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Abstract

We study a system of partial differential equations describing a steady flow of an
incompressible generalized Newtonian fluid, wherein the Cauchy stress is concentra-
tion dependent. Namely, we consider a coupled system of the generalized Navier–
Stokes equations and convection–diffusion equation with non–linear diffusivity. We
prove the existence of a weak solution for certain class of models by using a general-
ization of the monotone operator theory which fits into the framework of generalized
Sobolev spaces with variable exponent. Such a framework is involved since the func-
tion spaces, where we look for the weak solution, are “dependent” of the solution
itself, and thus, we a priori do not know them. This leads us to the principal a priori
assumptions on the model parameters that ensure the Hölder continuity of the vari-
able exponent. We present here a constructive proof based on the Galerkin method
that allows us to obtain the result for very general class of models.

Keywords: generalized Navier–Stokes system, incompressible fluid, concentration de-
pendent viscosity, shear–rate dependent viscosity, Sobolev spaces with variable exponent
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1 Introduction

The mathematical study of non–Newtonian fluids became very popular in the recent
decades. This is also due to the fact that many biological fluids (such as blood, mucus or
polymeric solutions), fluids used in the engineering, food industry or agriculture can be
described in such a framework. This of course brings importance of mathematical analysis
and generally fundamental research in these medical, biological or engineering applications.

In this article, we shall study a rheological response of a synovial fluid (a biological fluid
occurring in the mammalian movable joint cavities) during the shear experiment. From
rheological point of view, synovial fluid is composed of an ultrafiltrated blood plasma (hav-
ing a characteristic of a Newtonian fluid) diluting specific polysaccharide called hyaluronan.
In one way, one can describe such a solution in a framework of a mixture theory, we, on
the other hand, shall restrict ourselves to the case, that the fluid can be described as a
single constituent fluid. This can be defended by the fact, that the physiological mass con-
centration of the hyaluronan is very low (usually around 0.5%), and even though a local
accumulation occurs, the mass concentration does not exceed 2%. The solution remains
in a practically homogeneous state1. Nevertheless, one still needs to include to the model
the experimentally proven chemical influence on the fluid rheology. To be more specific,
already in the early 50’ it was shown in the work of Ogston and Stanier (1953) (see also
(Fung, 1993, Section 6.7)), that the synovial fluid exhibit a strong shear–thinning behavior
during a simple viscosimetric experiment, qualitatively and quantitatively depending on
the concentration of hyaluronan in the solution. In other words, the apparent viscosity of
the fluid is not just a function of shear–rate but also of the concentration. From math-
ematical modeling point of view, a class of power–law–like models with a concentration
dependence seems to be then applicable. In that case, we need to additionally specify the
concentration dependence.

By the experiment, it was shown that the hyaluronan concentration is not just a scaling
factor of the viscosity (understand as ν(c, |D|2) ∼ f(c) ν̃(|D|2)), but it influences the
measure of how much the fluid thins the shear. For zero concentration, the viscosity
remains constant for different shear–rates, reflecting the fact that that the fluid is consisting
only from a blood plasma ultrafiltrate exhibiting a Newtonian character. With increasing
concentration in the solution, the fluid exhibit higher apparent viscosity, nevertheless, it
thins the shear more and more rapidly2. This led the authors of Hron et al. (2010) to
propose a new power–law–like model for generalized viscosity of synovial fluid, where the
shear–thinning index itself is a function of the concentration. Such a model is able to
describe the synovial fluid viscous properties in a better way than the models used up to
that time, and moreover, it naturally captures the character of decreasing concentration
to zero for which the non–Newtonian effects become more and more diminishing. For
detailed motivation and mathematical modeling of the synovial fluid we refer to the thesis

1Here, one needs to have in mind the biochemical constitution of synovial fluid, that the molecule chains
are strongly hydrated, creating in the fluid “background” a quasi–continuous network.

2From biochemical point of view, this is a consequence of the chemical interactions between the hyaluro-
nan molecules
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Pustějovská (2012).
Based on the description above, we shall study a system of equations describing a flow

of a shear–thinning/thickening fluid with a non–standard growth condition on the viscos-
ity. Explicitly, we assume the generalized incompressible Navier–Stokes equations with a
power–law–like viscosity wherein the power–law–like index is non–constant, depending on
the concentration. It is clear, that additional governing equation for the concentration
needs to be included to the equation system. For the balance of concentration we use
the convection–diffusion equation3, which results in a system that is fully coupled (see
Buĺıček et al. (2009)). Similar systems have been already studied for example by Růžička
(2000), motivated by the electro–rheological fluid, or by Antontsev and Rodrigues (2006),
describing a flow of thermo–mechanical fluids. In both cases, the power–law–like index was
a function of another physical quantity, electric field and temperature, respectively. For
closer comparison see following section of Historical remarks.

