
Technische Universität Graz

Space-time boundary element methods

for the heat equation

S. Dohr, K. Niino, O. Steinbach

Berichte aus dem

Institut für Angewandte Mathematik

Bericht 2018/8





Technische Universität Graz

Space-time boundary element methods

for the heat equation

S. Dohr, K. Niino, O. Steinbach

Berichte aus dem

Institut für Angewandte Mathematik

Bericht 2018/8



Technische Universität Graz

Institut für Angewandte Mathematik
Steyrergasse 30

A 8010 Graz

WWW: http://www.applied.math.tugraz.at

c© Alle Rechte vorbehalten. Nachdruck nur mit Genehmigung des Autors.



Space-time boundary element methods
for the heat equation

Stefan Dohr, Kazuki Niino and Olaf Steinbach

Abstract. In this note we describe a space-time boundary element method for the numerical
solution of the time-dependent heat equation. As model problem we consider the initial Dirich-
let boundary value problem where the solution can be expressed in terms of given Dirchlet and
initial data, and the unknown Neumann datum which is determined by the solution of an appro-
priate boundary integral equation. For its numerical approximation we consider a discretization
which is done with respect to a space-time decomposition of the boundary of the space-time
domain. This space-time discretization technique allows us to parallelize the computation of
the global solution of the whole space-time system. Besides the widely-used tensor product
approach we also consider an arbitrary decomposition of the space-time boundary into bound-
ary elements, allowing us to apply adaptive refinement in space and time simultaneously. In
addition to the analysis of the boundary integral operators and the formulation of boundary ele-
ment methods for the initial Dirichlet boundary value problem we state a priori error estimates
of the approximations. Moreover we present numerical experiments to confirm the theoretical
findings.

Keywords. Space-time boundary element methods, heat equation, a priori error estimates.

AMS classification. 65M38, 65R20, 65M50, 65M12.

1 Introduction

Let Ω ⊂ Rn (n = 1, 2, 3) be a bounded domain with, for n = 2, 3, Lipschitz boundary
Γ := ∂Ω, T ∈ R with T > 0, and α ∈ R a fixed heat capacity constant with α > 0.
As model problem we consider the initial Dirichlet boundary value problem

α∂tu(x, t)− ∆xu(x, t) = f(x, t) for (x, t) ∈ Q := Ω× (0, T ),

u(x, t) = g(x, t) for (x, t) ∈ Σ := Γ× (0, T ),

u(x, 0) = u0(x) for x ∈ Ω

(1.1)

with given source term f , Dirichlet datum g and initial datum u0. Unique solvability
of problem (1.1) in the setting of anisotropic Sobolev spaces [22] was shown in, e.g.,
[5, 13, 36]. An explicit formula describing the solution of problem (1.1) is given by the
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so-called representation formula for the heat equation, see, e.g., [2], i.e. for (x, t) ∈ Q
we have

u(x, t) =

∫
Ω
U?(x− y, t)u0(y) dy +

1
α

∫
Q
U?(x− y, t− τ)f(y, τ) dy dτ

+
1
α

∫
Σ
U?(x− y, t− τ)∂nyu(y, τ) dsy dτ

− 1
α

∫
Σ
∂nyU

?(x− y, t− τ)g(y, τ) dsy dτ,

(1.2)

where

U?(x− y, t− τ) =


(

α

4π(t− τ)

)n/2

exp
(−α|x− y|2

4(t− τ)

)
, x, y ∈ Rn, 0 ≤ τ < t,

0 , else

denotes the fundamental solution of the heat equation [12]. Due to this representation
of the solution it suffices to determine the Neumann datum ∂nu|Σ in order to compute
the solution u of problem (1.1). Hence the problem is reduced to the lateral bound-
ary Σ of the space-time domain Q. We can determine the unknown Neumann datum
∂nu|Σ by applying the Dirichlet trace operator to the representation formula (1.2) and
solving the resulting space-time boundary integral equation. The approximation of the
solution only requires a decomposition of the space-time boundary Σ into boundary
elements. Thus, in the case of space-time boundary element methods the dimension of
the problem is reduced to n compared to n+ 1 for space-time finite elements methods
discussed in, e.g., [34, 36].

Boundary integral equations and corresponding boundary element methods for the
approximation of the solution of the initial Dirichlet boundary value problem for the
heat equation (1.1) have been studied for a long time [2, 3, 5, 18]. Besides well known
time-stepping methods [4], the convolution quadrature method [23] or the Nyström
method [38, 39], one can use the Galerkin approach [5, 16, 25, 26, 27, 29] for the
discretization of the global space-time integral equation. Space-time discretization
methods in general are gaining in popularity due to their ability to drive adaptivity in
space and time simultaneously, and to use parallel iterative solution strategies for time-
dependent problems [6, 14, 28]. The global space-time nature of the system matrices
leads to improved parallel scalability in distributed memory systems in contrast to
time-stepping methods where the parallelization is limited to the spatial dimension.
However, in order to get a competitive space-time solver compared to, e.g., time-
stepping schemes, an efficient iterative solution technique for the global space-time
system is necessary, i.e. the solution requires an application of suitable precondition-
ers. In [6, 8, 9] a robust preconditioning strategy for space-time integral equations for
the heat equation based on boundary integral operators of opposite order [17, 35] is
discussed. A parallel solver for space-time boundary element methods for the heat
equation was introduced in [10] and extended to the preconditioned system in [7].
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In this paper we analyze the heat potentials in (1.2) and the arising boundary integral
operators as well as the solvability of the space-time boundary integral equations. The
analysis of the boundary integral operators and equations is mainly based on [2, 3, 5].
We start with a discussion of the domain variational formulation of (1.1), see [36], and
derive the mapping properties of the related boundary integral operators as well as the
ellipticity of the single layer and hypersingular boundary integral operators. Moreover
we discuss two different space-time discretization methods in order to compute an ap-
proximation of the unknown Neumann datum ∂nu|Σ. The first one is the so-called
tensor product approach [26, 29], originating from a separate decomposition of the
boundary Γ and the time interval (0, T ). In this case we use space-time tensor product
spaces for the discretization of the boundary integral equation. The second approach
is using boundary element spaces which are defined with respect to a shape-regular tri-
angulation of the whole space-time boundary Σ = Γ× (0, T ) into boundary elements.
This approach additionally allows us to apply adaptive refinement in space and time
simultaneously while maintaining the regularity of the boundary element mesh. We
also present some numerical experiments to confirm the theoretical results.

