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EXISTENCE ANALYSIS FOR A MODEL DESCRIBING FLOW OF AN

INCOMPRESSIBLE CHEMICALLY REACTING NON-NEWTONIAN FLUID

MIROSLAV BULÍČEK AND PETRA PUSTĚJOVSKÁ

Abstract. We consider a system of PDE’s describing steady motions of an incompressible

chemically reacting non-Newtonian fluid. The system of governing equations composes of the

convection-diffusion equation for concentration and generalized Navier-Stokes equations where
the generalized viscosity depends polynomially on the shear rate (the modulus of the symmetric

part of the velocity gradient) and the coupling is due dependence of the power-law index on
the concentration. This dependence of power-law index on the solution itself causes main
difficulties in the analysis of the relevant boundary value problem. We generalize the Lipschitz

approximation method and show the existence of a weak solution provided that the minimal
value of the power-law exponent is bigger than d/2.

1. Introduction

We are interested in developing an existence theory for steady flows of incompressible generalized
Navier-Stokes equations, wherein the viscosity is a polynomial function of the shear-rate (the
modulus of the symmetric velocity gradient) with the power of polynomial dependence on the
concentration coupled with convection–diffusion equation for concentration. Namely, we study the
following system of PDE’s

div v = 0,(1.1)

div(v ⊗ v)− divS(c,Dv) = −∇π + f ,(1.2)

div(cv)− div qc(c,∇c,Dv) = 0,(1.3)

that is supposed to be satisfied in an open bounded domain Ω ⊂ Rd (d > 2), where v : Ω→ Rd,
π : Ω→ R, c : Ω→ R+ are unknown velocity, pressure and concentration fields, respectively. Here
f : Ω → Rd represents a given density of the bulk force, Dv denotes the symmetric part of the
velocity gradient ∇v, i.e., Dv = 1

2 (∇v + (∇v)T), and S(c,Dv) and qc(c,∇c,Dv) are the extra
stress tensor of the Cauchy stress tensor and the diffusion flux, respectively. To complete the
problem (1.1)–(1.3) we prescribe the following Dirichlet boundary conditions

v = 0, c = cd on ∂Ω,

for which we denote c− := minx∈∂Ω cd and c+ := maxx∈∂Ω cd. We assume the extra stress
tensor S : R+

0 × Rd×dsym → Rd×dsym being a continuous mapping that fulfills following growth, strict

monotonicity and coercivity conditions for all c ∈ [c−, c+] and all B, B1, B2 ∈ Rd×dsym

|S(c,B)| 6 C1(|B|p(c)−1 + 1),(1.4)

(S(c,B1)− S(c,B2)) · (B1 −B2) > 0 for B1 6= B2,(1.5)

S(c,B) ·B > C2(|B|p(c) + |S|p′(c))− C3,(1.6)
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Figure 1. Shear-thinning index of viscosity function (1.8) for synovial fluid,
see [20] or [27]. The exponent p is plotted as function of concentration. The
physiological values (standardly observed for non-pathological synovial fluid) are
approximately in range (0.1, 0.25), in graph depicted by a gray rectangle. Non-
dimensionalized concentration c = 1 refers to (non-physical) 100% concentration
of the solvent. Dashed lines correspond to lower bounds p− as required by the
mathematical tools employed in the proof of existence of a weak solution. As one
can see, bound p− > 3d

d+2 is too restrictive and p− > d
2 is unrealizable for higher

physiological concentration.

where p : R+ → R+ is a Hölder continuous function such that 1 < p− 6 p(c) 6 p+ < ∞ and

p′(c) is defined as p(c)
p(c)−1 . Additionally, we assume that the concentration flux vector qc(c, g,B) :

R × Rd × Rd×d → Rd is a continuous mapping being in addition linear with respect to g and
fulfilling for all c, g,B ∈ R× Rd × Rd×d the following inequalities

|qc(c, g,B)| 6 C4|g|,
qc(c, g,B) · g > C5|g|2,(1.7)

where Ci are some positive constants.
The prototype examples, we have in mind, are of the following form

S(c,Dv) = ν(c, |Dv|)Dv, qc(c,∇c,Dv) = K(c, |Dv|)∇c,

where the generalized viscosity ν(c, |Dv|) depends on the shear-rate and on the concentration in
the following fashion

ν(c, |Dv|) ∼ ν0

(
κ1 + κ2|Dv|2

) p(c)−2
2 ,(1.8)

where ν0, κ1, κ2 stand for positive constants. To p(·) we shall refer to a variable exponent function.
Since we have in mind a specific application (as described in the paragraph lower), this function
satisfies additional requirements. More precisely, it is a continuous strictly monotone function
reflecting shear-thinning/shear-thickening properties of the fluid, this means, it is bounded by
1 < p(c) <∞, where both limits hold for non-physiological and/or non-physical values of c (either
0 or 1 (infinite concentration)). One example of such function is plotted in Fig. 1.

