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Abstract

Fast boundary element methods still need good preconditioning techniques for
an almost optimal complexity. An algebraic multigrid method is presented for the
single layer potential using the fast multipole method. The coarsening is based on
the cluster structure of the fast multipole method. The effort for the construction of
the nearfield part of the coarse grid matrices and for an application of the multigrid
preconditioner is of the same almost optimal order as the fast multipole method itself.

1 Introduction

The boundary element method is a numerical scheme for the computer simulation of prob-
lems described by partial differential equations. The variational formulation of the partial
differential equation is transferred into a boundary integral equation by Green’s theorem.
The discretization of the boundary integral operators results in fully populated matrices
in the systems of linear equations. Therefore, the memory requirements and the computa-
tional costs grow at least quadratically in the number of boundary elements or degrees of
freedom. Hence, standard Galerkin boundary element methods are restricted to problems
with a rather small number of degrees of freedom.

There exist several fast boundary element methods reducing the memory requirements
and the computational costs of a matrix times vector multiplication to almost linear com-
plexity. Most of these methods rely on a clustering of the boundary elements. This leads
to a clustering of the considered matrix, too. Then low rank approximations are used for
an appropriate choice of such kind of matrix blocks. The methods mainly differ in the
construction and the realization of the low rank approximations. Such methods are the
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fast multipole method [8], the panel clustering method [11], the adaptive cross approxi-
mation (ACA) method [2] and the H–matrix arithmetic [9]. The wavelet approximation
methods [5] construct special nested trial spaces which enable a sparse approximation of
the matrix due to the rapid decay of the kernel.

In addition to fast discretization techniques, good preconditioners are needed for the
efficient iterative solution. Some of the available methods are additive or multiplicative
Schwarz methods [12, 13, 17, 28], BPX–like preconditioners [4, 6, 25], multigrid methods
[14, 16, 29], boundary integral operators of opposite orders [27] and the application of an
approximation of the inverse by means of the H–matrix arithmetics [1, 9].

Coarsening strategies for boundary element spaces and their application in a multigrid
preconditioner of the hypersingular operator are presented in [10]. A convergence analysis
for a geometrical multigrid method using a data-sparse approximation of the single layer
potential by the ACA method is presented in [15]. Weighted distance functions of the
midpoints of neighbored boundary elements are used in [14, 16] for the algebraic coarsening
and the construction of the coarse grid matrices, while the system matrix itself can be used
in the case of algebraic multigrid methods for finite element methods. The coarse grid
elements are selected based on the matrices of weighted distance functions and suitable
criteria. The corresponding weighted prolongation and restriction operators are applied
to the system matrix to compute the coarse grid matrices. In [14, 16], the adaptive cross
approximation method is used as fast boundary element method. This method generates
a data-sparse approximation of the fully populated boundary element matrices by low
rank approximations of admissible blocks of a clustering of the matrices. The coarse grid
matrices are computed by the application of the prolongations and restrictions to each
block of the cluster matrices. Thereby, the dimensions of these blocks are reduced and
sparse coarse grid matrices are computed.

This approach can be applied to the fast multipole method, too. It results in a rather
involved implementation and the final procedure will not be very fast, as the number
of blocks in the data-sparse approximation is not reduced for the coarse grid matrices.
Each admissible block corresponds to a conversion of a fast multipole expansion. As the
conversions amount a main part of the total effort of a matrix times vector multiplication
of the stiffness matrix, the computational costs for one multigrid step cannot be optimal.

In this paper, the cluster tree of the fast multipole method is used to construct the
coarse grid matrices of the multigrid method algebraically. The boundary elements of
a cluster form the “coarse grid” elements. Thus, the operations of the fast multipole
method can be used to construct the nearfield part of the coarse grid matrices and to
realize the corresponding matrix times vector multiplications efficiently. The total memory
requirements and the effort of an application of the multigrid preconditioner have the same
asymptotic complexity as a matrix times vector product by the fast multipole method.
This coarsening strategy can be applied for other fast boundary element methods, too.