The structure of the paper is as follows. In Section 2 we give a short overview of
the functional framework for the numerical analysis of problem (1.1), i.e. introducing
anisotropic Sobolev spaces on the space-time domainQ as well as anisotropic Sobolev
spaces on the space-time boundary Σ [21, 22]. In Section 3 we recall existence and
uniqueness results [13, 20, 36] for the domain variational formulation of (1.1). This
domain variational formulation is later on used to prove the ellipicity of the single
layer and hypersingular boundary integral operators. Sections 4 and 5 are devoted to
the analysis of the arising boundary integral operators and boundary integral equations.
In Section 6 we introduce the already mentioned space-time discretization techniques,
define suitable boundary element spaces and derive approximation properties of related
L2 projection operators. The space-time trial and test spaces are then used for the
discretization of the boundary integral equations in Section 7, where we also derive a
priori error estimates for the Galerkin approximation of the unknown Neumann datum.
In Section 8 we provide results of numerical experiments validating the introduced
discretization techniques and we conclude with a brief outlook in Section 9.

2 Functional framework
The analysis of problem (1.1) is done in anisotropic Sobolev spaces, which are intro-
duced and discussed in this section. Under certain conditions we can define trace op-
erators acting on those spaces and therefore provide conditions for the given Dirichlet
datum g and the unknown Neumann datum ∂nu|Σ of the solution, resulting in existence
and uniqueness theorems for solutions of the model problem (1.1). The definitions and
results in this section are mainly based on [21, 22, 36]. We start with the definition
of anisotropic Sobolev spaces on the space-time domain Q in Section 2.1, and extend
this to the space-time boundary Σ in Sections 2.2 and 2.3.
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2.1 Anisotropic Sobolev spaces on Q

The anisotropic Sobolev space H1,1/2(Q) is defined as

H1,1/2(Q) := L2(0, T ;H1(Ω)) ∩H1/2(0, T ;L2(Ω)).

The norm of a function u ∈ H1,1/2(Q) is given by

‖u‖2
H1,1/2(Q) := ‖u‖2

L2(Q) + ‖∇xu‖2
L2(Q) + |u|2H1/2(0,T,L2(Ω))

with

|u|2H1/2(0,T ;L2(Ω)) :=
∫ T

0

∫ T

0

‖u(·, t)− u(·, τ)‖2
L2(Ω)

|t− τ |2 dτ dt.

Moreover we define the space of functions in H1,1/2(Q) with zero initial conditions

H
1,1/2
;0, (Q) :=

{
u ∈ H1,1/2(Ω) : ‖u‖

H
1,1/2
;0, (Ω)

<∞
}

where
‖u‖2

H
1,1/2
;0, (Q)

:= ‖u‖2
H1,1/2(Q) + |u|

2
H

1/2
0, (0,T ;L2(Ω))

with

|u|2
H

1/2
0, (0,T ;L2(Ω))

:=
∫ T

0

‖u(·, t)‖2
L2(Ω)

t
dt, (2.1)

and writeH1,1/2
;0, (Q) = L2(0, T ;H1(Ω))∩H1/2

0, (0, T ;L2(Ω)). The space of functions

in H1,1/2
;0, (Q) having zero boundary conditions is defined as

H
1,1/2
0;0, (Q) := L2(0, T ;H1

0 (Ω)) ∩H1/2
0, (0, T ;L2(Ω))

and is equipped with the norm

‖u‖2
H

1,1/2
0;0, (Q)

:= ‖∇xu‖2
L2(Q) + |u|2H1/2(0,T,L2(Ω)) + |u|2H1/2

0, (0,T ;L2(Ω))
.

In the same way we introduce the space of functions in H1,1/2(Q) vanishing at the
final time T , i.e.

H
1,1/2
;,0 (Q) := L2(0, T ;H1(Ω)) ∩H1/2

,0 (0, T ;L2(Ω))

and
H

1,1/2
0;,0 (Q) := L2(0, T ;H1

0 (Ω)) ∩H1/2
,0 (0, T ;L2(Ω)).

In this case the semi-norm (2.1) is replaced by

|u|2
H

1/2
,0 (0,T ;L2(Ω))

:=
∫ T

0

‖u(·, t)‖2
L2(Ω)

T − t dt. (2.2)
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Moreover we define the space

H
1,1/2
;0, (Q,L) :=

{
u ∈ H1,1/2

;0, (Q) : Lu ∈ L2(Q)
}
,

where L := α∂t− ∆x denotes the differential operator of the heat equation. The norm
of a function u ∈ H1,1/2

;0, (Q,L) is then given by

‖u‖2
H

1,1/2
;0, (Q,L) := ‖u‖2

H
1,1/2
;0, (Q)

+ ‖Lu‖2
L2(Q) .

The definition of the spaceH1,1/2
;,0 (Q,L′), whereL′ := −α∂t−∆x denotes the operator

of the adjoint heat equation, follows the same path.

2.2 Anisotropic Sobolev spaces on Σ

The spaces Hr,s(Σ) for r, s ≥ 0 are defined in a similar way. We set

Hr,s(Σ) := L2(0, T ;Hr(Γ)) ∩Hs(0, T ;L2(Γ)).

For a smooth spatial boundary Γ these spaces are defined for arbitrary r, s ≥ 0.
However, for a general Lipschitz boundary Γ the spaces Hr,s(Σ) are only defined for
0 ≤ r ≤ 1 and s ≥ 0. For r, s ∈ (0, 1) a norm is given by

‖u‖2
Hr,s(Σ) := ‖u‖2

L2(Σ) + |u|2L2(0,T ;Hr(Γ)) + |u|2Hs(0,T ;L2(Γ))

with

|u|2L2(0,T ;Hr(Γ)) :=
∫

Γ

∫
Γ

‖u(x, ·)− u(y, ·)‖2
L2(0,T )

|x− y|n−1+2r dsy dsx

and

|u|2Hs(0,T ;L2(Γ)) :=
∫ T

0

∫ T

0

‖u(·, t)− u(·, τ)‖2
L2(Γ)

|t− τ |1+2s dτ dt.

The following Lemma is essential for the numerical analysis of the approximation
properties of L2 projections on boundary element spaces which are defined with re-
spect to an arbitrary triangulation of the space-time boundary Σ. Since we will work
with shape-regular elements only, the Lemma basically implies, that we can use the ap-
proximation properties in standard Sobolev spacesHs(Σ) for s ≥ 0, see, e.g., [24, 33],
to obtain the convergence results in anisotropic spaces.

