4

e.g. [21, Section 1.5]. We will specify these coefficients in the later application. By truncating the
Chebyshev series we get the approximation

S(m)
X1×X2

[f](x,y) =
∑

κ:|κ|≤m

∑
ν:|κ+ν|≤m

fκ,νTX1,ν(x)TX2,κ(y).

For the approximation of the heat kernel (3) in space and time we distinguish three cases. In
all three cases we consider 4D boxes Ztar = X1 × I1 and Zsrc = X2 × I2, where X1 = [c, c+ 2h̃x1]
and X2 = [d,d+ 2h̃x1] are two fixed cubes in space with edge length 2h̃x. We distinguish three
different configurations of the time intervals I1 and I2:

Case 1: I1 and I2 are intervals of similar length and dist(I1, I2) & |I1|. We interpolate the
heat kernel in both temporal variables t and τ and expand it in both spatial variables to get the
approximation

S(mx)
X1×X2

I(mt)
I1×I2

[Gα](x, t,y, τ) =
mt∑
a,b=0

∑
|κ+ν|≤mx

Ea,bκ,ν TX1,ν(x)TX2,κ(y)LI1,b(t)LI2,a(τ) (8)

for (x, t), (y, τ) ∈ Ztar ×Zsrc. The coefficients Ea,bκ,ν correspond to the expansion coefficients in (7)
when expanding the function (x,y) 7→ Gα(x− y, ξ(mt)

I1,b
− ξ(mt)

I2,a
). They are given by

Ea,bκ,ν := 1
(4πα(ξ(mt)

I1,b
− ξ(mt)

I2,a
))3/2

3∏
j=1

Eκj ,νj (rj , da,b), with (9a)

rj := (cj − dj)/h̃x, da,b := 4α(ξ(mt)
I1,b
− ξ(mt)

I2,a
)/h̃2

x, (9b)

Ek,`(r, da,b) := λkλl
π2

∫ 1

−1

∫ 1

−1
exp

(
−|r + x̂− ŷ|2

da,b

)
T`(x̂)Tk(ŷ)w(x̂)w(ŷ)dx̂ dŷ, (9c)

where λ0 = 1, λk = 2 for all k > 0 and w(x) := (1 − x)−1/2, cf. [23, Section 5.3, p. 209]. Note
that there is no closed formula known for the evaluation of the integrals in (9c). Therefore, we
approximate them by a Gauß-Chebyshev quadrature rule in the application as proposed in [24,
p. 3563] which yields

Ek,`(r, da,b) ≈
λkλl

(mx + 1)2

mx∑
n,m=0

exp
(
−|r + ξ

(mx)
n − ξ(mx)

m |2

da,b

)
T`(ξ(mx)

n)Tk(ξ(mx)
m).

Case 2: The source interval I2 is smaller than the target interval I1 and dist(I1, I2) & |I2|. In
this case we interpolate the heat kernel only in the variable τ ∈ I2, but still expand it in both
spatial variables to get

S(mx)
X1×X2

I(mt)
dir,I2

[Gα](x, t,y, τ) =
mt∑
a=0

∑
|κ+ν|≤mx

Ea,κ,ν(t)TX1,ν(x)TX2,κ(y)LI2,a(τ) (10)

for (x, t), (y, τ) ∈ Ztar × Zsrc. The expansion coefficients Ea,κ,ν(t) that depend on t ∈ I1 are given
by

Ea,κ,ν(t) = 1
(4πα(t− ξ(mt)

I2,a
))3/2

3∏
j=1

Eκj ,νj (rj , 4α(t− ξ(mt)
I2,a

)/h̃2
x),

5

where rj and Eκj ,νj are the same as in (9). The superscript of Ea,κ,ν indicates that the corresponding
approximation involves an interpolation in the source interval, but does not involve an interpolation
in the target interval.

Case 3: The target interval I1 is smaller than the source interval I2 and dist(I1, I2) & |I1|.
Then we interpolate the heat kernel in t ∈ I1 and expand it in both spatial variables to get

S(mx)
X1×X2

I(mt)
dir,I1

[Gα](x, t,y, τ) =
mt∑
b=0

∑
|κ+ν|≤mx

E,bκ,ν(τ)TX1,ν(x)TX2,κ(y)LI1,b(t), (11)

E,bκ,ν(τ) = 1
(4πα(ξ(mt)

I1,b
− τ))3/2

3∏
j=1

Eκj ,νj (rj , 4α(ξ(mt)
I1,b
− τ)/h̃2

x)

for (x, t), (y, τ) ∈ Ztar × Zsrc, where the expansion coefficients E,bκ,ν depend on τ ∈ I2.
In the following subsections we investigate the one- and two-sided interpolation error in time

and the Chebyshev series truncation error in space for the heat kernel. These results will reveal
how the edge length of the spatial boxes X1 and X2 and the temporal configuration of I1 and I2
influence the approximation error in the three cases described above. We will use this knowledge
in the construction of the new time-adaptive FMM.

3.1 Analysis of the interpolation in time
The approximation error of an interpolation of the heat kernel ((x, t), (y, τ)) 7→ Gα(x− y, t− τ)
in two separated time intervals decays exponentially with increasing interpolation degree, see
e.g. [22, Section 3.1] or [17, p. 73]. We formulate this result in Theorem 1. In Theorem 2 we
consider the case of two separated time intervals of different lengths and investigate the error of
an interpolation in the shorter time interval only. We will compare the resulting estimates and
use them to motivate the one-sided temporal expansions in cases 2 and 3 above.

To simplify the notation we fix the heat capacity constant α and the spatial points x and y,
and set

g(t1, t2) := Gα(x− y, t1 − t2) = 1
(4πα(t1 − t2))3/2 exp

(
− r2

4α(t1 − t2)

)
(12)

for all t1 > t2 and r2 = |x−y|2. The following property of g, which is often denoted as asymptotic
smoothness (see e.g. [11, Definition 4.14]), will play a central role in the proofs of the interpolation
error estimates.

Proposition 1 (cf. [17, p. 73]). Let g be the kernel defined in (12). There exists a constant cas
such that

|∂kt1∂
`
t2g(t1, t2)| ≤ cas (k + `)!(k + `+ 1)3/2

α3/2(t1 − t2)k+`+3/2 , ∀ k, ` ∈ N0 and all t1 > t2. (13)

Proof. The proof follows the lines of [17, proof of Lemma 4.1] where an analogous result is shown
for a similar function. Since g depends only on the difference of the variables t1 and t2 it suffices
to bound |∂nt1g(t1, 0)| for all t1 > 0 to show (13). For n = 0 the estimate in (13) is clearly satisfied
for all constants cas ≥ 1/(4π)3/2. For the case n ≥ 1 we consider the function z 7→ g̃(z) := g(z, 0),
which is holomorphic on C \ R≤0. Hence, we can use Cauchy’s integral formula to get

dn

dzn g̃(t1) = n!
2πi

∫
∂B(t1,δ)

g̃(ζ)
(ζ − t1)(n+1) dζ

6

for all t1 ∈ R>0 and δ < t1, where B(t1, δ) is the disc with center t1 and radius δ in C. For all
ζ ∈ ∂B(t1, δ) there holds |ζ| ≥ <(ζ) > (t1 − δ) and <(−r2/(4αζ)) < 0, so it follows that

|g̃(ζ)| = 1
(4πα)3/2

∣∣∣∣∣ 1
ζ3/2 exp

(
− r2

4αζ

)∣∣∣∣∣ ≤ 1
(4πα)3/2

1
(t1 − δ)3/2 .

Therefore, we can estimate∣∣∣ dn

dzn g̃(t1)
∣∣∣ ≤ n!

2π

∫
∂B(t1,δ)

|g̃(ζ)|
|ζ − t1|(n+1) dζ

≤ n!
2π

∫
∂B(t1,δ)

1
(4πα(t1 − δ))3/2δ(n+1) dζ = n!

(4πα(t1 − δ))3/2δn
.

The optimal radius δ∗ to minimize this bound is δ∗ = 2nt1/(2n+ 3), for which we get∣∣∣ dn

dzn g̃(t1)
∣∣∣ ≤ n!

(4πα)3/2

(2n+ 3
3

)3/2 (
1 + 3

2n

)n 1
t
n+3/2
1

≤ e3/2

(4π)3/2
n!(n+ 1)3/2

α3/2t
n+3/2
1

.

This is the desired estimate for all n ≥ 1 with cas = e3/2/(4π)3/2.

Before we proceed with the main results of this section, we recall the definition of the Lebesgue
constant

Λm := sup
u∈C(J)\{0}

‖I(m)
J [u]‖∞,J
‖u‖∞,J

, (14)

i.e. the operator norm of the interpolation operator I(m)
J : C(J)→ Pm(J). Note that Λm does

not depend on the particular interval J as long as the same interpolation points – up to an
affine transformation – are used. In this work we always use transformed Chebyshev nodes as
interpolation points. Therefore, we can estimate [21, cf. Theorem 1.2]

Λm ≤
2
π

log(m+ 1) + 1. (15)

Theorem 1 (Two-sided interpolation error, cf. [17, p. 73]). Let η2 > 0 and q2 := 1 + 3/(2 η2). Let
I1 = [a1, b1] and I2 = [a2, b2] be two non-empty intervals such that a1 > b2. Let the admissibility
criterion

η2 dist(I1, I2) ≥ max{|I1|, |I2|} (16)

be satisfied. Then there exists a constant c2 > 0 such that

‖g − I(m)
I1×I2

[g]‖∞,I1×I2 ≤
c2

(α dist(I1, I2))3/2 q
−(m+1)
2 . (17)

Proof. According to [2, Corollary 4.21] it suffices to show that there exist Cg ∈ R≥0, γg ∈ R>0
and σ ∈ N such that

‖∂ntkg‖∞,I1×I2 ≤
Cg
γng

(n+ σ − 1)!
(σ − 1)! ∀n ∈ N0 and k ∈ {1, 2} (18)

to conclude that

‖g − I(m)
I1×I2

[g]‖∞,I1×I2

≤ 4eCg(Λm + 1)2(m+ 2)σ
(

1 + max{|I1|, |I2|}
γg

)
%

(2γg
max{|I1|, |I2|}

)−(m+1)
,

(19)

7

where %(r) := r +
√

1 + r2. From the estimate (13) and the admissibility criterion (16) it follows
that

‖∂ntkg‖∞,I1×I2 ≤ max
(t1,t2)∈I1×I2

cas n!(n+ 1)3/2

α3/2(t1 − t2)n+3/2 = cas n!(n+ 1)3/2

α3/2 dist(I1, I2)n+3/2

≤ cas n! cββn

α3/2 dist(I1, I2)3/2

(
η2

max{|I1|, |I2|}

)n
,

where β > 1 is arbitrary and cβ is chosen such that (n+ 1)3/2 ≤ cββn for all n ≥ 0. Thus, (18) is
satisfied for the choice σ = 1, γg = max{|I1|, |I2|}/(η2 β) and Cg = cascβ/(α dist(I1, I2))3/2. Since
cβ →∞ as β → 1 we fix β = 4/3 and a proper constant cβ. Inserting these choices of σ, γg and
Cg into (19) yields

‖g − I(m)
I1×I2

[g]‖∞,I1×I2 ≤
4ecascβ(Λm + 1)2(m+ 2)

(α dist(I1, I2))3/2

(
1 + 4

3η2

)
%

(3
2η2

)−(m+1)
.

Similarly as in [2, Remark 4.23] we want to simplify this estimate. We set q2 = 1 + 3/(2 η2),
%2 = %(3/(2 η2)) and µ2 = %2/q2. Since %(r) > 1 + r for all r ∈ R we see that µ2 > 1. Thus, we
can rewrite the right-hand side of the above estimate as

4ecascβ(Λm + 1)2(m+ 2)(1 + 4 η2/3)
µm+1

2

1
(α dist(I1, I2))3/2 q

−(m+1)
2 .