The system of equations, we are interested in, is described in the terms of the velocity
field v : Ω → R

d, the pressure field π : Ω → R and the scalar field of concentration
distribution c : Ω → R+, and consists of the generalized homogeneous incompressible
Navier–Stokes equations coupled with the equation of the convection–diffusion for the
concentration

div v = 0, (1.1)

div(v ⊗ v)− divS(c,D(v)) = −∇π + f , (1.2)

div(cv)− div qc(c,∇c,D(v)) = 0, (1.3)

that is supposed to be satisfied in an open bounded domain Ω ⊂ R
d. Here f : Ω → R

d

represents a given density of the bulk force,D(v) denote the symmetric part of the velocity
gradient ∇v, it means D(v) = 1

2
(∇v + (∇v)T), and, S(c,D(v)) and qc(c,∇c,D(v)) are

the extra stress tensor of the Cauchy stress tensor and the concentration flux, respectively,
given as

S(c,D(v)) = ν(c, |D(v)|2)D(v), qc(c,∇c,D(v)) =K(c, |D(v)|)∇c. (1.4)

Here ν(c, |D(v)|2) denotes the generalized viscosity of the power–law type, dependent of
the shear–rate and concentration

ν(c, |D(v)|2) ∼ ν0
(

κ1 + κ2 |D(v)|2
)

p(c)−2
2 , (1.5)

ν0, κ1, κ2 stand for constants, K(c, |D(v)|) : R+ × R+ → R
d×d denotes the diffusivity

tensor function, at the moment not specified, and to p(·) we shall refer as to a variable

3Generally, one could even think of the extension of the equation upon the volumetric reaction term.
This, however, is not proper for the application we have in mind. The hyaluronan molecules in the synovial
fluid of a healthy person do not undergo covalent structural changes, and, they are created exclusively by
the cells outside the joint cavity.
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exponent. To complete the problem (1.1)–(1.3) we prescribe the Dirichlet boundary data,
i.e., we assume that

v = 0, c = cd on ∂Ω. (1.6)

Finally, to end this introductory part, we formulate the main result of the paper. Please
note that the theorem is stated very vaguely and in fact requires a precise definition of
what we mean by a weak solution and consequently a proper definition of function spaces.
All of those are provided in the next section.

Theorem 1.1. Let Ω ⊂ R
d be a Lipschitz domain and d > 2. Assume that p is Hölder

continuous function such that

max

{

3d

d+ 2
,
d

2

}

< p− 6 p(c) 6 p+ < ∞ for all c ∈ R (1.7)

and let K be uniformly elliptic. In addition suppose that cd ∈ W 1,q(Ω) for some q > d and

f ∈ (W 1,p−

0 (Ω))∗. Then there exists a weak solution to (1.1)–(1.6).

2 Historical remarks

The mathematical analysis of generalized Navier–Stokes equations for incompressible fluid
with non–constant viscosity, particularly shear–rate dependent, started to be point of inter-
est in late 60’ due to fundamental works Ladyzhenskaya (1967) and Ladyzhenskaya (1969).
There the author established the existence of a weak solution for p >

3d
d+2

, p being constant
power–law index, using the theory of monotone operators. This result was then generalized
by using the so–called L∞ and Lipschitz approximation methods, obtaining the existence
of a weak solution for constant4 p > 2d

d+2
. We refer the interested reader to the series of

papers Málek et al. (1993), Frehse et al. (1997), Růžička (1997), Málek et al. (2001), Frehse
et al. (2000), Frehse et al. (2003) and Diening et al. (2010b), where a detailed description
of the methods used for both, steady and evolutionary case can be found.

The coupled system of generalized Navier–Stokes equations with the convection–
diffusion–reaction equation, considering the viscosity of the form ν(c, |D(v)|2) ∼

ν1(c)ν2(|D(v)|2)
p−2
2 was studied by Buĺıček et al. (2009). There the authors treated the

evolutionary case and established a long time and large data existence of a weak solution
for constant p > 8

5
with the help of L∞ truncation method. Note here that the result

presented in Buĺıček et al. (2009) can be easily extended to the steady case to obtain the
existence of a weak solution for constant p > 2d

d+1
.