Lemma 2.1. For r, s ∈ [0, 1] the continuous embeddings

Hmax (r,s)(Σ) ↪→ Hr,s(Σ) ↪→ Hmin (r,s)(Σ) (2.3)

hold.
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Proof. Let u ∈ Hr,s(Σ) for r, s ∈ [0, 1] and define m := min (r, s), M := max (r, s).
Since Hr(Γ) ↪→ Hm(Γ) [19, Theorem 4.2.2] and Hs((0, T )) ↪→ Hm((0, T )) we
have

‖u‖2
Hm,m(Σ)

∼= ‖u‖2
Hm,0(Σ) + ‖u‖2

H0,m(Σ) ≤ c
(
‖u‖2

Hr,0(Σ) + ‖u‖2
H0,s(Σ)

)
≤ c ‖u‖2

Hr,s(Σ) ,
(2.4)

and thereforeHr,s(Σ) ↪→ Hm,m(Σ). According to [24, Theorem B.11 ff.] and [21, 22]
and since H1(Σ) ∼= H1,1(Σ) we have

Hm,m(Σ) =
[
L2(Σ);H1,1(Σ)

]
m
∼=
[
L2(Σ);H1(Σ)

]
m

= Hm(Σ). (2.5)

Hence ‖u‖Hm,m(Σ)
∼= ‖u‖Hm(Σ) and therefore Hr,s(Σ) ↪→ Hm(Σ). The proof of the

first equality in (2.5) follows the same path as described in [22, Proposition 2.1] in the
case of anisotropic Sobolev spaces on Q.

To prove the continuous embedding HM (Σ) ↪→ Hr,s(Σ) we use HM (Γ) ↪→ Hr(Γ)
and HM ((0, T )) ↪→ Hs((0, T )). Analogously to estimate (2.4) and relation (2.5) we
obtain HM (Σ) ∼= HM,M (Σ) and ‖u‖2

Hr,s(Σ) ≤ c ‖u‖2
HM,M (Σ) and therefore conclude

HM (Σ) ↪→ Hr,s(Σ).

Let us now introduce the subspace

Hr,s
;0,0(Σ) := L2(0, T ;Hr(Γ)) ∩Hs

0,0(0, T ;L2(Γ))

which is the closure in Hr,s(Σ) of the subspace of functions vanishing in a neigh-
borhood of t = 0 and t = T . Anisotropic Sobolev spaces on Σ with negative order
r, s < 0 are defined as

Hr,s(Σ) :=
[
H−r,−s;0,0 (Σ)

]′
, H̃r,s(Σ) :=

[
H−r,−s(Σ)

]′
.

Remark 2.2. For r ≥ 0 and 0 ≤ s < 1
2 we have Hr,s

;0,0(Σ) = Hr,s(Σ) and therefore

H−r,−s(Σ) = H̃−r,−s(Σ).

For a function u ∈ C(Q) we define the interior Dirichlet trace

γint
0 u(x, t) := lim

Ω3x̃→x∈Γ
u(x̃, t) for (x, t) ∈ Σ.

Hence γint
0 u coincides with the restriction of u to the space-time boundary Σ, i.e. we

have γint
0 u = u|Σ. This operator can be extended to the anisotropic Sobolev space

H1,1/2(Q).
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Theorem 2.3 (Trace Theorem, [22, Theorem 2.1]). The interior Dirichlet trace oper-
ator

γint
0 : H1,1/2(Q)→ H1/2,1/4(Σ)

is linear and bounded satisfying∥∥γint
0 u
∥∥
H1/2,1/4(Σ) ≤ cT ‖u‖H1,1/2(Q) for all u ∈ H1,1/2(Q).

Lemma 2.4 ([5, Lemma 2.4]). The interior Dirichlet trace operator γint
0 is bounded

and surjective from H
1,1/2
;0, (Q) to H1/2,1/4(Σ).

Theorem 2.5 (Inverse Trace Theorem). The interior Dirichlet trace operator γint
0 :

H
1,1/2
;0, (Q)→ H1/2,1/4(Σ) has a continuous right inverse operator

E0 : H1/2,1/4(Σ)→ H
1,1/2
;0, (Q)

satisfying γint
0 E0v = v for all v ∈ H1/2,1/4(Σ) as well as

‖E0v‖H1,1/2
;0, (Q)

≤ cIT ‖v‖H1/2,1/4(Σ) for all v ∈ H1/2,1/4(Σ).

Proof. The proof is similar to [13, Theorem 4.9]. See also [5].

2.3 Piecewise smooth functions on Σ

For a closed, piecewise smooth boundary Γ =
⋃J
j=1 Γj with Γi ∩ Γj = ∅ for i 6= j,

where Γj are open parts of the boundary Γ, we set Σj := Γj × (0, T ) for j = 1, ..., J .
We then have Σ =

⋃J
j=1 Σj . For r ≥ 0 and s ≥ 0 we define the anisotropic Sobolev

space on the open part Σj of the space-time boundary Σ

Hr,s(Σj) :=
{
v = ṽ|Σj : ṽ ∈ Hr,s(Σ)

}
and the space of piecewise smooth functions on Σ

Hr,s
pw (Σ) :=

{
v ∈ L2(Σ) : v|Σj ∈ Hr,s(Σj) for j = 1, ..., J

}
with norm

‖v‖Hr,s
pw (Σ) :=

 J∑
j=1

∥∥∥v|Σj∥∥∥2

Hr,s(Σj)

1/2

.

For r, s < 0 the anisotropic Sobolev space on Σj is defined as the corresponding dual
space

H̃r,s(Σj) :=
[
H−r,−s(Σj)

]′
.
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The space of piecewise smooth functions on Σ with negative order is then given by

Hr,s
pw (Σ) :=

J∏
j=1

H̃r,s(Σj)

with norm

‖w‖Hr,s
pw (Σ) :=

J∑
j=1

∥∥∥w|Σj∥∥∥
H̃r,s(Σj)

.

Lemma 2.6. For r, s < 0 and w ∈ Hr,s
pw (Σ) there holds

‖w‖
H̃r,s(Σ) ≤ ‖w‖Hr,s

pw (Σ) .

Proof. Let w ∈ Hr,s
pw (Σ). By duality we conclude

‖w‖
H̃r,s(Σ) = sup

06=v∈H−r,−s(Σ)

|〈w, v〉Σ|
‖v‖H−r,−s(Σ)

≤ sup
06=v∈H−r,−s(Σ)

J∑
j=1

|〈w, v〉Σj |
‖v‖H−r,−s(Σ)

≤ sup
06=v∈H−r,−s(Σ)

J∑
j=1

|〈w|Σj , v|Σj 〉Σj |∥∥∥v|Σj∥∥∥
H−r,−s(Σj)

≤
J∑
j=1

sup
06=vj∈H−r,−s(Σj)

|〈w|Σj , vj〉Σj |
‖vj‖H−r,−s(Σj)

= ‖w‖Hr,s
pw (Σ) .

Note, that for a Lipschitz boundary Γ we have to assume |r| ≤ 1 to keep the validity
of the above statements.