In Sect. 2, the boundary element method and the fast multipole method are sketched.
An algebraic multigrid method for the fast multipole method is described and an complexity
analysis is given in Sect. 3. Finally, the numerical examples of Sect. 4 are in good agreement
with the theory.
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2 Fast boundary element method

First, the Galerkin discretization of the weakly singular boundary integral equation of the
Laplace equation is sketched; for more details see, e.g., [24, 26]. Then some details on the
fast multipole boundary element method are given, which are needed for the description
of the algebraic multigrid method for the fast multipole method.

2.1 Boundary element formulation

Let Ω ⊂ R3 be a bounded, simply connected domain with piecewise smooth Lipschitz
boundary Γ = ∂Ω. The Dirichlet boundary value problem

−∆u(x) = 0 for x ∈ Ω,
u(x) = g(x) for x ∈ Γ

(1)

of the Laplace equation is considered as model problem. The solution u of the boundary
value problem (1) is given by the representation formula

u(x) =

∫

Γ

γ0,yU
∗(x, y)γ1u(y)dsy −

∫

Γ

γ1,yU
∗(x, y)g(y)dsy for x ∈ Ω, (2)

where

U∗(x, y) =
1

4π

1

|x − y|
(3)

is the fundamental solution of the Laplace operator. γ0 and γ1 denote the trace operators

γ0u(x) := lim
Ω∋ex→x∈Γ

u(x̃) for all x ∈ Γ,

γ1u(x) := lim
Ω∋ex→x∈Γ

[n(x) · ∇u(x̃)] for almost all x ∈ Γ,

where n(x) is the exterior normal vector. The unknown flux t := γ1u can be determined
from the weakly singular boundary integral equation

γ0u(x) = (V t)(x) +
1

2
γ0u(x) − (Kγ0u)(x) (4)

for almost all x ∈ Γ. V denotes the single layer potential

(V t)(x) =

∫

Γ

U∗(x, y)t(y)dsy,

and K is the double layer potential

(Ku)(x) =

∫

Γ\{x}

γ1,yU
∗(x, y)u(y)dsy.

For the approximation of the unknown Cauchy data t a Galerkin discretization of the
weakly singular boundary integral equation (4) is used with a surface representation by
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N plane triangles τi and piecewise constant test and trial functions ϕi. The variational
formulation reads: Find

th =
N∑

i=1

tiϕi ∈ S0
h(Γ) = span {ϕi}

N
i=1

such that

〈V th, wh〉Γ = 〈(
1

2
I + K)g, wh〉Γ

holds for all test functions wh ∈ S0
h(Γ). The variational formulation is uniquely solvable

due to the Lemma of Lax–Milgram and Cea’s Lemma, respectively. The equivalent system
of linear equations is

Vht = f where Vh[i, j] = 〈V ϕj , ϕi〉Γ and fi = 〈(
1

2
I + K)g, ϕi〉Γ

for i, j = 1, . . . , N . The matrix Vh is symmetric and positive definite. Thus the system of
linear equations can be solved by a conjugate gradient method.

2.2 Fast multipole boundary element method

The use of the fast multipole method [7, 8] as a fast boundary element method is described
only very briefly. An overview on many papers on the fast multipole method is given
in [18]. Here, we will describe only the main ideas and not all developed improvements.

As the Galerkin matrix Vh of the single layer potential is fully populated, there is a
need to overcome the limits of the corresponding quadratic complexity. The fast multipole
method offers a fast matrix times vector multiplication w = Vht of order O(N log2 N)
in time and memory requirements. This matrix times vector product can be written
component-wise by

wℓ =
N∑

k=1

Vh[ℓ, k]tk =
N∑

k=1

tk
4π

∫

τℓ

∫

τk

1

|x − y|
dsydsx (5)

for ℓ = 1, . . . , N . The first idea is to separate the variables in the kernel by a series
expansion. In the case of the Laplacian, an expansion based on spherical harmonics is
suitable. An approximation of the kernel k(x, y) = |x − y|−1 is defined by

kp(x, y) =

p∑

n=0

n∑

m=−n

Sm
n (y)Rm

n (x) for |y| > |x|, (6)

using reformulated spherical harmonics [21, 30, 31]

