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Abstract

We consider the adaptive lowest-order boundary element method (ABEM) based
on isotropic mesh-refinement for the weakly-singular integral equation for the 3D
Laplacian. The proposed scheme resolves both, possible singularities of the solution
as well as of the given data. The implementation thus only deals with discrete integral
operators, i.e. matrices. We prove that the usual adaptive mesh-refining algorithm
drives the corresponding error estimator to zero. Under an appropriate saturation
assumption which is observed empirically, the sequence of discrete solutions thus
tends to the exact solution within the energy norm.

1 Introduction

The (h− h/2)-error estimation strategy is a well known technique to derive a-posteriori
error estimates for the error |||φ−Φℓ||| in the natural energy norm; see [HNW] in the context
of ordinary differential equations, and the overview article of Bank [B] or the monograph
[A] in the context of the finite element method: Let Xℓ be a discrete subspace of the energy

space H and let X̂ℓ be its uniform refinement. With the corresponding Galerkin solutions
Φℓ and Φ̂ℓ, the canonical (h− h/2)-error estimator

ηℓ := |||Φ̂ℓ − Φℓ||| (1)
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is a computable quantity [DLY] which can be used to estimate |||φ − Φℓ|||, where φ ∈ H
denotes the exact solution.

For finite element methods (FEM), the energy norm, e.g. ||| · ||| = ‖∇Γ(·)‖L2(Ω) in
case of the Poisson-Dirichlet problem, provides local information, which elements of the
underlying mesh should be refined to decrease the error effectively. For boundary element
methods (BEM), the energy norm ||| · ||| is (equivalent to) a fractional order (and possibly
negative) Sobolev norm and does typically not provide local information directly. Besides
the (h− h/2) strategy, several a posteriori error estimators for the efficient numerical
treatment of integral equations via adaptive mesh-refining algorithms are available in the
literature, see [CF] and the references therein. For example, estimators of residual type are
proposed and analyzed in [CS95, CS96, C96, C97, CMS, CMPS], where weighted Sobolev
norms of integer order are used to localize norms of fractional order. In [F98, F00, F02],
fractional order Sobolev norms are considered on overlapping subsets of a mesh, e.g. node
patches. Furthermore, a projection of the residual onto multilevel functions may be used,
as proposed in [MS, MSW], or other integral equations can be applied to estimate the
error as in [SSt, S00]. Error estimators that account for p or hp-versions are even found
in [CFS, H02, HMS01, HMS02]. In [EFGP, FP], localized variants of ηℓ were introduced
for certain weakly-singular and hypersingular integral equations. However, the mentioned
list of works is by no means exhaustive.

Recently [FOP], convergence of some (h − h/2)-steered adaptive mesh-refinement has
been proved for linear model problems in the context of FEM and BEM. In [AFP+], the
concept of estimator reduction has been introduced to analyze convergence of anisotropic
mesh-refinement steered by (h−h/2)-type or averaging-based error estimators for weakly-
singular integral equations arising in 3D BEM. However, in [AFP+, FOP] it is assumed
that the right-hand side of the integral equation is computed analytically. This assumption
is relaxed in [AFGKMP] where, for the mixed boundary value problem with Dirichlet and
Neumann conditions in 2D, the resolution of the given data becomes a part of the adaptive
loop. In this last work [AFGKMP], the Dirichlet data is assumed to be in H1, and is,
by the Sobolev imbedding theorem, continuous. The approximation can thus be carried
out by a nodal interpolant, and approximation estimates from [C97, EFGP] can be used
to extract local information on the approximation error. Moreover, for the Neumann
data, [AFGKMP] assumes additional regularity, and the Neumann data is then discretized
by the L2-projection onto piecewise constants. Whereas the discretization of the Neumann
data transfers directly to 3D BEM, the discretization of the Dirichlet data does not. The
reason is that H1-functions on a 2D manifold (i.e. the boundary of a 3D domain) lack
continuity and hence nodal interpolation is not allowed.

The aim of this present work is twofold: First, we extend the one-dimensional lo-
cal approximation estimates for nodal interpolation from [C97, EFGP] to certain quasi-
interpolation operators in two dimensions in Theorem 3. This theorem extends the ap-
proximation properties of quasi-interpolation operators on adaptive meshes to positive
fractional order Sobolev spaces. It thus enables us to control the error that is induced by
the approximation of the given data using appropriate data oscillation terms whick look
similar to the 2D case of [AFGKMP]. Since we are interested in the local mesh size of
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adaptively refined meshes, it is not feasible to use the interpolation theorem in an easy way
to obtain approximation estimates in fractional order Sobolev spaces, which are, in fact, in-
terpolation spaces. Instead, the essential ingredient is an upper bound for the interpolation
norm of weighted H1-spaces.

To control the discretization error, we use the (h−h/2)-type error estimators from [FP].
We show that the sum of data oscillation and error estimator is a means to control energy
error and data approximation in an efficient and, under the so-called saturation assumption,
reliable way. For a Galerkin boundary element method in 3D, we then propose an adaptive
algorithm which is steered by the sum of data oscillation and error estimator.

The second aim of this work is to show that the discrete solutions that are generated by
the proposed adaptive algorithm converge to the exact solution. This is done by following
the concept of estimator reduction from [AFP+]. With nothing but notational overhead,
this allows to transfer the results of [AFGKMP] from 2D to 3D. Using results from [AFP],
convergence of adaptive FEM-BEM coupling driven by (h− h/2) estimators can be derived.

The remainder of this paper is organized as follows: Section 2 introduces the model
problems as well as the integral formulations thereof. Then, the main results of this paper
are summarized. In Section 3, we collect the preliminaries on Sobolev spaces, boundary
discretization, and discrete spaces. Furthermore, we prove approximation properties of
H1-stable projections in fractional-order Sobolev spaces. In Section 4, we introduce the
error estimators as well as the data oscillation. The adaptive algorithm is stated in Section
5, where we also recall the newest-vertex-bisection refinement. The main result of this
paper is found in Theorem 15, which states the estimator reduction property and hence
convergence of the proposed adaptive BEM algorithm. Finally, numerical experiments in
Section 6 conclude the work.

2 Model Problem and analytical results

The aim of this section is to introduce the model problem, its integral formulations, and
the Galerkin formulations. Afterwards, we give an overview on the main results contained
in this work. For all stated properties of the integral operators involved, we refer to the
literature, e.g., the monographs [HW, ML, SaS].

2.1. Continuous model problem. The considered model problem is the Laplace equa-
tion: For Ω ⊂ R

3 an open set with Lipschitz-boundary, it reads

−∆u = 0 in Ω,

u = g on Γ := ∂Ω,
(2)

where the inhomogeneous Dirichlet data g ∈ H1/2(Γ) are given. The problem of finding u
in equation (2) is equivalently stated as follows: Find φ ∈ H−1/2(Γ) such that

V φ = (K + 1/2)g on Γ. (3)
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Here, V is the simple-layer potential and K is the double-layer potential which are
formally defined by

V ψ(x) =

∫

Γ

ψ(y)G(x− y) dΓ(y),

Kv(x) =

∫

Γ

Cv(y)∂n(y)G(x− y) dΓ(y),

where G(·) denotes the fundamental solution of the 3D Laplacian

G(z) =
1

4π

1

|z|
for z ∈ R

3\{0}.

The solution φ of (3) is then the normal derivative of u, i.e., φ = ∂nu. Conversely, the
solution of (3) provides a solution u of (2) by means of the representation formula, see
e.g., [HW, Chapter 1.1].

Let 〈· , ·〉 denote the L2-scalar product which is extended to duality between H−1/2(Γ)
and H1/2(Γ). Note that V : H−1/2(Γ) → H1/2(Γ) is an elliptic and symmetric isomorphism
between H−1/2(Γ) and its dual H1/2(Γ). It thus provides a scalar product defined by
〈〈φ, ψ〉〉 = 〈V φ, ψ〉. We denote by ||| · ||| := 〈〈· , ·〉〉1/2 the induced energy norm which is an
equivalent norm on H−1/2(Γ). Therefore, the theorem of Riesz-Fischer (resp. the Lax-
Milgram lemma) proves the existence and uniqueness of the solution φ ∈ H−1/2(Γ) of the
variational form

〈〈φ, ψ〉〉 = 〈(K + 1/2)g , ψ〉 for all ψ ∈ H−1/2(Γ). (4)

2.2. Galerkin Discretization. We consider the lowest-order Galerkin discretization
of (4) with the discrete space of piecewise constant functions P0(Tℓ). Here, Tℓ is a regular
partition of Γ into triangles. Again, the Riesz-Fischer theorem provides a unique solution
of the Galerkin formulation

〈〈Φ⋆
ℓ ,Ψℓ〉〉 = 〈(K + 1/2)g ,Ψℓ〉 for all Ψℓ ∈ P0(Tℓ). (5)

The right-hand side in the preceding equation can in principle be computed by methods
proposed in [CPS, SaS, S]. However, the right-hand side in (5) involves the double-layer
potential operator K. To decouple the singularities of K and possible singularities of g
and to enable the direct use of fast methods like hierarchical matrices or the fast multipole
method, we additionally approximate g by some appropriate Gℓ. To that end, we use the
L2-projection Πℓ : L2(Γ) → S1(Tℓ) and define

Gℓ := Πℓg ∈ S1(Tℓ),

where S1(Tℓ) is the space of piecewise affine, globally continuous functions on Tℓ. Therefore,
we restrict ourselves to the use conforming triangulations of Γ. Then, we replace g by Gℓ

and denote by Φℓ the corresponding Galerkin solution of

〈〈Φℓ ,Ψℓ〉〉 = 〈(K + 1/2)Gℓ ,Ψℓ〉 for all Ψℓ ∈ P0(Tℓ). (6)
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We stress that problem (6) is equivalent to a linear system Vx = (1
2
M + K)g, where x

and g are the coefficient vectors of Φℓ and Gℓ, V and K are the Galerkin matrices for the
discrete integral operators V and K, and M is a mass-type matrix.

