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Steyrergasse 30, 8010 Graz, Austria

In memoriam Raytcho D. Lazarov (1943–2024)

Abstract

In this paper we formulate and analyse adaptive (space-time) least-squares finite
element methods for the solution of convection-diffusion equations. The convective
derivative v ·∇u is considered as part of the total time derivative d

dtu = ∂tu+v ·∇u,
and therefore we can use a rather standard stability and error analysis for related
space-time finite element methods. For stationary problems we restrict the ansatz
space H1

0 (Ω) such that the convective derivative is considered as an element of the
dual H−1(Ω) of the test space H1

0 (Ω), which also allows unbounded velocities v.
While the discrete finite element schemes are always unique solvable, the numerical
solutions may suffer from a bad approximation property of the finite element space
when considering convection dominated problems, i.e., small diffusion coefficients.
Instead of adding suitable stabilization terms, we aim to resolve the solutions by using
adaptive (space-time) finite element methods. For this we introduce a least-squares
approach where the discrete adjoint defines local a posteriori error indicators to drive
an adaptive scheme. Numerical examples illustrate the theoretical considerations.

Key words: convection-diffusion, least-squares methods, space-time FEM, adaptivity
AMS subject classifications: 65M60, 65M12, 65M50, 65N30, 65N12, 65N50

1 Introduction

As documented by Bochev and Gunzburger [7], least-squares finite element methods are
a well established approach for the numerical solution of second order partial differential
equations. In most cases, the partial differential equation is rewritten as first order system,
and the residuals of both equations are minimized, using appropriate norms and weights.
For early contributions of R. Lazarov using the L2(Ω) norm for both residuals, see [15, 36],
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and [10, 11] when considering the residual of the equilibrium equation in H−1(Ω). Later
on, see [31], a least-squares formulation in L2(Ω) for a first-order system for a convection
dominated convection-diffusion equation was analyzed, for a related minimization approach
in H−1(Ω), see [30]. For more recent contributions on first order least-squares systems we
refer to, e.g., [23, 24, 38].

For a stable and accurate numerical solution of diffusion-convection-reaction equations
there exists a huges amount of literature, here we mention, e.g., [2, 4, 5, 12, 17, 19, 22, 37],
just to name a few. In the particular context of space-time variational formulations we
refer to, e.g., [6, 13, 42].

In our recent work [29] we have formulated and analysed a least-squares approach for the
numerical solution of rather general operator equations, including elliptic, parabolic, and
hyperbolic partial differential equations, for related work on parabolic evolution equations,
see also [1, 18, 33, 41]. Instead of rewriting a second order partial differential equation as
first order system, which is then solved by a least-squares approach, we consider a least-
squares approach for the original equation minimizing the residual in appropriate norms
which are induced by elliptic and self-adjoint operators. This requires the solution of a
saddle point variational formulation, where we can use standard arguments as known in
mixed finite element methods [8]. While the adjoint variable turns out to be zero in the
continuous setting, its discrete approximation can be used to define local a posteriori error
indicators to drive an adaptive scheme.

In this work we extend the approach of [29] to solve stationary and instationary
convection-diffusion equations by using adaptive (space-time) finite element methods. For
parabolic evolution equations we combine the convective derivative with the partial time
derivative and introduce the total time derivative. The resulting and standard space-time
finite element method can be analyzed as in [25, 40], but here we present a more general
proof of surjectivity when a convective derivative appears. For an adaptive space-time
finite element scheme we then apply the least-squares approach as in [29]. In the case of an
elliptic convection-diffusion equation, and motivated by the parabolic case, we consider the
first order convective term in the dual H−1(Ω) of the variational test space H1

0 (Ω). This
allows to consider even unbounded velocities. For a direct finite element discretization we
present a related numerical analysis showing the relations between the size of the diffusion
coefficient, and the finite element mesh size which has to be sufficiently small in the case
of convection dominated problems. Instead of using appropriate stabilization techniques,
here we aim to construct accurate solutions by using an adaptive least-squares approach.

2 Stationary convection-diffusion problems

For a bounded Lipschitz domain Ω ⊂ Rn, n = 1, 2, 3, we consider, as a model problem, the
Dirichlet boundary value problem for the convection-diffusion equation,

−div[α(x)∇u(x)] + v(x) · ∇u(x) = f(x) for x ∈ Ω, u(x) = 0 for x ∈ ∂Ω, (2.1)
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where f(x), x ∈ Ω, is given. We assume that the diffusion coefficient α(x) is bounded and
strictly positive, i.e.,

0 < α ≤ α(x) ≤ α for all x ∈ Ω. (2.2)

Assumptions on the given velocity field v will be specified later on. Note that in (2.1) we
may add some reaction term c(x)u(x) with some non-negative function c(x), x ∈ Ω, and
we may consider inhomogeneous Dirichlet boundary conditions, or boundary conditions of
mixed type, including Neumann and Robin type boundary conditions.

2.1 Variational formulation

The variational formulation of the Dirichlet boundary value problem (2.1) is to find u ∈ X
such that

b(u, q) :=

∫
Ω

α(x)∇u(x) · ∇q(x) dx+

∫
Ω

v(x) · ∇u(x) q(x) dx =

∫
Ω

f(x)q(x) dx (2.3)

is satisfied for all q ∈ Y := H1
0 (Ω), where the related energy norm of the test space Y is

given by

∥q∥2Y :=

∫
Ω

α(x) |∇q(x)|2 dx,

and for which we have the norm equivalence inequalities

√
α ∥∇q∥L2(Ω) ≤ ∥q∥Y ≤

√
α ∥∇q∥L2(Ω) for all q ∈ Y = H1

0 (Ω). (2.4)

According to the variational formulation (2.3) we assume f ∈ H−1(Ω) := [H1
0 (Ω)]∗ with

the norm

∥f∥Y ∗ := sup
0̸=q∈Y

⟨f, q⟩Ω
∥q∥Y

, (2.5)

using the duality pairing ⟨f, q⟩Ω for f ∈ Y ∗ and q ∈ Y as extension of the L2(Ω) inner
product. While the most standard choice for the ansatz space is X = H1

0 (Ω), here we
will use a slightly different approach. We introduce the velocity dependent ansatz space
Xv := {u ∈ Y : v · ∇u ∈ Y ∗} ⊂ Y , with the graph norm

∥u∥Xv :=
√

∥u∥2Y + ∥v · ∇u∥2Y ∗ =
√

∥u∥2Y + ∥wu∥2Y ,

where the Riesz representant wu ∈ Y is the unique solution of the variational problem

a(wu, q) :=

∫
Ω

α(x)∇wu(x) · ∇q(x) dx =

∫
Ω

v(x) · ∇u(x) q(x) dx for all q ∈ Y. (2.6)

Depending on the regularity of the given velocity v, the condition v · ∇u ∈ Y ∗ may result
in the fact that Xv ⊂ Y is a real subspace, i.e., Xv ̸= Y . At this time we only assume that
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Xv is not empty. By the definition of the underlying function spaces we then conclude

|b(u, q)| =

∣∣∣∣∫
Ω

α(x)∇u(x) · ∇q(x) dx+

∫
Ω

v(x) · ∇u(x) q(x) dx

∣∣∣∣
=

∣∣∣∣∫
Ω

α(x)∇u(x) · ∇q(x) dx+

∫
Ω

α(x)∇wu(x) · ∇q(x) dx

∣∣∣∣
≤

[
∥u∥Y + ∥wu∥Y

]
∥q∥Y

≤
√

2
√

∥u∥2Y + ∥wu∥2Y ∥q∥Y =
√

2 ∥u∥Xv∥q∥Y (2.7)

for all (u, q) ∈ Xv×Y , i.e., boundedness of the bilinear form b(u, q). A first rather standard
assumption on the given velocity v is as follows.

Lemma 2.1 Assume divv(x) ≤ 0 for almost all x ∈ Ω. Then,∫
Ω

v(x) · ∇u(x)u(x) dx ≥ 0 for all u ∈ Xv ⊂ Y = H1
0 (Ω). (2.8)

Proof. For u ∈ Xv ⊂ Y we first note that the left hand side in (2.8) is bounded. Using
integration by parts for u ∈ Xv ⊂ Y = H1

0 (Ω),∫
Ω

v(x) · ∇u(x)u(x) dx =
n∑

k=1

∫
Ω

∂xk
u(x) vk(x)u(x) dx

= −
n∑

k=1

∫
Ω

u(x) ∂xk
[vk(x)u(x)] dx

= −
n∑

k=1

∫
Ω

(
[u(x)]2∂xk

vk(x) + u(x) vk(x) ∂xk
u(x)

)
dx,

i.e.,

2

∫
Ω

v(x) · ∇u(x)u(x) dx = −
∫
Ω

[u(x)]2 divv(x) dx ≥ 0.

In order to ensure uniqueness for the solution of the variational formulation (2.3) we need
to have the following result.