Such a system is suitable for a description of various biological fluids, e. g. synovial fluid or
blood. Even though the rheological responses of both these type of fluids are based on presence
of different chemical/biological constituent, they behave as shear-thinning fluids (for example
at simple shear test), for which the measure of “how the fluid thins the shear” is related to a
concentration of this constituent. In the case of blood, these are the red blood cells (and their
ability of network formation), see for example [3] or [18, Chap. 2], on the other hand, in the case
of synovial fluid, the governing concentration corresponds to one particular polysaccharide, see for
example [20] or [27]. Here, we shall not discuss the rheological background of those fluids in more
detail, rather we refer the interested reader to [3, 18, 20, 27] devoted to this topic.
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2. Notation and the main result

In this section we introduce the function spaces used in the paper, the basic notation and finally
we state the main result. We denote the set of all measurable functions p : Ω→ [1,∞] by P(Ω),
and call the function p ∈ P(Ω) a variable exponent. Then we define p− := ess infx∈Ω p(x) and
p+ := ess supx∈Ω p(x). Further, for simplicity, we assume only the case when

1 < p− 6 p+ <∞.(2.1)

We introduce the generalized Lebesgue spaces equipped with corresponding Luxembourg norms

Lp(·)(Ω) :=

{
u ∈ L1

loc(Ω) :

ˆ
Ω

|u(x)|p(x) dx <∞
}
,

‖u‖Lp(·)(Ω) = ‖u‖p(·) := inf

{
λ > 0 :

ˆ
Ω

∣∣∣∣u(x)

λ

∣∣∣∣p(x)

dx 6 1

}
.

In the same manner we define the generalized Sobolev spaces

W 1,p(·)(Ω) :=

{
u ∈W 1,1(Ω) ∩ Lp(·)(Ω) : |∇u| ∈ Lp(·)(Ω)

}
,

‖u‖W 1,p(·)(Ω) = ‖u‖1,p(·) := inf

{
λ > 0 :

ˆ
Ω

∣∣∣∣u(x)

λ

∣∣∣∣p(x)

+

∣∣∣∣∇u(x)

λ

∣∣∣∣p(x)

dx 6 1

}
.

All above spaces are Banach spaces, and due to (2.1) they are separable and reflexive. Moreover,
(Lp(·)(Ω))

∗
= Lp

′(·)(Ω) where the dual variable exponent p′ ∈ P(Ω) is defined by 1
p(x) + 1

p′(x) = 1.

Additionally to the Lebesgue and Sobolev spaces we introduce the function spaces relevant to the
problems of incompressible fluids. First, X(Ω)d denotes space of d−vector valued functions with
components from X(Ω). In the same manner we also define the space of tensor-valued functions
X(Ω)d×d. Then we introduce the following notation

W 1,p(·)
0 (Ω) :=

{
u ∈W 1,p(·)(Ω) : u = 0 on ∂Ω

}
,

W 1,p(·)
0,div (Ω) :=

{
u ∈W 1,p(·)

0 (Ω)d : divu = 0
}
,

Lp(·)0 (Ω) :=
{
f ∈ Lp(·)(Ω) :

ˆ
Ω

f(x) dx = 0
}
.

Through the whole text, we denote a duality pairing between f ∈ X and g ∈ X? by 〈f, g〉X,X? ,
or, if it is clear from the context, we skip for simplicity the indices and write 〈f, g〉. By A ·B
we denote a scalar product between two tensors, |Q| stands for the Lebesgue measure of the set
Q ⊂ Rd, and C refers to some general positive constant (or function independent of the crucial
variables) which may change at each appearance.

Now, we are ready to formulate the main theorem on existence of a weak solution to a system
(1.1)–(1.7).

Theorem 1. Let Ω ⊂ Rd with d > 2 be a bounded Lipschitz domain and cd ∈W 1,q(Ω) for some
q > d. Let us denote

c− := min
x∈∂Ω

cd(x), c+ := max
x∈∂Ω

cd(x)

and assume that p : R+ → R+ is a Hölder continuous function such that d
2 < p− 6 p(c) 6 p+ <∞

for all c ∈ [c−, c+]. Moreover, let f ∈ (W 1,p−

0,div(Ω))∗ and S and qc satisfy the assumptions (1.4)–(1.7).

Then there exists a couple (v, c) and some α ∈ (0, 1) such that

(c− cd) ∈ C0,α(Ω) ∩W 1,2
0 (Ω),

v ∈W 1,p(c)
0,div (Ω),
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fulfilling

ˆ
Ω

S(c,Dv) · ∇ψ − (v ⊗ v) · ∇ψ dx = 〈f ,ψ〉 ∀ψ ∈W 1,∞
0,div(Ω),(2.2)

ˆ
Ω

qc(c,∇c,Dv) · ∇ϕ− cv · ∇ϕdx = 0 ∀ϕ ∈W 1,2
0 (Ω).(2.3)

The existence analysis for a similar model (even unsteady case) was developed in [4], where
however the power-law index is fixed and does not depend on the concentration. Here, we have to
deal with a model, where the value of the index is in principle x−dependent and in addition a priori
unknown. Such a generalization then leads to difficulties in the analysis of the corresponding system
of PDE’s. To illustrate them, we first recall the results related to our problem where the power-law
index is a given number or a given x−dependent function. For the fixed x−independent exponent,
one can use the method of monotone operators provided that ψ := v in (2.2) is admissible test
function. This then naturally leads to the restriction on the class of p’s for such (due to the
convective term) W 1,p ↪→ L2p′ , and thus to p > 3d

d+2 . Nevertheless, such a bound is unsatisfactory
in many application. This gave rise to a real interest to lower it to a more realistic one, which led to
a series of papers where the final limit of p > 2d

d+2 was reached (as far as it seems the most optimal

one), corresponding to the compact embedding W 1,p ↪→↪→ L2, and consequently to compactness of
the convective term in L1. We refer the interested reader to [13, 16, 17] where the existence theory
for fixed index is established and where the so-called L∞ and Lipschitz approximation methods
are developed.