Remark. A remarkable advantage of BEM over FEM is its possible high-order approx-
imation of the solution u of (2) by means of the represenation formula. For smooth φ
and lowest-order BEM, one can prove O(h3) convergence for the pointwise error within
Ω. However, this order is reduced to O(h2) when using nodal interpolation to discretize
g as in [AFGKMP]. Contrary, discretization of g by L2-projection preserves O(h3), see
e.g., [St, Chapter 12.1].

2.3. A-posteriori error estimation. The discretization error |||φ − Φ⋆
ℓ ||| is measured

using the (h−h/2)-type error estimators from [FP], where four different error estimators are
provided. Lemma 6 recalls results from the latter work: Under the saturation assumption

|||φ− Φ̂⋆
ℓ ||| ≤ Csat|||φ− Φ⋆

ℓ ||| with some uniform constant 0 < Csat < 1, (7)

the proposed error estimators τ ⋆ℓ provide lower and upper bounds of the Galerkin error,

C−1
eff τ

⋆
ℓ ≤ |||φ− Φ⋆

ℓ ||| ≤ Crelτ
⋆
ℓ , (8)

where only the upper bound hinges on (7), and Ceff , Crel > 0 depend additionally on the
shape regularity of Tℓ and on Γ. Here, τ ⋆ℓ denotes any of the proposed error estimators,

and Φ̂⋆
ℓ is the Galerkin solution of (5) with respect to the uniform refinement T̂ℓ of Tℓ.

Throughout, the upper index ⋆ denotes quantities wich are only of theoretical interest,
but are not computed numerically. In a second step, we include the data approximation
error, which stems from approximating the right-hand side g by Gℓ. Under additional
regularity g ∈ H1(Γ), we introduce some numerically computable data oscillation term

oscℓ := ‖h1/2ℓ ∇Γ(g − Gℓ)‖L2(Γ) which measures the local error of the data approximation
‖g −Gℓ‖H1/2(Γ). Then, the proposed error estimators τℓ — now computed with respect to
approximated Dirichlet data — fulfill equation (8) up to oscillation terms, i.e. it holds that

C−1
eff τℓ ≤ |||φ− Φℓ|||+ oscℓ and |||φ− Φℓ|||+ oscℓ ≤ Crelτℓ. (9)

Throughout the work, the symbol . abbreviates ≤ up to a multiplicative constant which
may only depend on shape regularity of the mesh Tℓ. Moreover, ≃ abbreviates the inequal-
ities . and &.

Remark. The saturation assumption (7) mainly states that the adaptive scheme has
reached an asymptotic phase [FP, Section 5.2]. However, it may fail to hold in general, as
was shown in [DN]. However, in [DN] it was shown that (7) holds if the data is sufficiently
resolved, i.e., in the context of FEM there holds

|||φ− Φ̂⋆
ℓ ||| ≤ Csat|||φ− Φ⋆

ℓ |||+ oscℓ,
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so that small data oscillation oscℓ implies the saturation assumption. This observation is
another reason for the inclusion of the data oscillation into the adaptive algorithm. We
stress that the saturation assumption is usually observed in experiments. A reason for this
might be that we have to ensure (7) only for the sequence of meshes that is generated by
the numerical algorithm.

2.4. Adaptive mesh-refining algorithm. In Section 5, we introduce an adaptive
mesh-refining algorithm which is steered by the local contributions of the error estimator

γℓ =
(
µ̃2
ℓ + osc2ℓ

)1/2
.

Here, µ̃ℓ is a localized variant of the (h− h/2)-based error estimator from (1). Theorem
15 then guarantees that the adaptive algorithm leads to

lim
ℓ→∞

γℓ = 0.

According to (9), the saturation assumption (7) for the non-perturbed problem thus yields
convergence of the discrete Galerkin solutions Φℓ to the exact solution φ.

3 Preliminairies

3.1. Sobolev spaces on the boundary. We assume throughout that Ω ⊂ R
3 is a

polyhedral domain. The usual Sobolev spaces are denoted by L2(Ω) and H
1(Ω). Sobolev

spaces with noninteger order are defined by use of the Sobolev-Slobodeckij seminorm.
Sobolev spaces on the boundary Γ := ∂Ω are defined likewise by using a parametrization
of Γ as a two-dimensional manifold, see [SaS]. Equivalently, noninteger order spaces can
be defined as interpolation spaces. We use the K-method of interpolation, see [T], to that
end. We stress that the definition of a noninteger order Sobolev space as interpolation
space yields the same set of functions, but an equivalent norm. However, norm equivalence
constants depend on the boundary Γ.

Furthermore, we will use weighted Sobolev spaces. For a weight function w ∈ L∞(Γ)
with w > 0 almost everywhere, we denote by H1(Γ, w) the space of all functions u ∈ H1(Γ)
equipped with the norm

‖u‖2H1(Γ,w) := ‖wu‖2L2(Γ)
+ ‖w∇Γu‖

2
L2(Γ)

.

Here, ∇Γ denotes the surface gradient. According to the properties of w, it holdsH
1(Γ, w) =

H1(Γ), but with a different norm. Throughout, we abbreviate the notation and write, e.g.,
Hs or ‖ · ‖L2 instead of Hs(Γ) and ‖ · ‖L2(Γ), respectively.

3.2. Discrete spaces. A mesh Tℓ on the boundary Γ = ∂Ω consists of flat triangles
which are denoted by T . We assume that Tℓ is regular, i.e., it contains no hanging nodes.
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Associated to every element T is an affine element map FT : T̂ → T , where T̂ is a
reference element. The volume area | · | defines the local mesh-width hℓ ∈ L∞ by hℓ|T :=
hℓ(T ) := |T |1/2, whereas ρℓ(T ) is the diameter of the largest ball that can be inscribed in
T . A sequence of meshes (Tℓ)ℓ∈N is called quasi-uniform if there are global discretization
parameters hℓ and ρℓ such that hℓ(T ) ≃ hℓ and ρℓ(T ) ≃ ρℓ for all T ∈ Tℓ. We call a
sequence of meshes locally quasi-uniform, if the mesh-size hℓ(T ) as well as the parameter
ρℓ(T ) are comparable on adjacent elements, i.e. hℓ(T ) ≃ hℓ(T

′) and ρℓ(T ) ≃ ρℓ(T
′) for all

T, T ′ ∈ Tℓ with T ∩ T ′ 6= ∅. We define the so-called shape-regularity constant by

σ(Tℓ) := max
T∈Tℓ

hℓ(T )

ρℓ(T )
.

For γ > 0, we call a sequence of meshes γ-shape-regular if σ(Tℓ) is bounded uniformly by γ,
i.e. supℓ∈N σ(Tℓ) ≤ γ. In this context, we will also call a single mesh quasi-uniform, locally
quasi-uniform, or γ-shape-regular. Finally, γ-shape-regular meshes are often referred to as
isotropic meshes. We define Nℓ to be the set of nodes of a mesh Tℓ. For p ∈ N0, polynomial
spaces on the reference element are denoted by

Pp(T̂ ) := span
{
xiyk : 0 ≤ i+ k ≤ p

}
.

Spaces of piecewise polynomials are denoted by

Pp(Tℓ) :=
{
u ∈ L∞(Γ) : u ◦ FT ∈ Pp(T̂ ) for all T ∈ Tℓ

}
,

Sp(Tℓ) := Pp(Tℓ) ∩ C
0(Γ).