R±m
n (x) =

1

(n + m)!

dm

dum
Pn(u)

∣∣
u=bx3

(x̂1 ± ix̂2)
m |x|n ,

S±m
n (y) = (n − m)!

dm

dum
Pn(u)

∣∣
u=by3

(ŷ1 ± iŷ2)
m 1

|y|n+1
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and ŷ = y/|y|. Pn are the Legendre polynomials

Pn(u) =
1

2nn!

dn

dun
(u2 − 1)n for |u| ≤ 1.

As the expansion (6) converges only for |y| > |x|, the matrix Vh has to be split into a
nearfield and farfield part. The expansion (6) can be applied in the farfield FF(ℓ) of a
boundary element τℓ, while the matrix entries have to be computed in the nearfield NF(ℓ)
classically. The approximation of the matrix times vector product now reads as

w̃ℓ =
∑

k∈NF(ℓ)

Vh[ℓ, k] tk +
∑

k∈FF(ℓ)

tk
4π

∫

τℓ

∫

τk

p∑

n=0

n∑

m=−n

Sm
n (y)Rm

n (x)dsydsx.

Using the coefficients

Mm
n (O, ℓ) =

∫

τℓ

Rm
n (x)dsx and Lm

n (O, k) =

∫

τk

Sm
n (y)dsy (7)

with respect to a local origin O gives the representation

w̃ℓ =
∑

k∈NF(ℓ)

VL,h[ℓ, k]tk +
1

4π

p∑

n=0

n∑

m=−n

Mm
n (O, ℓ)L̃m

n (FF(ℓ)). (8)

If the coefficients

L̃m
n (FF(ℓ)) =

∑

k∈FF(ℓ)

tkL
m
n (O, k) for n = 0, . . . , p, m = −n, . . . , n (9)

are computed efficiently, the realization of the matrix times vector multiplication will be
fast by the splitting (8). But the coefficients L̃m

n (FF(ℓ)) depend on the farfield FF(ℓ) of
each boundary element and differ consequently.

For the efficient computation of the coefficients L̃m
n (FF(ℓ)) a hierarchical structure build

upon the boundary elements is used. All boundary elements {τk}
N
k=1 are located in a cube

containing the domain Ω and form the cluster ω0
1 of level 0. The hierarchical cluster

structure is built recursively. The cube identified with a cluster ωλ
i is subdivided into eight

smaller cubes and the triangles of the cluster are assigned to these eight cubes and form
up to eight new clusters ωλ+1

j of level λ + 1 as sons of the cluster ωλ
i . In the case of a

quasi-uniform boundary discretization this construction is executed up to a maximal level
L such that the clusters of this level contain only some boundary elements. A cluster ωλ

i

is in the nearfield of a cluster ωλ
j of the same level λ, if there holds

dist {Cλ
i , Cλ

j } ≤ (d + 1)max {rλ
i , rλ

j }. (10)

Cλ
i is the center of the cube associated with the cluster ωλ

i and rλ
i is the cluster radius,

i.e., rλ
i = supx∈ωλ

i

∣∣x − Cλ
i

∣∣. This definition is transferred to the boundary elements by the
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leafs of the cluster tree:

NF(ℓ) :=
{
k, 1 ≤ k ≤ N und (10) holds for the cluster ωL

i of τk

and ωL
j is the cluster containing τℓ.

}
,

FF(ℓ) := {1, . . . , N} \NF(ℓ).