3 Domain variational formulation

In this section we introduce and analyze the domain variational formulation of problem
(1.1) in the setting of anisotropic Sobolev spaces. We derive Greens’s formulae for the
heat equation in Subsection 3.1. In Subsection 3.2 we recall existence and uniqueness
results for the solution of the variational formulation of the model problem with zero
initial conditions. The unique solvability of problem (1.1) with a non-homogeneous
initial datum is discussed in Subsection 3.3. The presented results are based on [5, 13,
36, 40]. In Subsection 3.4 we analyze the Neumann trace of solutions of the model
problem (1.1).
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3.1 Green’s formulae

This subsection is devoted to the derivation of Green’s first and second formula for the
heat equation with respect to the previously introduced setting of anisotropic Sobolev
spaces. These formulae are later on used to derive the representation formula for the
heat equation and for the analysis of related boundary integral operators, see Section 4.
Recall that Ω ⊂ Rn is assumed to be a bounded domain with, for n = 2, 3, Lipschitz
boundary Γ := ∂Ω.

Theorem 3.1 ([1, Corollary 7.8]). Let u ∈ C2(Ω) ∩ C1(Ω). Then there holds the
classical Green’s formula, i.e.

∫
Ω

[
∆u(x)v(x) +∇u(x) · ∇v(x)

]
dx =

∫
Γ
∂nu(x)v(x) dsx

for all v ∈ C1(Ω) ∩ C(Ω).

Now consider u ∈ C2(Q). By applying Theorem 3.1 we get

∫ T

0

∫
Ω

[
α∂tu(x, t)− ∆xu(x, t)

]
v(x, t) dx dt

=

∫ T

0

∫
Ω

[
α∂tu(x, t)v(x, t) +∇xu(x, t) · ∇xv(x, t)

]
dx dt

−
∫ T

0

∫
Γ
∂nxu(x, t)v(x, t) dsx dt .

(3.1)

This equation is the so-called Green’s first formula for the heat equation. Using in-
tegration by parts on the first term of the right hand side and rearranging the terms
yields

α

∫
Ω
u(x, T )v(x, T ) dx = α

∫
Ω
u(x, 0)v(x, 0) dx

+

∫ T

0

∫
Ω

[
α∂tu(x, t)− ∆xu(x, t)

]
v(x, t) dx dt+

∫ T

0

∫
Γ
∂nxu(x, t)v(x, t) dsx dt

+

∫ T

0

∫
Ω

[
αu(x, t)∂tv(x, t)−∇xu(x, t) · ∇xv(x, t)

]
dx dt.
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Again, by applying Theorem 3.1 we get

α

∫
Ω
u(x, T )v(x, T ) dx = α

∫
Ω
u(x, 0)v(x, 0) dy (3.2)

+

∫ T

0

∫
Ω

[
α∂tu(x, t)− ∆xu(x, t)

]
v(x, t) dx dt

−
∫ T

0

∫
Ω

[
− α∂tv(x, t)− ∆xv(x, t)

]
u(x, t) dx dt

+

∫ T

0

∫
Γ
∂nxu(x, t)v(x, t) dsx dt−

∫ T

0

∫
Γ
∂nxv(x, t)u(x, t) dsx dt.

This equation is the so-called Green’s second formula for the heat equation. Our aim
is to extend these formulae to the more general case of functions in H1,1/2(Q). To do
so we use the following density results.

Lemma 3.2 ([5, Lemma 2.22]). Let C∞0 (Ω× (0, T ]) be the space of restrictions to Q
of functions in C∞0 (Rn × (0,∞)). Then C∞0 (Ω× (0, T ]) is dense in H1,1/2

;0, (Q,L).

Analogously we obtain the following result, where C∞0 (Ω × [0, T )) is the space of
restrictions to Q of functions in C∞0 (Rn × (−∞, T )).

Corollary 3.3. The space C∞0 (Ω× [0, T )) is dense in H1,1/2
;,0 (Q,L′).

Before we introduce Green’s formulae for functions in anisotropic Sobolev spaces,
we have to ensure, that the bilinear form 〈∂tu, v〉Q is well defined. In [36] it was
shown, that the bilinear form 〈∂tu, v〉Q can be extended to functions u ∈ H1,1/2

;0, (Q),

v ∈ H1,1/2
;,0 (Q) and that there exists a constant c > 0, such that

〈∂tu, v〉Q ≤ c ‖u‖H1,1/2
;0, (Q)

‖v‖
H

1,1/2
;,0 (Q)

(3.3)

for all u ∈ H1,1/2
;0, (Q) and v ∈ H1,1/2

;,0 (Q). Here and in the following, 〈·, ·〉Q denotes
the duality pairing as extension of the inner product in L2(Q).

For a function u ∈ C1(Q) we define the interior Neumann trace

γint
1 u(x, t) := lim

Ω3x̃→x∈Γ
nx · ∇x̃u(x̃, t) for (x, t) ∈ Σ

which coincides with the conormal derivative of u, i.e. we have γint
1 u = ∂nxu|Σ.

The definition of the Neumann trace operator γint
1 can be extended to the anisotropic

Sobolev space space H1,1/2(Q,L).

Lemma 3.4. The interior Neumann trace operator

γint
1 : H1,1/2(Q,L)→ H−1/2,−1/4(Σ)
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is linear and bounded satisfying∥∥γint
1 v
∥∥
H−1/2,−1/4(Σ) ≤ cNT ‖v‖H1,1/2(Q,L) for all v ∈ H1,1/2(Q,L).

For u ∈ C2(Q) we have γint
1 u = ∂nxu|Σ in the distributional sense.

Proof. Follows the lines of [5, Proposition 2.18].

Theorem 3.5 (Green’s first formula). For u ∈ H1,1/2
;0, (Q,L) and v ∈ H1,1/2

;,0 (Q) there
holds

α〈∂tu, v〉Q + 〈∇xu,∇xv〉L2(Q) = 〈γint
1 u, γint

0 v〉Σ + 〈Lu, v〉Q (3.4)

where 〈·, ·〉Σ denotes the duality pairing on H−1/2,−1/4(Σ)×H1/2,1/4(Σ).

Proof. Let u ∈ C∞0 (Ω× (0, T ]). According to (3.1) there holds

〈Lu, v〉L2(Q) = α〈∂tu, v〉L2(Q) + 〈∇xu,∇xv〉L2(Q) − 〈∂nxu, v〉L2(Σ) (3.5)

for all v ∈ C∞0 (Ω × [0, T )). All the terms are continuous with respect to v in
the H1,1/2

;,0 (Q)-norm. Hence we can extend (3.5) by continuity to v ∈ H
1,1/2
;,0 (Q).

Whereas for fixed v ∈ H
1,1/2
;,0 (Q) all the terms are continuous with respect to u

in the H1,1/2
;0, (Q,L) norm. Hence by applying Lemma 3.2 we can extend (3.5) to

u ∈ H1,1/2
;0, (Q,L) which concludes the proof.