3.3. The L2-projection. The L2-projections πℓ : L2 → P0(Tℓ) and Πℓ : L2 → S1(Tℓ)
are defined by

(πℓψ ,Ψℓ)L2 = (ψ ,Ψℓ)L2 for all Ψℓ ∈ P0(Tℓ),

(Πℓu , Uℓ)L2 = (u , Uℓ)L2 for all Uℓ ∈ S1(Tℓ).

Obviously, Πℓ is bounded in L2, i.e.,

‖Πℓu‖L2 ≤ ‖u‖L2.

Since S1(Tℓ) ⊂ H1, one can ask if Πℓ is also stable in H1, i.e.,

‖Πℓu‖H1 ≤ C‖u‖H1 for all u ∈ H1. (10)

Since the L2-norm andH1-norm are equivalent on S1(Tℓ), the stability estimate (10) clearly
holds with a constant C > 0 which a-priori depends on Tℓ.

For quasi-uniform meshes Tℓ, it is possible to show that C is independent of Tℓ, see [BX].
We can exploit any Clemént-type quasi-interpolation operator Jℓ, e.g. the original operator
from [Cl], to see

‖∇ΓΠℓu‖L2 ≤ ‖∇Γ(Πℓu− Jℓu)‖L2 + ‖∇ΓJℓu‖L2

. h−1
ℓ ‖Πℓu− Jℓu‖L2 + ‖∇Γu‖L2,
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where we use the stability properties of Jℓ and an inverse inequality. Here, hℓ is the global
discretization parameter. Since Πℓ is a projection, we conclude

‖Πℓu− Jℓu‖L2 = ‖Πℓ(u− Jℓu)‖L2 ≤ ‖u− Jℓu‖L2 . hℓ‖∇Γu‖L2.

Now, (10) follows, and the constant C does not depend on the sequence of meshes Tℓ, but
only on the quasi-uniformity constants.

Since this work is concerned with adaptive meshes, it is of interest to obtain (10) with
a constant C which does not depend on the actual step of the adaptive algorithm even for
locally quasi-uniform meshes. We then say that the L2-projections Πℓ are uniformly stable
in H1. Likewise, we say that the L2-projection is uniformly stable in Hβ for 1

2
≤ β ≤ 1.

There are several works to this question, see [BPS, C01, C02, S01]. The analysis in this

work does not only assume Xℓ+1 ⊆ Xℓ, but also X̂ℓ+1 ⊆ X̂ℓ, where the Xℓ are the discrete
spaces generated by the algorithm and the X̂ℓ are the discrete spaces on the uniformly
refined meshes. To ensure this, will use the classical Newest-Vertex-Bisection algorithm
for local mesh-refinement. None of the above mentioned works can be used in this case,
but a result of the recent work [KPP] states the H1-stability of Πℓ.

Throughout, we will assume that we are dealing with a sequence of uniformly shape-
regular meshes Tℓ which are obtained by successive refinement, i.e. P0(Tℓ) ⊆ P0(Tℓ+1).

3.4. Local inverse estimates in H
−1/2 and H

1/2. We will need an inverse estimate
in H−1/2 which even holds for quasi-uniform K-meshes, see [GHS, Theorem 3.6].

Lemma 1. It holds that

‖h1/2ℓ Ψℓ‖L2 ≤ C1‖Ψℓ‖H−1/2 for all Ψℓ ∈ P0(Tℓ). (11)

The constant C1 > 0 depends solely on an upper bound of σ(Tℓ) and on Γ.

Moreover, we shall need an inverse estimate in H1/2, see [AKP].

Lemma 2. It holds that

‖h1/2ℓ ∇ΓUℓ‖L2 ≤ C2‖Uℓ‖H1/2 for all Uℓ ∈ S1(Tℓ). (12)

The constant C2 > 0 depends solely on Γ.

3.5. Local approximation estimate in H
1/2. In this section, we prove an approxi-

mation estimate in H1/2, where —as in the prior Section 3.4— the emphasis is laid on the
fact that the right-hand side involves the local mesh-size hℓ ∈ L∞.

Theorem 3. For each continuous projection Pℓ : H
α → S1(Tℓ), it holds that

‖(1− Pℓ)g‖Hα ≤ C3min
{
‖h1−α

ℓ ∇Γg‖L2, ‖h
1−α
ℓ ∇Γ(1− Pℓ)g‖L2

}
(13)

for all g ∈ H1. The constant C3 > 0 depends solely on 0 ≤ α < 1, the γ-shape-regularity
of Tℓ, the operator norm of Pℓ : H

α → Hα, and on the boundary Γ.

12



Before we develop the proof of (13), we first state two possible choices for Pℓ in the
following two remarks.

Remark. The Scott-Zhang projection Pℓ from [SZ] can be defined in a way such that it
is stable in both L2 and H1. By interpolation arguments, Pℓ then is also stable in Hα for
0 ≤ α ≤ 1, and its operator norm does depend solely on σ(Tℓ).

Remark. Suppose that the mesh-refinement ensures that the L2-projection Πℓ onto S1(Tℓ)
is uniformly Hβ stable for some 0 < β < 1 and that the stability estimate depends only
on σ(Tℓ), e.g. newest vertex bisection is used throughout, cf. Section 5.1. By interpolation
arguments, Pℓ = Πℓ then is also stable in Hα for 0 ≤ α < β, and its operator norm does
depend solely on σ(Tℓ).

For the proof of Theorem 3, we define the locally averaged mesh-size function h̃ℓ ∈
S1(Tℓ) by

h̃ℓ(z) = max
{
hℓ(T ) : T ∈ Tℓ with z ∈ T

}
(14)

for all nodes z ∈ Nℓ. According to uniform shape-regularity, h̃ℓ ∈ S1(Tℓ) then is locally
equivalent to the local mesh-size hℓ ∈ P0(Tℓ).

Lemma 4. It holds pointwise on Γ that

C−1
5 h̃ℓ ≤ hℓ ≤ C5 h̃ℓ as well as C−1

6 ≤ |∇Γh̃ℓ| ≤ C6. (15)

The constants C5, C6 > 0 depend only on the γ-shape-regularity of Tℓ.

The heart of the proof of the approximation estimate (13) is the following estimate for

the interpolation norm of H1(h̃ℓ) and H
1.

Lemma 5. For u ∈ H1 and all 0 < θ < 1, it holds that

C−1
4 ‖u‖[H1(h̃ℓ),H1]θ

≤ ‖h̃1−θ
ℓ ∇Γu‖L2 + ‖h̃−θ

ℓ u‖L2. (16)

The constants C4 > 0 depends solely on θ and the surface area |Γ| of Γ.

Proof. The interpolation norm of u is given by

‖u‖2
[H1(h̃ℓ),H1]θ

=

∫
∞

0

t−2θK(t, u)2
dt

t
.

We first note that

K(t, u)2 =
(

inf
u=uh+u1

‖uh‖H1(h̃ℓ)
+ t‖u1‖H1

)2

≃ inf
u=uh+u1

‖uh‖
2
H1(h̃ℓ)

+ t2‖u1‖
2
H1 =: K2(t, u)

2,
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where the infimum is taken over all uh, u1 ∈ H1(h̃ℓ) = H1. Therefore, we may consider K2

instead of K. We proceed as for the interpolation of weighted L2-spaces [T, Section 23]
and choose the decomposition

u(x) = uh(x) + u1(x) := ψ(x)u(x) +
(
1− ψ(x)

)
u(x), where ψ(x) :=

t2

h̃2ℓ(x) + t2
.

We then have

K2(t, u)
2 ≤

∫

Γ

|ψu|2h̃2ℓ + |∇Γ(ψu)|
2h̃2ℓ + t2|(1− ψ)u|2 + t2|∇Γ ((1− ψ)u) |2 dΓ

=

∫

Γ

|ψu|2h̃2ℓ + t2|(1− ψ)u|2 dΓ +

∫

Γ

|∇Γ(ψu)|
2h̃2ℓ + t2|∇Γ ((1− ψ)u) |2 dΓ.

(17)

For the integrand of the second integral in (17), we compute

|∇Γ(ψu)|
2h̃2ℓ + t2|∇Γ ((1− ψ)u) |2 = |u∇Γψ + ψ∇Γu|

2h̃2ℓ + t2|u∇Γ(1− ψ) + (1− ψ)∇Γu|
2

= h̃2ℓ |u∇Γψ|
2 + t2u2|∇Γ(1− ψ)|2 + h̃2ℓ |ψ∇Γu|

2 + t2|(1− ψ)∇Γu|
2

+ 2h̃2ℓuψ∇Γψ · ∇Γu+ 2t2u(1− ψ)∇Γ(1− ψ) · ∇Γu.