Interestingly, it was observed that in many situations the power-law index may not be fixed but
can depend also on the spatial variable x, see e.g. [28] for a model of generalized Navier–Stokes
equations wherein viscosity is of similar power growth as ours but with p(·) := p(|E(x)|2) ∼ p(x),
E being a given electric field vector. Such models were studied in [29, 30], where the existence
theory is built by using the monotone operator theory and also the so-called higher regularity
technique under the assumption that the given E and consequently p is smooth enough. Recently,
the Lipschitz approximation method was generalized to the spaces with variable exponents in
[13], where the existence theory is established if p− > 2d

d+2 provided that p(·) is a given log-Hölder

continuous function (see the next section for the precise definition).
Finally, the mathematical analysis of the model where the power-law index is also unknown

starts in [5], where the existence theory is established with the help of generalized monotone
operator theory for p− > 3d

d+2 . Nevertheless, as Fig. 1 suggests and as we have discussed above,
the assumption on the bound of the exponent function arising from the compactness argument is
rather too restrictive than realistic. Theorem 1 then gives the final answer for the case when we are
able to provide the Hölder continuity of the concentration. We would like to emphasize here, that
the bound p− > d

2 >
2d
d+2 corresponds to the setting for which one can prove the Hölder continuity

of c (and consequently of p) by the means of De Giorgi method applied on (2.3). Moreover, in
view of the results in [13], at least some continuity of the power-law exponent is needed not only
for the Lipschitz approximation method, where such a fact is profoundly used, but also from the
point of view of the function spaces theory (the Korn inequality, the embedding theorems, the
continuity of the maximal function, etc., see the next section for more details). In addition, the
technique developed in this paper is a generalization of the Lipschitz approximation method, where
however such approximation is essentially done for a sequence of functions and also for a sequence
of Sobolev spaces with variable exponent. We also believe that this may serve as a starting point
for further analysis of similar problems.

The rest of the paper is organized as follows. In Section 3 we recall the properties of the Sobolev
spaces with variable exponent and also some auxiliary results needed in the proof of the main
theorem. Then in Section 4, we prove a generalization of the Lipschitz approximation method and
finally in Section 5 we give the proof of Theorem 1.
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3. Auxiliary tools & results

In this section, we introduce all necessary technical tools needed in the paper. First, we introduce
a subset P log(Ω) ⊂ P(Ω) as a class of log-Hölder continuous exponents satisfying

|p(x)− p(y)| 6 Cp(·)
− ln |x− y|

∀x, y ∈ Ω : 0 < |x− y| 6 1

2
.(3.1)

Note that standard Hölder continuous functions on Ω (which are bounded as required) belong
to this class. Also for later purpose, we define for any u ∈ L1(Rd) the (non-centered) maximal
function Mu by

(Mu)(x) := sup
r>0

1

Br(x)

ˆ
Br(x)

|u(y)| dy,

where the supremum is taken over all balls (cubes) containing x, and M is the so-called Hardy–
Littlewood maximal operator. Similarly, for u ∈W 1,1(Rd)d we denote M(Du) := M(|Du|).

Having this notation we can introduce the first lemma recalling the basic properties of variable
Sobolev spaces with log-Hölder continuous exponent.

Lemma 2 (Properties of variable exponent Sobolev spaces, [10]). Let Ω ⊂ Rd be an open bounded
Lipschitz domain and let p ∈ P log(Ω) satisfy (2.1). Then we have the density of smooth functions,
i.e.,

C∞(Ω)
‖·‖1,p(·)

= W 1,p(·)(Ω),

the embedding theorem, i.e., if 1 < p− 6 p+ < d then

W 1,p(·)(Ω) ↪→ Lq(·)(Ω) 1 6 q(x) 6
d p(x)

d− p(x)
=: p∗(x),

being compact for q(x) < p∗(x), and the Korn inequality

‖∇v‖p(·) 6 C(Ω, Cp(·))‖Dv‖p(·) for all v ∈W 1,p(·)
0 (Ω)d.

We would like to mention that the book [10] is referred here as a comprehensive source of
information. We refer the interested reader to [14, 21, 22, 23, 25, 31] for more detail description
and for the original proofs. In addition, note that the log-Hölder continuity is not the necessary
assumption for the validity of Lemma 2 but it is known that it is almost the “optimal” property as
indicated for example in in [9] or [26]. Moreover, we refer also to [11, 15, 19], works devoted to the
difficulties connected with non-validity of Lemma 2 in the context of fluid mechanics.

Next, we recall the extension theorem for variable exponent and the continuity of the maximal
function in variable exponent spaces.

Lemma 3 (Variable index extension, [6]). Let Ω ⊂ Rd be an open bounded Lipschitz domain and
let p ∈ P log(Ω) be arbitrary. Then there exists an extension1 q ∈ P log(Rd) such that q− = p− and
q+ = p+, and the Hardy–Littlewood maximal operator M is continuous from Lq(·)(Rd) to Lq(·)(Rd).

Following result summarizes the properties of Bogovskĭı operator in the variable exponent
settings.

Lemma 4 (Bogovskĭı operator, [10, Sec. 14.3.]). Let Ω ⊂ Rd be a bounded Lipschitz domain and

p ∈ P log(Ω) satisfy (2.1).Then there exists a linear continuous operator B : Lp(·)0 (Ω)→W 1,p(·)
0 (Ω)d

such that for each f ∈ Lp(·)0 (Ω) we have

div(Bf) = f,

‖Bf‖1,p(·) 6 C‖f‖p(·),(3.2)

where C depends on Ω, p−, p+ and Cp(·) from (3.1).