The first fraction is a zero sequence in m and can thus be bounded by a constant c2. In fact, its
numerator grows like log(m+ 1)2(m+ 2) due to (15), while its denominator grows exponentially
with increasing m. Therefore, we end up with the estimate in (17).

Theorem 2 (One-sided interpolation error). Let η1 > 0 and q1 := 1 + 3/(2 η1). Let I1 = [a1, b1]
and I2 = [a2, b2] be two non-empty intervals such that a1 > b2. Let the admissibility criterion

η1 dist(I1, I2) ≥ min{|I1|, |I2|} (20)

be satisfied. Let k be such that Ik is the shorter time interval. Then there exists a constant c1 > 0
such that

‖g − I(m)
dir,Ik

[g]‖∞,I1×I2 ≤
c1

(α dist(I1, I2))3/2 q
−(m+1)
1 . (21)

Proof. The proof is very similar to the proof of Theorem 1. This time we apply [2, Lemma 4.19]
which leads to the estimate

‖g − I(m)
dir,Ik

[g]‖∞,I1×I2 ≤ 2eCg(Λm + 1)(m+ 2)σ
(

1 + |Ik|
γg

)
%

(2γg
|Ik|

)−(m+1)
,

with the same constants σ, γg and Cg and function % as in the proof of Theorem 1. With the
admissibility criterion (20) we get

‖g − I(m)
dir,Ik

[g]‖∞,I1×I2 ≤ 2eCg(Λm + 1)(m+ 2)σ
(

1 + 4
3η1

)
%

(3
2η1

)−(m+1)
,

which can be simplified in the same way as the corresponding result in the proof of Theorem 1 to
show (21).

8

Remark 1. The results in Theorems 1 and 2 regarding the two- and one-sided interpolation
errors are very similar. In both situations the error decreases exponentially with increasing
interpolation degree m. The convergence rate depends on the constants η2 and η1 from the
admissibility criteria (16) and (20), respectively, and suffers if they become large. For two
fixed, separate intervals I1 and I2 we can choose η2 = max{|I1|, |I2}/ dist(I1, I2) and η1 =
min{|I1|, |I2|}/ dist(I1, I2) as the smallest constants for which (16) and (20) hold. Hence, in all
situations where max{|I1|, |I2|}/dist(I1, I2) is considerably larger than min{|I1|, |I2|}/ dist(I1, I2)
the one-sided interpolation in the shorter time interval is expected to perform significantly better
than the two-sided interpolation.

3.2 Analysis of the expansion in space
The approximation error for the truncated Chebyshev expansion of the heat kernel for a fixed
temporal setting has been investigated in [17, 23]. Here we collect and slightly improve those
results. We start by citing an estimate of the absolute value of the expansion coefficients defined
in (9c).

Lemma 1 (cf. [23, Lemma 1]). For the coefficients Ek,`(r, δ) in (9c) there holds

|Ek,`(r, δ)| ≤
λkλ`
ak+` exp

(
1
δ

(
a− 1

a

)2
)
, (22)

where a ∈ R>0 can be chosen arbitrarily.

Remark 2. The estimate in (22) is slightly sharper than the one in the referenced paper where an
additional multiplicative factor 4 is included in the argument of the exponential function. This
factor can be dropped in the last step of the proof in [23], see [15, Satz 4.13].

Theorem 3 (Chebyshev series truncation error, cf. [23, p. 209] and [17, Corollary 4.1]). Let
c̃st ∈ R>0. Let X1 and X2 be two cubes with edge length 2h̃x. Let t, τ ∈ R such that t > τ and

4α(t− τ)
h̃2
x

≥ c̃st. (23)

Let the function σ : R>0 → R be defined by

σ(s) := 1
2

(
ln
(
s+

√
1 + s2)− √s2 + 1− 1

s

)
. (24)

Then there exists a constant cx > 0 such that

‖(Id− S(mx)
X1×X2

)[Gα(·x − ·y,t− τ)]‖∞,X1×X2

≤ cx
(mx + 2)5

(α(t− τ))3/2 exp
(
− (mx + 1)σ

(
(mx + 1)c̃st/12

))
.

(25)

Proof. The proof is based on the proof of [17, Corollary 4.1] and the idea to minimize the right-
hand side of (22) in [24, p. 3551], where the function κ corresponds to σ here. To estimate the
error we represent it as the remainder of the Chebyshev series, namely

(Id− S(mx)
X1×X2

)[Gα(·x − ·y, t− τ)](x,y) =
∞∑

n=mx+1

∑
|κ+ν|=n

E−κ,ν(t, τ)TX1,ν(x)TX2,κ(y),

9

where E−κ,ν(t, τ) = (4πα(t− τ))−3/2∏3
j=1Eκj ,νj (rj , δ) with δ = 4α(t− τ)/h̃2

x, rj and Eκj ,νj (rj , δ)
from (9). The polynomials TX1,ν and TX2,κ are tensor products of transformed Chebyshev
polynomials as defined in (6) and, thus, there holds |TX1,ν(x)| ≤ 1 for all x ∈ X1 and all ν ∈ N3

0
and the same for TX2,κ in X2. Hence, we can estimate

‖(Id− S(mx)
X1×X2

)[Gα(·x − ·y, t− τ)]‖∞,X1×X2 ≤
∞∑

n=mx+1

∑
|κ+ν|=n

|E−κ,ν(t, τ)|. (26)

For a given n and κ, ν ∈ N3
0 such that |κ+ ν| = n the estimate in (22) yields

(4πα(t− τ))3/2|E−κ,ν(t, τ)| ≤ exp
(

1
δ

(
an −

1
an

)2
)3 3∏

j=1

λκjλνj

a
κj+νj
n

≤ 64
ann

exp
(

3
δ

(
an −

1
an

)2
)
,

where an ∈ R>0 can be chosen arbitrarily. To find the optimal an we minimize the function fn on
the right-hand side, which can be rewritten in the form

fn(an) = 64 exp
(
−n ln(an) + 3

δ

(
an −

1
an

)2
)
.

From the necessary condition f ′n(a∗n) = 0 we obtain a∗n =
√
nδ/12 +

√
1 + (nδ/12)2, which is

indeed a minimizer of fn in R>0 since fn becomes unbounded for an tending to zero or infinity.
Therefore, the minimum of fn is given by

fn(a∗n) = 64 exp
(
−n

(
ln(a∗n)− 12

4nδ

(
a∗n −

1
a∗n

)2
))

= 64 exp
(
− nσ

(
nδ/12

))
with the function σ from (24) and we obtain

|E−κ,ν(t, τ)| ≤ 64
(4πα(t− τ))3/2 exp

(
− nσ

(
nδ/12

))
.

By using this estimate and #{(κ,ν) ∈ N3
0 × N3

0 : |κ+ ν| = n} =
(n+5

5
)

we can further estimate
the approximation error in (26) by

‖(Id− S(mx)
X1×X2

)[Gα(·x − ·y, t− τ)]‖∞,X1×X2

≤ 64
(4πα(t− τ))3/2

∞∑
n=mx+1

(
n+ 5

5

)
exp

(
− nσ

(
nδ/12

))
.

Standard arguments of calculus show that the function σ is monotonically increasing. Hence, we
can use (23), which corresponds to the estimate δ = 4α(t− τ)/h̃2

x ≥ c̃st, to get for all n > mx

exp
(
− nσ

(
nδ/12

))
≤ exp

(
− nσ

(
(mx + 1)c̃st/12

))
= qn,

where q := exp
(
−σ

(
(mx+ 1)c̃st/12

))
. The series

∑∞
n=mx+1 5!

(n+5
5
)
qn is the remainder of the fifth

derivative of the geometric series
∑∞
n=0 q

n truncated after (mx + 1) terms. It can be estimated by

∞∑
n=mx+1

5!
(
n+ 5

5

)
qn ≤ 5! (mx + 2)5

(1− q)6 qmx+1.

10

The variable q converges monotonically to 0 as mx →∞ so we can bound (1−q)−6 by a constant c
for all mx ≥ 0. We conclude

‖(Id− S(mx)
X1×X2

)[Gα(·x − ·y, t− τ)]‖∞,X1×X2 ≤
64

(4πα(t− τ))3/2 c (mx + 2)5qmx+1

which is (25) with cx = (64c)/((4π)3/2).

Remark 3. The behavior of σ in (24) determines the approximation error in (25). In the proof
of Theorem 3 we have already pointed out that σ is monotonically increasing. Furthermore
there holds σ(s) ∼ s/4 for s→ 0 and σ(s) ∼ ln(2s)/2 for s → ∞ [24, p. 3551]. Thus, the
convergence in (25) is super-exponential in mx. Note that the approximation quality depends on
the constant c̃st in (23), which appears in the argument of σ. For small values of c̃st the estimate
suffers. Thus, we have to ensure that (23) holds for a reasonably large constant c̃st in the later
application. This means that we have to adapt the size of the cubes to the temporal configuration.

3.3 The space-time approximation error
By combining the results from the previous two sections we can estimate the approximation error
of the expansions (8), (10) and (11) in Ztar × Zsrc.

Theorem 4 (Full space-time expansion error, [17, cf. Lemma 7.4]). Let c̃st, η2 ∈ R>0 and
q2 := 1 + 3/(2 η2). Let Λmt be the Lebesgue constant defined in (14) and σ be the function
in (24). Let I1 = [a1, b1] and I2 = [a2, b2] be two non-empty intervals with a1 > b2 that satisfy the
admissibility criterion (16). Let X1 and X2 be two cubes in R3 with edge length 2h̃x such that

4α dist(I1, I2)
h̃2
x

≥ c̃st. (27)

Let Ztar = X1 × I1 and Zsrc = X2 × I2. Then there exist constants c2, cx ∈ R>0 such that

‖(Id− S(mx)
X1×X2

I(mt)
I1×I2

)[Gα]‖∞,Ztar×Zsrc

≤ 1
(α dist(I1, I2))3/2

(
c2q
−(mt+1)
2 + cxΛ2

mt
(mx + 2)5 exp

(
− (mx + 1)σ

(
(mx + 1)c̃st/12

)))
.

(28)

Proof. Throughout this proof we use ‖ · ‖∞ to denote ‖ · ‖∞,Ztar×Zsrc to shorten the notation. We
start to estimate the approximation error by adding and subtracting I(mt)

I1×I2
[Gα] and using the

triangle inequality to get

‖(Id− S(mx)
X1×X2

I(mt)
I1×I2

)[Gα]‖∞ ≤ ‖(Id− I(mt)
I1×I2

)[Gα]‖∞ + ‖(Id− S(mx)
X1×X2

)I(mt)
I1×I2

[Gα]‖∞.

The first term can be further estimated by using Theorem 1. In fact, the function g defined in
(12) which is considered in that theorem is just the heat kernel for fixed spatial points x and y
and the estimate does not depend on these points. Thus,

‖(Id− I(mt)
I1×I2

)[Gα]‖∞ ≤
c2

(α dist(I1, I2))3/2 q
−(mt+1)
2

with c2 from Theorem 1. For the second term we observe that

‖(Id− S(mx)
X1×X2

)I(mt)
I1×I2

[Gα]‖∞ ≤ sup
f∈C(Ztar×Zsrc)\{0}

‖I(mt)
I1×I2

[f]‖∞
‖f‖∞

‖(Id− S(mx)
X1×X2

)[Gα]‖∞,

11

where we used that the operators S(mx)
X1×X2

and I(mt)
I1×I2

commute. The operator norm of I(mt)
I1×I2

is
bounded by Λ2

mt
, which follows from (14). For the other term we use assumption (27) and apply

Theorem 3 to get

‖(Id− S(mx)
X1×X2

)[Gα]‖∞ ≤ sup
(t,τ)∈I1×I2

{
cx

(mx + 2)5

(α(t− τ))3/2 exp
(
− (mx + 1)σ

(
(mx + 1)c̃st/12

))}

≤ cx
(mx + 2)5

(α dist(I1, I2))3/2 exp
(
− (mx + 1)σ

(
(mx + 1)c̃st/12

))
.