The last line in the preceding equation adds up to zero. This is seen from

2h̃2ℓuψ∇Γψ · ∇Γu+ 2t2u(1− ψ)∇Γ(1− ψ) · ∇Γu = 2u(h̃2ℓψ − t2(1− ψ))∇Γψ · ∇Γu

and h̃2ℓψ − t2(1− ψ) = 0 by definition of ψ. Therefore, (17) becomes

K2(t, u)
2 ≤

∫

Γ

|ψu|2h̃2ℓ + t2|(1− ψ)u|2 dΓ +

∫

Γ

h̃2ℓ |u∇Γψ|
2 + t2u2|∇Γ(1− ψ)|2 dΓ

+

∫

Γ

h̃2ℓ |ψ∇Γu|
2 + t2|(1− ψ)∇Γu|

2 dΓ,

whence

‖u‖2[H1(h̃ℓ),H1]
θ

.

∫ ∞

0

t−2θ

∫

Γ

|ψu|2h̃2ℓ + t2|(1− ψ)u|2 dΓ
dt

t

+

∫ ∞

0

t−2θ

∫

Γ

h̃2ℓ |u∇Γψ|
2 + t2u2|∇Γ(1− ψ)|2 dΓ

dt

t

+

∫ ∞

0

t−2θ

∫

Γ

h̃2ℓ |ψ∇Γu|
2 + t2|(1− ψ)∇Γu|

2 dΓ
dt

t
.

(18)

Let us compute the three parts separately. Together with the identity

|ψu|2h̃2ℓ + t2|(1− ψ)u|2 = u2(t2h̃2ℓ)/(h̃
2
ℓ + t2),
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substitution t = sh̃ℓ, and Fubini’s theorem, the first double integral becomes

∫ ∞

0

t−2θ

∫

Γ

|ψu|2h̃2ℓ + t2|(1− ψ)u|2 dΓ
dt

t
=

∫

Γ

u2
∫ ∞

0

t−2θ t2h̃2ℓ

h̃2ℓ + t2

dt

t
dΓ

=
(∫

∞

0

s−2θ+1

s2 + 1
ds
)(∫

Γ

u2h̃−2θ+2
ℓ dΓ

)
.

Exactly the same arguments apply for the third double integral in (18) and show

∫
∞

0

t−2θ

∫

Γ

h̃2ℓ |ψ∇Γu|
2 + t2|(1− ψ)∇Γu|

2 dΓ
dt

t
=

(∫
∞

0

s−2θ+1

s2 + 1
ds
)(∫

Γ

|∇Γu|
2h̃−2θ+2

ℓ dΓ
)
.

Let us now compute the second double integral in (18). Using the identity

−∇Γ(1− ψ) = ∇Γψ = −
2t2h̃ℓ∇Γh̃ℓ

(h̃2ℓ + t2)2
,

the substitution t = sh̃ℓ, and Fubini’s theorem, we see

∫ ∞

0

t−2θ

∫

Γ

h̃2ℓ |u∇Γψ|
2 + t2u2|∇Γ(1− ψ)|2 dΓ

dt

t
=

∫

Γ

u2
∫ ∞

0

t−2θ 4t
4h̃2ℓ |∇Γh̃ℓ|2

(h̃2ℓ + t2)3

dt

t
dΓ

= 4
(∫ ∞

0

s−2θ+3

(s2 + 1)3
ds
)( ∫

Γ

u2h̃−2θ
ℓ |∇Γh̃ℓ|

2 dΓ
)
.

Finally, recall that |∇Γh̃ℓ| ≃ 1 from Lemma 4. Using the estimates for the three parts on
the right-hand side of (18), we thus arrive at

‖u‖[H1(h̃ℓ),H1]θ
. ‖h̃1−θ

ℓ u‖L2 + ‖h̃1−θ
ℓ ∇Γu‖L2 + ‖h̃−θ

ℓ u‖L2.

Now, h̃ℓ . 1 concludes the proof of (16).

Proof of Theorem 3. Let Jℓ denote an arbitrary Clément-type quasi-interpolation operator
which satisfies a local first-order approximation property

‖hβℓ (1− Jℓ)g‖L2 . ‖h1+β
ℓ ∇Γg‖L2 (19)

as well as local stability in H1

‖hβℓ∇Γ(1− Jℓ)g‖L2 . ‖hβℓ∇Γg‖L2, (20)

for all g ∈ H1 and all β ∈ R. A valid choice is, e.g., the Scott-Zhang projection from [SZ].
For this choice, the constants in (19)–(20) depend only on the γ-shape-regularity of Tℓ. For

β = 0, the estimates (19)–(20) and hℓ ≃ h̃ℓ give

‖(1− Jℓ)g‖L2 . ‖g‖H1(h̃ℓ)
as well as ‖(1− Jℓ)g‖H1 . ‖g‖H1

15



for all g ∈ H1 = H1(h̃ℓ). Using the interpolation theorem for the operator (1 − Jℓ) :

[H1(h̃ℓ), H
1]α → Hα and Lemma 5, we see

‖(1− Jℓ)g‖Hα . ‖g‖[H1(h̃ℓ),H1]α
. ‖h̃1−α

ℓ ∇Γg‖L2 + ‖h̃−α
ℓ g‖L2

for all g ∈ H1. Moreover, the projection property PℓJℓg = Jℓg and stability of Pℓ yield

‖(1− Pℓ)g‖Hα ≤ ‖(1− Jℓ)g‖Hα + ‖Pℓ(1− Jℓ)g‖Hα . ‖(1− Jℓ)g‖Hα

for all g ∈ H1. Combining the last two estimates and using the identity (1−Pℓ)(1− Jℓ) =
(1− Pℓ) and (1− Jℓ)g ∈ H1, we may bootstrap this results to see

‖(1− Pℓ)g‖Hα = ‖(1− Pℓ)(1− Jℓ)g‖Hα . ‖h̃1−α
ℓ ∇Γ(1− Jℓ)g‖L2 + ‖h̃−α

ℓ (1− Jℓ)g‖L2

for all g ∈ H1. By use of hℓ ≃ h̃ℓ and the estimates (19)–(20), we thus arrive at

‖(1− Pℓ)g‖Hα . ‖h̃1−α
ℓ ∇Γ(1− Jℓ)g‖L2 + ‖h̃−α

ℓ (1− Jℓ)g‖L2 . ‖h̃1−α
ℓ ∇Γg‖L2.

In addition, we now may bootstrap this estimate via (1−Pℓ)
2 = (1−Pℓ) and (1−Pℓ)g ∈ H1

to see

‖(1− Pℓ)g‖Hα = ‖(1− Pℓ)(1− Pℓ)g‖Hα . ‖h̃1−α
ℓ ∇Γ(1− Pℓ)g‖L2.

Altogether, the combination of the last two estimates concludes the proof.

4 A-posteriori error estimation

Recall that Φ̂⋆
ℓ is the Galerkin solution (5) with respect to the uniform refinement T̂ℓ of

Tℓ. Likewise, Φ̂ℓ is the Galerkin solution (6) with respect to T̂ℓ, computed from the same
right-hand side as Φℓ, i.e.:

〈〈Φℓ ,Ψℓ〉〉 = 〈(K + 1/2)Gℓ ,Ψℓ〉 for all Ψℓ ∈ P0(Tℓ),

〈〈Φ̂ℓ , Ψ̂ℓ〉〉 = 〈(K + 1/2)Gℓ , Ψ̂ℓ〉 for all Ψ̂ℓ ∈ P0(T̂ℓ).
(21)

We recall the following two results from [FP, Proposition 1.1]:

Lemma 6. With η⋆ℓ := |||Φ̂⋆
ℓ − Φ⋆

ℓ |||, it holds that

η⋆ℓ ≤ |||φ− Φ⋆
ℓ |||. (22)

Moreover, the estimate

|||φ− Φ⋆
ℓ ||| ≤ Crelη

⋆
ℓ (23)

is equivalent to the saturation assumption (7) with Csat =
(
1− C−2

rel

)1/2
.
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Lemma 7. The following four a-posteriori error estimators

ηℓ := |||Φ̂ℓ − Φℓ||| η̃ℓ := |||(1− πℓ)Φ̂ℓ|||

µℓ := ‖h1/2ℓ (Φ̂ℓ − Φℓ)‖L2 µ̃ℓ := ‖h1/2ℓ (1− πℓ)Φ̂ℓ‖L2 .
(24)

satisfy the equivalence estimates

ηℓ ≤ η̃ℓ ≤ C7σ(Tℓ)µ̃ℓ and µ̃ℓ ≤ µℓ ≤ C8ηℓ. (25)

The constants C7, C8 > 0 depend solely on Γ.

We are now in position to prove estimate (9).

Theorem 8. Assume that the sequence of meshes (Tℓ)ℓ∈N allows for a sequence of L2-
projections Πℓ which is uniformly Hβ-stable for some β > 1/2. Define the data oscillations
by

oscℓ := ‖h1/2ℓ ∇Γ(1−Πℓ)g‖L2.