Lemma 2.2 Assume divv(x) ≤ 0 for almost all x ∈ Ω. Then the bilinear form b(·, ·) as
defined in (2.3) satisfies the inf-sup stability condition

∥u∥Xv ≤ sup
0̸=q∈Y

b(u, q)

∥q∥Y
for all u ∈ Xv. (2.9)
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Proof. For an arbitrary but fixed u ∈ Xv ⊂ Y and the solution wu ∈ Y of the variational
formulation (2.6) we define qu := u+ wu ∈ Y , and we obtain

b(u, qu) =

∫
Ω

α(x)∇u(x) · ∇qu(x) dx+

∫
Ω

v(x) · ∇u(x) qu(x) dx

=

∫
Ω

α(x)∇u(x) · ∇qu(x) dx+

∫
Ω

α(x)∇wu(x) · ∇qu(x) dx

=

∫
Ω

α(x)∇[u(x) + wu(x)] · ∇qu dx

=

∫
Ω

α(x) |∇qu(x)|2 dx = ∥qu∥2Y .

On the other hand we have, using (2.8),

∥qu∥2Y = ∥u+ wu∥2Y
=

∫
Ω

α(x) |∇x[u(x) + wu(x)]|2 dx

=

∫
Ω

α(x) |∇xu(x)|2 dx+

∫
Ω

α(x) |∇xwu(x)|2 dx+ 2

∫
Ω

α(x)∇xwu(x) · ∇u(x) dx

= ∥u∥2Y + ∥wu∥2Y + 2

∫
Ω

v(x) · ∇u(x)u(x) dx

≥ ∥u∥2Xv
.

Hence, we have shown the inf-sup stability condition

∥u∥Xv ≤ b(u, qu)

∥qu∥Y
≤ sup

0̸=q∈Y

b(u, q)

∥q∥Y
for all u ∈ Xv.

It remains to prove solvability of the variational formulation (2.3), i.e., surjectivity of the
related operator B : Xv → Y ∗ which is defined by

⟨Bu, q⟩Ω := b(u, q) for all (u, q) ∈ Xv × Y.

Recall that the definition of Xv depends on the regularity of the velocity field v. If the
velocity is bounded, which is a standard assumption in many applications, i.e., ∥v(x)∥2 ≤ cv
for almost all x ∈ Ω, we then obtain

∥v · ∇u∥Y ∗ = sup
0 ̸=q∈Y

⟨v · ∇u, q⟩Ω
∥q∥Y

≤ cv ∥∇u∥L2(Ω) sup
0̸=q∈Y

∥q∥L2(Ω)

∥q∥Y
≤ c ∥u∥Y ,

where we have used (2.4), and Friedrich’s inequality. In this case we conclude that ∥u∥Y
defines an equivalent norm in Xv, and Xv = Y = H1

0 (Ω) follows for all bounded velocities
v. In any case, the assumption on the boundedness of v can be relaxed as follows.
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Lemma 2.3 Assume

cv := sup
0̸=q∈H1

0 (Ω)

∥q v∥L2(Ω)

∥∇q∥L2(Ω)

<∞. (2.10)

Then,

∥v · ∇u∥Y ∗ ≤ cv
α

∥u∥Y for all u ∈ Xv. (2.11)

Proof. When using the definition (2.5) we have

∥v · ∇u∥Y ∗ = sup
0̸=q∈Y

⟨v · ∇u, q⟩Ω
∥q∥Y

= sup
0̸=q∈Y

⟨∇u, q v⟩Ω
∥q∥Y

≤ ∥∇u∥L2(Ω) sup
0̸=q∈Y

∥q v∥L2(Ω)

∥q∥Y

≤ 1

α
∥u∥Y sup

0̸=q∈Y

∥q v∥L2(Ω)

∥∇q∥L2(Ω)

=
cv
α
∥u∥Y .

As a consequence of (2.11) we conclude the norm equivalence inequalities

∥u∥2Y ≤ ∥u∥2Xv
= ∥u∥2Y + ∥v · ∇u∥2Y ∗ ≤

(
1 +

c2v
α2

)
∥u∥2Y

for all u ∈ Xv, i.e., ∥u∥Y defines an equivalent norm in Xv, and hence, Xv = Y = H1
0 (Ω)

follows when (2.10) is satisfied. With this we are now in the position to state the surjectivity
of B.

Lemma 2.4 Assume divv(x) ≤ 0 for almost all x ∈ Ω and (2.10) to be satisfied. For any
p ∈ Y \{0} there exists a up ∈ Xv such that

b(up, p) > 0 .

Proof. Due to (2.10) we have 0 ̸= p ∈ Y = Xv, and hence we can choose up = p ∈ Xv to
conclude

b(up, p) =

∫
Ω

α(x)∇p(x) · ∇p(x) dx+

∫
Ω

v(x) · ∇p(x) p(x) dx ≥ ∥p∥2Y > 0.

Now we are in a position to state the unique solvability result for the solution of the
variational formulation (2.3).

Lemma 2.5 Assume (2.10) and divv(x) ≤ 0 for almost all x ∈ Ω. For any f ∈ Y ∗ there
exists a unique solution u ∈ Xv of the variational formulation (2.3) satisfying

∥u∥Xv ≤ ∥f∥Y ∗ .
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Proof. Since the bilinear b(u, q) is bounded for all (u, q) ∈ Xv × Y , satisfies the inf-sup
stability condition (2.9), and is surjective, all assumptions of the Babuška–Nečas theory,
e.g., [3, 9, 21, 34], are satisfied, and unique solvability of (2.3) follows. Moreover, using
(2.9) we have

∥u∥Xv ≤ sup
0̸=q∈Y

b(u, q)

∥q∥Y
= sup

0̸=q∈Y

⟨f, q⟩Ω
∥q∥Y

= ∥f∥Y ∗ .

Example 2.1 For n = 1, Ω = (0, 1) and v(x) = v(x) we consider the Dirichlet boundary
value problem

−u′′(x) + v(x)u′(x) = f(x) for x ∈ (0, 1), u(0) = u(1) = 0,

and the variational formulation to find u ∈ Xv such that

b(u, q) :=

∫ 1

0

u′(x)q′(x) dx+

∫ 1

0

v(x)u′(x)q(x) dx =

∫ 1

0

f(x)q(x) dx (2.12)

is satisfied for all q ∈ Y = H1
0 (0, 1). For q ∈ H1

0 (0, 1) we can write

q(x) =

∫ x

0

q′(s) ds,

and

|v(x) q(x)|2 =

∣∣∣∣v(x)

∫ x

0

q′(s) ds

∣∣∣∣2
≤ [v(x)]2

∫ x

0

ds

∫ x

0

[q′(s)]2 ds ≤ x [v(x)]2
∫ 1

0

[q′(s)]2 ds,

and integration over x ∈ (0, 1) gives

∥v q∥2L2(0,1) ≤
∫ 1

0

x [v(x)]2dx ∥q′∥2L2(0,1),

i.e.,

cv ≤
(∫ 1

0

x [v(x)]2 dx

)1/2

. (2.13)

Hence we conclude unique solvability of the variational formulation (2.12) for velocities
v(x) satisfying (2.13). For example, we can consider

v(x) =
1√
x
, cv ≤ 1, divv(x) =

d

dx

1√
x

= −1

2
x−3/2 < 0 for x ∈ (0, 1).
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But for v(x) = 1/x we can not apply the above estimates, although we have

divv(x) =
d

dx

1

x
= − 1

x2
< 0 for x ∈ (0, 1).

While the inf-sup condition (2.9) remains valid for v(x) = 1/x, we have to prove surjectivity
in a different way: For 0 ̸= p ∈ H1

0 (0, 1) we define up(x) := x p(x) with up ∈ Y . It remains
to consider

∥v u′p∥Y ∗ = sup
0 ̸=q∈Y

⟨v u′p, q⟩(0,1)
∥q∥Y

,

where we have

⟨v u′p, q⟩(0,1) =

∫ 1

0

1

x
[p(x) + xp′(x)]q(x) dx

=

∫ 1

0

1

x
p(x) q(x) dx+

∫ 1

0

p′(x)q(x) dx .

Note that the second term can be bounded as∣∣∣∣∫ 1

0

p′(x)q(x) dx

∣∣∣∣ ≤
(∫ 1

0

[p′(x)]2dx

)1/2(∫ 1

0

[q(x)]2dx

)1/2

= ∥p∥Y

(∫ 1

0

[∫ x

0

q′(s) ds

]2
dx

)1/2

≤ ∥p∥Y
(∫ 1

0

∫ x

0

12ds

∫ x

0

[q′(s)]2ds dx

)1/2

≤ 1

2
∥p∥Y ∥q∥Y .