The models with variable power–law index, developed for electrorheological fluids, are
studied for instance in Růžička (2000) and Růžička (2004). For this kind of fluids the extra
stress tensor is (non–trivially) dependent of electric field E and thus the Navier–Stokes

4Note that such a bound is in fact very natural since for lower p’s we are not able to control the
convective term.
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equations have to be solved with the (quasi–static) Maxwell equations. Nevertheless, the
governing equations are essentially uncoupled, hence the Maxwell equations can be solved
first. The solution of electric field can be then considered as a known function, resulting
that the problem reduces to the problem of incompressible Navier–Stokes problem with

extra stress tensor having the growth property of |S| 6 C(1 + |D(v)|2)
p(x)−2

2 , where p(x) :
= p(|E(x)|2) is a given function (under some assumption of Hölder continuity), satisfying
1 < p− < p(x) < p+ < ∞. Using the theory of monotone operators, the author was able
to prove the existence of a weak solution for the lower bound p− >

3d
d+2

, and in the case of

stationary problem the existence result was extended to p− >
2d
d+2

by Diening et al. (2008),
by the means of the method of Lipschitz approximations.

The closest system to ours, (1.1)–(1.3), is studied in Antontsev and Rodrigues (2006).
The authors considered the stationary system of generalized Navier–Stokes equations cou-
pled with equation for thermal diffusion obtained as Oberbeck–Boussinesq approximation
of the heat equation, under the consideration that the power–law index depends on the
temperature θ. For Dirichlet boundary conditions, for both velocity and temperature,
they prove the existence of a weak solution for the case of 3d

d+2
6 p− < p(θ) < p+ < ∞

for d = 2, 3 and sufficiently smooth data by using the fixed point argument. There, the
important simplification is the assumption of the constant diffusion tensor (similar to our
K), which ensures the Hölder continuity of the temperature. On the other hand, in case
that K depends on the concentration and the shear rate, such procedure is simply not
possible due to the lack of the compactness of the corresponding operator required by the
use of a fix–point theorem.

In view of this, it is of real interest to generalize the monotone operator theory and the
Galerkin method in a proper way to prove the existence of a weak solution to (1.1)–(1.3)
for general diffusion K. Moreover, such a proof can then help to find a generalization of
L∞ and Lipschitz approximation method to overcome the bound p > 3d

d+2
in Theorem 1.1.

This we shall present in a forthcoming paper.

3 Notation and auxiliary results

It is obvious, that for the problem of non–constant viscosity with variable exponent of the
power–law, the functional setting of classical Lebesgue/Sobolev spaces is not appropriate
and more general approach needs to be introduced, in this case the setting of generalized
Lebesgue/Sobolev spaces with variable exponent p. Such spaces have been studied by many
authors, see for instance Orlicz (1931), Nakano (1950), Sharapudinov (1978), Musielak
(1983), Kováčik and Rákosńık (1991), Fan et al. (2001) and a compact and self–contained
book Diening et al. (2011).

As in the above mentioned references, we shall use the following notation. We denote
the set of all measurable functions p : Ω → [1,∞] by P(Ω), and call the function p ∈ P(Ω)
a variable exponent. Moreover, we define p− := ess infx∈Ω p(x) and p+ := ess supx∈Ω p(x).
For simplicity we restrict ourselves only to the case when 1 < p− 6 p+ < ∞. The dual
variable exponent p′ ∈ P(Ω) is defined by 1

p(x)
+ 1

p′(x)
= 1. Next, for arbitrary variable
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exponent p, satisfying the above bounds, we introduce a generalized Lebesgue space

Lp(·)(Ω) := {u ∈ L1
loc(Ω);

∫

Ω

|u(x)|p(x) dx < ∞},

which is equipped with the Luxembourg norm

‖f‖Lp(·)(Ω) = ‖f‖Lp(·) := inf

{

λ > 0 :

∫

Ω

∣

∣

∣

∣

f(x)

λ

∣

∣

∣

∣

p(x)

dx 6 1

}

.

In the same spirit we define the generalized Sobolev spaces

W 1,p(·)(Ω) :=
{

u ∈ W 1,1(Ω) ∩ Lp(·)(Ω) : |∇u| ∈ Lp(·)(Ω)
}

,

with a norm

‖u‖1,p(·),Ω = ‖u‖1,p(·) := inf

{

λ > 0 :

∫

Ω

∣

∣

∣

∣

u(x)

λ

∣

∣

∣

∣

p(x)

+

∣

∣

∣

∣

∇u(x)

λ

∣

∣

∣

∣

p(x)

dx 6 1

}

.