The cluster hierarchy is now used to compute the coefficients L̃m
n (FF(ℓ)). First, the

multipole coefficients

M̃m
n (CL

j , P(ωL
j )) =

∑

k∈P(ωL
j )

tkM
m
n (Cλ

j , k) (11)

are computed for all clusters ωL
j of the finest level L. P(ωλ

j ) := {k, τk ∈ ωλ
j } denotes the

set of indices of all boundary elements τk of the cluster ωλ
j . The coefficients M̃m

n of the
coarser levels λ < L are computed by the translation

M̃m
n (Cλ

j , P(ωλ
j )) =

∑

ωλ+1

i
∈sons(ωλ

j
)

n∑

s=0

s∑

t=−s

Rt
s(
−−−−−→
Cλ

j Cλ+1
i )M̃m−t

n−s (Cλ+1
i , P(ωλ+1

i )). (12)

The multipole coefficients of a cluster ωλ
j are transferred to the center of a cluster ωλ

i in
the farfield by the conversion

L̃m
n (Cλ

i , P(ωλ
j )) =

∞∑

s=0

s∑

t=−s

(−1)nSm+t
n+s (

−−−→
Cλ

j Cλ
i )M̃ t

s(C
λ
j , P(ωλ

j )). (13)

These conversions are executed on the coarsest level for which the admissibility condition
is satisfied, i.e., for two clusters in their mutual farfield but their father clusters are in their
mutual nearfield. The sum of all these transferred coefficients form the local coefficients
of each cluster. Further, these coefficients are transferred from each cluster ωλ

i to its sons
ωλ+1

j by the translation

L̃m
n (Cλ+1

j , FF(ωλ
i )) =

p∑

s=n

s∑

t=−s

Rt−m
s−n (

−−−−−→
Cλ

i Cλ+1
j )L̃t

s(C
λ
i , FF(ωλ

i )). (14)

The sums of all these coefficients L̃m
n (CL

j , ·) build the coefficients L̃m
n (FF(ℓ)) needed in the

matrix times vector product (8), where ωL
j is the cluster containing τℓ.

An error analysis [20] with a fixed nearfield parameter d shows that the expansion
degree p has to be chosen as p ∼ log N , if the same expansion degree is used for all cluster
levels. This analysis shows that the effort of a matrix times vector product is of order
O(N log2 N). The memory requirements are of the same order.

3 Algebraic multigrid method

First, a summary of the used multigrid scheme is given. Then the algebraic version for the
fast multipole method is described in detail and a complexity analysis is given.
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3.1 The multigrid algorithm

The description of the multigrid preconditioner of the Galerkin matrix Vh of the single
layer potential follows the techniques used in [14, 16]. First, the existence of a set of single
layer potential matrices Vℓ for ℓ = ℓ0, . . . , L + 1, which are related to a nested sequence of
trial spaces, is assumed. The algebraic construction of these matrices will be described in
Sect. 3.2. A multigrid method based on a V-cycle is used for the preconditioning of the
system matrix VL+1 = Vh. This method is given by Algorithm 1. The index of a vector uℓ

denotes the related level ℓ.

Algorithm 1 multigrid method based on a V-cycle

MultiGrid (uℓ, f
ℓ
, ℓ)

if ℓ = ℓ0 then

Compute uℓ0 = (Vℓ0)
−1f

ℓ0
by a coarse grid solver.

else

Apply νF smoothing steps for Vℓuℓ = f
ℓ
.

Compute the defect dℓ = f
ℓ
− Vℓuℓ.

Restrict the defect to the next coarser level ℓ − 1: dℓ−1 = P⊤
ℓ dℓ.

Set uℓ−1 = 0.
Call MultiGrid (uℓ−1, dℓ−1, ℓ − 1).
Prolongate the correction sℓ = Pℓuℓ−1.
Update of the solution uℓ = uℓ − sℓ.
Apply νB smoothing steps for Vℓuℓ = f

ℓ
.

end if

A difficulty of the multigrid method arises from the mapping properties of the single
layer potential V : H−1/2(Γ) → H1/2(Γ). Due to these mapping properties, the high-
frequency eigenfunctions belong to the small eigenvalues and not to the large ones like in
finite element methods. Therefore a discretization Aℓ ∈ RNℓ×Nℓ of the Laplace–Beltrami
operator is used as smoother [3]. The corresponding smoothing step of Algorithm 1 reads
as

uℓ = uℓ + µℓAℓ(f ℓ
− Vℓuℓ)

with a damping parameter 0 < µℓ ≤ 1/λℓ,max. λℓ,max denotes the largest eigenvalue of the
generalized eigenvalue problem

Vℓwℓ = λA−1
ℓ wℓ.