Combining all these estimates completes the proof.

By using the result from Theorem 2 one can prove the following approximation error estimates
for the expansions (10) and (11) in an analogous way.

Theorem 5 (Temporally one-sided space-time expansion errors). Let c̃st, η1 ∈ R>0 and q1 :=
1 + 3/(2 η1). Let I1 = [a1, b1] and I2 = [a2, b2] be two non-empty intervals with a1 > b2 that satisfy
the one-sided admissibility criterion (20). Let X1 and X2 be two cubes in R3 with edge length 2h̃x
such that criterion (27) holds. Let Ztar = X1 × I1 and Zsrc = X2 × I2. Let k ∈ {1, 2} be such that
Ik is the shorter time interval. Then there exist constants c1, cx ∈ R>0 such that

‖(Id− S(mx)
X1×X2

I(mt)
dir,Ik

)[Gα]‖∞,Ztar×Zsrc

≤ 1
(α dist(I1, I2))3/2

(
c1q
−(mt+1)
1 + cxΛmt(mx + 2)5 exp

(
− (mx + 1)σ

(
c̃st(mx + 1)/12

)))
.

(29)

Theorems 4 and 5 show that we can control the approximation error of the expansions in (8),
(10) and (11) if we can control the respective errors in time and space separately. The temporally
single sided expansions (10) and (11) are favorable in those situations, where the one-sided
interpolation performs better than the two-sided interpolation, see Remark 1. The spatial sizes
of the boxes Ztar and Zsrc have to be adapted to the distance of their temporal components
according to the criterion (27) for all three expansions.

Note that in the previous works [17, 22, 23, 25] a criterion different from (27) is used to
determine the proper spatial size of the boxes for the expansion (8). There it is required that
there exists a constant cst such that

h̃2
x

4α h̃t
≤ cst (30)

holds for each space-time box, where h̃x denotes the half length of the edges of its spatial
component and h̃t the half length of its temporal interval. However, the criterion (27) follows
from (30) for two boxes Ztar = X1 × I1 and Zsrc = X2 × I2, if the admissibility criterion (16)
holds in addition. Indeed,

4α dist(I1, I2)
h̃2
x

≥ 4αmax{|I1|, |I2|}
h̃2
xη2

≥ 2
cstη2

,

which is (27) with c̃st = 2(cstη2)−1. In the setting of the temporally one-sided expansions (10)
and (11) the situation is similar. If criterion (30) is satisfied for the space-time cluster with the
smaller time interval, the spatial sizes of the two boxes coincide, and the admissibility criterion (20)
is satisfied, then (27) follows as above. Therefore, we will use the criterion (30) instead of (27) in
the following sections to allow for an easier comparison of this paper with previous ones.

12

4 A time-adaptive space-time FMM algorithm
In this section we describe a new variant of the FMM presented in [25] and [17, 22, 23] which
improves the performance for meshes which are adaptive in time. Throughout this section we
focus on the matrix Vh, but other BEM matrices of the heat equation like the double layer
operator Kh can be handled as well with slight modifications. In a first step, we create a hierarchy
of space-time boxes that subdivides the elements in the space-time tensor product mesh Σh. This
hierarchy, which we denote as box cluster tree, will allow us to find a suitable partition of the
BEM matrices, which forms the backbone of our FMM.

4.1 A 4D space-time box cluster tree
The following construction of space-time box cluster trees is similar to the one which we described
in [25]. The idea is to create a hierarchy of boxes that partition the space-time tensor product
mesh Σh by recursively subdividing an initial box Z(0) that contains the whole mesh. Here
we introduce new purely spatial subdivisions of certain boxes that will enable adaptive FMM
operations in the later algorithm. Note that from here on we consider half-open boxes Z =
(a, b]× (c, d] ⊂ R4, since they allow for a simple, non-overlapping partition into smaller half-open
boxes.

A space-time boundary element σjt,jx = γjx × (tjt−1, tjt) of a given mesh Σh is assigned to
a box Z = X × I ⊂ R4 if its geometrical center is contained in Z. By Ẑ we denote the set of
all indices (jt, jx) corresponding to elements σjt,jx ∈ Σh that are assigned to Z. We use the
symbol #Ẑ for the cardinality of Ẑ and additionally introduce nt(Ẑ) as the number of all distinct
time-indices in Ẑ. E.g., if Z is a box with nt(Ẑ) = 1, all space-time boundary elements that are
assigned to Z share the same temporal component. Such boxes play a central role in the new
time-adaptive FMM which motivates the following definition.

Definition 1. A box Z ∈ TΣ is called temporally indivisible if nt(Ẑ) = 1.

Algorithm 1 describes the recursive construction of a space-time box cluster tree TΣ. The
concrete subdivision steps in line 8, 10 and 12 for a box Z = (a, b]× (c, d] are executed as follows:

a) Purely temporal subdivision (line 8): We split the time interval (c, d] into (c, c̃] and (c̃, d],
where c̃ is the grid point tj of the time partition closest to (c+ d)/2. Then we subdivide Z
into the two boxes Z1 = (a, b]× (c, c̃] and Z2 = (a, b]× (c̃, d].

b) Purely spatial subdivision (line 12): The box (a, b] is uniformly split into 8 boxes (a, ã], . . . ,
(ã, b], where ã = 1/2 (a+ b) is the center of (a, b]. By combining each of these spatial boxes
with the whole time interval (c, d] one obtains a spatial subdivision of Z.

c) Space-time subdivision (line 10): We subdivide the time interval as in a) and the spatial
box as in b). The 16 children of Z are obtained by considering all possible combinations of
the resulting time intervals and spatial boxes.

In general, we switch between purely temporal and space-time subdivisions of boxes in the tree
construction due to criterion (30), at least after some initial, purely temporal subdivisions. A
purely spatial subdivision of a cluster is only executed if it cannot be further subdivided in
time. Note that such a cluster is not subdivided anymore in the standard algorithm in [25]. The
additional spatial subdivisions here will allow for some new efficient operations in the FMM.

By construction, the temporal part of a space-time boundary element σjt,jx is always fully
contained in a box Z, if the element is assigned to this box. To guarantee the same property

13

Algorithm 1 Construction of a 4D space-time box cluster tree TΣ for Σh.
Require: Let a space-time tensor mesh Σh be given.

Let a bound nmax for the number of elements in a leaf box and cst > 0 for (30) be given.
Let Z(0) = (a,a+ 2h(0)

x 1]× (0, T] ⊂ R4 be given such that Σh is contained in Z(0) and h
(0)
x

and h
(0)
t := T/2 satisfy (30).

1: Construct an empty tree TΣ and add Z(0) as its root.
2: Call SubdivideCluster(Z(0), TΣ)

3: function SubdivideCluster(Z, TΣ)
4: if #Ẑ ≥ nmax
5: if nt(Ẑ) > 1
6: Let ` = level(Z), h(`+1)

t = 2−`−1h
(0)
t and h̃x be the spatial half-size of Z.

7: if h(`+1)
t and h̃x satisfy (30)

8: Subdivide Z into nC = 2 children {Zk}nC
k=1 by a temporal subdivision.

9: else
10: Subdivide Z into nC = 16 children {Zk}nC

k=1 by a space-time subdivision.
11: else // new: purely spatial subdivisions for Z with nt(Ẑ) == 1
12: Subdivide Z into nC = 8 children {Zk}nC

k=1 by a spatial subdivision.
13: for k = 1, . . . , nC
14: if #Ẑk 6= 0
15: Add Zk to TΣ as child of Z and call SubdivideCluster(Zk, TΣ).

in space, we pad the spatial boxes in a uniform way. More details about this padding and the
handling of other exceptional situations are given in [25].

In the rest of the paper we will use the terms box and cluster interchangeably when we speak
about boxes in the tree TΣ. For a box Z ∈ TΣ we denote its parent in the tree by par(Z) and
the set of all its children by child(Z). The temporal level `t(Z) of Z is defined as the number of
performed temporal subdivisions starting from the root to obtain Z and the spatial level `x(Z) as
the number of spatial subdivisions. Due to our subdivision strategy the temporal level `t(Z) of
a box corresponds to its actual level (level(Z)) in the tree, unless Z is obtained from a purely
spatial subdivision of its parent. The largest level in the tree TΣ is denoted by depth(TΣ).

4.2 Matrix partitioning using interaction lists
The boxes in the space-time box cluster tree TΣ are used to partition the BEM matrix Vh. For
two boxes Ztar = Xtar × Itar and Zsrc = Xsrc × Isrc in TΣ let Vh|Ẑtar×Ẑsrc

be the block of Vh
formed by the rows corresponding to indices (jt, jx) ∈ Ẑtar and the columns corresponding to
indices (kt, kx) ∈ Ẑsrc. Let Z(0) be the root of TΣ. The block Vh|Ẑ(0)×Ẑ(0) corresponds to the full
matrix Vh. We can subdivide it into n2

c blocks Vh|Ẑ(1)
i ×Ẑ

(1)
j

, where {Z(1)
j }

nc
j=1 are the children

of Z(0) in TΣ. For the FMM we recursively subdivide the matrix into blocks in this manner.
The subdivision is stopped for a block Vh|Ẑtar×Ẑsrc

if Ztar and Zsrc allow for one of the kernel
approximations in (8), (10) or (11) due to a proper temporal separation. Such a block is called
admissible. We will see in Section 4.3 how to approximate admissible blocks of Vh efficiently. All
other blocks are called inadmissible and are further subdivided as long as Ztar and Zsrc are not
both temporally indivisible. The preferred kernel approximation is (8), which is why both the

14

source and target boxes are subdivided for a typical block refinement, if these box subdivisions
include a temporal subdivision. If either the source box or the target box is temporally indivisible
(recall Definition 1), the respective other box is further subdivided to detect admissible blocks
related to the kernel approximations (10) or (11). These one-sided subdivisions are new compared
to the previous works [17, 23, 25] in the setting of the heat equation and inspired by the adaptive
FMM in [3, 4, 20]. In the following we describe the full partitioning scheme in more detail.

In Theorem 4 we have shown that the full expansion (8) is well-suited for Ztar and Zsrc if
the temporal intervals Itar and Isrc satisfy the standard admissibility criterion (16) for a given
constant η2 > 0. This is checked explicitly during the recursive construction of the blocks. For the
temporally one-sided expansions (10) and (11) we have to explicitly check that the criterion (20)
is satisfied for a given η1 > 0. The criterion (30) will be satisfied in all three cases for a suitable
constant cst > 0 due to the construction of boxes of the space-time box cluster tree TΣ in
Algorithm 1 and the subdivision of blocks, which we will describe in more detail in Algorithm 2.

The partitioning of Vh is further influenced by the causality and the exponential decay of the
heat kernel Gα in (3). Due to the causality, Gα(x − y, t − τ) vanishes for all (x, t) ∈ Ztar and
(y, τ) ∈ Zsrc with Itar = (a1, b1] and Isrc = (a2, b2] if a2 ≥ b1. We say that Isrc is causally relevant
for Itar in the contrary case, i.e. if a2 < b1. If Isrc is not causally relevant for Itar, all entries of
the block Vh|Ẑtar×Ẑsrc

are zero and we can ignore it. This is related to the lower triangular block
structure of Vh.