Theorem 3.6 (Green’s second formula). For u ∈ H1,1/2
;0, (Q,L) and v ∈ H1,1/2

;,0 (Q,L′)
there holds

〈Lu, v〉Q − 〈u,L′v〉Q = −〈γint
1 u, γint

0 v〉Σ + 〈γint
0 u, γint

1 v〉Σ. (3.6)

Proof. For u ∈ C∞0 (Ω× (0, T ]) and v ∈ C∞0 (Ω× [0, T )) there holds

〈Lu, v〉L2(Q) − 〈u,L′v〉L2(Q) = −〈γint
1 u, γint

0 v〉L2(Σ) + 〈γint
0 u, γint

1 v〉L2(Σ).

Similar as in the proof of Theorem 3.5 we can extend this formula to u ∈ H1,1/2
;0, (Q,L)

and v ∈ H1,1/2
;,0 (Q,L′) by applying Lemma 3.2 and Corollary 3.3.

3.2 Homogeneous initial datum

In the following subsection we discuss, based on [36], the unique solvability of prob-
lem (1.1) with zero initial conditions. Let f ∈ [H

1,1/2
0;,0 (Q)]′ and g ∈ H1/2,1/4(Σ) be

given. We consider the initial Dirichlet boundary value problem

α∂tu(x, t)− ∆xu(x, t) = f(x, t) for (x, t) ∈ Q,
u(x, t) = g(x, t) for (x, t) ∈ Σ,

u(x, 0) = 0 for x ∈ Ω.

(3.7)
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The variational formulation of problem (3.7) is to find u ∈ H1,1/2
;0, (Q) such that

a(u, v) = 〈f, v〉Q for all v ∈ H1,1/2
0;,0 (Q) (3.8)

with the bilinear form

a(u, v) := α〈∂tu, v〉Q + 〈∇xu,∇xv〉L2(Q)

for u ∈ H1,1/2
;0, (Q) and v ∈ H1,1/2

;,0 (Q). The bilinear form

a(·, ·) : H1,1/2
;0, (Q)×H1,1/2

;,0 (Q)→ R

is bounded, i.e. there exists a constant cA2 > 0 such that

|a(u, v)| ≤ cA2 ‖u‖H1,1/2
;0, (Q)

‖v‖
H

1,1/2
;,0 (Q)

for all u ∈ H1,1/2
;0, (Q), v ∈ H1,1/2

;,0 (Q). For the given Dirichlet datum g ∈ H1/2,1/4(Σ)
we consider the decomposition u := ū + ũg where ũg := E0g is an extension of g to
the space-time domain Q satisfying γint

0 ũg = g. The boundedness of the inverse trace
operator E0 : H1/2,1/4(Σ)→ H

1,1/2
;0, (Q) then implies

‖ũg‖H1,1/2
;0, (Q)

≤ cIT ‖g‖H1/2,1/4(Σ) . (3.9)

Hence the variational formulation (3.8) changes to: Find ū ∈ H1,1/2
0;0, (Q) such that

a(ū, v) = 〈f, v〉Q − a(ũg, v) for all v ∈ H1,1/2
0;,0 (Q). (3.10)

Theorem 3.7 (Existence and uniqueness [36]). The variational formulation (3.10) im-
plies an isomorphism

L : H1,1/2
0;0, (Q)→ [H

1,1/2
0;,0 (Q)]′

satisfying

‖ū‖
H

1,1/2
0;0, (Q)

≤ 2 ‖Lū‖
[H

1,1/2
0;,0 (Q)]′

for all ū ∈ H1,1/2
0;0, (Q).

Hence we conclude that the variational problem (3.10) is uniquely solvable and there-
fore u = ū + ũg is the unique solution of the variational problem (3.8). A direct
consequence of Theorem 3.7 is the stability estimate

1
2
‖ū‖

H
1,1/2
0;0, (Q)

≤ sup
06=v∈H1,1/2

0;,0 (Q)

a(ū, v)

‖v‖
H

1,1/2
0;,0 (Q)

for all ū ∈ H1,1/2
0;0, (Q). (3.11)
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Theorem 3.8. For f ∈ [H
1,1/2
0;,0 (Q)]′ and g ∈ H1/2,1/4(Σ) there exists a unique solution

u ∈ H1,1/2
;0, (Q) of the variational problem (3.8) satisfying

‖u‖
H

1,1/2
;0, (Q)

≤ cR ‖f‖[H1,1/2
0;,0 (Q)]′

+ cB ‖g‖H1/2,1/4(Σ) . (3.12)

Proof. Unique solvability is a result of Theorem 3.7. The stability condition (3.11)
and the boundedness of the bilinear form a(·, ·) imply

1
2
‖ū‖

H
1,1/2
0;0, (Q)

≤ sup
06=v∈H1,1/2

0;,0 (Q)

a(ū, v)

‖v‖
H

1,1/2
0;,0 (Q)

= sup
06=v∈H1,1/2

0;,0 (Q)

〈f, v〉Q − a(ũg, v)
‖v‖

H
1,1/2
0;,0 (Q)

≤ ‖f‖
[H

1,1/2
0;,0 (Q)]′

+ c ‖ũg‖H1,1/2
;0, (Q)

.

The assertion follows by using the triangle inequality for u = ū + ũg, the Poincaré
inequality, and the stability (3.9) of the inverse trace operator.

3.3 Non-homogeneous initial datum

The following analysis in the case of a given initial datum and zero boundary condi-
tions is mainly based on [40, Chapter 23] and [34]. In this subsection we only recall
the main results. Let u0 ∈ L2(Ω) be given. We consider the initial Dirichlet boundary
value problem

α∂tu(x, t)− ∆xu(x, t) = 0 for (x, t) ∈ Q,
u(x, t) = 0 for (x, t) ∈ Σ,

u(x, 0) = u0(x) for x ∈ Ω.

(3.13)

The space carrying the initial datum u0 is defined as

V0(Q) := L2(0, T ;H1
0 (Ω)) ∩H1(0, T ;H−1(Ω)).

The norm of a function u ∈ V0(Q) is given by

‖u‖2
V0(Q) := ‖u‖2

L2(0,T ;H1
0 (Ω)) + ‖α∂tu‖

2
L2(0,T ;H−1(Ω))

where
‖u‖L2(0,T ;H1

0 (Ω)) := ‖∇xu‖L2(Q)

and

‖α∂tu‖L2(0,T ;H−1(Ω)) := sup
06=v∈L2(0,T ;H1

0 (Ω))

〈α∂tu, v〉Q
‖v‖L2(0,T ;H1

0 (Ω))

.

Analogously we define the space V(Q) of functions with non-homogeneous boundary
conditions, i.e.

V(Q) := L2(0, T ;H1(Ω)) ∩H1(0, T ;H−1(Ω))
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with norm
‖u‖2

V(Q) := ‖u‖2
L2(Q) + ‖u‖2

V0(Q) .

Theorem 3.9 ([40, Theorem 23.A]). For u0 ∈ L2(Ω) there exists a unique solution
u ∈ V0(Q) of problem (3.13) satisfying the stability estimate

‖u‖V0(Q) ≤ cI ‖u0‖L2(Ω) .