In a similar way we have, recall p, q ∈ H1
0 (0, 1),∣∣∣∣∫ 1

0

1

x
p(x) q(x) dx

∣∣∣∣ =

∣∣∣∣∫ 1

0

1√
x

∫ x

0

p′(s) ds
1√
x

∫ x

0

q′(s) ds dx

∣∣∣∣
≤

(∫ 1

0

1

x

[∫ x

0

p′(s) ds

]2
dx

)1/2(∫ 1

0

1

x

[∫ x

0

q′(s) ds

]2
dx

)1/2

≤
(∫ 1

0

1

x

∫ x

0

12ds

∫ x

0

[p′(s)]2 ds dx

)1/2(∫ 1

0

1

x

∫ x

0

12ds

∫ x

0

[q′(s)]2 ds dx

)1/2

≤ ∥p∥Y ∥q∥Y .

Hence we conclude

∥v u′p∥Y ∗ ≤ 3

2
∥p∥Y ,
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i.e., up ∈ Xv. Then we obtain

b(up, p) =

∫ 1

0

u′p(x)p′(x) dx+

∫ 1

0

1

x
u′p(x) p(x) dx

=

∫ 1

0

[p(x) + xp′(x)]p′(x) dx+

∫ 1

0

1

x
[p(x) + xp′(x)]p(x) dx

= 2

∫ 1

0

p(x)p′(x) dx+

∫ 1

0

x [p′(x)]2 dx+

∫ 1

0

1

x
[p(x)]2dx

=

∫ 1

0

x [p′(x)]2 dx+

∫ 1

0

1

x
[p(x)]2dx > 0,

i.e., surjectivity and therefore unique solvability of (2.12) follows also for v(x) = 1/x.

Remark 2.1 One possibility to prove the surjectivity result for the bilinear form b(u, q) is
to assume (2.10) to be able to conclude Xv = Y , which corresponds to the standard setting.
As we have seen in the previous example, (2.10) is not necessary to establish surjectivity.
At this time it remains open to generalize this result to more general situations. In any
case, for the numerical realisation, surjectivity follows from injectivity, and assumption
(2.10) is not needed.

2.2 Finite element discretization

Let XH = YH = S1
H(Ω) ∩ H1

0 (Ω) = span{φk}Mk=1 be a standard finite element space of,
e.g., piecewise linear continuous basis functions φk which are defined with respect to some
admissible decomposition of Ω into shape regular simplicial finite elements τℓ of local mesh
size Hℓ, ℓ = 1, . . . , N . For any given u ∈ Xv, and similar as in (2.6), we define wu,H ∈ YH
as the unique solution of the variational problem∫

Ω

α(x)∇wu,H(x) · ∇qH(x) dx =

∫
Ω

v(x) · ∇u(x) qH(x) dx for all qH ∈ YH . (2.14)

Hence, we can introduce the discrete norm

∥u∥Xv ,H :=
√
∥u∥2Y + ∥wu,H∥2Y ≤

√
∥u∥2Y + ∥wu∥2Y = ∥u∥Xv for all u ∈ Xv.

With respect to this discrete norm and as in the continuous case, see Lemma 2.5, we can
prove a discrete inf-sup stability condition:

Lemma 2.6 Assume divv(x) ≤ 0 for almost all x ∈ Ω. Let XH ⊂ Xv and YH ⊂ Y be
conforming finite element spaces satisfying XH ⊆ YH . Then there holds the discrete inf-sup
stability condition

∥uH∥Xv ,H ≤ sup
0̸=qH∈YH

b(uH , qH)

∥qH∥Y
for all uH ∈ XH . (2.15)
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Proof. For uH ∈ XH we define wuH ,H ∈ YH as the unique solution of the variational
formulation∫

Ω

α(x)∇wuH ,H(x) · ∇qH(x) dx =

∫
Ω

v(x) · ∇uH(x) qH(x) dx for all qH ∈ YH . (2.16)

As in the continuous case we now define quH ,H := uH + wuH ,H ⊂ YH to conclude

b(uH , quH ,H) =

∫
Ω

α(x)∇uH(x) · ∇quH ,H(x) dx+

∫
Ω

v(x) · ∇uH(x) quH ,H(x) dx

=

∫
Ω

α(x)∇uH(x) · ∇quH ,H(x) dx+

∫
Ω

α(x)∇wuH ,H(x) · ∇quH ,H(x) dx

=

∫
Ω

α(x)∇[uH(x) + wuH ,H(x)] · ∇quH ,H dx

=

∫
Ω

α(x) |∇quH ,H(x)|2 dx = ∥quH ,H∥2Y ,

and

∥quH ,H∥2Y = ∥uH + wuH ,H∥2Y =

∫
Ω

α(x) |∇x[uH(x) + wuH ,H(x)]|2 dx

=

∫
Ω

α(x) |∇xuH(x)|2 dx+

∫
Ω

α(x) |∇xwuH ,H(x)|2 dx

+ 2

∫
Ω

α(x)∇xwuH ,H(x) · ∇uH(x) dx

= ∥uH∥2Y + ∥wuH ,H∥2Y + 2

∫
Ω

v(x) · ∇uH(x)uH(x) dx ≥ ∥uH∥2Xv ,H ,

i.e., the assertion follows.

Let uH ∈ XH be the unique Galerkin solution related to the variational formulation (2.3),
satisfying∫

Ω

α(x)∇uH(x) · ∇qH(x) dx+

∫
Ω

v(x) · ∇uH(x) qH(x) dx =

∫
Ω

f(x) qH(x) dx (2.17)

for all qH ∈ YH . The Galerkin variational formulation (2.17) is equivalent to an algebraic
system of linear equations, BHu = f , where the stiffness matrix is given by its entries

BH [j, k] =

∫
Ω

α(x)∇φk(x) · ∇φj(x) dx+

∫
Ω

v(x) · ∇φk(x)φj(x) dx

for k, j = 1, . . . ,M . Invertibility of BH follows from the discrete inf-sup condition (2.15).
In fact, for any given z ∈ Xv we can define the Galerkin projection zH = GHz ∈ XH as
the unique solution of the variational formulation

b(GHz, qH) = b(z, qH) for all qH ∈ YH ,
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and when combining the discrete inf-sup stability condition (2.15) and the boundedness
result (2.7) of the bilinear form b(·, ·) we immediately conclude

∥GHz∥Xv ,H ≤
√

2 ∥z∥Xv for all z ∈ Xv. (2.18)

With (2.18) and using [16, 43] we then can formulate Cea’s lemma,

∥u− uH∥Xv ,H ≤
√

2 inf
zH∈XH

∥u− zH∥Xv . (2.19)

Lemma 2.7 Let uH ∈ XH be the unique solution of the Galerkin variational formulation
(2.17), where we assume u ∈ H2(Ω). When assuming (2.10) and divv(x) ≤ 0 for almost
all x ∈ Ω there holds the error estimate

∥u− uH∥2Y ≤ c
N∑
ℓ=1

H2
ℓ

[
sup
x∈τℓ

α(x) +
c2v
α

]
|u|2H2(τℓ)

. (2.20)

Moreover, when v ∈ [L∞(Ω)]n and divv(x) = 0 for almost all x ∈ Ω is satisfied, the error
estimate

∥u− uH∥2Y ≤ c
N∑
ℓ=1

[
H2

ℓ sup
x∈τℓ

α(x) +H4
ℓ sup

x∈τℓ

|v(x)|2

α(x)

]
|u|2H2(τℓ)

(2.21)

follows.

Proof. From (2.19) we first have

∥u− uH∥2Y ≤ ∥u− uH∥2Xv ,H ≤ ∥u− IHu∥2Xv
= ∥u− IHu∥2Y + ∥v · ∇(u− IHu)∥Y ∗ ,

where IHu is the piecewise linear nodal interpolation of the solution u ∈ H2(Ω). Using
standard local interpolation error estimates we obtain

∥u− IHu∥2Y =

∫
Ω

α(x) |∇[u(x) − IHu(x)]|2 dx

=
N∑
ℓ=1

∫
τℓ

α(x) |∇[u(x) − IHu(x)]|2 dx ≤ c

N∑
ℓ=1

sup
x∈τℓ

α(x)H2
ℓ |u|2H2(τℓ)

.