Next, in order to ensure the Hölder continuity of the variable exponent the following celebrated
result will be used.

1For unbounded domains, function from P log has to additionally satisfy a proper log-Hölder decay.



10 M. BULÍČEK AND P. PUSTĚJOVSKÁ

Lemma 5 (De Giorgi [8] - Nash [24], see also [2, Sec. 2.3.]). Let Ω ⊂ Rd be a bounded set with
Lipschitz boundary and let q > d be given. Assume that that there are C1, C2 > 0 such that

K ∈ L∞(Ω)d×d : |Kij | 6 C1, Kb · b > C2|b|2 for all b ∈ Rd.

Then there exists α > 0 depending only on Ω, C1, C2 and q, such that for any g ∈ Lq(Ω)d and any

cd ∈W 1,q(Ω) there exists unique c ∈W 1,2(Ω) such that c− cd ∈W 1,2
0 (Ω) ∩ C0,α(Ω) solvingˆ

Ω

K∇c · ∇ϕdx =

ˆ
Ω

g · ∇ϕdx ∀ϕ ∈W 1,2
0 (Ω),

and fulfilling the uniform estimate

‖c‖W 1,2∩C0,α 6 C(Ω, C1, C2, q, ‖g‖q, ‖cd‖1,q).

Finally, we recall the result on the Lipschitz approximation of functions belonging to W 1,1(Rd)d.

Lemma 6 (Lipschitz approximation for W 1,1(Rd)d, [1]). There exists C > 0 depending only on
the dimension d such that for all u ∈W 1,1(Rd)d and all λ > 0 there exists uλ ∈W 1,∞(Rd)d such
that

‖uλ‖1,∞ 6 C λ,

{x ∈ Rd : u(x) 6= uλ} ⊂ {x ∈ Rd : M(∇u)(x) > λ}.

The proof of Lemma 6 is based on the extension theorem. However, a more constructive proof
can be found e.g. in [12].

4. Lipschitz approximation method in W 1,pn(·)

The use of the Lipschitz approximation method is the heart of the proof of Theorem 1 needed
for identification of the weak limit of the extra Cauchy stress. Therefore, we formulate and prove
it in this separated section, using the notation of the next Section 5. The couple (vn, pn) denotes a
sequence of approximative solution where

pn(x) := (p ◦ cn)(x) for all x ∈ Ω,(4.1)

with cn being a sequence of approximative concentrations. The following theorem therefore
essentially extends the similar result from [13], where however the authors did not need to face
the difficulty that the variable exponent (and consequently the function spaces) changes with the
sequence itself.

Theorem 7 (Lipschitz approximation). Let Ω ⊂ Rd be an open bounded Lipschitz domain and
assume that {pn,vn}∞n=1 is a sequence such that 1 < p− 6 pn(x) 6 p+ <∞ for all x ∈ Ω and

vn ⇀ v weakly in W 1,p−

0 (Ω)d,(4.2)

pn → p strongly in C0,β(Ω),(4.3)

for some β ∈ (0, 1). In addition assume that for all n ∈ N there holdsˆ
Ω

|∇vn|p
n(x) dx 6 C.(4.4)

Then the weak limit v satisfies

v ∈W 1,p(·)
0 (Ω)d.(4.5)

Moreover, for all j ∈ N there exists a sequence {λnj }∞n=1 such that

(2j)2j 6 λnj < (2j+1)2j+1

,(4.6)

and a sequence of truncations vnj ∈W 1,∞(Ω)d such that for all n, j ∈ N

‖∇vnj ‖∞ 6 Cλnj 6 C (2j+1)2j+1

.(4.7)
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Furthermore, we can extract (not relabeled) subsequence from n such that for each j ∈ N

vnj → vj strongly in Lσ(Ω)d for all σ ∈ [1,∞],(4.8)

vnj ⇀ vj weakly in W 1,σ(Ω)d for all σ ∈ [1,∞),(4.9)

∇vnj
∗
⇀ ∇vj *-weakly in L∞(Ω)d×d,(4.10)

where vj ∈W 1,∞(Ω)d. Moreover,

‖∇vj‖p(·) 6 C and vj → v a.e. in Ω as j →∞.(4.11)

In addition, extending vn outside Ω by zero we have

{x ∈ Ω : vnj 6= vn} ⊂
{
x ∈ Ω : M(∇vn) > λnj

}
,(4.12)

and for all n, j ∈ Nˆ
Ω

|∇vnj χ{vnj 6=vn}|p
n(x) dx 6 C

ˆ
Ω

|λnj χ{vnj 6=vn}|p
n(x) 6

C

2j
.(4.13)

Proof. First, the validity of (4.5) directly follows from (4.2)–(4.4) and from weak lower semicon-
tinuity (see [5] for more details). Next, we extend each vn outside Ω by zero and each pn as in
Lemma 3. Then, we obtain

vn ⇀ v in W 1,p−(Rd)d,

pn → p in C0,β(Rd),

and by continuity of the maximal function and (4.4) we directly getˆ
Rd
|M(∇vn)|p

n(x) dx 6 C
ˆ

Ω

|∇vn|p
n(x) dx 6 C.(4.14)

Let us for each j ∈ N define a sequence {θij}
2j+1−1
i=2j such that

θij := (2j)i,

and a sequence of subsets {U ij,n}
2j+1−1
i=2j ⊂ Rd as

U ij,n :=
{
x ∈ Rd : θij < M(∇vn)(x) 6 θi+1

j

}
.