Let τℓ ∈ {ηℓ, η̃ℓ, µℓ, µ̃ℓ}. Then, there is a constant C9 > 0 which depends solely on Γ and
γ-shape-regularity of Tℓ, such that we have efficiency

C−1
9 τℓ ≤ |||φ− Φℓ|||+ oscℓ. (26)

Under the saturation assumption (7), we have reliability

C−1
10 |||φ− Φℓ||| ≤ τℓ + oscℓ, (27)

where C10 > 0 depends solely on Γ, γ, and Csat.

Proof. The proof follows along the lines of [AFGKMP] but is now transferred to 3D. By
Lemma 7, it suffices to consider τℓ = ηℓ. According to the best-approximation property of
the Galerkin scheme, we have |||φ− Φ⋆

ℓ ||| ≤ |||φ− Φℓ||| as well as |||Φ̂
⋆
ℓ − Φ⋆

ℓ ||| ≤ |||Φ̂⋆
ℓ − Φℓ|||

respectively |||Φ̂ℓ − Φℓ||| ≤ |||Φ̂ℓ − Φ⋆
ℓ |||. Using the triangle inequality and Lemma 6, we

obtain

ηℓ = |||Φℓ − Φ̂ℓ||| ≤ η⋆ℓ + |||Φ̂⋆
ℓ − Φ̂ℓ|||

≤ |||φ− Φ⋆
ℓ |||+ |||Φ̂⋆

ℓ − Φ̂ℓ|||

≤ |||φ− Φℓ|||+ |||Φ̂⋆
ℓ − Φ̂ℓ|||

. |||φ− Φℓ|||+ ‖(K + 1
2
)(g −Gℓ)‖H1/2

. |||φ− Φℓ|||+ ‖g −Gℓ‖H1/2 ,

where the first . estimate follows from stability of Galerkin schemes. Finally, Theorem 3
applied for Pℓ = Πℓ and α = 1/2 shows estimate (26). In the same manner, the triangle
inequality and Lemma 6 together with the saturation assumption (7) show

|||φ− Φℓ||| ≤ |||φ− Φ⋆
ℓ |||+ |||Φ⋆

ℓ − Φℓ|||

. η⋆ℓ + |||Φ⋆
ℓ − Φℓ|||

≤ ηℓ + |||Φℓ − Φ⋆
ℓ |||+ |||Φ̂ℓ − Φ̂⋆

ℓ |||

. ηℓ + ‖g −Gℓ‖H1/2 .

Another application of Theorem 3 shows the desired result.
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Remark. Theorem 8 also holds if Φℓ and Φ̂ℓ are computed with different right-hand sides,
namely

〈〈Φℓ ,Ψℓ〉〉 = 〈(K + 1/2)Gℓ ,Ψℓ〉 for all Ψℓ ∈ P0(Tℓ)

〈〈Φ̂ℓ , Ψ̂ℓ〉〉 = 〈(K + 1/2)Ĝℓ , Ψ̂ℓ〉 for all Ψ̂ℓ ∈ P0(T̂ℓ)

To see this, note that

‖g − Ĝℓ‖H1/2(Γ) ≤ ‖g −Gℓ‖H1/2(Γ) + ‖Gℓ − Ĝℓ‖H1/2(Γ) . ‖g −Gℓ‖H1/2(Γ),

since

‖Gℓ − Ĝℓ‖H1/2(Γ) = ‖Π̂ℓ(Gℓ − g)‖H1/2(Γ) . ‖g −Gℓ‖H1/2(Γ).

5 Adaptive Mesh-refining algorithm

In this chapter, we introduce the adaptive algorithm. For the local mesh-refinement, we
use the newest-vertex bisection algorithm see e.g. [V, Chapter 4] as well as Figure 1. The
properties of the resulting mesh-refinement are collected in Section 5.1. Section 5.2 deals
with the a-priori convergence of computed discrete solutions as well as the a-priori conver-
gence of the approximated data. In Section 5.3, we finally state the adaptive algorithm.
The main result of this work is stated in Theorem 15: It states that the overall error esti-
mator γℓ is contractive up to the norm of the difference of two successive Galerkin solutions
and the difference of two successive data approximations. Together with the a-priori con-
vergence results from Section 5.2, we obtain that the adaptive algorithm drives the overall
error estimator to zero. Under the saturation assumption (7), Theorem 8 finally yields
convergence of the computed discrete solutions towards the exact solution.

5.1. Newest Vertex Bisection. The newest vertex bisection algorithm is an edge-based
refinement algorithm. For a given initial mesh T0, one choses for every element T ∈ T0 a
so-called reference edge. Given a mesh Tℓ with a subset Eℓ of its edges, one performs the
following steps to obtain Tℓ+1:

Algorithm 9 (NVB). Input: mesh Tℓ, set of marked edges E (0)
ℓ := Eℓ, counter i := 0.

Output: refined mesh Tℓ+1

(i) Define U (i) :=
⋃

T,T ′∈Tℓ

T∩T ′∈E
(i)
ℓ

{
e ∈ Eℓ \ E

(i)
ℓ | e reference edge of T or T ′

}

(ii) If U (i) 6= ∅, define E (i+1)
ℓ := E (i)

ℓ ∪ U (i), increase counter i 7→ i+ 1 and goto (i).
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replacemen

Figure 1: For each triangle T ∈ Tℓ, there is one fixed reference edge, indicated by the
double line (left, top). Refinement of T is done by bisecting the reference edge, where
its midpoint becomes a new node. The reference edges of the son triangles T ′ ∈ Tℓ+1 are
opposite to this newest vertex (left, bottom). To avoid hanging nodes, one proceeds as
follows: We assume that certain edges of T , but at least the reference edge, are marked for
refinement (top). Using iterated newest vertex bisection, the element is then split into 2, 3,
or 4 son triangles (bottom). If all elements are refined by three bisections (right, bottom),

we obtain the so-called uniform bisec(3)-refinement which is denoted by T̂ℓ.

(iii) With E (i)
ℓ being the marked edges, refine each element T ∈ Tℓ according to the rules

shown in Figure 1.

In the next lemma, we collect some properties of the newest-vertex bisection algorithm.

Lemma 10. Consider a coarse mesh T0 and a sequence of meshes (Tℓ)ℓ∈N generated by

algorithm NVB. Let T̂ℓ denote the uniform bisec(3)-refinement of Tℓ. Then, there holds the
following:

(i) is obtained by successive refinement, i.e., P0(Tℓ) ⊆ P0(Tℓ+1),

(ii) the fine meshes are obtained by successive refinement, i.e., P0(T̂ℓ) ⊆ P0(T̂ℓ+1),

(iii) is uniformly shape regular,

(iv) each element T ∈ Tℓ\Tℓ+1 which is refined, is the union of its sons T ′ ∈ Tℓ+1, i.e.
T =

⋃{
T ′ ∈ Tℓ+1 : T ′ ⊆ T

}
. Moreover, there is a constant 0 < q < 1 with

hℓ+1(T
′) ≤ q hℓ(T ) for all sons T ′ ∈ Tℓ+1 of a refined element T ∈ Tℓ\Tℓ+1.

(v) allows for uniformly H1-stable L2-projections onto S1(Tℓ).

Proof. It is well known that the NVB algorithm fulfills assumptions (i)-(iv). In the recent
work [KPP] it is shown that the newest-vertex bisection algorithm does even allow for
uniformly H1-stable L2-projections onto S1(Tℓ).

5.2. A-priori convergence of Galerkin solutions. The following elementary result has
already been proved in [BV, Lemma 6.1]. It actually states that the orthogonal projections
on any sequence of nested subspaces of some Hilbert space a-priori converge strongly in
the norm of the underlying space.
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Lemma 11. Let H be a Hilbert space and Xℓ ⊂ Xℓ+1 be a sequence of nested closed
subspaces of H. Let Pℓ : H → Xℓ be the orthogonal projection onto Xℓ and x ∈ H. Then,
the limit x∞ := limℓ Pℓx ∈ H exists and belongs to the closure of X∞ :=

⋃∞

ℓ=0Xℓ with
respect to H.

Before we prove in Proposition 13 below that our adaptive algorithm for the lowest-
order Galerkin BEM (5)–(6) leads to a-priori convergent sequences of Φ⋆

ℓ ,Φℓ ∈ P0(Tℓ), we
first prove the a-priori convergence of the approximated data Gℓ = Πℓg.

Lemma 12. Suppose that the sequence of meshes Tℓ satisfies Assumptions (i) and (v) of
Lemma 10. Then, for given g ∈ Hβ and Gℓ := Πℓg, the L2-limit g∞ := limℓGℓ exists and
satisfies g∞ ∈ Hβ. Moreover, there holds weak convergence

Gℓ ⇀ g∞ as ℓ→ ∞ (28)

in Hβ as well as strong convergence

lim
ℓ→∞

‖Gℓ − g∞‖Hα = 0 (29)

for any 0 ≤ α < β.