For the remaining part, and using the dual norm (2.5), we have to consider

∥v · ∇(u− IHu)∥Y ∗ = sup
0̸=q∈Y

⟨v · ∇(u− IHu), q⟩Ω
∥q∥Y

= sup
0̸=q∈Y

⟨∇(u− IHu), q v⟩Ω
∥q∥Y

≤ ∥∇(u− IHu)∥L2(Ω) sup
0̸=q∈Y

∥q v∥L2(Ω)

∥q∥Y

≤ 1
√
α
∥∇(u− IHu)∥L2(Ω) sup

0̸=q∈Y

∥q v∥L2(Ω)

∥∇q∥L2(Ω)

=
cv√
α
∥∇(u− IHu)∥L2(Ω) ,
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where we have used (2.10), i.e., we obtain

∥v · ∇(u− IHu)∥2Y ∗ ≤ c
c2v
α

N∑
ℓ=1

H2
ℓ |u|2H2(τℓ)

,

and (2.20) follows.
In the case divv(x) = 0 for almost all x ∈ Ω and v ∈ [L∞(Ω)]n we can use integration

by parts to conclude

|⟨v · ∇(u− IHu), q⟩Ω| =

∣∣∣∣∫
Ω

v(x) · ∇[u(x) − IHu(x)] q(x) dx

∣∣∣∣
=

∣∣∣∣−∫
Ω

[u(x) − IHu(x)] div[q(x)v(x)] dx

∣∣∣∣
=

∣∣∣∣−∫
Ω

[u(x) − IHu(x)]v(x) · ∇q(x) dx

∣∣∣∣
≤

N∑
ℓ=1

∣∣∣∣∫
τℓ

[u(x) − IHu(x)]v(x) · ∇q(x) dx

∣∣∣∣
≤

N∑
ℓ=1

∥u− IHu∥L2(τℓ)

(∫
τℓ

[v(x) · ∇q(x)]2 dx

)1/2

≤ c
N∑
ℓ=1

H2
ℓ |u|H2(τℓ) sup

x∈τℓ

|v(x)|√
α(x)

(∫
τℓ

α(x) |∇q(x)|2 dx
)1/2

≤ c

(
N∑
ℓ=1

H4
ℓ sup

x∈τℓ

|v(x)|2

α(x)
|u|2H2(τℓ)

)1/2( N∑
ℓ=1

∫
τℓ

α(x) |∇q(x)|2dx

)1/2

= c

(
N∑
ℓ=1

H4
ℓ sup

x∈τℓ

|v(x)|2

α(x)
|u|2H2(τℓ)

)1/2

∥q∥Y .

Hence we conclude

∥v · ∇(u− IHu)∥2Y ∗ ≤ c2
N∑
ℓ=1

H4
ℓ sup

x∈τℓ

|v(x)|2

α(x)
|u|2H2(τℓ)

,

and (2.21) follows.

Example 2.2 As a first example, we consider the convection-diffusion equation (2.1) in
the particular case α(x) = 1 and v(x) = v for all x ∈ Ω = (0, 1), i.e., α = α = 1. For
a globally quasi-uniform mesh with Hℓ ∼ H for all ℓ = 1, . . . , N we can write the finite
element error estimate (2.21) as

∥∇(u− uH)∥L2(Ω) ≤ c
(
H2 + v H4

)1/2
|u|H2(Ω), (2.22)
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when assuming u ∈ H2(Ω). As in [37, Example 1.2] we consider the solution

u(x) = x− exp (x− 1) − exp (−1)

1 − exp (−1)
for x ∈ (0, 1) (2.23)

and compute the right hand side accordingly. For the discretization we use piecewise linear
basis functions which are defined with respect to some uniform decompostion of Ω = (0, 1)
into N finite elements of mesh size H = 1/N . The numerical results are given in Table 1
which confirm linear convergence asymptotically, as expected. On the other hand, for v =
1000, we observe some initial higher order convergence as indicated in the error estimate
(2.22), see also the discussion on related observations in [35, 39].

v = 10 v = 100 v = 1000

N ∥∇(u− uH)∥L2(0,1) eoc ∥∇(u− uH)∥L2(0,1) eoc ∥∇(u− uH)∥L2(0,1) eoc

2 1.567e-01 5.283e-01 5.073e+00
4 7.554e-02 1.053 9.943e-02 2.410 6.511e-01 2.962
8 3.759e-02 1.007 3.877e-02 1.359 8.967e-02 2.860

16 1.877e-02 1.002 1.890e-02 1.036 2.155e-02 2.057
32 9.385e-03 1.000 9.400e-03 1.008 9.563e-03 1.172
64 4.692e-03 1.000 4.694e-03 1.002 4.714e-03 1.021

128 2.346e-03 1.000 2.346e-03 1.000 2.349e-03 1.005
256 1.173e-03 1.000 1.173e-03 1.000 1.173e-03 1.001

Table 1: Convection-diffusion equation (2.1) in Ω = (0, 1), α ≡ 1, v = v ∈ {10, 100, 1000},
error and estimated order of convergence (eoc) for the solution u as given in (2.23).

Example 2.3 In this example, we consider the convection-diffusion equation (2.1) for
Ω = (0, 1), α(x) = 1 for x ∈ (0, 1), and a velocity field which depends on the spatial
variable, i.e, v(x) = v(x). As exact solution we consider (2.23) and compute the right
hand side accordingly to the related chosen velocity fields. Firstly, we choose v(x) = 1/

√
x

which satisfies (2.10) and div v(x) ≤ 0 for x ∈ (0, 1). Hence, for a globally quasi-uniform
mesh the error estimate (2.20) gives

∥∇(u− uH)∥L2(Ω) ≤ cH |u|H2(Ω)

when assuming u ∈ H2(Ω). Secondly, we choose v(x) = 1/x with div v(x) ≤ 0 for x ∈ (0, 1)
but we can not use (2.13). Although we could prove surjectivity in a different way, we can
not apply the error estimates as given in Lemma 2.7. The numerical results for both choices
of the velocity field can be seen in Tab. 2. In both cases we observe a linear convergence
rate which confirms the a priori error estimate (2.20).
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v(x) = 1√
x

v(x) = 1
x

N ∥∇(u− uH)∥L2(0,1) eoc ∥∇(u− uH)∥L2(0,1) eoc

2 1.485e-01 0.000 1.494e-01 0.000
4 7.487e-02 0.988 7.503e-02 0.994
8 3.751e-02 0.997 3.754e-02 0.999

16 1.876e-02 0.999 1.877e-02 1.000
32 9.383e-03 1.000 9.384e-03 1.000
64 4.692e-03 1.000 4.692e-03 1.000

128 2.346e-03 1.000 2.346e-03 1.000
256 1.173e-03 1.000 1.173e-03 1.000

Table 2: Convection-diffusion equation (2.1) in Ω = (0, 1), α ≡ 1, v(x) = v(x) ∈
{

1√
x
, 1
x

}
,

error and estimated order of convergence (eoc) for the solution u as given in (2.23).

Example 2.4 We consider α(x) = ε << 1, i.e., a singularly perturbed problem with dom-
inating convection. Using again a globally quasi-uniform mesh, the error estimate (2.21)
now gives

ε ∥∇(u− uH)∥2L2(Ω) ≤ c
[
H2 ε+ ∥v∥2[L∞(Ω)]n H

4 ε−1
]
|u|2H2(Ω),

when assuming u ∈ H2(Ω), i.e.,

∥∇(u− uH)∥L2(Ω) ≤ c
(
H2 +H4 ε−2

)1/2
|u|H2(Ω) .

As in [37, Example 1.2] we consider Ω = (0, 1) and v(x) = v = 1 with the exact solution
to be

u(x) = x−
exp

(
−1−x

ε

)
− exp

(
−1

ε

)
1 − exp

(
−1

ε

) , x ∈ (0, 1), (2.24)

which has a boundary layer at x = 1. The convergence behaviour of the numerical solu-
tions uH for ε ∈ {10−2, 10−4, 10−5} are depicted in Tab. 3 and Fig. 1. We see that we
obtain linear convergence if the mesh size H is of the order of the singular perturbation
parameter ε, i.e., H ∼ ε. Before, the numerical solutions uH obtain oscillations due to
an insufficient resolution of the boundary layer, see also Fig. 2. However, when using a
globally quasi-uniform mesh the choice H ∼ ε is impractical in applications as this leads
to an unacceptably large number of grid points. This motivates to consider an adaptive
approach, which works for all values of the singular perturbation parameter ε.
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ε = 10−2 ε = 10−4 ε = 10−5

N ∥∇(u− uH)∥L2(0,1) eoc N ∥∇(u− uH)∥L2(0,1) eoc N ∥∇(u− uH)∥L2(0,1) eoc

128 1.567e+00 4096 4.280e+01 65536 9.237e+01
256 7.938e-01 0.981 8192 2.389e+01 0.841 131072 4.843e+01 0.931
512 3.982e-01 0.995 16384 1.233e+01 0.955 262144 2.452e+01 0.982

1024 1.993e-01 0.999 32768 6.213e+00 0.988 524288 1.230e+01 0.995
2048 9.966e-02 1.000 65536 3.113e+00 0.997 1048576 6.154e+00 0.999

Table 3: Convection-diffusion equation (2.1) in Ω = (0, 1), α(x) = ε ∈ {10−2, 10−4, 10−5},
v = 1, error and estimated order of convergence (eoc) for the solution u as given in (2.24).

101 102 103 104 105 106

10−4

10−2

100

102

104

N

er
ro

rs

ε = 10−2

ε = 10−4

ε = 10−5

h = N−1

Figure 1: Convergence behaviour of the error ∥∇(u− uH)∥L2(0,1) for a uniform refinement
strategy in case of the function u as given in (2.24).