The exponential decay of the heat kernel allows to neglect interactions between boxes that are
sufficiently separated in space, which we identify as follows. Let Ztar be a box in TΣ with spatial
level `x = `x(Z). Due to the uniform subdivision strategy employed in the construction of TΣ,
Xtar is one of 8`x possible boxes in a regular grid G`x . We can label the boxes in this grid with
multi-indices in {0, . . . , 2`x−1}3 in a regular way (ascending componentwise) and use these indices
to measure the distance of boxes. For two spatial boxes X and Y in G`x with corresponding
multi-indices ξ and ζ we define the grid distance of X and Y by

griddist(X,Y) := max
j
{|ξj − ζj |}. (31)

For a fixed truncation parameter ntr we define the interaction area IA(X) of X in G`x by

IA(X) := {Y ∈ G`x : griddist(X,Y) ≤ ntr}. (32)

In the partitioning of Vh we will ignore blocks Vh|Ẑtar×Ẑsrc
if Xsrc /∈ IA(Xtar). From [23, Section 5.4]

it follows that a single, properly chosen truncation parameter ntr can be used for the definition
of the interaction area and the related truncation for various pairs of clusters Ztar and Zsrc. A
suitable requirement is that the ratio h̃2

x/max{|Itar|, |Isrc|} of these clusters is similar, where h̃x
denotes the spatial half length of Ztar and Zsrc. This will be the case in the partitioning of Vh
for clusters Zsrc and Ztar in the part of TΣ where we alternate between purely temporal and
space-time refinements.

To keep track of the blocks Vh|Ẑtar×Ẑsrc
in the final partition of Vh we introduce four different

interaction lists for clusters Ztar in TΣ. The standard M2L interaction list IM2L(Ztar) will include
clusters Zsrc such that the full space-time expansion (8) is admissible for Ztar and Zsrc but not for
their parents. For the new temporally one-sided expansion (10) in the source interval we introduce
the M2Lx interaction list IM2Lx(Ztar) and for the temporally one-sided expansion (11) in the
target interval the Mx2L interaction list IMx2L(Ztar). The nomenclature for these lists is related
to the associated FMM operations, which we introduce in Section 4.3. The last list is the nearfield
N (Ztar) which contains clusters Zsrc corresponding to blocks Vh|Ẑtar×Ẑsrc

which are inadmissible

15

and cannot be subdivided further. For a given cluster Ztar some or all of these lists might be
empty. The construction of all lists of all clusters in TΣ is done during the recursive subdivision
of blocks of Vh which we described above and present in full detail in Algorithms 2 and 3.

Algorithm 2 Recursive construction of the interaction lists in TΣ.
Require: Let TΣ be a space-time cluster tree with root Z(0).

Fix constants η1, η2 ∈ R>0 for the criteria (16) and (20) and ntr for the definition of (32).
1: Call DetermineOperationLists(Z(0), Z(0)).

2: function DetermineOperationLists(Zsrc, Ztar)
3: if Xsrc ∈ IA(Xtar) // Interaction area IA(Xtar) defined in (32)
4: if Isrc and Itar satisfy the admissibility criterion (16)
5: Add Zsrc to IM2L(Ztar).
6: else
7: if Ztar is not a leaf and Ztar is not temporally indivisible
8: if Zsrc is not a leaf and Zsrc is not temporally indivisible
9: for all pairs (Zsrc,c, Ztar,c) with Zsrc,c ∈ child(Zsrc) and Ztar,c ∈ child(Ztar)

10: if Isrc,c is causally relevant for Itar,c
11: Call DetermineOperationLists(Zsrc,c, Ztar,c).
12: else // Zsrc is a leaf or a temporally indivisible cluster.
13: if Zsrc is temporally indivisible
14: for all Ztar,c ∈ child(Ztar)
15: Call DetermineMx2LAndNearfieldLists(Zsrc, Ztar,c).
16: else // Zsrc is not a temporally indivisible cluster but a leaf.
17: Add Zsrc to N (Ztar).
18: else // Ztar is a leaf or a temporally indivisible cluster.
19: if Ztar is temporally indivisible
20: if Zsrc is not a leaf and Zsrc is not temporally indivisible
21: for all Zsrc,c ∈ child(Zsrc)
22: Call DetermineM2LxAndNearfieldLists(Zsrc,c, Ztar).
23: else
24: Add Zsrc to N (Ztar).
25: else // Ztar is not a temporally indivisible cluster but a leaf.
26: Add Zsrc to N (Ztar).

The main routine DetermineOperationLists in Algorithm 2 realizes the recursive subdivision
of blocks. If the spatial component Xsrc is not in the interaction area IA(Xtar) of Xtar, the
corresponding block can be neglected and the subdivision is stopped (line 3). Otherwise it is
checked whether the admissibility criterion (16) is satisfied (line 4) in which case Zsrc is added to
the proper interaction list IM2L(Ztar). In the contrary case, we want to subdivide the block.

The desired subdivision strategy for an inadmissible block is to consider all pairs of children
of Zsrc and Ztar, check whether the corresponding blocks are non-zero due to causality (line 10),
and call the routine DetermineOperationLists for the children if this is the case (line 11).
Leaf clusters and temporally indivisible clusters, whose children are obtained by purely spatial
subdivisions, are treated separately. If only one of the clusters is temporally indivisible and
the other is not a leaf, we can still subdivide the block and check if the resulting blocks are
admissible. To motivate this, let e.g. Zsrc be temporally indivisible and Ztar be neither a

16

leaf nor temporally indivisible. We can consider the blocks of Vh corresponding to Zsrc and
Ztar,c ∈ child(Ztar) for which a temporally one-sided expansion (11) instead of the full expansion (8)
may be admissible, since the children of Ztar are subdivided with respect to time. Thus, such
clusters are treated separately in the subroutine DetermineMx2LAndNearfieldLists in
line 15, which is described in Algorithm 3. Similarly, we treat temporally indivisible clusters
Ztar and non-leaf clusters Zsrc which are not temporally indivisible separately in the subroutine
DetermineM2LxAndNearfieldLists in line 22, see Algorithm 3 as well. In all other cases,
further subdivisions of the inadmissible block are not possible or would not yield efficiently
approximable sub-blocks anymore, so we add Zsrc to the nearfield N (Ztar) of Ztar (lines 17, 24
and 26).

Algorithm 3 The subroutines to determine Mx2L and M2Lx interaction lists by asymmetric
subdivisions.

1: function DetermineMx2LAndNearfieldLists(Zsrc, Ztar)
2: if `x(Zsrc) < `x(Ztar)
3: if Zsrc is a leaf
4: Add Zsrc to N (Ztar).
5: else // Recursive call for spatially refined children of Zsrc.
6: for all Zsrc,c ∈ child(Zsrc)
7: Call DetermineMx2LAndNearfieldLists(Zsrc,c, Ztar).
8: else
9: if Isrc and Itar satisfy the admissibility criterion (20)

10: Add Zsrc to IMx2L(Ztar).
11: else
12: if Ztar is temporally indivisible
13: Add Zsrc to N (Ztar).
14: else // Recursive call for children of Ztar which are refined in space and time.
15: for all Ztar,c ∈ child(Ztar)
16: Call DetermineMx2LAndNearfieldLists(Zsrc, Ztar,c).

17: function DetermineM2LxAndNearfieldLists(Zsrc, Ztar)
18: if `x(Ztar) < `x(Zsrc)
19: if Ztar is a leaf
20: Add Zsrc to N (Ztar).
21: else // Recursive call for spatially refined children of Ztar.
22: for all Ztar,c ∈ child(Ztar)
23: Call DetermineM2LxAndNearfieldLists(Zsrc, Ztar,c).
24: else
25: if Isrc and Itar satisfy the admissibility criterion (20)
26: Add Zsrc to IM2Lx(Ztar).
27: else
28: if Zsrc is temporally indivisible
29: Add Zsrc to N (Ztar).
30: else // Recursive call for children of Zsrc which are refined in space and time.
31: for all Zsrc,c ∈ child(Zsrc)
32: Call DetermineM2LxAndNearfieldLists(Zsrc,c, Ztar).

17

The routine DetermineMx2LAndNearfieldLists in Algorithm 3 is used to determine pairs
of clusters Zsrc and Ztar and corresponding matrix blocks, for which the approximation (11) is
applied. It is initially called in line 15 of Algorithm 2 for a temporally indivisible cluster Zsrc and
a target cluster Ztar such that `t(Ztar) > `t(Zsrc). The main goal of the routine is to recursively
subdivide the target cluster until the admissibility criterion (20) is satisfied for the temporal
components of the resulting clusters or until a final inadmissible block is detected. This is the
content of lines 9–16 of Algorithm 3. For the temporally one-sided expansion (11) the spatial
lengths of Zsrc and Ztar have to match, which is the case if their spatial levels coincide. The right
spatial level is the one of Ztar. This follows from the last paragraph of Section 3.3 since the spatial
and temporal half lengths h̃x and h̃t of Ztar satisfy (30) due to the construction of TΣ. It may be
necessary to adapt the spatial level `x(Zsrc) of Zsrc, which is done in lines 2–7 of Algorithm 3.
If `x(Zsrc) does not match `x(Ztar) and Zsrc still has spatially refined children, the routine is
called recursively for all these children (line 7). If Zsrc is a leaf in TΣ and its spatial level does
not match the one of Ztar, we add it to the nearfield of Ztar (line 4) regardless of whether the
temporal components satisfy (20) or not. Note that we do not check for an additional spatial
truncation in Algorithm 3. This is motivated by the fact, that max{|Isrc|, |Itar|} does not (or at
least not significantly) change when only the target cluster is refined. Therefore, an additional
spatial truncation is not reasonable.

The routine DetermineM2LxAndNearfieldLists in Algorithm 3 is the analogue of Deter-
mineMx2LAndNearfieldLists when the roles of source and target clusters are interchanged,
i.e. when Ztar is temporally indivisible while Zsrc is not. In this case we want to find pairs of
clusters Zsrc and Ztar and corresponding matrix blocks, for which the approximation (10) is
admissible. The recursion strategy including the choice of spatial levels is completely analogous
to the one in DetermineM2LxAndNearfieldLists.

Note that a purely spatially refined cluster Zsrc in the tree TΣ can only be considered as a
source cluster in the subroutine DetermineMx2LAndNearfieldLists in Algorithm 3, if the
corresponding target cluster Ztar has the same spatial level. In particular, there might exist spatially
refined clusters, which are never considered in this routine. For the same reason such clusters
might never be considered as target clusters in the subroutine DetermineM2LXandNearfield-
Lists in Algorithm 3. Hence, TΣ might contain clusters that are never visited in the routine
DetermineOperationLists and its subroutines. These clusters (and all their descendants) are
not relevant for the FMM and can be removed from the tree TΣ. In the rest of the paper we will
assume that such clusters do not exist or have already been removed.

The difference between the standard partitioning scheme in e.g. [17, 23, 25] and the one described
here is the treatment of temporally indivisible clusters. In the standard version, such clusters
are leaves in the space-time cluster tree and the corresponding inadmissible blocks cannot be
subdivided any further. This would correspond to a version of Algorithm 2, where Zsrc is added to
the nearfield N (Ztar) of Ztar not only in line 23, but also in lines 13 and 20. In this work we allow
for a further subdivision and more efficient handling of certain blocks by introducing the purely
spatial subdivisions of clusters in the construction of TΣ, the temporally one-sided expansions (10)
and (11), and the new routines in Algorithm 3. Note that the description of the interaction lists
differs in the previous works [17, 23, 25]. Here we use a more algorithmic description.

4.3 Approximation of matrix blocks
In this section we describe how to use the kernel expansions (8), (10) and (11) to efficiently
approximate the admissible sub-blocks of Vh from the partition constructed in Section 4.2. This

18

will lead to the adaptive FMM algorithm for the matrix-vector multiplication f = Vhq, which we
will present in Section 4.5.