All above defined spaces are separable and reflexive Banach spaces (again, we use the sim-
plification 1 < p− 6 p+ < ∞). Moreover,

(

Lp(·)(Ω)
)∗

= Lp′ (·)(Ω) holds for any p ∈ P(Ω),

and the space D(Ω) is dense in Lp(·)(Ω). However, having such density (and further proper-
ties) also for generalized Sobolev spaces, an additional condition on the variable exponent
is required (see e.g. Zhikov (1987), Fan et al. (2006), Hästö (2005) and Diening et al.
(2005) for counter–examples). Therefore, we introduce a class of log–Hölder continuous
exponents, i.e., we define P log(Ω) as the set of all p ∈ P(Ω) which satisfy

|p(x)− p(y)| 6
C1

− ln |x− y|
∀ x, y ∈ Ω : 0 < |x− y| 6

1

2
. (3.1)

Under such additional regularity, we obtain for all p ∈ P log(Ω) and arbitrary open bounded
domain Ω ⊂ R

d with Lipschitz boundary

• The density of smooth functions, i.e.,

C∞(Ω)
‖·‖1,p(·)

= W 1,p(·)(Ω). (3.2)

• The embedding theorem, i.e., if 1 < p− 6 p+ < d then

W 1,p(·)(Ω) →֒ Lq(·)(Ω) 1 6 q(x) 6
dp(x)

d− p(x)
=: p∗(x). (3.3)

Moreover, if q(x) < p∗(x) for almost all x ∈ Ω, the embedding is compact.

• Korn inequality

‖∇v‖p(·) 6 C‖D(v)‖p(·) (3.4)

for all v ∈ [W
1,p(·)
0 ]d.

10



The proof of (3.4) can be found in Diening et al. (2010a) or Diening et al. (2010b), Section
14.3.

Additionally to the Lebesgue and Sobolev spaces and their generalizations, we introduce
the function spaces relevant for the treatment of the problems of incompressible fluids. By
W

1,r
0 (Ω) and W

1,r
0,div(Ω) we define the spaces

W
1,r
0 (Ω) := C∞

0 (Ω)
‖·‖1,r

,

W
1,r
0,div(Ω) := {φ ∈ [W 1,r

0 (Ω)]d : divφ = 0}.

Under the assumption of ∂Ω ∈ C0,1, there holds W 1,r
0 (Ω) ≡ {φ ∈ W 1,r(Ω) : φ = 0 on ∂Ω}.

Similarly we have

W
1,r(·)
0 (Ω) := {φ ∈ W 1,r(·)(Ω) : φ = 0 on ∂Ω},

W
1,r(·)
0,div (Ω) := {φ ∈ [W

1,r(·)
0 (Ω)]d : divφ = 0}.

For the notation of the duality pairing between f ∈ X and g ∈ X⋆ we use symbol
〈f, g〉X,X⋆, or, if it is obvious from the context, we skip for simplicity the indexes and write
〈f, g〉.

Finally, we recall the famous result of De Giorgi (1957) and Nash (1958), see also
Bensoussan and Frehse (2002), Chapter 2, applied to our problem as following theorem

Theorem 3.1. Let Ω ⊂ R
d be a bounded set with Lipschitz boundary and let q > d be

given. Assume that that there are C1, C2 > 0 such that

Kij ∈ L∞, |Kij | 6 C1, Kijbibj > C2|b|
2 for all b ∈ R

d. (3.5)

Then there exists α0 > 0 depending only on Ω, C1, C2 and q, such that for any g ∈ [Lq(Ω)]d

and any cd ∈ W 1,q(Ω) there exists unique c ∈ W 1,2(Ω) such that c−cd ∈ W
1,2
0 (Ω)∩C0,α0(Ω)

solving

∫

Ω

Kij

∂c

∂xj

∂ϕ

∂xj

dx =

∫

Ω

g · ∇ϕdx ∀ϕ ∈ W
1,2
0 (Ω), (3.6)

and fulfilling the uniform estimate

‖c‖W 1,2∩C0,α0 6 C(Ω, C1, C2, q, ‖g‖q, ‖cd‖1,q). (3.7)

4 The precise statement of the result

Having already introduced the function spaces, we can precisely reformulate Theorem 1.1.
First, recall that qc is given by

qc(c,∇c,D(v)) =K(c,D(v))∇c. (4.1)
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We assume that S : R+
0 × R

d×d
sym → R

d×d
sym fulfills following growth, strict monotonicity and

coercivity conditions for all c ∈ 〈minx∈∂Ω cd,maxx∈∂Ω cd〉 and all D, D1, D2 ∈ R
d×d
sym

|S(c,D)| 6 C1(|D|p(c)−1 + 1), (4.2)