Proof. According to Lemma 11, the limit g∞ := limℓ→∞Gℓ exists in L2. Fix 0 < α <
β. According to uniform Hβ-stability, the sequence (Gℓ) is a bounded sequence in Hβ.
Therefore, there is a weakly convergent subsequence (Gℓk) of (Gℓ) such that

Gℓk ⇀ g̃∞ ∈ Hβ as k → ∞

with a certain limit g̃∞ ∈ Hβ. The Rellich theorem now proves that the subsequence (Gℓk)
of (Gℓ) satisfies even strong convergence

Gℓk → g̃∞ ∈ Hα.

In particular, this provides convergence in L2, and the uniqueness of limits yields equality
g∞ = g̃∞. First, we thus obtain that g∞ ∈ Hβ.

Second, we can apply the same argument to see that each subsequence (Gℓk) of (Gℓ)
has a subsequence (Gℓkj

) which converges weakly to g∞ in Hβ. We argue by contradiction

to see that this implies weak convergence (28) of the entire sequence: Assume that (Gℓ)
does not converge weakly to g∞. By definition, there is some functional ψ ∈ H−β, some
scalar ε > 0, and some subsequence (Gℓk) of (Gℓ) such that

|ψ(Gℓk)− ψ(g∞)| ≥ ε

Consequently, each subsequence (Gℓkj
) of (Gℓk) satisfies this estimate as well and thus

cannot converge weakly to g∞. This, however, yields a contradiction and proves Gℓ ⇀ g∞
weakly in Hβ. Finally, the Rellich compactness theorem even predicts Gℓ → g∞ strongly
in Hα for α < β.

20



With the aid of the last two lemmata, we can show that any adaptive algorithm for the
solution of (5) or (6) converges a-priori.

Proposition 13. Suppose that the sequence of meshes Tℓ satisfies Assumptions (i) and (v)
of Lemma 10. Let Φ⋆

ℓ and Φℓ be the Galerkin solutions of (5) and (6). Then, there exist
limits φ⋆

∞, φ∞ ∈ H−1/2 such that

lim
ℓ→0

|||Φ⋆
ℓ − φ⋆

∞||| = 0 = lim
ℓ→0

|||Φℓ − φ∞|||.

The same holds under Assumptions (ii) and (v) of Lemma 10 for the fine mesh solutions Φ̂⋆
ℓ

and Φ̂ℓ, and the limits are denoted by φ̂⋆
∞ and φ̂∞. However, none of the limits φ⋆

∞, φ∞, φ̂
⋆
∞,

and φ̂∞ ∈ H−1/2 coincide in general.

Proof of a-priori convergence of Φ⋆
ℓ resp. Φ̂⋆

ℓ . Recall that the simple-layer potential V is
linear, elliptic, continuous, and symmetric. Therefore, the Galerkin projection which maps
φ to Φ⋆

ℓ resp. Φ̂⋆
ℓ is the orthogonal projection with respect to the energy scalar product

〈〈· , ·〉〉. Consequently, Lemma 11 applies and provides limits φ⋆
∞ and φ̂⋆

∞.

Proof of a-priori convergence of Φℓ and Φ̂ℓ. Since Φℓ and Φ̂ℓ are computed with respect
to the ℓ-dependent right hand side Gℓ, we note that Φℓ and Φ̂ℓ are not the orthogonal
projections of φ. Hence, we must not use Lemma 11 directly. Recall that the approximated
data converge to some limit g∞ by Lemma 12. Denote by Φ⋆

∞,ℓ the Galerkin solution to (5)
with right-hand side g∞. We may use Lemma 11 to see that the limit Φ⋆

∞,ℓ → φ∞ exists

in H−1/2. Moreover, there holds

|||φ∞ − Φℓ||| ≤ |||φ∞ − Φ⋆
∞,ℓ|||+ |||Φ⋆

∞,ℓ − Φℓ|||.

Now, the first term tends to zero by definition, and the second term is bounded by stability
of Galerkin schemes

|||Φ⋆
∞,ℓ − Φℓ||| . ‖(1/2 +K)(g∞ −Gℓ)‖H1/2 . ‖g∞ −Gℓ‖H1/2

and thus tends to zero by Lemma 12. This proves a-priori convergence of Φℓ with limit φ∞

in H−1/2. The same argument applies to the sequence of Galerkin solutions Φ̂ℓ.

5.3. Convergent adaptive algorithm. The adaptive algorithm which we introduce
below, is steered by the local refinement indicators

γℓ(T )
2 := ‖h1/2ℓ (1− πℓ)Φ̂ℓ‖

2
L2(T ) + ‖h1/2ℓ ∇Γ(g −Gℓ)‖

2
L2(T ) = µ̃ℓ(T )

2 + oscℓ(T )
2. (30)

We stress that by use of the above choice for

γ2ℓ =
∑

T∈Tℓ

γℓ(T )
2, (31)

the computation of the coarse-mesh solution Φℓ is avoided, and only Φ̂ℓ has to be computed.
The adaptive algorithm reads as follows:
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Algorithm 14. Input: Initial mesh T0, parameter θ ∈ (0, 1), counter ℓ := 0.

(i) Obtain T̂ℓ by uniform bisec(3)-refinement of Tℓ, see Figure 1.

(ii) Compute solution Φ̂ℓ of (6) with respect to T̂ℓ.

(iii) Compute refinement indicators γℓ(T ) for all T ∈ Tℓ.

(iv) Choose a set Mℓ ⊆ Tℓ with minimal cardinality such that

∑

T∈Mℓ

γℓ(T )
2 ≥ θ

∑

T∈Tℓ

γℓ(T )
2 (32)

with some fixed parameter 0 < θ < 1.

(v) Set Eℓ to be the set of reference edges of the elements in Mℓ.

(vi) Refine mesh Tℓ according to Algorithm 9 and obtain Tℓ+1.

(vii) Update counter ℓ := ℓ+ 1 and goto (i).

Now, we state the main result of this section.

Theorem 15. Algorithm 14 guarantees the existence of constants 0 < κ < 1 and C11 > 0
such that

γℓ+1 ≤ κ γℓ + C11

(
‖Φ̂ℓ+1 − Φ̂ℓ‖

2
H−1/2 + ‖Πℓ+1g − Πℓg‖

2
H1/2

)1/2
(33)

for all ℓ ∈ N0. In particular, this implies estimator convergence

lim
ℓ→0

γℓ = 0. (34)

The constant κ = 1 − (1 − q)θ depends on the adaptivity parameter θ and the constant
0 < q < 1 from the mesh-refinement of Lemma 10. The constant C11 > 0 depends solely
on the initial mesh T0 and on Γ.

Proof. We consider γℓ+1. The triangle inequality yields

γ2ℓ+1 = ‖h1/2ℓ+1(1− πℓ+1)Φ̂ℓ+1‖
2
L2

+ ‖h1/2ℓ+1∇Γ(g − Πℓ+1g)‖
2
L2

≤
(
‖h1/2ℓ+1(1− πℓ+1)Φ̂ℓ‖L2 + ‖h1/2ℓ+1(1− πℓ+1)(Φ̂ℓ+1 − Φ̂ℓ)‖L2

)2
+ ‖h1/2ℓ+1∇Γ(g −Πℓ+1g)‖

2
L2

≤
(
‖h1/2ℓ+1(1− πℓ+1)Φ̂ℓ‖L2 + ‖h1/2ℓ+1(Φ̂ℓ+1 − Φ̂ℓ)‖L2

)2
+ ‖h1/2ℓ+1∇Γ(g −Πℓ+1g)‖

2
L2
,

(35)

where we have used the elementwise estimate

‖(1− πℓ+1)(Φ̂ℓ+1 − Φ̂ℓ)‖L2(T ) ≤ ‖Φ̂ℓ+1 − Φ̂ℓ‖L2(T ) for all T ∈ Tℓ+1
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in the second step. We now use Young’s inequality and the inverse inequality of Lemma 1
to see, for arbitrary δ > 0,

γ2ℓ+1 ≤ (1 + δ)‖h1/2ℓ+1(1− πℓ+1)Φ̂ℓ‖
2
L2

+ C2
1 (1 + δ−1)‖Φ̂ℓ+1 − Φ̂ℓ‖

2
H−1/2

+ ‖h1/2ℓ+1∇Γ(g − Πℓ+1g)‖
2
L2
.