The spaces V(Q) and V0(Q) are dense subspaces of H1,1/2(Q) and H1,1/2
0;, (Q), re-

spectively [5, 21]. Moreover the following norm equivalence holds.

Lemma 3.10. For u ∈ V(Q) with Lu = 0 in Q the norms of V(Q) and H1,1/2(Q) are
equivalent, i.e. there exist constants c1, c2 > 0 such that

‖u‖V(Q) ≤ c1 ‖u‖H1,1/2(Q) ≤ c2 ‖u‖V(Q) .

Proof. Follows the lines of [5, Lemma 2.15].

Additionally, if u ∈ V0(Q), i.e. u vanishes on the boundary Σ, we immediately con-
clude, that there exist constants c̃1, c̃2 > 0 such that

‖u‖V0(Q) ≤ c̃1 ‖u‖H1,1/2
0;, (Q)

≤ c̃2 ‖u‖V0(Q) . (3.14)

This follows by using the Poincaré inequality and Lemma 3.10.
An important property of functions u ∈ V(Q) is the continuity in time, i.e. we have

u ∈ C([0, T ];L2(Ω)). (3.15)

Hence the initial trace τ0u := u|t=0 ∈ L2(Ω) of the solution u of problem (3.13) is
well defined.

The unique solution u ∈ H1,1/2(Q) of the fully non-homogeneous initial Dirichlet
boundary value problem is then given as u = ūg + ū0 where ūg ∈ H

1,1/2
;0, (Q) is

the unique solution of problem (3.7) with zero initial conditions, and ū0 ∈ V0(Q) is
the unique solution of problem (3.13). By applying the stability estimate of Theorem
3.8, the Poincaré inequality, estimate (3.14) and Theorem 3.9 we obtain the following
stability estimate for the solution u ∈ H1,1/2(Q),

‖u‖H1,1/2(Q) ≤ cR ‖f‖[H1,1/2
0;,0 (Q)]′

+ cB ‖g‖H1/2,1/4(Σ) + c ‖u0‖L2(Ω) .

The initial trace of solutions u ∈ H1,1/2(Q) of problem (1.1) is well defined due to
u = ūg + ū0 with ūg ∈ H1,1/2

;0, (Q) and ū0 ∈ V0(Q). We set τ0u := τ0ū0 ∈ L2(Ω)
according to (3.15).
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3.4 Neumann trace operator

For the solution u ∈ H
1,1/2
;0, (Q,L) of (3.7) with f ∈ L2(Q) we can determine the

associated conormal derivative γint
1 u ∈ H−1/2,−1/4(Σ) as the unique solution of the

variational problem

〈γint
1 u, z〉Σ = a(u, ET z)− 〈f, ET z〉Q for all z ∈ H1/2,1/4(Σ) (3.16)

where ET := HTE0 : H1/2,1/4(Σ)→ H
1,1/2
;,0 (Q). The operatorHT : L2(Q)→ L2(Q)

is defined as follows. For u ∈ L2(Q) we consider the series representation

u(x, t) =

∞∑
i=1

Ui(t)φi(x), Ui(t) =

∞∑
k=0

ui,kvk(t) for (x, t) ∈ Q (3.17)

where φi ∈ H1
0 (Ω) are the eigenfunctions of the Dirichlet eigenvalue problem

−∆φ = µφ in Ω, φ = 0 on Γ,

and vk ∈ H1
0,(0, T ) are given by

vk(t) = sin
(
(
π

2
+ kπ)

t

T

)
, k ∈ N. (3.18)

The coefficients ui,k in (3.17) are given by

ui,k =
2
T

∫ T

0

∫
Ω
u(x, t)vk(t)φi(x) dx dt. (3.19)

ThenHTu is defined as

(HTu)(x, t) =
∞∑
i=1

(HTUi)(t)φi(x) for (x, t) ∈ Q

where

(HTUi)(t) :=
∞∑
k=0

ui,k cos
(
(
π

2
+ kπ)

t

T

)
.

The operatorHT : L2(Q)→ L2(Q) and its restrictionHT : H1,1/2
;0, (Q)→ H

1,1/2
;,0 (Q)

define isometric isomorphisms, i.e. we have

‖HTu‖L2(Q) = ‖u‖L2(Q) for all u ∈ L2(Q),

and
‖HTu‖H1,1/2

;,0 (Q)
= ‖u‖

H
1,1/2
;0, (Q)

for all u ∈ H1,1/2
;0, (Q).

A detailed analysis of the transformation operatorHT is given in [36].
We now get the following stability estimate for the Neumann trace of solutions u of

problem (3.7).
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Theorem 3.11. Let u ∈ H1,1/2
;0, (Q) be the unique solution of problem (3.7) with f ∈

L2(Q) and g ∈ H1/2,1/4(Σ). Then the Neumann trace γint
1 u ∈ H−1/2,−1/4(Σ) satisfies

the stability estimate

∥∥γint
1 u
∥∥
H−1/2,−1/4(Σ) ≤ cIT

(
‖f‖

[H
1,1/2
;,0 (Q)]′

+ cA2 ‖u‖H1,1/2
;0, (Q)

)
.

Proof. Using (3.16), the boundedness of the bilinear form a(·, ·) and of the operator
ET yields

∥∥γint
1 u
∥∥
H−1/2,−1/4(Σ) = sup

06=z∈H1/2,1/4(Σ)

〈γint
1 u, z〉Σ

‖z‖H1/2,1/4(Σ)

= sup
06=z∈H1/2,1/4(Σ)

a(u, ET z)− 〈f, ET z〉Q
‖z‖H1/2,1/4(Σ)

≤ cIT
(
cA2 ‖u‖H1,1/2

;0, (Q)
+ ‖f‖

[H
1,1/2
;,0 (Q)]′

)
.

In particular for the solution u of the initial Dirichlet boundary value problem (1.1)
with homogeneous right hand side and initial datum, i.e. f ≡ 0 and u0 ≡ 0, we get∥∥γint

1 u
∥∥
H−1/2,−1/4(Σ) ≤ cIT c

A
2 ‖u‖H1,1/2

;0, (Q)
.

The following Lemma is essential for the derivation of the jump conditions of the
boundary integral operators in Section 4.

Lemma 3.12 ([5, Lemma 2.23]). The combined trace map

(γint
0 , γint

1 ) : u 7→ (γint
0 u, γint

1 u)

maps C∞0 (Ω× (0, T ]) onto a dense subspace of H1/2,1/4(Σ)×H−1/2,−1/4(Σ).

Remark 3.13. Lemma 3.12 is also valid if we replace the space C∞0 (Ω × (0, T ]) by
C∞0 (Ω× [0, T )).