Let us consider the application of a block Vh|Ẑtar×Ẑsrc
to the appropriate part q|Ẑsrc

of a vector q.
The result is denoted by f̃ |Ẑtar

and is given by

f̃kt,kx =
∑

(jt,jx)∈Ẑsrc

qjt,jx

∫ tkt

tkt−1

∫
γkx

∫ tjt

tjt−1

∫
γjx

Gα(x− y, t− τ) dsy dτ dsx dt (33)

for all indices (kt, kx) ∈ Ẑtar. Recall that we use pairs (kt, kx) as indices for vectors, see Section 2.
We can approximate this operation in an efficient way if Zsrc is contained in the standard interaction
list IM2L(Ztar) or one of the new lists IMx2L(Ztar) or IM2Lx(Ztar). The actual approximations
depend on the particular list and are discussed in the following. Most of the occurring quantities
in this discussion have been introduced in Section 3.

Case 1: Let Zsrc ∈ IM2L(Ztar). We replace the heat kernel in (33) by the full space-time
expansion in (8). This is the standard approximation from [17, 22, 23]. As in [25, Section 3.4] we
compute the result in three steps:
S2M : For a ∈ {0, ...,mt} and a multi-index κ ∈ N3

0 with |κ| ≤ mx compute the moments µ(Zsrc)
by

µa,κ(Zsrc) =
∑

(jt,jx)∈Ẑsrc

qjt,jx

∫ tjt

tjt−1

∫
γjx

TXsrc,κ(y)LIsrc,a(τ) dsy dτ. (34)

M2L: For b ∈ {0, ...,mt} and ν ∈ N3
0 with |ν| ≤ mx compute the related local contributions λ(Ztar)

by

λb,ν(Ztar) =
mt∑
a=0

∑
|κ+ν|≤mx

Ea,bκ,ν µa,κ(Zsrc). (35)

L2T : For all (kt, kx) in Ẑtar evaluate

f̃kt,kx ≈
mt∑
b=0

∑
|ν|≤mx

λb,ν(Ztar)
∫ tkt

tkt−1

∫
γkx

TXtar,ν(x)LItar,b(t) dsx dt. (36)

Case 2: Let Zsrc ∈ IM2Lx(Ztar). By construction, Ztar is temporally indivisible in this case
and, therefore, Ẑtar contains only a single time index kt. We use the temporally one-sided
approximation (10) to replace the heat kernel in (33) and get

f̃kt,kx ≈
∫ tkt

tkt−1

∫
γkx

mt∑
a=0

∑
|κ+ν|≤mx

Ea,κ,ν(t)TXtar,ν(x) dsx dt µa,κ(Zsrc), (37)

where the moments µ(Zsrc) are the same as in (34). The temporal integral in this equation is
evaluated by using a Gauß–Legendre quadrature rule with ρt + 1 points, i.e.∫ tkt

tkt−1
Ea,κ,ν(t) dt ≈

ρt∑
b=0

ωkt,bE
a,
κ,ν(ζkt,b), (38)

where {ζkt,b}
ρt

b=0 and {ωkt,b}
ρt

b=0 are the Gauß–Legendre quadrature points and weights on the
time interval (tkt−1, tkt). The result in (33) is then approximated in three steps:

19

S2M: For a ∈ {0, ...,mt} and κ ∈ N3
0 with |κ| ≤ mx compute the moments µ(Zsrc) as in (34).

M2Lx: For ν ∈ N3
0 with |ν| ≤ mx compute the related spatial local contributions λ(x)(Ztar) by

λ(x)
ν (Ztar) =

ρt∑
b=0

ωkt,b

∑
|κ+ν|≤mx

mt∑
a=0

Ea,κ,ν(ζkt,b)µa,κ(Zsrc). (39)

Lx2T: For all (kt, kx) in Ẑtar evaluate

f̃kt,kx ≈
∑
|ν|≤mx

∫
γkx

TXtar,ν(x) dsxλ(x)
ν (Ztar). (40)

Note that the integral over the temporal target interval (tkt−1, tkt) is not part of the Lx2T
operation but has moved to the M2Lx operation. The spatial local contributions λ(x)(Ztar) in (39)
and (40) depend explicitly on the time interval (tkt−1, tkt), but since Ztar contains only a single
time interval, we do not indicate this in the notation.

Case 3: Let Zsrc ∈ IMx2L(Ztar). In this case Zsrc is temporally indivisible and Ẑsrc contains
only a single time index jt. We approximate (33) in three steps by substituting the heat kernel
with the temporally one-sided expansion in (11) and by proceeding similarly as in the last case:
S2Mx: For κ ∈ N3

0 with |κ| ≤ mx compute the spatial moments µ(x)(Zsrc) by

µ(x)
κ (Zsrc) =

∑
(jt,jx)∈Ẑsrc

qjt,jx

∫
γjx

TXsrc,κ(y) dsy. (41)

Mx2L: For b ∈ {0, . . . ,mt} and ν ∈ N3
0 with |ν| ≤ mx compute the related local contribu-

tions λ(Ztar)

λb,ν(Ztar) =
ρt∑
a=0

∑
|κ+ν|≤mx

ωjt,aE
,b
κ,ν(ζjt,a)µ(x)

κ (Zsrc), (42)

where {ζjt,a}
ρt
a=0 and {ωjt,a}

ρt
a=0 are Gauß–Legendre quadrature points and weights on the time

interval (tjt−1, tjt).
L2T: For all (kt, kx) ∈ Ẑtar evaluate the local contributions as in (36). Note that the integral over
the temporal source interval (tjt−1, tjt) is not part of the S2Mx operation but is included in the
Mx2L operation. The spatial moments µ(x)(Zsrc) in (41) and (42) depend explicitly on this time
interval (tjt−1, tjt).

The FMM operations above are obtained by replacing the heat kernel in (33) with a suitable
expansion and by reordering the sums. The related approximation error can be deduced from
the results in Section 3.3, see e.g. [19, Section 4.1]. Operations like S2M in (34) and L2T in (36)
involve integrals of polynomials, which can be computed exactly by suitable quadrature formulae.
In the cases 2 and 3 above we additionally evaluate the integrals of the expansion coefficients
Ea,κ,ν(·t) and E,bκ,ν(·τ) over the given time intervals by some quadrature formula, see (38). It is
not surprising that the resulting operations are similar to those in case 1, since the additional
interpolation in that case can be interpreted as an alternative quadrature formula. However,
we can choose the quadrature formula in (38) freely and adapt it for individual time intervals
to obtain a better accuracy. The results in Section 3.1 indicate that this is necessary in those
situations, where we use the temporally one-sided expansions. Alternatively, one could evaluate
the integrals of the expansion coefficients Ea,κ,ν(·t) and E,bκ,ν(·τ) analytically. However, this would
destroy the product structure of the coefficients and prohibit an efficient handling as in [24,
Section 4.3], on which we will further comment in Section 4.6.

20

4.4 A nested computation of moments and local contributions
To improve the efficiency of the FMM we use a nested computation of moments and local
contributions. This is a standard approach in FMM algorithms and was used already in [17, 22,
23, 25] to compute the moments of clusters Zsrc from the moments of their children and pass
local contributions of clusters Ztar down to their children to evaluate them in a single effort. The
related operations are based on a suitable change of basis of the temporal Lagrange polynomials
and spatial Chebyshev polynomials, so they do not introduce any additional approximation errors.
The newly introduced spatial moments and local contributions can be computed in a nested
manner as well. In addition, the spatial moments µ(x)(Zsrc) can be used to compute standard
moments µ(Zsrc), if both are needed. Similarly, local contributions λ(Ztar) can be transformed
into spatial local contributions λ(x)(Ztar) and evaluated together. In the following we list all
related FMM operations:
Mx2Mx : For a temporally indivisible cluster Z = X × I with spatially refined children the spatial
moments µ(x)(Z) can be computed from the spatial moments of its children by

µ(x)
ν (Z) =

∑
Zc∈child(Z)
Zc=Xc×I

∑
κ≤ν

q(x)
κ,ν(Xc, X)µ(x)

κ (Zc) (43)

for all ν ∈ N3
0 with |ν| ≤ mx. Here κ ≤ ν is understood componentwise and for the boxes

X = (a, b] and Xc = (c,d] we define q(x)
κ,ν(Xc, X) :=

∏
j q

(x)
κj ,νj ((cj , dj], (aj , bj]) with

q(x)
κj ,νj

((cj , dj], (aj , bj]) :=
λκj

mx + 1

mx∑
n=0

T(aj ,bj],νj
(ξ(mx)

(cj ,dj],n)T(cj ,dj],κj
(ξ(mx)

(cj ,dj],n),

where λκj is defined as in (9c) and {ξ(mx)
(cj ,dj],n}

mx
n=0 are Chebyshev nodes on the intervals (cj , dj] of

Xc.
Mx2M : The spatial moments µ(x)(Z) of a cluster Z = X × I given in (41) can be transformed
into the standard moments µ(Z) in (34) via

µa,κ(Z) = µ(x)
κ (Z)

∫ tjt

tjt−1
LI,a(τ) dτ (44)

for all a ∈ {0, . . . ,mt} and κ ∈ N3
0 with |κ| ≤ mx, where (tjt−1, tjt) is the only time interval

contained in the temporally indivisible cluster Z. Note that the conversion of the spatial moments
µ(x)(Z) of Z to the standard moments µ(Z) has to be executed only if Z is a temporally indivisible
cluster whose parent is not temporally indivisible. The standard moments of all other temporally
indivisible clusters are not needed.
M2M : The operations used to compute the moments µ(Z) of a cluster Z from the moments of
its children are the same as in the original works, cf. [22, Sections 4.2 and 4.3]. Based on the
subdivision used to construct the children one distinguishes two operations:
Temporal M2M : If the children of Z = X × I were created by a purely temporal subdivision

µb,κ(Z) =
∑

Zc∈child(Z)
Zc=X×Ic

mt∑
a=0

q
(t)
a,b(Ic, I)µa,κ(Zc) (45)

21

for all b ∈ {0, . . . ,mt} and κ ∈ N3
0 with |κ| ≤ mx, where q(t)

a,b(Ic, I) := LI,b(ξ
(mt)
Ic,a

).
Space-time M2M : If the children of Z = X × I were created by a space-time subdivision

µb,ν(Z) =
∑

Zc∈child(Z)
Zc=Xc×Ic

mt∑
a=0

∑
κ≤ν

q
(t)
a,b(Ic, I) q(x)

κ,ν(Xc, X)µa,κ(Zc) (46)

for all b ∈ {0, . . . ,mt} and ν ∈ N3
0 with |ν| ≤ mx, where the coefficients q(x)

κ,ν(Xc, X) and q(t)
a,b(Ic, I)

are the same as in (43) and (45), respectively.
Temporal L2L operations and space-time L2L operations are used to pass down local contribu-

tions of a cluster Ztar to its children. They are the transposed operations of the corresponding
M2M operations. For a temporally indivisible cluster Ztar whose parent is not temporally indi-
visible the local contributions λ(Ztar) are transformed into spatial local contributions λ(x)(Ztar)
with an L2Lx operation. If Ztar is not a leaf, its spatial local contributions are passed down to its
children by Lx2Lx operations. The L2Lx and Lx2Lx operations are the transposed operations of
the Mx2M and Mx2Mx operations in (44) and (43), respectively.