Note, that U ij,n are mutually disjoint bounded sets, and thus

2j+1−1∑
i=2j

ˆ
Uij,n

|M(∇vn)|p
n(x) dx 6

ˆ
Rd
|M(∇vn)|p

n(x) dx 6 C.

Since the sum above is formed of 2j summands, for each n there must exist i∗ such thatˆ
Ui
∗
j,n

|M(∇vn)|p
n(x) dx 6

C

2j
.

Then, for this i∗ we set

λnj := θi
∗

j = (2j)i
∗
,

and thus (4.6) follows. This directly givesˆ

{λnj <M(∇vn)62jλnj }

|M(∇vn)|p
n(x) dx 6

C

2j
.(4.15)

Having such λnj we use Lemma 6 with λ = λnj applied on vn, thus we introduce

vnj := vnλnj .
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From Lemma 6 then directly follow the properties (4.7) and (4.12). To prove (4.13) we use (4.7)
and (4.15), henceˆ

{vn 6=vnj }

|∇vnj |p
n(x) dx 6 C

ˆ

{vn 6=vnj }

|λnj |p
n(x) dx 6 C

ˆ

{λnj <M(∇vn)}

|λnj |p
n(x) dx

= C

ˆ
Ui
∗
j,n

|λnj |p
n(x) dx+ C

ˆ

{2jλnj <M(∇vn)}

|λnj |p
n(x) dx

6 C
ˆ
Ui
∗
j,n

(M(∇vn))p
n(x) dx+ C

ˆ
Rd

(
M(∇vn)

2j

)pn(x)

dx

6
C

2j
+

C

(2j)p−

ˆ
Rd

(M(∇vn))
pn(x)

dx 6
C

2j
.

Due to compact embedding, (4.7) and the fact that vnj are compactly supported in Rd, we can for
any fixed j ∈ N extract a subsequence fulfilling (4.8)–(4.10). Moreover, using a diagonal procedure,
we can extract another subsequence in n such that (4.8)–(4.10) hold for each j ∈ N and n form the
extracted indices. Finally, it follows from (4.8), (4.2), (4.12) and the Hölder inequality that

‖vj − v‖1 = lim
n→∞

ˆ
Ω

|vnj − vn| dx 6 C lim sup
n→∞

|{vnj 6= vn}|
1

(p−)′

6 C lim sup
n→∞

|{M(∇vn) > λnj }|
1

(p−)′ 6 C lim sup
n→∞

(ˆ
Ω

M(∇vn)

λnj
dx

) 1

(p−)′

6
C

(λnj )
1

(p−)′
6

C

(2j)
2j

(p−)′
6
C

2j
.

Consequently, the second part of (4.11) follows (again for not relabeled subsequence), hence, from
the uniqueness of a weak limit, we also have

vj ⇀ v in W 1,p(·)(Ω)d.

�

5. Proof of the main theorem

We start the proof of the main theorem by defining an auxiliary cut-off function. For arbitrary
k > 0 we introduce a smooth function Gk : R+

0 → [0, 1] with uniformly (k-independently) bounded
derivative such that

Gk(s) :=

{
1 s 6 k,

0 s > 2k.

We look for an approximative solution (vn, cn) such that vn ∈W 1,pn(·)
0,div (Ω) (with pn defined as in

(4.1)) and cn − cd ∈W 1,2
0 (Ω) such that for all ψ ∈W 1,pn(·)

0,div (Ω) and all ϕ ∈W 1,2
0 (Ω)

−
ˆ

Ω

Gn(|vn|2)(vn ⊗ vn) · ∇ψ dx+

ˆ
Ω

S(cn,Dvn) ·Dψ dx = 〈f ,ψ〉,(5.1)

−
ˆ

Ω

cnvn · ∇ϕdx+

ˆ
Ω

qc(c
n,∇cn,Dvn) · ∇ϕdx = 0.(5.2)

Due to the boundedness of Gn(|vn|2), one can adapt the technique from [5] (a generalization of the
monotone operator theory) and establish the existence of a weak solution to (5.1)–(5.2). Moreover,
one can set ψ := vn in (5.1) and ϕ := cn − cd in (5.2) and with the help of the assumptions
(1.4)–(1.7) and the fact that div vn = 0 deduce the following uniform estimateˆ

Ω

|Dvn|p
n

+ |S(cn,Dvn)|(p
n)′ + |∇cn|2 + |qc(cn,∇cn,Dvn)|2 dx 6 C.(5.3)
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Additionally, since p− > d
2 it follows from the embedding theorem, the Korn inequality (used for

the standard Sobolev space W 1,p−) and Lemma 5 that there is α > 0 such that

‖cn‖0,α 6 C.(5.4)

Consequently, using (5.3)–(5.4), the reflexivity of the relevant spaces, the Korn inequality and the
embedding theorem we can extract subsequences (which we do not relabel) such that

vn ⇀ v weakly in W 1,p−

0,div(Ω),(5.5)

vn → v strongly in L2+ε(Ω)d, (ε > 0),(5.6)

cn ⇀ c weakly in W 1,2(Ω),(5.7)

cn → c strongly in C0,α̃(Ω), (α̃ < α),(5.8)

S(cn,Dvn) ⇀ S weakly in L(p+)′(Ω)d×d,(5.9)

qc(c
n,∇cn,Dvn) ⇀ qc weakly in L2(Ω)d.(5.10)