(S(c,D1)− S(c,D2)) · (D1 −D2) > 0 D1 6= D2, (4.3)

S(c,D) ·D > C2(|D|p(c) + |S(c,D)|p
′(c) − 1), (4.4)

where p(·) is Hölder continuous function such that 1 < p− 6 p(·) 6 p+ < ∞, and the
concentration flux vector qc satisfies (4.1), where K(c, |D(v)|) : R

+
0 × R

+
0 → R

d×d is
continuous mapping withKi,j ∈ L∞(Ω) such that the flux vector fulfills following conditions

|qc(c, ξ,D)| 6 K1|ξ|, (4.5)

qc(c, ξ,D) · ξ > K2 |ξ|
2
. (4.6)

Above C1, C2, K1, K2 ∈ (0,∞) are constants and A ·B is notation for the scalar product
between two tensors.

Now, we are ready to formulate the main theorem.

Theorem 4.1. Let Ω ⊂ R
d be a bounded domain with Lipschitz boundary and let p be

a Hölder continuous function such that p− 6 p(c) 6 p+ < ∞ for all c, where p− >
3d
d+2

and p− > d
2
. Assume that f ∈ (W 1,p−

0,div(Ω))
∗, and S and qc satisfy conditions (4.2)–(4.6).

Moreover, let cd ∈ W 1,q(Ω) for some q > d. Then there exists (v, c) such that for some

α > 0

v ∈ W
1,p(c)
0,div (Ω), (4.7)

(c− cd) ∈ C0,α(Ω) ∩W
1,2
0 (Ω), (4.8)

fulfilling

−

∫

Ω

v ⊗ v · ∇ψ dx+

∫

Ω

S(c,D(v)) ·D(ψ) dx = 〈f ,ψ〉 ∀ψ ∈ W
1,p(c)
0,div (Ω), (4.9)

−

∫

Ω

vc · ∇ϕdx+

∫

Ω

qc(c,∇c,D(v)) · ∇ϕdx = 0 ∀ϕ ∈ W
1,2
0 (Ω). (4.10)

5 Proof of the main theorem

We present the proof based on Galerkin method together with the application of the gen-
eralized theory of monotone operators. From that, we are restricted to the assumption of
p− >

3d
d+2

(in 3D setting p− >
9
5
) which is required for the convective term (v ⊗ v) to be

well defined for the test functions from W
1,p(c)
0,div (Ω). The second restriction on the minimal

value of p in Theorem 4.1, explicitly p− > d
2
, comes from the necessity of c being Hölder

continuous, ensuring the Hölder continuity of the variable exponent which is a crucial as-
sumption for the density of smooth functions in generalized Sobolev spaces, embedding
theorems and Korn inequality. For that we use Theorem 3.1, where, nevertheless, it is
required that v ∈ Lq(Ω) for q > d, and therefore, using the Sobolev embedding, the second
bound on p arises.
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(n, m)–approximate problem and uniform estimates

Let {wi}
∞
i=1 be a basis of W 1,p+

0,div(Ω) such that
∫

Ω
wiwj dx = δij and {zj}

∞
j=1 be a basis of

W
1,2
0 (Ω), again

∫

Ω
zizj dx = δij. Then for positive, fixed n, m ∈ N we define the Galerkin

approximations

vn,m :=
n

∑

i=1

α
n,m
i wi, cn,m :=

m
∑

i=1

β
n,m
i zi + cd, (5.1)

for which αn,m and βn,m solve the approximate system

−

∫

Ω

(vn,m ⊗ vn,m) · ∇wi dx+

∫

Ω

S(cn,m,D(vn,m)) ·D(wi) dx = 〈f ,wi〉 (5.2)

∀i = 1, . . . , n,

−

∫

Ω

vn,mcn,m · ∇zj dx+

∫

Ω

qc(c
n,m,∇cn,m,D(vn,m)) · ∇zj dx = 0 (5.3)

∀j = 1, . . . , m.

The straightforward application of the fixed point theorem, provided the later derived
uniform estimates, then ensures the existence of the solution (vn,m, cn,m) of the approximate
system (5.2)–(5.3).