These maximal eigenvalues can be computed efficiently by a few steps of a modified gradient
method [23].

3.2 An AMG method for the fast multipole method

Here, the cluster hierarchy of the fast multipole method is used to define the coarsening. In
the case of complicated and not simply connected domains, a suitable clustering resulting
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in an admissible coarsening might be necessary. The clusters of the finest level merge the
contained boundary elements to coarse grid elements. In all further coarsening steps, the
clusters are merged in coarse grid elements by their father son relations. The big advantage
of this approach is that the operations of the fast multipole method can be used for an
efficient construction of the coarse grid nearfield matrices and for efficient realization of
the matrix times vector products of the coarse grid matrices.

Thus, a coarse grid element τ ℓ
j of the “discretization” levels ℓ = ℓ0, . . . , L is given by the

union of the triangles of the cluster ωℓ
j of the cluster tree. On the finest level L + 1, the

given boundary elements τL+1
i := τi are used. These boundary elements will be called sons

of the clusters ωL
j for an easier description of the method. The finest cluster level with less

than 1000 − 1500 clusters is used as coarsest level ℓ0. The corresponding matrix can be
set up and inverted by a direct method for this size efficiently. First the nearfield parts of
the matrices Vℓ of the coarser levels ℓ = ℓ0, . . . , L have to be computed. The nearfield is
always given by the sons of the nearfield of the father. The matrix entries of the coarser
levels can be computed recursively by

Vℓ[i, j] =
∑

m∈sons(i)

∑

n∈sons(j)

Vℓ+1[m, n] (15)

for the used piecewise constant test and trial functions. The problem about this compu-
tation is that not all entries of the matrix Vℓ+1 of the finer level, which are needed for the
computation of the nearfield entries of the matrix Vℓ of the coarser level, are known. This
is shown in Figure 1a schematically.

(a) Nearfield of the coarse grid matrices

ωℓ
j

ωℓ
k

(b) nearfield and interaction

Figure 1: Construction of the nearfield of the coarse grid matrices.

The nearfield entries of the 8 × 8 matrix of the finer level are hatched from top left
to bottom right, while the nearfield entries of the 4 × 4 matrix of the coarser level are
hatched from bottom left to top right. An entry of the coarse grid is given by the sum (15)
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of the corresponding entries of the finer level. Only some of the nearfield entries of the
coarser grid can be computed directly. For the others, some of the fine grid entries are
unknown. Each of the unknown matrix entries of the finer level is related to a conversion
of a multipole expansion as illustrated in Figure 1b.

Figure 1b represents the nearfield of an element τ ℓ
j which is identified with the cluster ωℓ

j

in a two-dimensional clustering. The nearfield of τ ℓ
j is given by the elements τ ℓ

i associated
with the sons ωℓ

i of the clusters which are in the nearfield of the father cluster of ωℓ
j. The

nearfield entries Vℓ[j, i] of the element τ ℓ
j can be computed due to (15). But the nearfield

entries of Vℓ+1 are just known for the part which is indicated by the finer clustering. The
part of the matrix times vector multiplication of Vℓ+1 related to ωℓ

j and the clusters outside
the region marked by the finer clustering is realized by the fast multipole method and not
by the nearfield part. The conversion (13) related to two clusters ωℓ

j and ωℓ
k has to be

executed to determine the nearfield entry Vℓ[j, k] of the elements τ ℓ
j and τ ℓ

k. One of these
conversions is indicated by the plotted arrow.