In addition, following [5], we can show by the weak lower semicontinuity that (5.3) together with
the Korn inequality imply ˆ

Ω

|∇v|p(x) + |S|p′(x) dx 6 C.(5.11)

Having (5.5)–(5.11) and using the fact that Gn ↗ 1, we can let n→∞ in (5.1)–(5.2) to obtain

−
ˆ

Ω

(v ⊗ v) · ∇ψ dx+

ˆ
Ω

S ·Dψ dx = 〈f ,ψ〉 ψ ∈W 1,∞
0,div(Ω),(5.12)

−
ˆ

Ω

cv · ∇ϕdx+

ˆ
Ω

qc · ∇ϕdx = 0 ϕ ∈W 1,2
0 (Ω).

Thus, what remains to prove is to show that

S = S(c,Dv) and qc = K(c,Dv)∇c.(5.13)

5.1. Compactness of Dvn. The first step in proving (5.13) is to show the compactness of Dvn.
Inspired by [7], we aim in this subsection to show that

lim
n→∞

ˆ
Ω

(
(S(cn,Dvn)− S(cn,Dv)) · (Dvn −Dv)

)1
4

dx = 0.

For sure, it follows from (5.3) and the Hölder inequality that

lim sup
n→∞

ˆ
Ω

(
(S(cn,Dvn)− S(cn,Dv)) · (Dvn −Dv)

)1
4

dx = L <∞.(5.14)

Hence, we need to show L = 0. Let us for arbitrary fixed κ > 0 define

Ωκ :=
{
x ∈ Ω : |Dv| > κ

}
∪
{
x ∈ Ω : dist(x, ∂Ω) 6

1

κ

}
.

Note, that our Lipschitz approximations do not vanish on the boundary, and thus we include to the
“bad part” of Ω the second term of the union above. Then, since Ω is Lipschitz bounded, we have

|Ωκ | 6
ˆ

Ω

|Dv|
κ

dx+
C

κ
6
C

κ
,

where the last inequality follows from (5.11). Next, we decompose the claimed integral into

ˆ
Ω

(
(S(cn,Dvn)− S(cn,Dv)) · (Dvn −Dv)

)1
4

dx = Jnκ + Inκ ,(5.15)
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where

Jnκ :=

ˆ
Ωκ

(
(S(cn,Dvn)− S(cn,Dv)) · (Dvn −Dv)

)1
4

dx,

Inκ :=

ˆ
Ω\Ωκ

(
(S(cn,Dvn)− S(cn,Dv)) · (Dvn −Dv)

)1
4

dx.

To estimate Jnκ , we use (5.3), (5.11) and the Hölder inequality to conclude

Jnκ 6 C|Ωκ |
1
2 6

C√
κ
.

Next, we introduce a matrix-truncation function Tκ : Rd×d → Rd×d at height κ > 0 as

Tκ(B) :=

{
B |B| 6 κ,
κ B
|B| |B| > κ.

and rewrite the integral Inκ in the terms of truncation Tκ(Dv) which collides with Dv on Ω \ Ωκ ,
and then, due to positiveness of the argument, we extend the integral on the whole domain, i.e.,

Inκ =

ˆ
Ω\Ωκ

(
(S(cn,Dvn)− S (cn,Tκ(Dv))) · (Dvn − Tκ(Dv))

)1
4

dx

6
ˆ

Ω

(
ξκ (S(cn,Dvn)− S(cn,Tκ(Dv))) · (Dvn − Tκ(Dv))

)1
4

dx,

where ξκ ∈ D(Ω) is arbitrary fixed function such that 0 6 ξκ 6 1, ξκ(x) = 1 if dist(x, ∂Ω) > 1
κ .

Let us estimate the last term using the Lipschitz truncations. Since p is a Hölder continuous
function and cn fulfills (5.8), we see that (vn, pn) satisfies the assumptions of Theorem 7 and
therefore for arbitrary j ∈ N we can find vnj ∈W 1,∞(Ω)d. Then, by using the Hölder inequality,
we have

Inκ 6
ˆ

Ω

(
ξκ (S(cn,Dvn)− S(cn,Tκ(Dv))) · (Dvn − Tκ(Dv))

)1
4

dx

6

( ˆ

{vnj =vn}

ξκ (S(cn,Dvn)− S(cn,Tκ(Dv))) ·
(
Dvnj − Tκ(Dv)

)
dx

)1
4

|Ω| 34

+

( ˆ

{vnj 6=vn}

(
(S(cn,Dvn)− S(cn,Tκ(Dv))) · (Dvn − Tκ(Dv))

)1
2

dx

)1
2

|{vnj 6= vn}| 12

=:
(
Inκ,j{=}

) 1
4 |Ω| 34 + (Inκ,j{6=})

1
2 |{vnj 6= vn}| 12 .

First, as an easier term, we handle the latter term with Inκ,j{6=}. Note that by (4.6), (4.12) and
(4.14) we have

|{vnj 6= vn}| = ‖χ{vnj 6=vn}‖1,Ω 6
ˆ
Rd

M(Dvn)

λnj
dx 6

C

(2j)2j
,

and thus, it follows from the Hölder inequality, (5.3) and (5.11) that(
Inκ,j{6=}

) 1
2 |{vnj 6= vn}| 12 6 C

2j
.