Now, we shall derive the uniform estimates that are independent of n, m in the
corresponding function spaces. For simplicity, we shall use the notation of Sn,m :=
S(cn,m,D(vn,m)) and qn,mc := qc(c

n,m,∇cn,m,D(vn,m)). Multiplying the i–th equation
in (5.2) by α

n,m
i and taking the sum over i = 1, ..., n, we obtain

−

∫

Ω

(vn,m ⊗ vn,m) · ∇vn,m dx+

∫

Ω

Sn ·D(vn,m) dx = 〈f , vn,m〉, (5.4)

where the convective term vanishes after integration by parts since div vn,m = 0 in Ω and
vn,m = 0 on ∂Ω. The equation (5.4) thus reduces to

∫

Ω

Sn,m ·D(vn,m) dx = 〈f , vn,m〉, (5.5)

and further, using the assumptions (4.4), (4.2) and standard duality estimates with Young
and Korn inequalities on the second term, we obtain that

∫

Ω

|D(vn,m)|p(c
n,m) dx < C. (5.6)

Next, multiplying the j–th equation in (5.3) by β
n,m
j and taking the sum over j =

1, ..., m, we arrive at

−

∫

Ω

vn,mcn,m · ∇(cn,m − cd) dx+

∫

Ω

qn,mc · ∇(cn,m − cd) dx = 0. (5.7)
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Again, the integration by parts of the first term and the assumptions of div vn,m = 0,
vn,m = 0 on ∂Ω reduce the equation (5.7) to

∫

Ω

qn,mc · ∇cn,m dx =

∫

Ω

qn,mc · ∇cd dx+

∫

Ω

cd∇cn,m · vn,m dx. (5.8)

After the use of assumption (4.5), the first therm on right hand side is estimated by the use
of the Hölder inequality followed by standard use of Young inequality. The second term is
estimated by the fact that cd is bounded and thus we can use the Hölder inequality and
consequently the Young inequality. All together with assumption (4.6), we arrive at

∫

Ω

|∇cn,m|2 dx 6 C(1 + ‖vn,m‖22) 6 C, (5.9)

where we estimated the last term by the use of the Korn inequality on (5.6) together with
the embedding W 1,p−(Ω) →֒ L2(Ω) for p− >

2d
d+2

.
Moreover, it is easy to show as a direct consequence of assumption (4.2) and estimates

(5.6), (5.9), that

∫

Ω

(

|Sn,m|p
+′

+ |qn,mc |2
)

dx 6 C. (5.10)

Limit m → ∞

Having the uniform estimate (5.6), the equivalence of norms in the finite dimensional spaces
leads to |αn,m| 6 C(n). Then, together with estimate (5.9), we can establish the following
m → ∞ convergence results for a suitable sub–sequences (for simplification not relabeled)

αn,m → αn strongly in R
n, (5.11)

cn,m ⇀ cn weakly in W 1,2(Ω), (5.12)

Sn,m ⇀ S̄
n

weakly in [Lp+
′

(Ω)]d×d, (5.13)

qn,mc ⇀ q̄nc weakly in [L2(Ω)]d, (5.14)

and thus directly from (5.11) and the compact embedding W 1,2(Ω) →֒→֒ L2(Ω) we obtain
the convergences results

vn,m → vn strongly in W
1,p+

0,div(Ω), (5.15)

cn,m → cn strongly in L2(Ω). (5.16)

Since S and qc are continuous with respect to their unknowns, (5.15)–(5.16), growth con-
dition on S and qc and the linearity of qc with respect to the gradient of c imply that

S̄
n
= Sn := S(cn,D(vn)), (5.17)

q̄nc = qnc := qc(c
n,∇cn,D(vn)). (5.18)
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The convergence results allow us to make the limit passage in the equation set (5.2)–
(5.3) and thus we obtain following system

−

∫

Ω

(vn ⊗ vn) · ∇wi dx+

∫

Ω

Sn ·D(wi) dx = 〈f ,wi〉 ∀i = 1, . . . , n, (5.19)

−

∫

Ω

vncn · ∇ϕdx+

∫

Ω

qnc · ∇ϕdx = 0 ∀ϕ ∈ W
1,2
0 (Ω). (5.20)

Minimum and maximum principle and further a priori estimates

Define zn1 := (cn−minx∈∂Ω cd)− and zn2 := (cn−maxx∈∂Ω cd)+, where (a)− and (a)+ denote
the negative and positive parts of a, respectively. It is clear, that functions zn1 , z

n
2 ∈ W

1,2
0 (Ω)

since cn = cd on ∂Ω, and thus, from (5.20), we get

−

∫

Ω

vncn · ∇zn1 dx+

∫

Ω

qnc · ∇zn1 dx = 0, (5.21)

and

−

∫

Ω

vncn · ∇zn2 dx+

∫

Ω

qnc · ∇zn2 dx = 0. (5.22)