4.5 A time-adaptive space-time FMM for the heat equation
The full time-adaptive space-time FMM algorithm is presented in Algorithm 4. It can be described
as an efficient approximation of the matrix-vector product Vhq in a blockwise manner. The blocks
are given by the partition constructed by Algorithm 2. Admissible blocks are approximated in
the FMM as described in Section 4.3. In addition, the nested computation of moments and local
contributions from Section 4.4 is used. Note that the moments µ(Zsrc) of a cluster Zsrc have to
be computed only once and can then be used for all M2L or M2Lx operations of this cluster. The
same is true for spatial moments µ(x)(Zsrc) and Mx2L operations. The moments of all clusters
in TΣ are computed in the first phase of the FMM (lines 2–17), where an explicit distinction
and transition between spatial moments and standard moments takes place. After this phase
all moments and spatial moments are available, so all M2L, Mx2L and M2Lx operations can be
executed (lines 18–25). The resulting local contributions and spatial local contributions of each
target cluster are summed up. They are passed downwards and evaluated in a single effort for
the leaves of TΣ (lines 26–39). Again, explicit transitions between local contributions and their
spatial counterparts take place when necessary. In the last phase, the inadmissible blocks are
applied directly (lines 40–42).

The new time-adaptive space-time FMM algorithm can be seen as an enhancement of the
original one in [22], which is presented in a similar form in [25, Algorithm 2]. The additional
subdivision of formerly inadmissible blocks by the routines in Algorithm 3 and the new FMM
operations related to purely spatial moments and local contributions allow for a more efficient
treatment of space-time tensor product meshes which are adaptive in time. In Sections 4.6 and 4.7
we will discuss the costs for the execution of individual FMM operations and, in particular, analyze
the compression obtained by the new operations. The benefits of the time-adaptive space-time
FMM will be shown in the numerical examples in Section 5.

We suppose that the concept of the temporal nearfield approximation in [18] can be extended
to the setting of adaptive meshes in time with some technical difficulties. This would allow for a
compression of the formerly inadmissible blocks as well. However, our approach appears to fit
into the present concept more easily.

In [25] the authors presented a parallel version of the standard space-time FMM for the
heat equation for distributed memory systems. The parallel algorithm exploits the temporal

22

Algorithm 4 Time-adaptive space-time FMM for the approximate evaluation of f = Vhq.
Require: Let a space-time box cluster tree TΣ as in Algorithm 1 be given.

Let the interaction lists for the matrix partition be constructed by Algorithm 2.
Let expansion degrees mt and mx and a parameter ρt (for (38)) be given.

1: Initialize f = 0.
2: for all leaves Z ∈ TΣ // Forward transformation
3: if Z is temporally indivisible:
4: Compute µ(x)(Z) by S2Mx (41).
5: if par(Z) is not temporally indivisible:
6: Compute µ(Z) by Mx2M (44).
7: else: Compute µ(Z) by S2M (34).
8: for all levels ` = depth(TΣ)− 1, . . . , 2
9: for all non-leaf boxes Z ∈ TΣ with level(Z) == `

10: if Z is temporally indivisible:
11: Compute µ(x)(Z) by Mx2Mx (43).
12: if par(Z) is not temporally indivisible:
13: Compute µ(Z) by Mx2M (44).
14: else
15: if children of Z are refined only in time:
16: Compute µ(Z) by temporal M2M (45).
17: else: Compute µ(Z) by space-time M2M (46).
18: for all boxes Ztar ∈ TΣ // Multiplication phase
19: Initialize λ(Ztar) = 0 and λ(x)(Ztar) = 0 if necessary.
20: for all boxes Zsrc ∈ IM2L(Ztar)
21: M2L: Update λ(Ztar) by adding the result from (35).
22: for all boxes Zsrc ∈ IMx2L(Ztar)
23: Mx2L: Update λ(Ztar) by adding the result from (42).
24: for all boxes Zsrc ∈ IM2Lx(Ztar)
25: M2Lx: Update λ(x)(Ztar) by adding the result from (39).
26: for all levels ` = 3, . . . , depth(TΣ) // Backward transformation
27: for all boxes Z ∈ TΣ with level(Z) == `
28: if par(Z) is temporally indivisible:
29: Update λ(x)(Z) by Lx2Lx using λ(x)(par(Z)).
30: else
31: if Z results from par(Z) by a temporal refinement:
32: Update λ(Z) by temporal L2L using λ(par(Z)).
33: else: Update λ(Z) by space-time L2L using λ(par(Z)).
34: if Z is temporally indivisible:
35: Update λ(x)(Z) by L2Lx using λ(Z).
36: for all leaves Z ∈ TΣ
37: if Z is temporally indivisible:
38: Update f |Ẑ by Lx2T (40).
39: else: Update f |Ẑ by L2T (36).
40: for all Ztar ∈ TΣ // Nearfield evaluation
41: for all Zsrc ∈ N (Ztar)
42: Nearfield operation: Update f |Ẑtar

+= Vh|Ẑtar×Ẑsrc
q|Ẑsrc

.

23

structure of the FMM, which allows to consider groups of operations on a temporal level. These
groups of operations do not have to be executed in the strictly separated phases which we see
in Algorithm 4, but can be executed efficiently based on individual dependencies. This flexible
execution order enables an efficient parallelization in distributed memory. The distribution of work
and communication between different processes can be handled on a temporal level, which makes
it simple and efficient. In the parallel algorithm, collections of moments or local contributions
of clusters are communicated between processes in a non-blocking way when they are ready
and required. The new time-adaptive version allows for a similar treatment by introducing new
groups of operations related to the new FMM operations (S2Mx, Mx2Mx, Mx2L, M2Lx, . . .)
and adjusting the dependencies of the grouped operations. The distribution of the work among
computing nodes has to be adapted to the time-adaptive mesh.

4.6 Costs of individual FMM operations
In Table 1 we give an overview of the runtime complexity of all FMM operations. The complexity
O((mx + 1)4(mt + 1)2) of the M2L operations is only achieved if they are executed as proposed
in [24, Section 4.3]. A naive implementation would require O(

(mx+3
3
)2(mt+1)2) operations instead.

The same holds for the M2Lx and Mx2L operations, where a smart implementation requires
O((mx + 1)4(mt + 1)(ρt + 1)) operations instead of O(

(mx+3
3
)2(mt + 1)(ρt + 1)) in the naive

case. The complexity of all other FMM operations can be estimated by counting the number of
multiplications in the respective equations (34)–(46) above, utilizing the tensor product structure
of operations whenever possible. E.g., in case of the S2M operations one can use a decomposition
into operations similar to S2Mx and Mx2M operations in (41) and (44). We observe that the costs
of the newly introduced FMM operations are similar to those of the standard FMM operations.

The numbers in Table 1 reveal why the approximation of admissible blocks of Vh is efficient.
Let us consider for example a block Vh|Ẑtar×Ẑsrc

corresponding to clusters Ztar and Zsrc in TΣ
with Zsrc ∈ IM2L(Ztar). The computation of the moments µ(Zsrc) and evaluation of the local
contributions λ(Ztar) has to be done only once for each cluster, so it does not have to be repeated
for every admissible block. Thus, we can focus on the M2L operations when estimating the
costs of the application of such an admissible block in the FMM algorithm. These costs are
O((mx + 1)4(mt + 1)2). In comparison, a direct application of the non-approximated block would

Table 1: Runtime complexities of all FMM operations in the time-adaptive space-time FMM for
the heat equation. The cluster Z appearing in the estimated costs for S2M, L2T, S2Mx
and Lx2T operations is the related source or target cluster.

Operations Runtime complexity

S2M and L2T O(#Ẑ
(mx+3

3
)

+ nt(Ẑ)
(mx+3

3
)
(mt + 1))

Purely temporal M2M and L2L O(
(mx+3

3
)
(mt + 1)2)

Space-time M2M and L2L O(
(mx+3

3
)
(mt + 1)(mx

4 + (mt + 1)))
M2L O((mx + 1)4(mt + 1)2)

S2Mx and Lx2T O(#Ẑ
(mx+3

3
)
)

Mx2Mx and Lx2Lx O(
(mx+3

3
)mx

4)
Mx2M and L2Lx O(

(mx+3
3
)
(mt + 1))

M2Lx and Mx2L O((mx + 1)4(mt + 1)(ρt + 1))

24

require O(#Ẑtar #Ẑsrc) operations. Hence, the low rank approximation is more efficient in terms
of the execution time, if Ztar and Zsrc contain more than O((mx + 1)2(mt + 1)) elements.

In terms of storage requirements, the approximation of blocks in the FMM is beneficial as
well. In fact, we do not store the coefficients of the FMM operations in our implementation, but
only the moments and local contributions for each cluster – at most one of each kind per cluster.
Since the computation of nearfield entries is rather expensive, we fully assemble and store all
inadmissible blocks instead. Therefore, the required storage for admissible blocks is negligibly
small compared to inadmissible blocks.

4.7 Complexity analysis for newly approximated blocks
A complete complexity analysis of the presented time-adaptive FMM highly depends on the specific
adaptive decomposition of the time interval (0, T) and would require some related restrictive
assumptions. Instead we present a comparison of the standard and the time-adaptive FMM when
the latter one provides some additional compression.

We consider two time cluster intervals Isrc and Itar which are inadmissible with respect to the
original criterion (16) but admissible with respect to the adaptive criterion (20). We assume that
the interval Itar and all related space-time clusters Ztar = Xtar × Itar, respectively, are temporally
indivisible. Note that the situation related to interchanged roles of Isrc and Itar is similar to the
considered one due to the symmetric character of operations like Mx2L and M2Lx. In addition
we assume that the spatial mesh Γh with Ex similarly sized elements is sufficiently fine and that
the spatial clustering resolves the surface.

We start with the complexity analysis of the matrix blocks related to the considered two time
intervals for the new time-adaptive version of the FMM. In this setting M2Lx operations are
applied for related clusters Ztar and Zsrc = Xsrc × Isrc. The combined effort of the two operations
L2Lx and Lx2T is the same as the effort of the L2T operation for the same cluster. Therefore,
these two operations do not create additional effort in the overall algorithm. Some additional effort
is created by the Lx2Lx operations on the spatially refined clusters. A single Lx2Lx operation is
rather inexpensive and there is at most one operation per cluster. Compared to the effort of M2L
and M2Lx operations the effort of all Lx2Lx operations is small. There are not any related S2Mx,
Mx2Mx, and Mx2M operations in this part of the FMM algorithm. Thus we neglect the effort of
all these operations in this analysis and focus on the effort of the related M2Lx operations.

The effort of a M2Lx operation between the considered clusters Zsrc and Ztar is given in Table 1.
This operation is applied for all clusters Zsrc ∈ IM2Lx(Ztar), see the lines 24f in Algorithm 4.
Thus, we have to estimate their number #IM2Lx(Ztar). The list IM2Lx(Ztar) is filled in line 26 of
Algorithm 3 and affected by the truncation strategy described in Section 4.2. But the truncation
is implemented in line 3 of Algorithm 2. At that point the interaction area IA in (32) typically
contains (2ntr + 1)2 non-empty boxes of the regular grid on the surface of the domain. Due to
dx additional spatial descending steps according to lines 18–23 in Algorithm 3, their number
increases by the factor 4dx approximately. Thus,

#IM2Lx(Ztar) ≈ (2ntr + 1)24dx . (47)

By taking the sum over all clusters Ztar related to Itar, we can estimate the computational effort
of the time-adaptive FMM related to the two time intervals by

Cnew ≈ #B`x(2ntr + 1)24dxO((mx + 1)4(mt + 1)(ρt + 1)), (48)

where #B`x is the number of non-empty spatial boxes of the regular grid G`x on the spatial level
`x of Ztar and Zsrc.