By use of the inverse inequality of Lemma 2, we proceed analogously for the oscillation
term,

‖h1/2ℓ+1∇Γ(g −Πℓ+1g)‖
2
L2

≤
(
‖h1/2ℓ+1∇Γ(g − Πℓg)‖L2 + ‖h1/2ℓ+1∇Γ(Πℓ+1g − Πℓg)‖L2

)2

≤ (1 + δ)‖h1/2ℓ+1∇Γ(g −Πℓg)‖
2
L2

+ C2
2 (1 + δ−1)‖Πℓ+1g − Πℓg‖

2
H1/2,

so that ultimately

γ2ℓ+1 ≤ (1 + δ)
[
‖h1/2ℓ+1(1− πℓ+1)Φ̂ℓ‖

2
L2

+ ‖h1/2ℓ+1∇Γ(g − Πℓg)‖
2
L2

]

+ C2
11(1 + δ−1)

[
‖Φ̂ℓ+1 − Φ̂ℓ‖

2
H−1/2 + ‖Πℓ+1g − Πℓg‖

2
H1/2

]

with C11 = max{C1, C2}. Now, we consider the first term of (35) Tℓ-elementwise,

∆(T ) := ‖h1/2ℓ+1(1− πℓ+1)Φ̂ℓ‖
2
L2(T ) + ‖h1/2ℓ+1∇Γ(g −Πℓg)‖

2
L2(T ) for T ∈ Tℓ.

For T ∈ Mℓ, there holds hℓ+1|T ≤ qhℓ|T and (1− πℓ+1Φ̂ℓ) = 0, and so

∆(Mℓ) ≤ q
∑

T∈Mℓ

‖h1/2ℓ ∇Γ(g − Πℓg)‖
2
L2(T ) ≤ qγℓ(Mℓ)

2.

Contrary, for T ∈ Tℓ \Mℓ it holds that

∆(T ) ≤ ‖h1/2ℓ (1− πℓ)Φ̂ℓ‖
2
L2(T ) + ‖h1/2ℓ ∇Γ(g −Πℓg)‖

2
L2(T ) = γℓ(T )

2,

as hℓ ≤ hℓ+1 and πℓ+1 being a better approximation as πℓ. Hence, ∆(Tℓ\Mℓ) ≤ γℓ(Tℓ\Mℓ)
2.

Splitting the first term into marked and non-marked elements, we have

∆(Tℓ) = ∆(Mℓ) + ∆(Tℓ \Mℓ) ≤ qγℓ(Mℓ)
2 + γℓ(Tℓ \Mℓ)

2 = γ2ℓ + (q − 1)γℓ(Mℓ)
2

≤
(
1 + (q − 1)θ

)
γ2ℓ ,

from which we conclude, for all δ > 0,

γ2ℓ+1 ≤ (1 + δ)
(
1 + (q − 1)θ

)
γ2ℓ + C2

11(1 + δ−1)
[
‖Φ̂ℓ+1 − Φ̂ℓ‖

2
H−1/2 + ‖Πℓ+1g −Πℓg‖

2
H1/2

]
.

We now choose κ :=
(
1+(q−1)θ

)
< 1. Optimizing the choice of the free parameter δ > 0,

we see that the previous estimate is equivalent to

γℓ+1 ≤ κ γℓ + C11

(
‖Φ̂ℓ+1 − Φ̂ℓ‖

2
H−1/2 + ‖Πℓ+1g − Πℓg‖

2
H1/2

)1/2
.
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Since P0(T̂ℓ) ⊆ P0(T̂ℓ+1) by Lemma 10, we can apply Proposition 13 to (Φ̂ℓ)ℓ∈N and obtain

‖Φ̂ℓ+1− Φ̂ℓ‖2H−1/2 → 0 as ℓ→ ∞. Lemma 12 reveals ‖Πℓ+1g−Πℓg‖2H1/2 → 0. We thus infer
the perturbed contraction

γℓ+1 ≤ κγℓ + o(1).

This is the estimator reduction from [AFP+, Lemma 2.3]. Again, it follows from elementary
calculus that γℓ → 0 as ℓ→ ∞.

6 Numerical Experiments

6.1. Specification of the problem. We consider the three-dimensional L-shaped domain
depicted in Fig. 2. It is composed of three cubes with side length 0.5 and a common edge
in the z-axis. The uniform initial mesh T0 consists of 56 rectangular triangles. We choose

Figure 2: Initial mesh of the L–shaped domain.

the constant extension (in z-direction) of the singular solution of the two-dimensional L-
shaped domain as solution of the considered three-dimensional Dirichlet boundary value
problem (2):

u(r, ϕ, z) = r2/3 sin(2/3ϕ) (36)

in cylindrical coordinates x = r cosϕ, y = r sinϕ, z = z. Thus, we have a non-smooth
conormal derivative φ along the reentrant edge, but the trace g of u is zero on the adjacent
faces.

6.2. Computation of Galerkin solution and preconditioning. The computations
were performed by an implementation [OSW] of the Galerkin boundary element method
based on semi-analytic integration formulae [RS, Appendix C.2], the fast multipole method
[GR], and an artificial multilevel preconditioner [S03] for the Galerkin matrix of the simple-
layer potential. The latter is a modification of the BPX preconditioner [BPX, FS]. In case

24



of a sequence of uniformly refined meshes (Tℓ)ℓ∈N0
, the preconditioner for the mesh TL is

based on the weighted sum

As =

L∑

ℓ=0

h−2s
ℓ (πℓ − πℓ−1)

of L2 projections πℓ : L2 → P0(Tℓ) (and π−1 = 0). Due to the spectral equivalence
inequalities [O98, Theorem 2]

c1‖w‖
2
H−1/2 ≤ 〈A−1/2w,w〉Γ ≤ c2L2‖w‖

2
H−1/2 for all w ∈ P0(TL), (37)

the operator A−1/2 is a suitable preconditioner for the simple-layer potential operator. The
inversion of the Galerkin matrix of A−1/2 can be avoided due to the identity

(
A

−1/2
h

)−1

=M−1
h A

1/2
h M−1

h

which involves the inversion of the diagonal mass matrices Mh only, where

A
1/2
h [i, j] = 〈A1/2Ψj ,Ψi〉 and Mh[i, j] = 〈Ψk ,Ψℓ〉.

This preconditioner has been extended to adaptively refined meshes [O06, p. 69] by an
extension to a uniform mesh. In practice, the artificial multilevel preconditioner does not
utilize a sequence of nested meshed constructed by uniform refinement, but a sequence of
artificial spaces constructed by the geometrical clustering of the finest mesh as used for the
fast multipole method.

6.3. Computation of upper error bound. Reliability of the proposed error estimators
is (for the non-perturbed problem) equivalent to the saturation assumption (7), see (27).
However, since we prescribe the exact solution φ ∈ L2(Γ), we can compute a reliable
error bound errℓ. To that end, remember first that πℓ : L2(Γ) → P0(Tℓ) is the L2(Γ)-
orthogonal projection. Using the triangle inequality and the best approximation property
of the Galerkin solution Φ⋆

ℓ with respect to the energy norm ||| · ||| yields

|||φ− Φℓ||| ≤ |||φ− Φ⋆
ℓ |||+ |||Φ⋆

ℓ − Φℓ||| ≤ |||φ− πℓφ|||+ |||Φ⋆
ℓ − Φℓ|||.

Now, the second term is bounded by oscℓ as in the proof of Theorem 8. To bound the first
term, we use the approximation estimate [CP06, Theorem 4.1] for πℓ and see

|||φ− πℓφ||| ≃ ‖φ− πℓφ‖H−1/2(Γ) . ‖h1/2ℓ (φ− πℓφ)‖L2(Γ) ≤ ‖h1/2ℓ (φ− Φℓ)‖L2(Γ),

where we used the Tℓ-piecewise best approximation property of πℓ in the last step. Setting
errℓ := ‖h1/2ℓ (φ− Φℓ)‖L2(Γ), we see

|||φ− Φℓ||| . errℓ + oscℓ, (38)

and hence the right-hand side provides reliable feedback on the energy error.
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6.4. Uniform refinement. In the case of uniform refinement, the sequence of meshes
(Tℓ)ℓ∈N0 is obtained by uniform bisec(3)-refinement, i.e. Tℓ+1 is a refinement of Tℓ, where all
edges are bisected. The Φℓ ∈ P0(Tℓ) are the solutions of the Galerkin formulations (6) with

right-hand side Gℓ ∈ S1(Tℓ), whereas Φ̂ℓ are the solutions of the Galerkin formulations (6)

on the uniformly refined mesh T̂ℓ = Tℓ+1 with the same right-hand side, see (21). We define

errunif,ℓ := errℓ = ‖h1/2ℓ (φ− Φℓ)‖L2(Γ)

oscunif,ℓ := oscℓ = ‖h1/2ℓ ∇Γ(g −Gℓ)‖L2(Γ)

µ̃unif,ℓ := µℓ = ‖h1/2ℓ (1− πℓ)Φ̂ℓ)‖L2(Γ).

Carefully note that the computation of Φℓ is, in principle, avoided by Algorithm 14. In
fact, we compute it only to obtain the reliable error bound errunif,ℓ.