Finally, we estimate the first integral Inκ,j{=}, decomposed into

Inκ,j{=} =

ˆ
Ω

ξκ (S(cn,Dvn)− S(cn,Tκ(Dv))) ·
(
Dvnj − Tκ(Dv)

)
dx(5.16)

−
ˆ

{vnj 6=vn}

ξκ (S(cn,Dvn)− S(cn,Tκ(Dv))) ·
(
Dvnj − Tκ(Dv)

)
dx.
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Let us analyze the second term using the Young inequality, (1.4), and (4.13)∣∣∣∣ ˆ

{vnj 6=vn}

ξκ (S(cn,Dvn)− S(cn,Tκ(Dv))) ·
(
Dvnj − Tκ(Dv)

)
dx

∣∣∣∣
6

ˆ

{vnj 6=vn}

|S(cn,Dvn) ·Dvnj | dx+ C(κ)

ˆ

{vnj 6=vn}

(|S(cn,Dvn)|+ |Dvnj |+ 1) dx

6 C

ˆ

{vnj 6=vn}

|∇vn|p
n(x)−1λnj dx+ C(κ)|{vnj 6= vn}|

1

p+

6
C

(p+)′

ˆ

{vnj 6=vn}

|∇vn|p
n(x) dx+

C

p−

ˆ

{vnj 6=vn}

|λnj |p
n(x) dx+

C(κ)

(λnj )
1

p+

6
C(κ)

2j
.

To analyze the first term in (5.16), we have no suitable estimates by hand. A natural choice
would be, since we can control the convective term for Lipschitz test functions, to use the weak
formulation. Here, nevertheless, one can not use the Lipschitz approximation vnj since they do
not posses (in general) the divergence-free property, and they do not vanish on the boundary. To
elude this fact, let us introduce div-free approximations with zero trace by the means of Bogovskĭı
operator (Proposition 4). First define

ζn,1κ,j := B
(
ξκ div vnj −

ffl
Ω
ξκ div vnj dx

)
,

ζn,2κ,j := B
(
∇ξκ · vnj −

ffl
Ω
∇ξκ · vnj dx

)
.

Then, from the linearity of B it follows

ζnκ,j := ξκv
n
j − ζ

n,1
κ,j − ζ

n,2
κ,j = ξκv

n
j − B(div(ξκv

n
j )).

Consequently, from Lemma 4, it directly follows that div ζnκ,j = 0 and that ζnκ,j has zero trace
on ∂Ω. Moreover, from the fact that continuous operator preserves weak convergence, (3.2) and
(4.8)–(4.9) it follows that for each j ∈ N

ζnκ,j ⇀ ξκvj − B(div(ξκvj)) ≡ ζκ,j in W 1,σ(Ω)d,(5.17)

ζnκ,j → ζκ,j in Lσ(Ω)d,

ζn,2κ,j → B
(
∇ξκ · vj −

ffl
Ω
∇ξκ · vj dx

)
≡ ζ2

κ,j in W 1,σ(Ω)d,(5.18)

as n→∞, where σ ∈ (1,∞) is arbitrary. Then, we can rewrite the first term in integral (5.16) in
the terms of these approximations to obtain

ˆ
Ω

ξκ (S(cn,Dvn)− S(cn,Tκ(Dv))) ·
(
Dvnj − Tκ(Dv)

)
dx

=

ˆ
Ω

S(cn,Dvn) ·
(
Dζnκ,j +Dζn,2κ,j −∇ξκ v

n
j

)
dx

+

ˆ
Ω

S(cn,Dvn) ·Dζn,1κ,j dx

−
ˆ

Ω

ξκS(cn,Dvn) · Tκ(Dv) dx−
ˆ

Ω

ξκS(cn,Tκ(Dv)) ·
(
Dvnj − Tκ(Dv)

)
dx

=: Y n,1κ,j + Y n,2κ,j − Y
n,3
κ,j − Y

n,4
κ,j .

Next, from (5.17) we directly obtain

lim
n→∞

〈f , ζnκ,j〉 = 〈f , ζκ,j〉,
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and thus, comparing limit of (5.12) with (5.1) and by the use of (5.6), (5.9) and (5.17), we can
conclude the following

lim
n→∞

ˆ
Ω

S(cn,Dvn) ·Dζnκ,j dx

= lim
n→∞

ˆ
Ω

Gn(|vn|2)(vn ⊗ vn) · ∇ζnκ,j dx−
ˆ

Ω

(v ⊗ v) · ∇ζκ,j dx+

ˆ
Ω

S ·Dζκ,j dx

=

ˆ
Ω

S ·Dζκ,j dx.

This together with (5.18) and (4.8) then gives

lim
n→∞

Y n,1κ,j =

ˆ
Ω

S ·
(
Dζκ,j +Dζ2

κ,j −∇ξκvj
)
dx.

Let us now investigate the second integral. Using boundedness of S(cn,Dvn) in L(pn)′(·)(Ω)d×d,
property (3.2) of the operator B, and zero divergence of vnj on {x ∈ Ω : vn = vnj }, we can estimate

Y n,2κ,j by the Hölder inequality (and by the definition of the norm) as

Y n,2κ,j 6 C‖Dζ
n,1
κ,j‖pn(·) 6 C‖div vnj χ{vn 6=vnj }‖pn(·) 6 C‖∇vnj χ{vn 6=vnj }‖pn(·)

6
C

2j/p+
,

where the last inequality follows from (4.13). For the last two integrals Y n,3κ,j and Y n,4κ,j we use the

convergence (5.8), boundedness of truncation Tκ and weak convergence (4.9) to get

lim
n→∞

(
Y n,3κ,j + Y n,4κ,j

)
=

ˆ
Ω

ξκS · Tκ(Dv) dx+

ˆ
Ω

ξκS(c,Tκ(Dv)) · (Dvj − Tκ(Dv)) dx.