25

In the standard FMM the related blocks are inadmissible and, thus, directly assembled and
stored as dense blocks. Again we apply the truncation strategy described in Section 4.2. We have
already counted the number of clusters Zsrc relevant for Ztar in (47). If we take the sum over all
clusters Ztar related to Itar, which contain all Ex spatial elements, we can estimate the number of
nearfield entries related to the two time cluster intervals as

Cold ≈ Ex(2ntr + 1)24dxn`xnt, (49)

where n`x is the average number of elements in the non-empty spatial boxes B`x of the regular
grid G`x , and nt is the number of time intervals in the cluster interval Isrc and Zsrc, respectively.

Typically we will have a small integer dx for locally quasi-uniform temporal meshes. But n`x
may be large for temporally indivisible time intervals. Thus, the number Cold of nearfield entries
of the considered matrix block may be large or even ntE2

x. The new version reduces the memory
requirements and the computational time significantly. Cold nearfield entries do not have to be
computed and stored. Instead we only need to store an additional expansion per cluster which
typically requires much less memory.

For the execution time of a matrix vector product the comparison is more involved. In the
original version the related effort is proportional to Cold. The effort Cnew of the new method
in (48) depends on the number of M2Lx operations, i.e. on the specific setting of the two time
intervals Isrc and Itar. Since #B`x = Ex/n`x , the new method will provide a faster application of
the related blocks, if Cnew < Cold, i.e.

O((mx + 1)4(mt + 1)(ρt + 1)) < n2
`xnt.

This is the case if the number nt of time intervals in Isrc and the average number n`x of spatial
elements per cluster on the spatial level `x of Zsrc and Ztar are large. Thus, the new method is
advantageous for fine spatial meshes, in general. As a rule of thumb: If the operations take place
on a relatively large spatial level `x, n`x is small and the original nearfield matrix vector product
is faster. If the operations take place on a relatively small spatial level `x, n`x is large and the
new FMM version will be faster. Due to the construction of the cluster tree and the operation
lists IM2Lx, the relevant spatial level `x is related to the cluster levels of the two time intervals
Isrc and Itar.

5 Numerical experiments
The time-adaptive FMM algorithm presented and analyzed in the previous sections has been
implemented in the publicly available C++ library besthea [16]. The implementation provides a
hybrid OpenMP-MPI parallelization of Algorithm 4 following the ideas in [25]. In this section we
consider numerical experiments to show the benefits of the newly introduced time-adaptive FMM
operations. The experiments in Section 5.1 were carried out using a local workstation with 384
GiB of RAM and two 16-core Intel Xeon Gold 5218 processors. For the compilation we used the
Intel compiler v2021.2.0. For the experiments in Section 5.2 we used the VSC-4 cluster in Vienna,
Austria, and the Intel compiler v19.1.3.304. The nodes of VSC-4 are equipped with two 24-core
Intel Skylake Platinum 8174 processors. We used standard nodes providing 96 GB of RAM and
fat nodes, providing 384 GB of RAM, when necessary. A guide to reproduce the experiments is
given in the repository [16].

26

5.1 Example 1: Exponential decay in time
In the first example we use a direct boundary integral approach to solve the initial boundary
value problem (1) of the heat equation with the heat capacity constant α = 1 in the space-time
cylinder Q = Ω × (0, T), where Ω is the cube (−0.5, 0.5)3 and T = 0.25. We choose the exact
solution of the heat equation

u(x, t) = exp(−3π2t)
3∏
j=1

sin(π(xj + 0.5)), for all (x, t) ∈ Q (50)

with the related initial and Dirichlet data as well as Neumann datum q. We solve the integral
equation (2) for q with the right-hand side f in (4), which simplifies to f = −M0u0 since g = 0.
Due to the characteristic exponential decay in time of the solution u in (50) it is reasonable
to increase the time step size as time advances. For our numerical experiment we choose the
adaptive temporal mesh Ih illustrated in Figure 1. For a better presentation we depict the
lengths of the intervals. This mesh was constructed by an adaptive refinement algorithm that was
tailored to reduce the L2 projection error of the temporal part qt(t) = exp(−3π2t) of the exact
solution (50). For the spatial mesh Γh we use a uniform triangulation of the cube’s surface into
12 288 triangles. The resulting space-time tensor product mesh Σh = Γh ⊗ Ih consists of 245 760
space-time boundary elements. In addition, a volume mesh of 196 608 tetrahedra conforming to
Γh is used for the initial potential.

We want to compare the original FMM as implemented in [25] and our new time-adaptive
variant when solving the discrete system Vhq = f , where f is a discretization of the right-hand
side −M0u0. For the evaluation of the initial potential we use analytical integration in time and
numerical quadrature formulae for triangles and tetrahedra in space. In singular cases we apply a
recursive subdivision routine of volume and surface elements. Our results indicate that we are
able to compute the right-hand side f accurately enough in this way. For our time-adaptive FMM
we use the cluster parameters nmax = 800 and cst = 4.5, the spatial truncation parameter ntr = 2,
the constants η2 = 1 and η1 = 1 for the admissibility criteria (16) and (20), respectively, and the
expansion degrees mt = 4 and mx = 12. For the numerical quadrature in (38) we use %t = 3, i.e. a
4-point rule, which proves to be sufficiently accurate in our examples. For the original version of
the FMM we use the same parameters except η1 and %t, which are not needed.

In Table 2 we compare the results when solving the system Vhq = f using the GMRES
method with a diagonal preconditioner for the time-adaptive and the standard FMM. The relative

1 3 5 7 9 12 14 16 18 20

2−9

2−8

2−7

2−6

2−5

2−4

Interval index

In
te

rv
al

le
ng

th

Figure 1: The time mesh Ih consisting of 20 time steps in the time interval (0, 0.25) adapted to
qt(t) = exp(−3π2t). For each interval its length is depicted.

27

Table 2: Solution of the system Vhq = f for the problem in Section 5.1 using the GMRES method
with a diagonal preconditioner and the standard FMM and time-adaptive FMM for the
matrix-vector multiplication.

Std FMM Time-adapt. FMM

Relative L2 approximation error 0.0530951 0.0530951
Storage for the nearfield part of Vh [GiB] 39.92 32.04
Storage for the moments and local contributions [GiB] 0.0211 0.0216
Time to assemble Vh [s] 307.32 217.56
Time per GMRES iteration [s] 1.36 1.42
Total time (assembly of Vh and solution) [s] 373.98 286.92

L2 approximation errors ‖q − qh‖L2(Σ)/‖q‖L2(Σ) in the first line coincide. This shows that the
additional kernel approximations do not affect the accuracy of the time-adaptive FMM. In both
versions, we store the nearfield matrices since their computation is costly. The required storage
of 39.92 GiB for the nearfield matrices of the standard FMM was reduced by roughly 20% by
introducing the new FMM operations. The storage required for the additional spatial local
contributions is negligibly small as we can see from the values in the third line of the table.

In lines 4-6 of Table 2 we compare the execution times when using the standard and time-
adaptive FMM. In both cases the GMRES method required 49 iterations to achieve a relative
accuracy of 10−8. Note that the total times do not include the computation of the right-hand
side, which takes about 250 s by using an FMM. The time for a single GMRES iteration, which is
dominated by the time needed for a matrix-vector multiplication, is slightly lower for the standard
FMM in this example. This is not completely unexpected, since the application of nearfield matrix
blocks is simple and efficient if they are already computed. The newly introduced Mx2L and
M2Lx operations are more efficient than the related nearfield operations for source and target
clusters containing many space-time boundary elements, but can be less efficient for clusters
containing few elements, as we have seen in Section 4.7. The corresponding gains and losses seem
to balance out in this example. The assembly of the nearfield matrices requires considerably more
time than the GMRES solver and is significantly faster in the time-adaptive version, due to the
reduced number of nearfield entries which have to be computed. Therefore, the new time-adaptive
FMM outperforms the standard version in this example.

5.2 Example 2: Rapid change of boundary data
We study an example with boundary data that change rapidly over time. This is another scenario
where adaptive temporal meshes are better suited than uniform meshes. We consider the function

qt(t) = t

4 +
(
t− 1

6
)1/4

1(1/6,∞)(t), t ∈ (0, T), (51)

where T = 0.25, 1(1/6,∞)(t) = 1 for t > 1/6 and 1(1/6,∞)(t) = 0 for t ≤ 1/6. The function qt is
depicted in Figure 2a. It is non-smooth at time t = 1/6 when the part (t − 1/6)1/4 is turned
on. A suitable adaptive mesh that resolves this event is advantageous for a piecewise constant
approximation of this function. The mesh Ih in Figure 2b was built for that purpose.

We consider a related indirect BEM, i.e. we want to find q such that V q = g for a given Dirichlet
datum g and initial datum u0 = 0 in the space-time cylinder Q = Ω × (0, 0.25), where Ω is a
crankshaft geometry whose surface is discretized by a mesh Γh consisting of 10 722 triangles. We

28

0 0.05 0.1 0.15 0.2 0.25
0

0.1

0.2

0.3

0.4

0.5

0.6

t

q t
(t

)

(a) Temporal function qt in (51).

1 4 7 10 13 16 19 22 25 28 31 34 37

2−13
2−12
2−11
2−10
2−9
2−8
2−7
2−6
2−5

Interval index

In
te

rv
al

le
ng

th
(b) Interval lengths of an adaptive mesh Ih for qt in (51).

Figure 2: Visualization of the rapidly changing part qt of q in (52) in the time interval (0, 0.25)
and a suitable mesh on this interval that resolves the non-smooth behavior of qt at time
t = 1/6 well.

set the exact solution q to

q(x, t) = qt(t)qx(x), for all (x, t) ∈ Σ, with qx(x) = 2n1(x)x1 − 3n2(x)x2 + n3(x)x3
10 (52)

and qt in (51). The mesh Ih in Figure 2b and the surface mesh Γh of the crankshaft are well-
suited to approximate the solution q and we can check the approximation errors to ensure the
correctness of our method. Since the right-hand side g is unknown, we will use a piecewise
constant approximation ĝh on a finer mesh Σ̂h (constructed from the original mesh Σh = Γh ⊗ Ih
by uniform refinements; once in space, twice in time) whose coefficients are computed by ĝ = V̂hq̂.
Here, q̂ denotes the coefficient vector of the piecewise constant projection of q on Σ̂h and V̂h is
the single layer operator matrix on the fine mesh.

For all examples in this section, we choose the same FMM parameters as in Section 5.1. We
compare the standard FMM and our new time-adaptive variant by solving the system Vhq = g
on the space-time mesh Σh = Γh ⊗ Ih that contains 396 714 space-time boundary elements. For
each of the computations we use a single node of the VSC-4 cluster: a standard node for the
time-adaptive FMM and a fat node for the standard FMM due to the higher memory demand.
The results of the computations are given in Table 3. They are similar to the results in Section 5.1.
The approximation quality does not suffer when introducing the new FMM operations, while the
required storage for nearfield matrices and related assembly times are reduced significantly. In
this example 98 GMRES iterations were needed in both cases, and a single iteration was faster
for the time-adaptive FMM than for the standard FMM.

The level of adaptivity differs for the examples in this section and Section 5.1, as the constant
related to locally quasi-uniform meshes differs. We have tj+1−tj

tj−tj−1
≤ 2 for Example 1 and tj−tj−1

tj+1−tj ≤ 4
for Example 2. While the grading of the mesh is stronger in Example 2, the reductions of the
storage requirements and the computational times are slightly better. In general, the improvement
of the new version highly depends on the specific setting, please see the discussion in Section 4.7.