(a) ε = 10−2 (b) ε = 10−4 (c) ε = 10−5

Figure 2: Numerical solutions uH to Example 2.4 in case of N = 512 elements.
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2.3 Adaptive least squares finite element method

The bilinear forms a(·, ·) and b(·, ·) as defined in (2.6) and (2.3) imply bijective operators
A : Y → Y ∗ and B : Xv → Y ∗ satisfying

⟨Ap, q⟩Ω =

∫
Ω

α(x)∇p(x) · ∇q(x) dx for all p, q ∈ Y,

and
⟨Bu, q⟩Ω = b(u, q) for all (u, q) ∈ Xv × Y.

Hence, instead of the operator equation Bu = f in Y ∗, i.e., of the variational formulation
(2.3), we now consider the equivalent problem to minimize the quadratic functional

J (z) =
1

2
∥Bz − f∥2A−1 for z ∈ Xv. (2.25)

The minimizer u ∈ Xv of (2.25) is given as the unique solution of the gradient equation

B∗A−1(Bu− f) = 0, (2.26)

and using the adjoint p = A−1(f − Bu) ∈ Y we have to solve a coupled system to find
(u, p) ∈ Xv × Y such that

Ap+Bu = f, B∗p = 0 ,

i.e.,∫
Ω

α(x)∇p(x) · ∇q(x)dx+

∫
Ω

α(x)∇u(x) · ∇q(x)dx+

∫
Ω

v(x) · ∇u(x) q(x)dx (2.27)

=

∫
Ω

f(x)q(x)dx

for all q ∈ Y , and∫
Ω

α(x)∇z(x) · ∇p(x)dx+

∫
Ω

v(x) · ∇z(x) p(x)dx = 0 for all z ∈ Xv. (2.28)

Unique solvability of the gradient equation (2.26) and therefore of the equivalent mixed
variational formulation (2.27) and (2.28) follows as in [29], since S := B∗A−1B : Xv → X∗

v

is bounded and elliptic. Note that in the continuous case we have p ≡ 0, since B and
therefore B∗ are bijective.

For the Galerkin finite element discretization of the mixed variational system (2.27) and
(2.28) we will use again the conforming finite element space XH = span{φk}Mk=1 ⊂ Xv, but

we introduce a finite element space Yh = span{ϕi}Mi=1 ⊂ Y of piecewise linear continuous
basis functions ϕi which are defined with respect to a possibly refined decomposition of Ω
into N finite elements τ ℓ of local mesh size hℓ, e.g., starting from XH we use at least one
additional refinement to construct Yh, i.e., hℓ = Hℓ/2 when τ ℓ ⊂ τℓ. This definition ensures
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XH ⊂ Yh, but even the choice Yh = XH would be allowed for a stable discretization. In
both cases, (2.15) implies the discrete inf-sup condition

∥uH∥Xv ,H ≤ sup
0̸=qh∈Yh

b(uH , qh)

∥qh∥Y
for all uH ∈ XH . (2.29)

The mixed finite element discretization of (2.27) and (2.28) is to find (ph, uH) ∈ Yh ×XH

such that∫
Ω

α(x)∇ph(x) · ∇qh(x)dx+

∫
Ω

α(x)∇uH(x) · ∇qh(x)dx+

∫
Ω

v(x) · ∇uH(x) qh(x)dx

=

∫
Ω

f(x)qh(x)dx (2.30)

for all qh ∈ Yh, and∫
Ω

α(x)∇zH(x) · ∇ph(x)dx+

∫
Ω

v(x) · ∇zH(x) ph(x)dx = 0 for all zH ∈ XH . (2.31)

This is equivalent to a coupled system of linear algebraic equations(
Ah Bh

B⊤
h

)(
p

u

)
=

(
f

0

)
(2.32)

where the entries of the stiffness matrix are now given by

Ah[j, i] =

∫
Ω

α(x)∇ϕi(x) · ∇ϕj(x) dx,

Bh[j, k] =

∫
Ω

α(x)∇φk(x) · ∇ϕj(x) dx+

∫
Ω

v(x) · ∇φk(x)ϕj(x) dx

for i, j = 1, . . . ,M , k = 1, . . . ,M . Unique solvability of (2.32) follows from (2.29). Since
Ah is invertibe, we can also consider the Schur complement system

B⊤
h A

−1
h Bhu = B⊤

h A
−1
h f

which is the discrete counter part of the gradient equation (2.26). In the particular case
Yh = XH we have Bh = BH to be invertible, and p = 0 follows in this case. Hence, to have
a built in error estimation we now consider the case XH ⊂ Yh, XH ̸= Yh only. As in (2.14)
we now define wu,h ∈ Yh, and introduce the discrete norm ∥u∥Xv ,h =

√
∥u∥2Y + ∥wu,h∥2Y .

As in [29, Lemma 2.4, equations (2.16), (2.31)] we then conclude the a priori error estimate

∥u− uH∥Xv ,h ≤ c inf
zH∈XH

∥u− zH∥Xv , (2.33)

and we finally obtain the error estimates as already given in Lemma 2.7. In order to derive
an a posteriori error indicator we first have the following result:
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Lemma 2.8 Let (ph, uH) ∈ Yh×XH be the unique solution of the variational formulations
(2.30) and (2.31). Then there holds

1√
2
∥ph∥Y ≤ ∥u− uH∥Xv ,h . (2.34)

Proof. When subtracting (2.30) from (2.27) for the test function qh = ph ∈ Yh this gives
the Galerkin orthogonality, recall p ≡ 0,

∥ph∥2Y =

∫
Ω

α(x)∇ph(x) · ∇ph(x) dx

=

∫
Ω

α(x)∇[u(x) − uH(x)] · ∇ph(x) dx+

∫
Ω

v(x) · ∇[u(x) − uH(x)] ph(x) dx

=

∫
Ω

α(x)∇[u(x) − uH(x)] · ∇ph(x) dx+

∫
Ω

∇wu−uH ,h(x) · ∇ph(x) dx

≤
[
∥u− uH∥Y + ∥wu−uH ,h∥Y

]
∥ph∥Y ≤

√
2
(
∥u− uH∥2Y + ∥wu−uH ,h∥2Y

)1/2
∥ph∥Y

=
√

2 ∥u− uH∥Xv ,h∥ph∥Y ,

i.e., the assertion follows.

It remains to prove that the error estimator ∥ph∥Y is also reliable. For this we consider the
variational formulations (2.30) and (2.31), using Xh = Yh, to find (ph, uh) ∈ Yh ×Xh such
that

⟨Aph, qh⟩Ω + ⟨Buh, qh⟩Ω = ⟨f, qh⟩Ω, ⟨Bzh, ph⟩Ω = 0 (2.35)

is satisfied for all (zh, qh) ∈ Yh ×Xh. As in (2.15) we have the discrete inf-sup condition

∥uh∥Xv ,h ≤ sup
0̸=qh∈Yh

b(uh, qh)

∥qh∥Y
for all uh ∈ Xh, (2.36)

from which unique solvability of (2.35) follows.

Lemma 2.9 Let (ph, uH) ∈ Yh × XH and (ph, uh) ∈ Xh × Yh be the unique solutions of
the variational formulations (2.30)–(2.31) and (2.35), respectively. Assume the saturation
condition

∥u− uh∥Xv ,h ≤ η ∥u− uH∥Xv ,h for some η ∈ (0, 1). (2.37)

Then there holds the reliability estimate

∥u− uH∥Xv ,h ≤ 1

1 − η
∥ph∥Y . (2.38)

Proof. Since the variational formulation (2.35) is considered for Xh = Yh, ph ≡ 0 follows.
Hence we obtain, using (2.30),

⟨Buh, qh⟩Ω = ⟨f, qh⟩Ω = ⟨Aph, qh⟩Ω + ⟨BuH , qh⟩Ω for all qh ∈ Yh,
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i.e.,
⟨B(uh − uH), qh⟩Ω = ⟨Aph, qh⟩Ω for all qh ∈ Yh.

Now, using the discrete inf-sup condition (2.36) for uh − uH ∈ Xh this gives

∥uh − uH∥Xv ,h ≤ sup
0̸=qh∈Yh

⟨B(uh − uH), qh⟩Ω
∥qh∥Y

= sup
0̸=qh∈Yh

⟨Aph, qh⟩Ω
∥qh∥Y

≤ ∥ph∥Y .

Then, using the triangle inequality and the saturation assumption (2.37), we obtain

∥u− uH∥Xv ,h ≤ ∥u− uh∥Xv ,h + ∥uh − uH∥Xv ,h ≤ η ∥u− uH∥Xv ,h + ∥ph∥Y ,

i.e., the assertion follows.

Remark 2.2 The numerical results indicate that the saturation condition (2.37) is satisfied
for the choice h = H/2, i.e., one additional refinement to define Yh when starting from
XH . Otherwise, one may use some more additional refinement steps when required.