Due to the recursive computation (15) of the matrix entries, the coefficients M̂m
n (ωℓ

j)
of the multipole expansion of a cluster ωℓ

j, which has to be converted, can be computed
recursively as the sum of translations (12) of the multipole coefficients of the sons by

M̂m
n (Cℓ

j , P(ωℓ
j)) =

∑

ωℓ+1

i ∈sons(ωℓ
j)

n∑

s=0

s∑

t=−s

Rt
s(
−−−−→
Cℓ

jC
ℓ+1
i )M̂m−t

n−s (Cℓ+1
i , P(ωℓ+1

i )). (16)

The multipole coefficients of the clusters ωL
i of the finest levels are given by

M̂m
n (CL

i , P(ωL
i )) =

∑

k∈P(ωL
i )

Mm
n (CL

i , k) (17)

where Mm
n (CL

i , k) are the coefficients related to a single panel τk. These coefficients M̂m
n

are also used for the evaluation of the converted expansions. The entry of two elements τ ℓ
j

and τ ℓ
k is finally computed by

Vℓ[j, k] =

p∑

n=0

n∑

m=−n

M̂m
n (Cℓ

j , P(ωℓ
j))

(
p∑

s=0

s∑

t=−s

(−1)nSm+t
n+s (

−−−→
Cℓ

kC
ℓ
j )M̂

t
s(C

ℓ
k, P(ωℓ

k))

)
. (18)

This formula realizes the computation (15) by the operations of the fast multipole method.
The farfield part of the application of a coarse grid matrix Vℓ is realized by the fast multipole
method. There, only the operations down to the cluster level ℓ − 1 are applied. The
coefficients M̂m

n are used for setting up the multipole coefficients and for the evaluation of
the local expansion, too.

3.3 Complexity estimates

Here, a detailed analysis of the memory requirements and the effort for a single application
of the described multigrid preconditioner is presented. The application of the matrices Vℓ
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for ℓ = ℓ0, . . . , L + 1 is decisive for the overall asymptotic effort of the method. As in
the complexity analysis in [20], the clustering is built in such a way that the number of
boundary elements in the clusters of the finest level is proportional to log2 N . Therefore,
MT = O(N/ log2 N) clusters exist on the finest level. The total number of clusters can be
estimated by 2MT due to the tree structure. For a fixed nearfield parameter d the expansion
degree p of the multipole approximation has to be chosen as p ∼ log N corresponding to an
error analysis [20]. The memory requirements and the complexity of a matrix times vector
product are of order O(N log2 N) for Vh on the finest level L + 1.

The number of nearfield entries of the discretization level L + 1 is O(N log2 N). The
elements of the coarser levels ℓ < L + 1 are defined by the clusters. The number of
nearfield elements for a single element τ ℓ

i on the coarser levels is limited by a constant cNF,
as these nearfield entries are determined by the sons of the nearfield of the father cluster
ωℓ−1

j . Therefore, the coarsening creates O(2MT cNF) new nearfield entries at most. Extra

memory requirements are caused by the storage of the O(p2) coefficients M̂m
n for all 2MT

clusters. Thus the total memory requirements are of order O(N log2 N).

Operation and comment costs

Computation (17) of the O(p2) coefficients M̂m
n for each of the NO(p2)

N boundary elements and translation (16) with O(p4) to all +2MTO(p4)
2MT father clusters.

Each nearfield entry is used for the computation of the nearfield O(N log2 N)
entries of the next coarser level by (15) only once. +O(2MT cNF)

Construction of the remaining nearfield entries by (18) with an 2MT cIO(p4)
O(p4) effort. Each of the maximal 2MT cI conversions is applied
only once.

Table 1: Complexity analysis for the computation of the coarse grid nearfield matrices.

The effort of the construction of the coarse grid nearfield matrices is listed in Table 1. cI

denotes the maximal number of conversions for a cluster and is bounded since the nearfield
parameter d is chosen to be fixed. The total effort for the construction of the nearfield
matrices of the coarser grids is of order O(N log2 N) and corresponds almost to a matrix
times vector multiplication of the original matrix Vh. Only essentially more evaluations
of local expansions are needed. If a direct inversion of the matrix on the coarsest level ℓ0

is applied, extra conversions in-between the corresponding clusters are needed. Since the
dimension Nℓ0 of this matrix is chosen to be fixed with about 1000–1500, the extra memory
requirements are constant and the effort for the computation of all these matrix entries is
bounded by N2

ℓ0
O(p4).