Finally we compare the computations on the above time-adaptive mesh Σh to the computation
on a suitable uniform mesh. We consider the space-time mesh Σh,u = Γh ⊗ Ih,u, where Ih,u is the
uniform time mesh on (0, T) consisting of 512 uniform time steps with length 2−11. Note that Σh,u

contains 5 489 664 space-time boundary elements. The large number of uniform time steps in Ih,u

29

is required to resolve the rapid change of qt around the point t = 1/6 reasonably well. While the
uniform mesh Ih,u is finer than the adaptive mesh Ih in Figure 2b in general, it is coarser around
t = 1/6. When projecting the function qt to these two meshes the resulting L2 approximation
errors on (0, T) are similar, but the error is slightly larger around time t = 1/6 for the uniform
mesh. On the uniform mesh Σh,u we solve the system Vh,uqu = gu with the standard FMM. Due
to the large size of the problem, we use 16 standard nodes of VSC-4 for the computation and the
parallel FMM in [25]. The results are given in Table 4.

When comparing the results in Tables 3 and 4 one notices the superior performance of the
time-adaptive method over the standard method with the uniform time steps. Although we use
16 nodes of VSC-4 for the computations on the uniform mesh, the computational time is higher
than the computational time of the adaptive time mesh on a single node, even when using the
standard FMM on the latter. The higher computation time is caused by the larger number of
GMRES iterations (153 instead of 98) required for the solution and the longer duration of a single
matrix vector product.

6 Conclusions and Outlook
We have presented temporally one-sided expansions of the heat kernel and related error estimates.
Based on these results we have developed new FMM expansions and operations as well as a new
time-adaptive version of the FMM for the heat equation. Our theoretical considerations and the
numerical examples demonstrate some substantial improvements of fast BEM calculations for
meshes which are adaptive with respect to time.

While the new time-adaptive FMM reduces the amount of non-compressed nearfield blocks, some
of the nearfield blocks related to the identical and the previous time cluster remain uncompressed.
A sophisticated compression technique for such blocks is presented in [18] for uniform time steps.
We plan to develop an alternative method for the non-uniform setting. This will significantly
reduce the computational times and the memory requirements of our method once more.

To further speed up the nearfield assembly time, which makes up a significant amount of the
total time in our numerical experiments, one could think about using GPUs for these computations.
With such devices it might even be possible to compute the nearfield entries on the fly instead
of storing them, which would lead to a drastic reduction of the storage requirements. Such an
approach was considered for a standard BEM (i.e. without a fast method) in [13] and could be
extended for the space-time FMM presented in this paper.

Table 3: Solution of the system Vhq = g for the problem in Section 5.2 and the time-adaptive
mesh Σh. The system is solved using the GMRES method with a diagonal preconditioner
and the standard FMM and time-adaptive FMM for the matrix-vector multiplication.

Std FMM Time-adapt. FMM

Relative L2 approximation error 0.013129 0.013129
Storage for the nearfield part of Vh [GiB] 93.23 66.64
Storage for the moments and local contributions [GiB] 0.0281 0.0305
Time to assemble Vh [s] 495.34 302.27
Time per GMRES iteration [s] 1.27 1.16
Total time (assembly of Vh and solution) [s] 619.43 415.56

30

Table 4: Solution of the system Vh,uqu = gu for the problem in Section 5.2 and the mesh Σh,u
with 512 uniform time steps. The system is solved using the GMRES method with a
diagonal preconditioner and the standard FMM using 16 nodes of VSC-4.

StdFMM (16 nodes)

Relative L2 approximation error 0.011851
Average storage for the nearfield part of Vh per node [GiB] 79.90
Average storage for moments and local contributions per node [GiB] 0.0467
Time to assemble Vh [s] 406.12
Time per GMRES iteration [s] 2.29
Total time (assembly of Vh and solution) [s] 756.40

The improvements of the FMM are an important step towards the development of efficient
adaptive space-time boundary element methods for the heat equation. First results regarding such
an adaptive BEM can be found in [8]. In that work a posteriori error estimates are introduced
which drive the non-local mesh refinement of the proposed adaptive algorithm. This adaptive
algorithm and the considered numerical examples cover only the spatially two dimensional case.
When transferring the ideas to the spatially three dimensional case, a fast method is needed for
the solution of the related systems because otherwise the problem size is prohibitively limited. A
variant of our time-adaptive FMM adapted to meshes without tensor product structure might be
suitable for such an application.

Acknowledgments
The authors acknowledge the support provided by the Austrian Science Fund (FWF) under the
project I 4033-N32 in a joint project with the Czech Science Foundation (project 19-29698L). The
computational results presented have been achieved in part using the Vienna Scientific Cluster
(VSC).

References
[1] D. N. Arnold and P. J. Noon. Boundary integral equations of the first kind for the heat

equation. In C. Brebbia, W. Wendland, and G. Kuhn, editors, Boundary elements IX, Vol. 3
(Stuttgart, 1987), pages 213–229. Comput. Mech., Southampton, 1987.

[2] S. Börm. Efficient Numerical Methods for Non-local Operators. Number 14 in Tracts in
Mathematics. European Mathematical Society, Zürich, 2010. doi:10.4171/091.

[3] J. Carrier, L. Greengard, and V. Rokhlin. A fast adaptive multipole algorithm for particle
simulations. SIAM J. Sci. Stat. Comput., 9(4):669–686, 1988. doi:10.1137/0909044.

[4] H. Cheng, L. Greengard, and V. Rokhlin. A fast adaptive multipole algorithm in three
dimensions. J. Comput. Phys., 155(2):468–498, 1999. doi:10.1006/jcph.1999.6355.

[5] M. Costabel. Boundary integral operators for the heat equation. Integral Equations. Oper.
Theory, 13:498–552, 1990. doi:10.1007/BF01210400.

31

https://doi.org/10.4171/091
https://doi.org/10.1137/0909044
https://doi.org/10.1006/jcph.1999.6355
https://doi.org/10.1007/BF01210400

[6] S. Dohr, K. Niino, and O. Steinbach. Space-time boundary element methods for the heat
equation. In U. Langer and O. Steinbach, editors, Space-time methods – applications to
partial differential equations, number 25 in Radon Series on Computational and Applied
Mathematics, pages 1–60. De Gruyter, Berlin, 2019.

[7] S. Dohr, J. Zapletal, G. Of, M. Merta, and M. Kravčenko. A parallel space-time bound-
ary element method for the heat equation. Comput. Math. Appl., 78(9):2852–2866, 2019.
doi:10.1016/j.camwa.2018.12.031.

[8] G. Gantner and R. van Venetië. Adaptive space-time BEM for the heat equation. Comput.
Math. Appl., 107:117–131, 2022. doi:10.1016/j.camwa.2021.12.022.

[9] L. Greengard and P. Lin. Spectral approximation of the free-space heat kernel. Appl. Comput.
Harmon. Anal., 9(1):83–97, 2000. doi:10.1006/acha.2000.0310.

[10] L. Greengard and J. Strain. A fast algorithm for the evaluation of heat potentials. Comm.
Pure Appl. Math., 43(8):949–963, 1990. doi:10.1002/cpa.3160430802.

[11] W. Hackbusch. Hierarchical Matrices: Algorithms and Analysis, volume 49 of SSCM. Springer,
Heidelberg, 2015. doi:10.1007/978-3-662-47324-5.

[12] H. Harbrecht and J. Tausch. A fast sparse grid based space-time boundary element method for
the nonstationary heat equation. Numer. Math., 140(1):239–264, 2018. doi:10.1007/s00211-
018-0963-5.

[13] J. Homola. Acceleration of the space-time boundary element method using GPUs. Master’s
thesis, VŠB Technical University of Ostrava, 2021. URL https://hdl.handle.net/10084/
143855.

[14] G. C. Hsiao and J. Saranen. Boundary integral solution of the two-dimensional heat equation.
Math. Methods Appl. Sci., 16(2):87–114, 1993. doi:10.1002/mma.1670160203.

[15] G. Kratochwill. Analyse und Vergleich verschiedener Varianten der schnellen Gauß–
Transformation. Master’s thesis, Technische Universität Graz, Graz, 2018. URL https:
//permalink.obvsg.at/tug/AC15175955.

[16] M. Merta, G. Of, R. Watschinger, and J. Zapletal. besthea. https://github.com/zap150/
besthea, 2020.

[17] M. Meßner. A Fast Multipole Galerkin Boundary Element Method for the Transient Heat
Equation. Number 23 in Monographic Series TU Graz: Computation in Engineering and
Science. Verlag der Technischen Universität Graz, Graz, 2014. doi:10.3217/978-3-85125-350-4.

[18] M. Messner, M. Schanz, and J. Tausch. A fast Galerkin method for parabolic space-time bound-
ary integral equations. J. Comput. Phys., 258:15–30, 2014. doi:10.1016/j.jcp.2013.10.029.

[19] M. Messner, M. Schanz, and J. Tausch. An efficient Galerkin boundary element method
for the transient heat equation. SIAM J. Sci. Comput., 37(3):A1554–A1576, 2015.
doi:10.1137/151004422.

[20] K. Nabors, F. T. Korsmeyer, F. T. Leighton, and J. White. Preconditioned, adaptive,
multipole-accelerated iterative methods for three-dimensional first-kind integral equations of
potential theory. SIAM J. Sci. Comput., 15(3):713–735, 1994. doi:10.1137/0915046.

32

https://doi.org/10.1016/j.camwa.2018.12.031
https://doi.org/10.1016/j.camwa.2021.12.022
https://doi.org/10.1006/acha.2000.0310
https://doi.org/10.1002/cpa.3160430802
https://doi.org/10.1007/978-3-662-47324-5
https://doi.org/10.1007/s00211-018-0963-5
https://doi.org/10.1007/s00211-018-0963-5
https://hdl.handle.net/10084/143855
https://hdl.handle.net/10084/143855
https://doi.org/10.1002/mma.1670160203
https://permalink.obvsg.at/tug/AC15175955
https://permalink.obvsg.at/tug/AC15175955
https://github.com/zap150/besthea
https://github.com/zap150/besthea
https://doi.org/10.3217/978-3-85125-350-4
https://doi.org/10.1016/j.jcp.2013.10.029
https://doi.org/10.1137/151004422
https://doi.org/10.1137/0915046

[21] T. J. Rivlin. Chebyshev polynomials: from approximation theory to algebra and number
theory. Wiley, New York, 2nd edition, 1990.

[22] J. Tausch. A fast method for solving the heat equation by layer potentials. J. Comput. Phys.,
224(2):956–969, 2007. doi:10.1016/j.jcp.2006.11.001.

[23] J. Tausch. Fast Nyström methods for parabolic boundary integral equations. In U. Langer,
M. Schanz, O. Steinbach, and W. Wendland, editors, Fast Boundary Element Methods in
Engineering and Industrial Applications, number 63 in Lecture Notes in Applied and Compu-
tational Mechanics, pages 185–219. Springer-Verlag, Berlin Heidelberg, 2012. doi:10.1007/978-
3-642-25670-7 6.

[24] J. Tausch and A. Weckiewicz. Multidimensional fast Gauss transforms by Chebyshev
expansions. SIAM J. Sci. Comput., 31:3547–3565, 2009. doi:10.1137/080732729.

[25] R. Watschinger, M. Merta, G. Of, and J. Zapletal. A parallel fast multipole method for a
space-time boundary element method for the heat equation. SIAM J. Sci. Comput., 44(4):
C320–C345, 2022. doi:10.1137/21M1430157.

[26] J. Zapletal, R. Watschinger, G. Of, and M. Merta. Semi-analytic integration for a parallel
space-time boundary element method modeling the heat equation. Comput. Math. Appl.,
103:156–170, 2021. doi:10.1016/j.camwa.2021.10.025.

33

https://doi.org/10.1016/j.jcp.2006.11.001
https://doi.org/10.1007/978-3-642-25670-7_6
https://doi.org/10.1007/978-3-642-25670-7_6
https://doi.org/10.1137/080732729
https://doi.org/10.1137/21M1430157
https://doi.org/10.1016/j.camwa.2021.10.025