First, let us consider equation (5.21). Using div vn = 0 in Ω and vn = 0 on ∂Ω on the first
term, (4.6) and the property of negative part on the second term, we arrive at

∫

Ω−

vn · ∇cnzn1 dx+

∫

Ω−

K2|∇cn|2 dx 6 0, (5.23)

where Ω− is the part of the domain on which zn1 < 0. Next, using that ∇cn = ∇zn1 on
Ω− and again the extension of ∇cn from Ω− on the whole domain Ω by using the negative
part, we obtain

∫

Ω

vn · ∇zn1 z
n
1 dx+

∫

Ω

K2|∇zn1 |
2 dx = 0. (5.24)

Application of the chain rule on the first term and the integration by parts, we find that
the first term vanishes, and thus

zn1 = (cn − min
x∈∂Ω

cd)− = const. a. e. in Ω. (5.25)

Analogous treatment can be used on the equation (5.22) which consequently leads to
zn2 = (cn − maxx∈∂Ω cd)+ = const. a. e. in Ω. Combining both results, we obtain the
boundedness of the concentration cn

min
x∈∂Ω

cd 6 cn 6 max
x∈∂Ω

cd a. e. in Ω. (5.26)
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Similar to the previous subsection, we can establish further uniform estimates. Multi-
plying the i–th equation in (5.19) by αn

i and taking the sum over i = 1, ..., n, we obtain,
after integration by parts together with condition (4.4) and using the same arguments on
the term with force as above,

∫

Ω

(|D(vn)|p(c
n) + |Sn|p

′(cn)) dx 6 C, (5.27)

and thus, using (4.2),

∫

Ω

|D(vn)|p
−

dx 6 C. (5.28)

In equation (5.20) we can already use the approximation cn as a test function and thus,
similar as above, obtain

∫

Ω

|∇cn|2 dx 6 C. (5.29)

Additionally, it is easy to show from above estimates and (4.5) that

∫

Ω

(

|Sn|p
+′

+ |qnc |
2
)

dx 6 C. (5.30)

Since cn is bounded, see (5.26), we can apply Theorem 3.1, and thus

‖cn‖0,α0 6 C for some α0 > 0. (5.31)

However, here we need to assume vn ∈ [Lq(Ω)]d, where q > d. For that we use the

embedding W
1,p−

0,div(Ω) →֒ Lq(Ω), which raise the second condition on the lower bound of

the variable index, p− > d
2
.

Limit n → ∞

It follows from the estimates (5.26)–(5.30) that there exist v and c such that for some
(again not relabeled) subsequences

cn ⇀ c weakly in W 1,2(Ω), (5.32)

cn
∗
⇀ c ∗ –weakly in C0,α0(Ω), (5.33)

vn ⇀ v weakly in W
1,p−

0,div(Ω), (5.34)

Sn ⇀ S weakly in [Lp+
′

(Ω)]d×d, (5.35)

qnc ⇀ qc weakly in [L2(Ω)]d, (5.36)
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and thus, from the compact embedding W
1,p−

0,div(Ω) →֒→֒ L2
div(Ω) and above convergence

results

cn → c strongly in C0,α(Ω), 0 < α < α0, (5.37)

vn → v strongly in L2
div(Ω). (5.38)

If we identify the limits S = S(c,D(v)) and qc = qc(c,D(v),∇c), these convergence
results on the second level of the Galerkin approximations, together with the density of
smooth functions argument, lead us to the full weak formulation

−

∫

Ω

(v ⊗ v) · ∇ψ dx+

∫

Ω

S(c,D(v)) ·D(ψ) dx = 〈f ,ψ〉 ∀ψ ∈ W
1,p(c)
0,div (Ω), (5.39)

−

∫

Ω

vc · ∇ϕdx+

∫

Ω

qc(c,D(v),∇c) · ∇ϕdx = 0 ∀ϕ ∈ W
1,2
0 (Ω). (5.40)

Identification of the limit S and qc

First, we need to show that S and the convective term (v ⊗ v) belong to the right dual
space Lp′(c)(Ω). Then we will be able to test the equation for velocity with the functions
from energy space corresponding to velocity. After, we shall use the theory of monotone
operators to identify the non–linear term S and at the end, we unify the limit of the
concentration flux qc.