Each of the matrices Vℓ for ℓ = ℓ0 + 1, . . . , L + 1 is applied twice in the preconditioner
of Algorithm 1. This has to be kept in mind for the complexity analysis of an application
of the preconditioner in Table 2.
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Operation and comment cost multigrid matrix

Set up the O(p2) multipole coefficients O(p2) 2 · (2MT + N) N
for each cluster and each boundary element.

Translations (12) of the multipole coefficients O(p4) 2 · 4MT 2MT

Conversions (13) of the expansions O(p4) 2 · 4MT · cI 2MT · cI

Translations (14) of the local coefficients O(p4) 2 · 4MT 2MT

Evaluation of the local expansions O(p2) 2 · (2MT + N) N
for each cluster and all boundary elements.

Nearfield matrix multiplication O(1) 2 · (2MT · cNF N log2 N
+N log2 N)

Table 2: Complexity analysis for an application of the multigrid preconditioner.

In the first column of Table 2, the operations of the fast multipole method are described.
The single costs of these operations are given in the second column. The numbers of
applications of these operations are given in the columns three and four for the multigrid
preconditioner and the standard matrix times vector multiplication, respectively. The
number of translations and conversions is determined by the frequency of the application
depending on the cluster level. This is due to the fact that the fast multipole operations
have to be executed only down to level ℓ − 1 for the application of the matrix Vℓ. The
number of clusters of level L − ℓ can be estimated by MT /2L−k. Thus, the number of
operations can be estimated by the use of the Cauchy product and the geometric series by

L+1∑

ℓ=ℓ0

ℓ−1∑

k=0

MT

2L−k
≤

L+1∑

ℓ=1

ℓ−1∑

k=0

MT

2L−k
=

L∑

i=0

MT

2i
(i + 1) ≤ MT

∞∑

i=0

i + 1

2i
= MT

(
∞∑

i=0

1

2i

)2

= 4MT .

The total effort of an application of the multigrid preconditioner according to Algo-
rithm 1 is of order O(N log2 N) and less expensive than four fast multipole realizations of
the matrix Vh. Note that each matrix Vℓ has to be applied twice, in particular even Vh.

The required accuracy for the approximation of the coarse grid matrices is warranted
since the expansion degree p of the finest level which needs the most accuracy is used for
all fast multipole operations. A suitable adaption of the expansion degree p for the single
coarse grid matrices Vℓ could reduce the computational times slightly. But even with a
fixed expansion degree the overall complexity is optimal with respect to the complexity of
a single matrix times vector multiplication.
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4 Numerical results

The three-dimensional L-shaped domain shown in Figure 2 is used to compare three precon-
ditioning techniques. The unrefined boundary element mesh consists of 14 squares which
are described by 2 triangles each.

( 0, 0, 0)

( 0, 0.5, 1)

(1, 0, 0)

Figure 2: unrefined three-dimensional L-shaped domain.

A simple diagonal scaling, an artificial BPX-like multilevel preconditioner [25] and the
described multigrid preconditioner are compared in Table 3 until the seventh refinement
level with 458752 triangles. All computations were executed on a personal computer with
an AMD Opteron processor 146 2.0 GHz and 4 GB RAM. A conjugate gradient method
was used as solver with a relative accuracy of 10−8. The BPX-like preconditioner shows a
slightly increasing number It of iterations for a increasing number of boundary elements
N as expected from theory. The numbers of iterations are less than those for the diagonal
scaling. Therefore, the times t2 for solving the systems of linear equations are reduced
significantly. The algebraic multigrid preconditioner reduces the number of iterations once
more. This reduces the computational times for solving the system only slightly, since the
BPX-like preconditioner is very inexpensive while one preconditioning step is about four
times as expensive as a single matrix times vector product. The extra effort for setting up
the multigrid preconditioner can be read off the times t1 for setting up the system of linear
equations and the preconditioning. The extra ten percent effort for setting up the multigrid
preconditioner is acceptable. Here, the determination of the damping parameter is more
expensive than the construction of the nearfield matrices of the coarse grids. Overall both
preconditioning techniques are recommendable.