Example 2.5 In this example we apply the least-squares approach (2.25) to the singularly
perturbed problem already considered in Example 2.4. We use the finite element spaces
XH = S1

H(TH)∩Xv and Yh = S2
H(TH)∩ Y , which are defined with respect to an admissible

and locally quasi-uniform decomposition TH = {τℓ}Nℓ=1 of the interval Ω = (0, 1) into finite

elements τℓ with M̃ = N + 1 nodes. We use the global error estimator

η2H = ∥ph∥2Y = ε

∫ 1

0

∇ph(x) · ∇ph(x) dx =
N∑
ℓ=1

η2ℓ (2.39)

with the local error indicators

η2ℓ = ε

∫
τℓ

∇ph(x) · ∇ph(x) dx (2.40)

to drive an adaptive refinement scheme with a Dörfler marking strategy [20]. The sparse
direct solver Pardiso is used to solve the resulting linear systems. The convergence be-
haviour of the error and the estimator are given in Fig. 4. As expected, we observe a
linear rate. The numerical solutions obtained on different refinement levels are provided in
Fig. 3. We see that the sequence of iterates from the adaptive refinement process converges
to the physical true solution. However, the first few iterates obtain a constant shift from the
true solution and some minor oscillations at x = 0 and at x = 1, respectively. Note that
this behaviour was also observed in [5, 17]. Further, we see that the numerical solutions on
the first few refinement levels have negative values even though the true solution is not neg-
ative. Therefore, the discrete maximum principle is not satisfied for all the solutions from
the adaptive refinement process. However, the inbuilt error estimator detects how many
degrees of freedom need to be added in order to obtain a numerical solution uH , which is in
good accordance with the physical correct reference solution u. Finally, we want to mention
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(a) ε = 10−2 (b) ε = 10−5

Figure 3: Numerical solutions uH to Example 2.5 in the case of the adaptive refinement
scheme.
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(b) ε = 10−5

Figure 4: Convergence behaviour of the errors and the estimators.

that in the case of ε = 10−5 the numerical solution uH on L = 20 was computed on a mesh
with 60 vertices (indicated in black) and 179 degrees of freedom (dof) for the corresponding
saddle point system. This already lead to a satisfactory result. In comparison, the direct
approach needed about 100000 dofs to give a satisfactory approximation to the solution, see
Fig. 1 and Tab. 3.

Example 2.6 ([28, Example 3.3]) This problem deals with a non-constant convection
field v. In particular, we consider Ω = (0, 1)2 with v= (−y, x)⊤, α(x) = ε = 10−5,
and f = 0. We prescribe homogeneous Dirichlet boundary conditions on the boundaries
{1} × [0, 1] and [0, 1] × {1}, i.e., on the right and top boundary. At the inlet boundary
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Figure 5: Left: Inhomogeneous boundary condition (2.41) prescribed on inlet boundary.
Right: Numerical solution uH at the outlet boundary for different refinement levels.

[0, 1] × {0} we consider the inhomogeneous boundary condition given by, with ξ = 10−3,

u(x, 0) =


1 − 1

4

(
1 − cos

(
1/3+ξ−x

2ξ
π
))2

for x ∈
[
1
3
− ξ, 1

3
+ ξ
]
,

1 for x ∈
(
1
3

+ ξ, 2
3
− ξ
)
,

1 − 1
4

(
1 − cos

(
x−2/3+ξ

2ξ
π
))2

for x ∈
[
2
3
− ξ, 2

3
+ ξ
]
,

0 else.

(2.41)

On the remaining outlet boundary {0}×(0, 1) we prescribe homogeneous Neumann boundary
conditions. In our implementation we use piecewise linear and piecewise quadratic basis
functions to define the finite element spaces XH and Yh, respectively. Furthermore, we use
the inbuilt error estimator to drive an adaptive refinement scheme with a Dörfler marking
strategy [20]. All resulting linear systems are solved with the sparse direct solver Pardiso.
In order to study the satisfaction of the global discrete maximum principle (DMP) we
evaluate as in [27] the quantity

oscmax(uH) = max
(x,y)∈Ω

uH(x, y) − 1 − min
(x,y)∈Ω

uH(x, y). (2.42)

In order to assess the accuracy of the numerical solution three characteristic values of the
solution at the outflow boundary are provided in [28]. The reference values read:

• width of the lower layer: 0.01439869,

• width of the upper layer: 0.01439637,

• outflow profile width: 0.3482541.

21



Figure 6: Left: Numerical solution uH on L = 15. Right: Adaptive mesh on L = 15 with
148968 dofs.
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Figure 7: Left: Comparison of the computed characteristic values to the reference values.
Right: Satisfaction of the global DMP on different refinement levels.

L M̃ lower layer upper layer profile oscmax(uH)

0 289 0.17989000 0.06040999 0.49811000 0.43594821
5 1666 0.04909000 0.05312000 0.37743000 0.28357896

10 15160 0.01785999 0.01824999 0.35253999 0.07359097
13 51480 0.01422000 0.01436000 0.34822000 1.523e-03
15 148968 0.01440000 0.01440000 0.34825000 7.373e-04
17 473779 0.01439000 0.01439000 0.34825000 4.033e-04

Table 4: Computed characteristic values and evaluation of (2.42).
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In Fig. 5 we provide a plot of the inhomogeneous boundary condition (2.41) on the inlet
boundary as well as the numerical solution uH at the outlet boundary for different refine-
ment levels. In Fig. 6 the numerical solution uH as well as the adaptive mesh generated on
refinement level L = 15 are depicted. The adaptive mesh was generated from a structured
initial mesh with 16×16 elements. Further, in Tab. 4 and Fig. 7 we provide a comparison
of the computed characteristic values to the reference values and the satisfaction of the
global DMP. We see that for earlier refinement levels over and under shoots are visible,
but they are almost vanishing on higher refinement levels. This can be also seen from the
quantity (2.42) in Table 4 and Fig. 7, which show a good satisfaction of the global DMP
for higher refinements. In addition to that Fig. 7 shows that the difference of the computed
characteristic quantities to the reference values is in the order of floating point precision for
higher refinement levels, i.e., we have a good agreement of the computed reference values
with the characteristic values.

Example 2.7 (Hemker problem) In this example we consider the Hemker problem [26],
which is a standard benchmark problem for steady state convection-diffusion problems. The
domain is given by Ω = (−3, 9) × (−3, 3) \ {(x, y) : x2 + y2 ≤ 1}. The velocity is given by
v= (1, 0)⊤, and the right-hand side f is set equal to zero. Further we have the boundary
conditions

u(x, y) =


0 x = −3,

1 x2 + y2 = 1,

α(x)∇u · n = 0 x = 9 ∨ y = −3 ∨ y = 3

.

As in [2, 27, 28] we consider the diffusion coefficient to be α(x) = ε = 10−4. In order to
assess the accuracy of the numerical solution a value for the width of the interior layer
at x = 4 was provided in [2]. This width is defined to be the length of the interval, where
u(4, y) ∈ [0.1, 0.9]. In [2] the reference value 0.0723 is provided for the upper layer, i.e.,
where y ≥ 0. Furthermore, we evaluate the quantity (2.42) to measure the satisfaction of
the global DMP. In our numerical experiments we use piecewise linear finite elements for
the trial space XH and piecewise quadratic finite elements for the test space Yh. Further we
use the local error indicators (2.40) to drive an adaptive refinement scheme. As a marking
strategy we use the Dörfler criterion with parameter θ = 0.5. The marked elements are
then refined using newest vertex bisection. The resulting linear systems are solved with the
sparse direct solver Pardiso.
In Fig. 8 the initial mesh and the adaptive mesh obtained on level L = 17 are depicted.
We see stronger refinements at the boundary layer around the circle, which at the top
and bottom of the circle passes into an interior layer that spread into the direction of the
convection. The refinements at the left boundray may be explained in terms of the over- and
undershoots that occur for lower refinements. In Fig. 9 we depict the numerical solution
uH obtained on refinement level L = 17. In Fig. 10 we provide plots of the cut lines
uH(x, 1) for −3 ≤ x ≤ 9 and uH(4, y) for −3 ≤ y ≤ 3. The cut lines possess some
oscillations for lower refinement levels which get significantly reduced for higher refinement
levels. In Fig. 11 and Tab. 5 we provide a comparison of the computed characteristic value
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Figure 8: Left: Initial mesh with 438 dofs. Right: Adaptive mesh on L = 17 with 676072
dofs.

Figure 9: Numerical solution uH on L = 17.

L M̃ upper layer oscmax(uH)

0 438 0.8087 0.9742
8 12048 0.4873 0.6315

12 82453 0.1603 0.1909
15 227728 0.0801 0.0165
17 676072 0.0728 1.187e-03
18 1181853 0.0727 6.823e-04

Table 5: Computed characteristic value and evaluation of (2.42) for the Hemker problem.

with the reference value as well as a plot of the satisfaction of the global DMP. We see
that the computed value converges to the reference value given for the upper layer width.
Furthermore, we see a reduction of the quantity (2.42) for higher refinements.
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Figure 10: Cut lines of the numerical solution on different refinement levels. Left: uH(x, 1).
Right: uH(4, y).
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Figure 11: Left: Comparison of the computed characteristic values to the reference values.
Right: Satisfaction of the global DMP on different refinement levels.
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3 Instationary convection-diffusion problems

Instead of (2.1) we now consider the time-dependent Dirichlet boundary value problem for
the convection-diffusion equation,

∂tu(y, t) + v(y, t) · ∇yu(y, t) − divy[α(y)∇yu(y, t)] = f(y, t) for (y, t) ∈ Q,

u(y, t) = 0 for (y, t) ∈ Σ,

u(x, 0) = 0 for x ∈ Ω,

(3.1)

where the space-time domain Q is given by

Q :=
{

(y, t) ∈ Rn+1 : y = φ(t, x), x ∈ Ω ⊂ Rn, t ∈ (0, T )
}
,

with the lateral boundary

Σ :=
{

(y, t) ∈ Rn+1 : y = φ(t, x), x ∈ ∂Ω, t ∈ (0, T )
}
.