All together then gives

lim
n→∞

(Y n,1κ,j + Y n,2κ,j − Y
n,3
κ,j − Y

n,4
κ,j )

6
ˆ

Ω

S · (Dζκ,j +Dζ2
κ,j −∇ξκvj − ξκTκ(Dv)) dx+

C

2j/p+

−
ˆ

Ω

ξκS(c,Tκ(Dv))(Dvj − Tκ(Dv)) dx

=

ˆ
Ω

ξκ(S − S(c,Tκ(Dv))) · (Dvj − Tκ(Dv)) dx−
ˆ

Ω

S ·Dζ1
κ,j dx+

C

2j/p+
.

Nevertheless, from the weak lower semicontinuity (see [5]) we also have

‖Dζ1
κ,j‖p(·) 6 lim sup

n→∞
‖Dζn,1κ,j‖pn(·) 6

C

2j/p+
,

and thus, we obtain

lim
n→∞

(Y n,1κ,j + Y n,2κ,j − Y
n,3
κ,j − Y

n,4
κ,j )

6
ˆ

Ω

ξκ(S − S(c,Tκ(Dv))) · (Dvj − Tκ(Dv)) dx+
C

2j/p+
.

Going back to (5.15), we can finally let j, n,κ →∞ and estimate

lim
κ→∞

lim
j→∞

lim
n→∞

(Jnκ + Inκ)

6 lim
κ→∞

lim
j→∞

lim
n→∞

(
C

(
Y n,1κ,j + Y n,2κ,j − Y

n,3
κ,j − Y

n,4
κ,j +

C(κ)

2j

)1
4

|Ω| 34 +
C√
κ

+
C

2j

)
6 lim

κ→∞
C

((ˆ
Ω

(S − S(c,Tκ(Dv))) · (Dv − Tκ(Dv)) dx

)1
4

+
C√
κ

)
= 0,
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where we used point-wise convergence of Tκ(Dv) → Dv on Ω for κ → ∞ and the Lebesgue
dominated convergence theorem. By that we have finished the proof of the claimed (5.14).

5.2. Identification of S and qc. We start with identification of S. From previous subsection we
know that

lim
n→∞

ˆ
Ω

(
(S(cn,Dvn)− S(cn,Dv)) · (Dvn −Dv)

)1
4

dx = 0,(5.19)

which, due to the positiveness of the argument, holds also for a set Qγ ⊂ Ω such that

Qγ :=
{
x ∈ Ω : |Dv| 6 γ

}
,

where γ is arbitrary positive fixed constant. From the sequence of arguments of integral (5.19), we
can find a subsequence (again not relabeled) converging to zero almost everywhere in Qγ . Then,
according to Egoroff theorem, for arbitrary ε > 0, we can find a set Qεγ ⊂ Ω which differs from Qγ
by |Qγ \Qεγ | < ε, on which the sequence of arguments converge uniformly. It is clear, that by the
choice of Qεγ , we have

lim
γ→∞

lim
ε→0
|Ω \Qεγ | = 0,

and additionally, from the uniform convergence, that

lim
n→∞

ˆ
Qεγ

(S(cn,Dvn)− S(cn,Dv)) · (Dvn −Dv) dx = 0.(5.20)

Here, due to boundedness of Dv on Qεγ we have S(cn,Dv)→ S(c,Dv) strongly in Lq(Ω)d×d for
q <∞, and thus, together with the weak convergence of Dvn and strong convergence of S(cn,Dv)
in corresponding spaces, we obtain from (5.20)

lim
n→∞

ˆ
Qεγ

S(cn,Dvn) · (Dvn −Dv) dx = 0.

Hence, using (5.9), we can identify

lim
n→∞

ˆ
Qεγ

S(cn,Dvn) ·Dvn dx =

ˆ
Qεγ

S ·Dv dx.(5.21)

As a next step, we use the monotonicity assumption on S (1.4) guaranteeing the sign of

0 6
ˆ
Qεγ

(S(cn,Dvn)− S(cn,B)) · (Dvn −B) dx,(5.22)

where B ∈ L∞(Qεγ)d×d is fixed but arbitrary. From (5.21) and the fact that S(cn,B)→ S(c,B)

strongly in Lq(Ω)d×d for q <∞, we can take the limit n→∞ in (5.22) and obtain

0 6 lim
n→∞

ˆ
Qεγ

(S(cn,Dvn)− S(cn,B)) · (Dvn −B) dx

=

ˆ
Qεγ

S · (Dv −B) dx−
ˆ
Qεγ

S(c,B) · (Dv −B) dx

=

ˆ
Qεγ

(S − S(c,B)) · (Dv −B) dx.

Choosing B = Dv ± λA(x) (λ > 0 and A ∈ L∞(Qεγ)d×d), we can due to the continuity of S in B
identify

S = S(c,Dv) a.e. on Qεγ .

To finish the proof, we extend this result on the whole domain Ω by letting ε→ 0 and then γ →∞.
Consequently, using strict monotonicity (1.5), we conclude that Dvn → Dv a.e. in Ω. By that,
together with (5.7), we can identify qc, which brings the proof of Theorem 1 to the end.
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