6.5. Adaptive refinement. In the case of adaptive refinement, the sequence of meshes
(Tℓ)ℓ∈N0 is obtained by employing Algorithm 14. In fact, there is no need to store the meshes

Tℓ, since the computation of Φℓ is avoided. We merely need to store T̂ℓ, consequently we
approximate the right-hand side g on these finer meshes. Altogether, the Galerkin solution
Φ̂ℓ ∈ P0(T̂ℓ) is obtained by solving

〈〈Φ̂ℓ , Ψ̂ℓ〉〉 = 〈(K + 1/2)Ĝℓ , Ψ̂ℓ〉 for all Ψ̂ℓ ∈ P0(T̂ℓ). (39)

We define

erradap,ℓ := errℓ = ‖ĥ1/2ℓ (φ− Φ̂ℓ)‖L2(Γ)

oscadap,ℓ := oscℓ = ‖ĥ1/2ℓ ∇Γ(g − Ĝℓ)‖L2(Γ)

µ̃adap,ℓ := µℓ = ‖h1/2ℓ (1− πℓ)Φ̂ℓ)‖L2(Γ).

The same computation that resulted in (38) yields the reliable error bound

|||φ− Φ̂ℓ||| . erradap,ℓ + oscadap,ℓ.

6.6. Comparison of uniform and adaptive approach. First of all, we compare the
rate of convergence for uniform and adaptive approach by plotting the involved quantities
over the number of degrees of freedom. For uniform refinement, we plot errunif,ℓ, µ̃unif,ℓ,
and oscunif,ℓ over the number of boundary elements #Tℓ, where (Tℓ)ℓ∈N0 is the sequence of
uniform meshes. For adaptive refinement, we plot erradap,ℓ, µ̃adap,ℓ, and oscadap,ℓ over the

number of boundary elements #T̂ℓ, where (T̂ℓ)ℓ∈N0 is the sequence of temporary, bisec(3)-

refined meshes T̂ℓ of the meshes Tℓ generated by Algorithm 14. Note that, in case of uniform
mesh refinement, the optimal order of convergence of lowest-order Galerkin boundary el-
ement methods is O(h3/2) ≃ O(#T −3/4

ℓ ). However, the example is chosen in such a way
that uniform mesh refinement can be predicted to exhibit a reduced order of convergence.
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Furthermore, we plot the reliable error bounds errunif,ℓ and erradap,ℓ over the time that
is consumed for their computation. Since the adaptive algorithm depends on the whole
history of computed solutions, the time consumption is measured differently for the uniform
and the adaptive approach:

• For uniform mesh-refinement, tunif,ℓ is the time elapsed for ℓ uniform mesh-refinements
of the initial mesh T0, the assembly of the Galerkin data with respect to Tℓ, and the
computation of the Galerkin solution Φℓ with respect to Tℓ.

For adaptive mesh-refinement, the computational time is defined in an inductive manner:

• We define tadap,−1 := 0.

• For ℓ ≥ 0, tadap,ℓ is the sum of the previous steps tadap,ℓ−1 plus the time elapsed for

the uniform refinement of Tℓ to obtain T̂ℓ, the assembly of the Galerkin data with
respect to T̂ℓ, the computation of the Galerkin solution and the local contributions of
the error indicators, the marking step, and the local refinement of Tℓ to obtain Tℓ+1.

6.7. Discussion of the numerical experiments. In Fig. 3 and Fig. 4, we compare the
errors of approximations obtained by uniform mesh refinement and by use of the adaptive
approach of Algorithm 14 with parameters θ = 0.4 and θ = 0.5, respectively. We end
up for Tℓ with 114,912 triangles after 30 adaptive refinement steps for θ = 0.4 and with
123,134 triangles after 26 adaptive refinement steps for θ = 0.5. In both cases, we observe
a large adaptivity ratio of hmax/hmin ≈ 362.

100 1000 10000 1e+05 1e+06
number of elements

0,0001

0,001

0,01

0,1

N−1/3

N−3/4errunif,ℓ
µ̃unif,ℓ
oscunif,ℓ
erradap,ℓ
µ̃adap,ℓ
oscadap,ℓ

Figure 3: Error plots for uniform and the adaptive refinement with parameter θ = 0.4.
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oscunif,ℓ
erradap,ℓ
µ̃adap,ℓ
oscadap,ℓ

Figure 4: Error plots for uniform and the adaptive refinement with parameter θ = 0.5.

For the uniform refinement with up to 917,504 triangles, we observe a convergence of
the energy error errℓ of the Neumann data like N−1/3, where N denotes the number of
triangles as well as the number of degrees of freedom. This is in perfect agreement with
the regularity of the predescribed solution u ∈ H5/3(Ω), i.e., φ ∈ H1/6(Γ), and the a priori
error estimate for uniform refinement

‖φ− Φℓ‖H−1/2 . h
s+1/2
ℓ |φ|Hs for all possible s ∈ [0, 1].

For the data approximation error oscℓ, we observe a higher order of convergence, as the
Dirichlet data g is zero at the reentrant edge and the adjacent faces.

For the adaptive refinement, we observe a significantly higher order of convergence than
for the uniform refinement. As we use an isotropic refinement to resolve an edge singularity,
we cannot expect to get the optimal convergence of N−3/4. But we observe an order of
convergence of approximately 0.7, i.e., close to the optimum. The error estimator µ̃adap,ℓ

proves to be a good estimator.
In Fig. 5, we compare the errors errunif,ℓ and erradap,ℓ to the related computational

times. On a first glance, the definition of tadap,ℓ and tunif,ℓ seems to favor uniform mesh
refinement. However, we observe that the adaptive computations outperform the uniform
computations significantly. Only for small computational times and approximately 10,000
uniform elements, the uniform refinement gives slightly smaller errors. Moreover, the
computational times are comparable for both values of θ.

Note that the computations in the adaptive algorithm do not take advantage of the
fact that only parts of the geometry are refined in each step and thus significant parts
of the matrices could be reused. Instead the matrices are generated from the scratch
on each refinement level. Therefore, clever implementation would speed up the adaptive
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Figure 5: Errors errunif,ℓ and erradap,ℓ over computational times for uniform refinement and
adaptive refinement with parameter θ ∈ {0.4, 0.5}.

computations significantly. In addition, the parameters of the FMM are chosen to be fixed
during the whole adaptive algorithm and are large enough to guarantee no loss of accuracy
for the finest levels. If we adjusted the parameters in a suitable fashion to the actual error
on each level, we would expect an additional speedup of the computations.

7 Conclusions

7.1. Analytical Results. We proposed and analyzed an adaptive mesh-refinement al-
gorithm for the numerical solution of the Laplace equation by a lowest-order Galerkin-
boundary element method. To enable the use of fast methods for boundary integral
equations, we approximated the Dirichlet data by discrete functions by means of the L2-
projection onto piecewise linears. The resolution of the data approximation is included
into the adaptive algorithm. This work transfers and extends the analysis of [AFGKMP]
to three dimensions. In the latter work, nodal interpolation for the approximation of the
Dirichlet data is used. However, in the three-dimensional case nodal interpolation is not
feasible anymore forH1-functions. We propose to use Scott-Zhang-type quasi-interpolation
operators or L2-orthogonal projections. To that end, (local) approximation estimates for
quasi-interpolation operators in fractional-order Sobolev spaces were shown. We rigorously
prove that the proposed adaptive algorithm drives the error estimator to zero. The conver-
gence of the computed discrete solutions to the exact solution in the energy norm |||φ−Φℓ|||
was shown under the so-called saturation assumption.

7.2. Numerical Results. In the numerical experiment, the adaptive algorithm shows a
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significantly higher order of convergence than the computations based on uniform mesh-
refinement. It almost regains the optimal order even with the restriction to isotropic
mesh-refinement, which cannot be optimal for problems with generic edges singularities;
see [CMPS, Section 7.3]. Regarding the computational error, the adaptive algorithm is
faster than the computations with uniformly refined meshes, even though our BEM imple-
mentation is not adapted to the adaptive algorithm yet.

7.3. Future Work. For an adaptive algorithm driven by the weighted-residual error
estimator from [CMS], even quasi-optimality could be proved recently in [FKMP]. We aim
to combine the ideas presented in the work at hand with those of [FKMP] to prove quasi-
optimal convergence rates for adaptive algorithms driven by h − h/2-based estimators.
Furthermore, as already mentioned, the implementation that was used for the experiments
in this work was not fitted to the adaptive approach. Including the effective update of the
system matrix into the adaptive algorithm, as was done e.g. in [DJ], will certainly enhance
computational times. In addition, we aim to include the choice of the parameters used
for the Fast-Multipole method into the adaptive algorithm, thereby raising the accuracy
that can be achieved by coupling of the Fast-Multipole method and adaptivity with lowest
expenses.
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