Here, T > 0 is a given time horizon, and v(y, t) = d
dt
y(t) is the velocity along the trajectory

y(t) = φ(t, x) ∈ Rn for a reference point x ∈ Ω. We assume that the deformation φ is
bijective and sufficient regular for all t ∈ (0, T ), satisfying φ(0, x) = x for all x ∈ Ω, and
divyv(y, t) = 0. Then we can write Reynold’s transport theorem as

d

dt

∫
Ω(t)

u(y, t) dy =

∫
Ω(t)

[
∂tu(y, t) + v(y, t) · ∇yu(y, t)

]
dy =

∫
Ω(t)

d

dt
u(y, t) dy. (3.2)

As in the stationary case we assume that the diffusion coefficient α(y) is bounded and
strictly positive, see (2.2).

3.1 Variational formulation

Similar as in the stationary case we now define the Bochner spaces Y := L2(0, T ;H1
0 (Ω(t)))

with the norm

∥q∥2Y :=

∫ T

0

∫
Ω(t)

α(y) |∇yq(y, t)|2 dy dt,

and

Xv :=
{
u ∈ Y :

d

dt
u = ∂tu+ v · ∇yu ∈ Y ∗, u(x, 0) = 0 for x ∈ Ω

}
.

A norm in Xv is given by the graph norm

∥u∥Xv :=
√

∥u∥2Y + ∥∂tu+ v · ∇yu∥2Y ∗ =
√

∥u∥2Y + ∥wu∥2Y ,

where wu ∈ Y is the unique solution of the variational problem such that

a(wu, q) :=

∫ T

0

∫
Ω(t)

α(y)∇ywu(y, t) · ∇yq(y, t) dy dt (3.3)

=

∫ T

0

∫
Ω(t)

[
∂tu(y, t) + v(y, t) · ∇yu(y, t)

]
q(y, t) dy dt
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is satisfied for all q ∈ Y . The space-time variational formulation of (3.1) then reads to find
u ∈ Xv such that

b(u, q) :=

∫ T

0

∫
Ω(t)

[
∂tu(y, t) + v(y, t) · ∇yu(y, t)

]
q(y, t) dy dt (3.4)

+

∫ T

0

∫
Ω(t)

α(y)∇yu(y, t) · ∇yq(y, t) dy dt =

∫ T

0

∫
Ω(t)

f(y, t)q(y, t) dy dt

is satisfied for all q ∈ Y . The boundedness of the bilinear form b(·, ·) : X × Y → R follows
as in the proof of Lemma 2.5, i.e.,

|b(u, q)| ≤
√

2 ∥u∥Xv∥q∥Y for all (u, q) ∈ Xv × Y.

Moreover, choosing qu := u+ wu ∈ Y , we conclude

b(u, qu) = ⟨∂tu+ v · ∇yu, u+ wu⟩Q + ⟨∇yu,∇y(u+ wu)⟩L2(Q)

= 2 ⟨∇ywu,∇yu⟩Q + ⟨∇ywu,∇ywu⟩L2(Q) + ⟨∇yu,∇yu⟩L2(Ω)

= ⟨∇y(u+ wu),∇y(u+ wu)⟩L2(Q) = ∥qu∥2Y .

Using Reynold’s transport theorem (3.2) and u(x, 0) = 0 for x ∈ Ω, this gives

2 ⟨∂tu+ u · ∇yu, u⟩Q = 2

∫ T

0

∫
Ω(t)

d

dt
u(y, t)u(y, t) dy dt

=

∫ T

0

∫
Ω(t)

d

dt
[u(y, t)]2 dy dt =

∫ T

0

d

dt

∫
Ω(t)

[u(y, t)]2 dy dt =

∫
Ω(T )

[u(y, T )]2dy ≥ 0.

Hence we obtain

∥qu∥2Y = ∥u+ wu∥2Y = ∥u∥2Y + ∥wu∥2Y + 2 ⟨∇ywu,∇yu⟩L2(Q)

= ∥u∥2Y + ∥wu∥2Y + 2 ⟨∂tu+ u · ∇yu, u⟩Q
≥ ∥u∥2Y + ∥wu∥2Y = ∥u∥2Xv

,

and as in (2.9) we therefore conclude the inf-sup stability condition

∥u∥Xv ≤ sup
0̸=q∈Y

b(u, q)

∥q∥Y
for all u ∈ Xv. (3.5)

In order to apply the Babuška–Nečas theory it remains to prove surjectivity.

Lemma 3.1 Consider the gradient of the velocity v(y, t),

Av =



∂

∂y1
v1

∂

∂y1
v2

∂

∂y1
v3

∂

∂y2
v1

∂

∂y2
v2

∂

∂y2
v3

∂

∂y3
v1

∂

∂y3
v2

∂

∂y3
v3


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which is assumed to be positive semi-definite. Then, for all q ∈ Y \{0} there exists a
uq ∈ Xv such that b(uq, q) > 0.

Proof. For any given q ∈ Y \{0} we define uq ∈ Xv,

uq(y, t) = uq(φ(t, x), t) =

∫ t

0

q(φ(s, x), s) ds,
d

dt
uq(y, t) = q(y, t).

Hence we have

b(uq, q) = ⟨ d
dt
uq, q⟩Q + ⟨∇yuq,∇yq⟩L2(Q) = ∥q∥2L2(Q) + ⟨∇yuq,∇y

d

dt
uq⟩L2(Q),

and it is sufficient to prove that the second summand is non-negative. A direct computation
gives

∇yuq · ∇y
d

dt
uq =

1

2

d

dt
|∇yuq|2 + (Av∇yuq,∇yuq),

and therefore,

⟨∇yuq,∇y
d

dt
uq⟩L2(Q) =

∫ T

0

∫
Ω(t)

[
1

2

d

dt
|∇yuq|2 + (Av∇yuq,∇yuq)

]
dydt

=
1

2

∫
Ω(T )

|∇yuq(y, T )|2 dy +

∫ T

0

∫
Ω(t)

(Av∇yuq,∇yuq) dy dt ≥ 0

follows. This concludes the proof.

Example 3.1 Consider the deformation y = φ(t, x) to be a planar rotation, i.e., using
polar coordinates we have

y(t) = r

(
cos(ϕ+ αt)

sin(ϕ+ αt)

)
, v(y, t) =

d

dt
y(t) =

( −y2(t)
y1(t)

)
.

In this case we conclude

Av =

(
0 1

−1 0

)
, (Av∇yu,∇yu) = 0 .

This particular case was already considered in [25].

Example 3.2 For any velocity field v(y, t) = v(t) we obviously have Av = 0, and the
assumption of Lemma 3.1 is trivially satisfied.

As in Lemma 2.5 we now conclude unique solvability of the variational formulation (3.4),
since all assumptions of the Babuška–Nečas theory are satisfied.

28



3.2 Adaptive least-squares space-time finite element method

Instead of the bilinear form b(u, q) as defined in (2.3) we now consider the definition of
b(u, q) as used in (3.4) for (u, q) ∈ Xv × Y , and instead of the bilinear form a(wu, q) as
defined in (2.6) we now use the definition as given in (3.3). With these definitions we
consider the minimization of the quadratic functional (2.25) whose minimizer u ∈ Xv is
given as the unique solution of the gradient equation (2.26). Instead of (2.27) and (2.28)
we therefore have to solve the coupled system to find (u, p) ∈ Xv × Y such that∫ T

0

∫
Ω(t)

α(y)∇yp(y, t) · ∇yq(y, t) dy dt

+

∫ T

0

∫
Ω(t)

[
∂tu(y, t) + v(y, t) · ∇yu(y, t)

]
q(y, t) dy dt (3.6)

+

∫ T

0

∫
Ω(t)

α(y)∇yu(y, t) · ∇yq(y, t) dy dt =

∫ T

0

∫
Ω(t)

f(y, t)q(y, t) dy dt

is satisfied for all q ∈ Y , and∫ T

0

∫
Ω(t)

[
∂tz(y, t) + v(y, t) · ∇yz(y, t)

]
p(y, t) dy dt (3.7)

+

∫ T

0

∫
Ω(t)

α(y)∇yz(y, t) · ∇yp(y, t) dy dt = 0

is satisfied for all z ∈ Xv. Unique solvability of the mixed variational formulation (3.6) and
(3.7) follows again as in [29], in particular when using the inf-sup stability condition (3.5),
and the ellipticity of the bilinear form a(q, q) = ∥q∥2Y for all q ∈ Y . Since B : Xv → Y ∗ is
surjective, p ≡ 0 follows.