The same test problem is considered in [15] using a geometrical multigrid preconditioner.
The numbers of iterations are comparable considering the differing relative accuracies in
the conjugate gradient method of 10−6 and 10−8, respectively. The computational times
are not really comparable as other integration routines are used; further, the accuracy of
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the ACA method is not adapted to the discretization level in [15], while this is done in our
computations. This adaption of the accuracy of the low rank approximations is needed for
the reduction of the approximation error and has a big impact on the performance of the
methods [22].

diagonal scaling ABPX AMG
L N t1 t2 It t1 t2 It t1 t2 It
0 28 0 0 18 0 0 18 0 0 1
1 112 1 0 26 0 0 25 0 0 9
2 448 4 1 36 5 0 28 5 0 10
3 1792 14 1 48 15 1 32 15 1 10
4 7168 56 6 65 56 3 36 61 3 9
5 28672 193 62 85 192 29 39 212 27 10
6 114688 677 363 113 674 140 43 736 140 11
7 458752 2684 2678 144 2691 902 48 3024 855 11

Table 3: Comparison of preconditioners for the Laplace equation.

The algebraic multigrid preconditioner can also be applied to the Galerkin matrix of
the single layer potential in linear elastostatics; for details of the used fast multipole real-
ization see [19]. Here, we apply the multigrid preconditioner of the single layer potential
of the Laplacian component-wise for the single layer potential of linear elastostatics. This
approach is easier to implement and the construction of the coarse grid matrices is a lot
cheaper since the coarsening has to be applied for only one block. The component-wise
preconditioning results in a larger condition number but the good numerical results justify
this approach.

In Table 4, a diagonal scaling, the BPX preconditioner and the algebraic multigrid
method are compared for a Dirichlet problem of linear elastostatics for a cuboid. All
preconditioners are applied component-wise.

Six uniform refinement steps have been executed. The finest mesh consists of 163840
triangles and 491520 degrees of freedoms on the boundary and in the system of linear
equations. The number of iterations increases strongly with the numbers of elements in
the case of diagonal scaling. The number of iterations of the BPX-like preconditioner
grows logarithmically as expected from theory. As the BPX-like preconditioner is very
cheap, the reduced number of iterations leads to a much faster solving of the system
of linear equations. Again, the algebraic multigrid preconditioner reduces the number of
iterations significantly. A slight increase of the number of iterations is noticeable as in other
publications see [14, 16]. The multigrid preconditioner is rather expensive. Nevertheless,
the lower iteration numbers reduce the time for solving the linear system by a factor of five
compared to the diagonal scaling and by a factor of about two compared to the BPX-like
preconditioner. This justifies the extra effort for setting up the multigrid preconditioner.
Here, the multigrid preconditioner is the best choice of the tested preconditioners.
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diagonal scaling ABPX AMG
L N DoF t1 t2 It t1 t2 It t1 t2 It
0 40 120 0 0 26 0 0 26 0 0 13
1 160 480 1 2 36 2 1 33 2 1 15
2 640 1920 5 13 51 5 10 40 5 4 16
3 2560 7680 18 93 70 19 58 44 21 25 16
4 10240 30720 75 680 92 76 370 50 88 160 17
5 40960 122880 365 6945 124 368 3080 55 457 1392 19
6 163840 491520 1749 55984 165 1750 20386 60 2325 9481 21

Table 4: Comparison of preconditioners for linear elastostatics

5 Conclusions

We have presented an algebraic multigrid method for the single layer potential using fast
boundary element methods. The cluster hierarchy of the fast multipole method is used to
define the coarse grid elements. An application of the presented multigrid preconditioner
has the same almost optimal order of complexity as a matrix times vector product by
the fast multipole method. The numerical examples show the efficiency of the presented
preconditioning technique.
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