We start with the limit equation which can be obtained from (5.19) by letting n → ∞
together with (5.35) and (5.38)

−

∫

Ω

(v ⊗ v) · ∇ψ dx+

∫

Ω

S ·D(ψ) dx = 〈f ,ψ〉 ∀ψ ∈ W
1,p+

0,div(Ω). (5.41)

Let us divide the domain Ω on parts where |S| < 1 and |S| > 1, and denote them in the
same manner, then

∫

Ω

|S|p
′(c) dx 6

∫

|S|<1

|S|p
′(c) dx+

∫

|S|>1

|S|p
′(c) dx. (5.42)

It is obvious, that first term is bounded by a constant due to the boundedness of the
variable exponent itself. Next, using (5.37) and the continuity of p, it holds that

∀ε > 0 ∃N > 0 : ∀n > N |p′(cn)− p′(c)| 6
ε

Θ
, (5.43)

where Θ > 1, large enough to satisfy p′(c) − Θ−1
Θ

ε > 1. We can then deduce from (5.27)
that

C >

∫

Ω

|Sn|p
′(cn) dx >

∫

|Sn|>1

|Sn|p
′(cn) dx (5.44)

>

∫

|Sn|>1

|Sn|p
′(cn)−p′(c)+p′(c)−ε dx >

∫

|Sn|>1

|Sn|p
′(c)−Θ−1

Θ
ε dx.
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Then, after adding to the inequality the term
∫

|Sn|<1
|Sn|p

′(c)−Θ−1
Θ

ε dx, which is bounded by

some constant C̄, we obtain

C + C̄ >

∫

|Sn|>1

|Sn|p
′(cn) dx+ C̄ >

∫

Ω

|Sn|p
′(c)−Θ−1

Θ
ε dx. (5.45)

Using the weak lower semicontinuity, we see that

∫

Ω

|S|p
′(c)−Θ−1

Θ
ε dx 6 C, (5.46)

and consequently the Fatou lemma with ε → 0 leads to

∫

Ω

|S|p
′(c)

6 C. (5.47)

Next, to have the convective term from admissible space Lp′(c)(Ω), we have to set up
a constrain on the lower bound of the variable index p such that W 1,p(c)(Ω) →֒ L2p′(c)(Ω).
This is exactly the constrain p(c) > 3d

d+2
from Theorem 4.1. Having this, we obtain

(v ⊗ v) ∈ Lp′(c)(Ω). (5.48)

Now, since p(·) is Hölder continuous, smooth functions C∞
0,div are dense5 in W

1,p(c)
0,div , we can

rewrite the weak formulation of equation for velocity as

−

∫

Ω

(v ⊗ v) ·D(ψ) dx+

∫

Ω

S ·D(ψ) dx = 〈f ,ψ〉 ∀ψ ∈ W
1,p(c)
0,div , (5.49)

and consequently take the velocity v as a test function. Moreover, if we take vn as a test
function in (5.19), the convective terms vanish for both cases, and since

lim
n→∞

〈f , vn〉 = 〈f , v〉, (5.50)

by comparison of the right hand sides we obtain

lim
n→∞

∫

Ω

S(cn,D(vn)) ·D(vn) dx =

∫

Ω

S ·D(v) dx. (5.51)

To finish the proof, we use Minty method. Indeed, for all φ ∈ C∞
0,div(Ω) it is valid that

0 6

∫

Ω

(S(cn,D(vn))− S(cn,D(φ)) · (D(vn)−D(φ))) dx. (5.52)

5In fact, we know that smooth functions are dense in W 1,p(·). To prove also the density of smooth
solenoidal functions, it is enough to apply the Bogovskii lemma in spaces with variable exponents, which
holds also for log–continuous exponents as is shown in Diening et al. (2011).
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Using the strong convergence (5.37) and Lebesgue dominated convergence theorem, we
obtain that

S(cn,D(φ)) → S(c,D(φ)) strongly in [Lq(Ω)]d×d, q < ∞. (5.53)

Now, we can take the limit n → ∞ because of the (5.51), the growth condition (4.2)
together with the weak convergence of S(cn,D(vn)) and D(vn) in the admissible spaces.
Thus, we obtain

0 6

∫

Ω

(S − S(c,D(φ))) · (D(v)−D(φ)) dx ∀φ ∈ W
1,p(c)
0,div (Ω), (5.54)

which is already written for all φ ∈ W
1,p(c)
0,div (Ω) since of the density of smooth functions.

Then, the Minty trick with test functions φ = v ± λw, λ > 0, implies the desired identifi-
cation S = S(c,D(v)).

Finally, if S is strictly monotone, it follows from convergences results (5.35) and (5.37)
that also D(vn) → D(v) strongly in [L1(Ω)]d×d. Hence, we can use the Lebesgue domi-
nated convergence theorem to identify the limit of K(cn,D(vn)) and obtain

qc = qc(c,D(v),∇c), (5.55)

which finishes the proof.
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