4 Boundary integral operators
In order to express the solution of the initial Dirichlet boundary value problem (1.1) by
means of heat potentials as in (1.2) the existence of a fundamental solution is essential.
In Subsection 4.1 we derive the fundamental solution of the heat equation and the
related representation formula. In Subsections 4.2 - 4.7 we introduce and analyze the
heat potentials as well as the resulting boundary integral operators.
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4.1 Representation formula for the heat equation

In this subsection we derive the representation formula (1.2) for the heat equation.
Therefore we consider Green’s second formula (3.2) for u ∈ C2(Q). We want the
third integral of the right hand side to be zero, i.e. we search for a function v which is
a solution of the adjoint homogeneous heat equation

−α∂τv(y, τ)− ∆yv(y, τ) = 0 for (y, τ) ∈ Q.

Since we want to find a representation of the solution u = u(x, t) of the model problem
(1.1) we define v as

v(y, τ) := U(y − x, t− τ)
where (x, t) ∈ Q is fixed. In this case we have

∂τv(y, τ) = ∂τU(y − x, t− τ) = −∂θU(y − x, θ)

where θ = t− τ . Thus

α∂θU(y − x, θ)− ∆yU(y − x, θ) = 0 for (y, θ) ∈ Q.

We assume the function U to be spherically symmetric, i.e. U(y − x, θ) = Ũ(r, θ)
where r = |y − x|. For r 6= 0 we get

α∂θŨ(r, θ)− ∂rrŨ(r, θ)− (n− 1)
1
r
∂rŨ(r, θ) = 0. (4.1)

With

Ũ(r, θ) = θγg(z), z =
r√
θ
, γ ∈ R, θ = t− τ > 0, τ < t,

we get

∂θŨ(r, θ) = γθγ−1g(z)− 1
2
θγ−1zg′(z),

∂rŨ(r, θ) = g′(z)θγ−
1
2 ,

∂rrŨ(r, θ) = g′′(z)θγ−1,

and therefore equation (4.1) becomes

α

[
γθγ−1g(z)− 1

2
θγ−1zg′(z)

]
− g′′(z)θγ−1 − (n− 1)

1
r
g′(z)θγ−

1
2 = 0,

which is equivalent to

α

[
γg(z)− 1

2
zg′(z)

]
− g′′(z)− (n− 1)

1
z
g′(z) = 0. (4.2)
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It remains to solve this ordinary differential equation. First we consider the one-
dimensional case n = 1, i.e. we have

αγg(z)− α1
2
zg′(z)− g′′(z) = 0

which can be written as

α

[
γ +

1
2

]
g(z)− d

dz

[
α

1
2
zg(z) + g′(z)

]
= 0.

By choosing γ = −1
2 we get

d
dz

[
α

1
2
zg(z) + g′(z)

]
= 0,

and hence

α
1
2
zg(z) + g′(z) = c0 ∈ R

follows. In particular for c0 = 0 and using separation of variables we get

ln g = −α1
4
z2 + c1, c1 ∈ R,

and for c1 = 0 we conclude

g(z) = exp
(
−α

4
z2
)

(4.3)

which is a solution of the differential equation (4.2) for n = 1. When inserting (4.3)
into (4.2) for general n we get

0 = α
[
γ exp

(
−α

4
z2
)
+
α

4
z2 exp

(
−α

4
z2
)]

+
α

2
exp

(
−α

4
z2
)

− α2

4
z2 exp

(
−α

4
z2
)
+ (n− 1)

α

2
exp

(
−α

4
z2
)

= exp
(
−α

4
z2
)
α
[
γ +

n

2

]
.

Thus, (4.3) is also a solution in the two- and three dimensional case if γ = −n
2 .

Recalling the definition of the functions U and Ũ we therefore have

U(y − x, t− τ) = (t− τ)−n/2 exp
(
−α|y − x|

2

4(t− τ)

)
for τ < t.
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Due to the singularity of the function U at (x, t) = (y, τ) we consider the space-time-
cylinder Qt−ε := Ω× (0, t− ε) where 0 < ε < t. Analogously to (3.2) we get

α

∫
Ω
u(y, t− ε)v(y, t− ε) dy = α

∫
Ω
u(y, 0)v(y, 0) dy

+

∫ t−ε

0

∫
Ω

[
α∂τu(y, τ)− ∆yu(y, τ)

]
v(y, τ) dy dτ

−
∫ t−ε

0

∫
Ω

[
− α∂τv(y, τ)− ∆yv(y, τ)

]
u(y, τ) dy dτ

+

∫ t−ε

0

∫
Γ
∂nyu(y, τ)v(y, τ) dsy dτ −

∫ t−ε

0

∫
Γ
∂nyv(y, τ)u(y, τ) dsy dτ.

With v(y, τ) = U(y − x, t− τ) we now obtain

α

∫
Ω
u(y, t− ε)U(y − x, ε) dy = α

∫
Ω
u(y, 0)U(y − x, t) dy

+

∫ t−ε

0

∫
Ω

[
α∂τu(y, τ)− ∆yu(y, τ)

]
U(y − x, t− τ) dy dτ (4.4)

+

∫ t−ε

0

∫
Γ
∂nyu(y, τ)U(y − x, t− τ) dsy dτ

−
∫ t−ε

0

∫
Γ
∂nyU(y − x, t− τ)u(y, τ) dsy dτ.

Let us consider the integral on the left hand side, i.e.

α

∫
Ω
u(y, t− ε)U(y − x, ε) dy = α

∫
Ω
ε−n/2u(y, t− ε) exp

(
−α|y − x|

2

4ε

)
dy.

By using the Taylor expansion

u(y, t− ε) = u(x, t) + (y − x)>∇xu(ξx, ξt)− ε∂tu(ξx, ξt)

with (
ξx

ξt

)
=

(
x+ σ(y − x)

t− σε

)
, σ ∈ (0, 1),

we get

α

εn/2

∫
Ω
u(y, t− ε) exp

(
−α|y − x|

2

4ε

)
dy = u(x, t)

α

εn/2

∫
Ω

exp
(
−α|y − x|

2

4ε

)
dy

+
α

εn/2

∫
Ω
(y − x)T∇xu(ξx, ξt) exp

(
−α|y − x|

2

4ε

)
dy (4.5)

− α

εn/2−1

∫
Ω
∂tu(ξx, ξt) exp

(
−α|y − x|

2

4ε

)
dy.
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Next we are going to show the convergence of the first integral of the right hand side.
First we consider the spatially one-dimensional case n = 1, i.e. Ω = (a, b) with
a, b ∈ R and x ∈ (a, b). We have

A : =
α

ε1/2

∫ b

a
exp

(
−α(y − x)

2

4ε

)
dy

=
α

ε1/2

∫ x

a
exp

(
−α(y − x)

2

4ε

)
dy +

α

ε1/2

∫ b

x
exp

(
−α(y − x)

2

4ε

)
dy.