For the space-time finite element discretization of the mixed variational formulation
(3.6) and (3.7) we use the conforming finite element space XH = span{φk}Mk=1 ⊂ Xv

of piecewise linear continuous basis functions φk which are defined with respect to some
admissible locally quasi-uniform decomposition of the space-time domain Q into simplicial
space-time finite elements τℓ of mesh size Hℓ. In addition, we introduce a space-time
finite element space Yh = span{ϕi}Mi=1 ⊂ Y of piecewise linear continuous basis functions
ϕi which are defined with respect to a possibly refined decomposition of Q into simplicial
finite elements τ ℓ of local mesh size hℓ. As in the stationary case we may use one additional
refinement, i.e., hℓ = Hℓ/2 when τ ℓ ⊂ τℓ.

According to (3.3) we define wu,h ∈ Yh as unique solution of the variational formulation
such that∫ T

0

∫
Ω(t)

α(y)∇ywu,h(y, t) · ∇yqh(y, t) dy dt (3.8)

=

∫ T

0

∫
Ω(t)

[
∂tu(y, t) + v(y, t) · ∇yu(y, t)

]
qh(y, t) dy dt
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is satisfied for all qh ∈ Yh. Hence we can define the discrete norm

∥u∥Xv ,h :=
√

∥u∥2Y + ∥wu,h∥2Y ≤ ∥u∥Xv for all u ∈ Xv,

and as in (3.5) we can establish the discrete inf-sup stability condition

∥uH∥Xv ,h ≤ sup
0̸=qh∈Yh

b(uH , qh)

∥qh∥Y
for all uH ∈ XH , (3.9)

which remains true for all XH ⊆ Yh. Hence we conclude unique solvability of the space-time
finite element discretization of (3.6) and (3.7) to find (uH , ph) ∈ XH × Yh such that∫ T

0

∫
Ω(t)

α(y)∇yph(y, t) · ∇yqh(y, t) dy dt

+

∫ T

0

∫
Ω(t)

[
∂tuH(y, t) + v(y, t) · ∇yuH(y, t)

]
qh(y, t) dy dt (3.10)

+

∫ T

0

∫
Ω(t)

α(y)∇yuH(y, t) · ∇yqh(y, t) dy dt =

∫ T

0

∫
Ω(t)

f(y, t)qh(y, t) dy dt

is satisfied for all qh ∈ Yh, and∫ T

0

∫
Ω(t)

[
∂tzH(y, t) + v(y, t) · ∇yzH(y, t)

]
ph(y, t) dy dt (3.11)

+

∫ T

0

∫
Ω(t)

α(y)∇yzH(y, t) · ∇yph(y, t) dy dt = 0

is satisfied for all zH ∈ XH . Moreover, and as in [25, 29, 40], we can derive estimates for
the space-time finite element error ∥u − uH∥Y ≤ cH |u|H2(Q) when assuming u ∈ H2(Q).
While for Yh = XH we have ph ≡ 0, in the more general case Xh ⊂ Yh but Yh ̸= XH and
assuming an saturation condition such as in (2.37), we can use ∥ph∥Y as a posteriori error
indicator for ∥u− uH∥Xv,h

to drive an adaptive scheme.

Example 3.3 As a first example, we consider the one dimensional domain Ω = (0, 1),
and the time horizon T = 1, i.e., Q = (0, 1)2. Further, we consider α(x) = ε = 10−2 and
v = 1. As exact solution, and similar as in [14], we choose the smooth function

u(x, t) :=
(
1 − e−t/ε

)(e(x−1)/ε − 1

e−1/ε − 1
+ x− 1

)
, (3.12)

and we compute f = ∂tu−ε∆xu+v ·∇xu accordingly. The smooth function (3.12) exhibits
a spatial (at x = 1) and a temporal (at t = 0) boundary layer. The numerical results for
both a uniform and an adaptive refinement strategy are shown in Fig. 12(a). We observe
a rate of O(H) for the error in the energy norm and O(H2) for the L2 error, as expected.
In Fig. 12(b) we present a comparison between the errors ∥u − uH∥Y , ∥u − uH∥Xv ,h and
the error estimator ηH = ∥ph∥Y . One can see that the error indicator is effective and that
the error in the norm ∥ · ∥Xv ,h is mainly driven by the spatial part of the norm. Finally, in
Fig. 13 we present the related finite element mesh and the numerical solution uH .
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Figure 12: Convergence results in the case of a smooth solution for a nonstationary
convection-diffusion equation.

(a) Adaptive mesh on L = 15, 144563 dofs (b) Solution uH on adaptive mesh

Figure 13: Simulation results for the adaptive refinement process.
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(a) ε = 10−3 (b) ε = 10−5 (c) ε = 10−6

(d) ε = 10−3 (e) ε = 10−5 (f) ε = 10−6

Figure 14: Numerical results for v = (0, 1)T on a mesh with 32×32×32 elements. Top: no
stabilization via direct formulation [40], bottom: stabilization via developed least-squares
formulation.

Example 3.4 As a second example we consider the two-dimensional domain Ω = (0, 1)2

and the time horizon T = 1, i.e., Q = (0, 1)3. As initial state u(x, 0) = u0(x), x ∈ Ω, we
consider similar as in [32] the function

u0(x) := ψ(10 ∥x− x0∥2), ψ(r) :=

{
(1 − r2)2, for r ≤ 1,

0, for r > 1,
x0 =

(
0.5
0.5

)
.

We compute numerical solutions to (3.1) for the velocity field v = (0, 1)⊤ and without a
source term, i.e. f ≡ 0. Furthermore, α(x) = ε ∈ {10−3, 10−5, 10−6}. The results for
a mesh with 32 × 32 × 32 elements (35937 dofs) can be seen in Fig. 14. In the top row
one can see the numerical solution uH computed by solving (3.4) with the space-time finite
element method described in [40]. This leads to oscillations in the solution as the mesh size
is not sufficiently small. In the bottom row one can see the solution using the developed
least-squares formulation with piecewise linear trial and piecewise quadratic test functions.
This formulation leads to stable results. In a further step we use the inbuilt error estimator
to drive an adaptive refinement scheme for the parameters ε = 10−3, v = (0, 0.3)⊤, and
ε = 10−6, v = (0, 1)⊤. In Fig. 15 the convergence rate of the error estimator in case of a
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uniform and an adaptive refinement strategy for both sets of parameters is depicted. In the
case ε = 10−3, v = (0, 0.3)⊤, we observe a linear rate O(H) for both refinement strategies.
In the case ε = 10−6, v = (0, 1)⊤ we observe a reduced rate of O(H0.4) in the uniform case.
However, we can recover the full rate of O(H) in the adaptive case. The obtained adaptive
meshes as well as the corresponding numerical solutions are depicted in Fig. 16 and 17.
Note that we obtain a mesh which is fully unstructured in space and time.
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(a) ε = 10−3, v= (0, 0.3)⊤
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(b) ε = 10−6, v= (0, 1)⊤

Figure 15: Error estimator ηH = ∥ph∥Y in case of an adaptive and uniform refinement
strategy for the second example.

Example 3.5 As a third example, we consider again the unit cube in the space-time do-
main, i.e., Q = (0, 1)3. We choose u0 = 0, α(x) = ε = 10−2 and the source term to be

(a) Adaptive mesh on L = 7, 152513 dofs (b) Solution uH on the adaptive mesh

Figure 16: Obtained results for ε = 10−6 and v= (0, 1)⊤ after the adaptive refinement
process.
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(a) Adaptive mesh on L = 6, 463696 dofs (b) Solution uH on adaptive the mesh

Figure 17: Obtained results for ε = 10−3 and v= (0, 0.3)⊤ after the adaptive refinement
process.
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Figure 18: Error estimator ηH = ∥ph∥Y in case of an adaptive and uniform refinement
strategy for the third example.

f = 1. The velocity field is a time dependent function with v(y, t) = (sin(2πt), cos(2πt))⊤

for (y, t) ∈ Q. Thus, the solution u has a boundary layer whose location depends on time.
Note that a similar example is considered in [14, Example 4]. In Fig. 18 a comparison of
the error estimator in case of an adaptive and uniform refinement strategy is depicted. We
observe a convergence rate of O(H) in both cases. The generated grids in the adaptive case
at different fixed times can be seen in Fig. 19. The circular movement of the boundary
layer in time is visible.
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(a) t = 0.25 (b) t = 0.5

(c) t = 0.75 (d) t = 1

Figure 19: Generated mesh on refinement level L = 5 at different times t in case of the
time dependent velocity field v(x, t) = (sin(2πt), cos(2πt))⊤.
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