By using the substitution z = x−y
x−a for the first integral and z = y−x

b−x for the second
one we get

A =
α

ε1/2 (x− a)
∫ 1

0
exp

(
−α(x− a)

2z2

4ε

)
dz

+
α

ε1/2 (b− x)
∫ 1

0
exp

(
−α(b− x)

2z2

4ε

)
dz.

The substitution α(x−a)2z2

4ε = η2 for the first and α(b−x)2z2

4ε = η2 for the second integral
leads to

A = 2
√
α

(x−a)
2

√
α
ε∫

0

exp
(
−η2) dη + 2

√
α

(b−x)
2

√
α
ε∫

0

exp
(
−η2) dη,

and we finally obtain

lim
ε→0

A = 4
√
α

∫ ∞
0

exp
(
−η2) dη = 2

√
απ .

In the two-dimensional case we choose R > 0 such that BR(x) ⊂ Ω and consider

A :=
α

ε

∫
BR(x)

exp
(
−α|y − x|

2

4ε

)
dy.

The integral over Ω \ BR(x) converges to 0, since α
ε exp

(
−α|y−x|2

4ε

)
→ 0 for y 6= x

as ε→ 0. By using polar coordinates we get

A =
α

ε

∫ R

0

∫ 2π

0
exp

(
−αr

2

4ε

)
r dϕ dr =

2πα
ε

∫ R

0
exp

(
−αr

2

4ε

)
r dr

= 4π
[

1− exp
(
−αR

2

4ε

)]
ε→0−−→ 4π.
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In the three-dimensional case we also choose R > 0 such that BR(x) ⊂ Ω and con-
sider

A :=
α

ε3/2

∫
BR(x)

exp
(
−α|y − x|

2

4ε

)
dy.

As in the two-dimensional case the integral over Ω \BR(x) vanishes. By using spher-
ical coordinates we obtain

A =
α

ε3/2

∫ R

0

∫ 2π

0

∫ π

0
exp

(
−αr

2

4ε

)
r2 sin θ dθ dϕ dr

=
4πα
ε3/2

∫ R

0
exp

(
−αr

2

4ε

)
r2 dr.

The substitution η2 = αr2

4ε leads to

A =
32π√
α

√
α
4εR∫

0

exp
(
−η2)η2 dη ε→0−−→ 32π√

α

∫ ∞
0

exp
(
−η2)η2 dη =

8π3/2
√
α
.

The other two integrals in (4.5) vanish as ε → 0 due to the boundedness of ∇xu and
∂tu. We finally get the representation formula by taking the limit ε → 0 in (4.4), i.e.
we have

u(x, t) =

∫
Ω
u(y, 0)U?(x− y, t) dy +

1
α

∫
Q
Lu(y, τ)U?(x− y, t− τ) dy dτ

+
1
α

∫
Σ
∂nyu(y, τ)U

?(x− y, t− τ) dsy dτ

− 1
α

∫
Σ
u(y, τ)∂nyU

?(x− y, t− τ) dsy dτ

(4.6)

where

U?(x− y, t− τ) =
(

α

4π(t− τ)

)n/2

exp
(−α|x− y|2

4(t− τ)

)
for τ < t.

The function

U?(x, t) =


( α

4πt

)n/2
exp

(−α|x|2
4t

)
, (x, t) ∈ Rn × (0,∞),

0 , else,
(4.7)

is called the fundamental solution of the heat equation and due to construction, U? is
a solution of the homogeneous heat equation on Rn × (0,∞), see, e.g., [12], i.e.[

α∂t − ∆x
]
U?(x, t) = 0 for (x, t) ∈ Rn × (0,∞).

Additionally the fundamental solution has the following properties.



22 S. Dohr, K. Niino and O. Steinbach

Lemma 4.1. For t > 0 there holds∫
Rn
U?(x, t) dx = 1.

Proof. Let t > 0. We have∫
Rn
U?(x, t) dx =

( α

4πt

)n/2
∫
Rn

exp
(−α|x|2

4t

)
dx = π−n/2

∫
Rn

exp
(
−|z|2

)
dz

= π−n/2
n∏
i=1

∫
R

exp
(
−z2

i

)
dzi = 1.

Lemma 4.2. Let u ∈ C(Ω) ∩ L∞(Ω). For x ∈ Ω there holds

lim
t→0

∫
Ω
U?(x− y, t)u(y) dy = u(x). (4.8)

Proof. Let ε > 0 and u ∈ C(Ω) ∩ L∞(Ω). We define the function ũ as

ũ(x) =

{
u(x) for x ∈ Ω,
0 else.

Moreover, let (x, t) ∈ Ω×(0,∞). Due to Lemma 4.1 and sinceU? > 0 on Rn×(0,∞)
we have∣∣∣∣∫

Ω
U?(x− y, t)u(y) dy − u(x)

∣∣∣∣ = ∣∣∣∣∫
Rn
U?(x− y, t)[ũ(y)− ũ(x)] dy

∣∣∣∣
≤
∫
Rn
U?(x− y, t) |ũ(y)− ũ(x)| dy.

Since u ist continuous on Ω and x ∈ Ω, there exists a constant δ > 0 such that
|ũ(y)− ũ(x)| < ε/2 if |y − x| < δ. Thus, we write the last integral as∫

Rn

U?(x− y, t) |ũ(y)− ũ(x)| dy =

∫
Rn\Bδ(x)

U?(x− y, t) |ũ(y)− ũ(x)| dy

+

∫
Bδ(x)

U?(x− y, t) |ũ(y)− ũ(x)| dy.

The second integral can be estimated by∫
Bδ(x)

U?(x− y, t) |ũ(y)− ũ(x)|︸ ︷︷ ︸
<ε/2

dy <
ε

2

∫
Rn
U?(x− y, t) dy =

ε

2
.
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For the first integral we obtain, due to u ∈ L∞(Ω),∫
Rn\Bδ(x)

U?(x− y, t) |ũ(y)− ũ(x)| dy ≤ 2 ‖u‖L∞(Ω)

∫
Rn\Bδ(x)

U?(x− y, t) dy.

The substitution z = x− y yields∫
Rn\Bδ(x)

U?(x− y, t) dy =

∫
Rn\Bδ(0)

U?(z, t) dz

=
( α

4πt

)n/2
∫

Rn\Bδ(0)

exp
(−|z|2α

4t

)
dz,

and by using polar coordinates we get∫
Rn\Bδ(x)

U?(x− y, t) dy ≤ Ct−n/2

∞∫
δ

rn−1 exp
(−r2α

4t

)
dr

= C ′
∞∫

a t−1/2

ρn−1 exp
(
−ρ2) dρ

with suitable constants C,C ′ > 0 and a = δ
(
α
4

)1/2. The last integral vanishes as
t→ 0, i.e. for t small enough there holds∫

Rn\Bδ(x)

U?(x− y, t) |ũ(y)− ũ(x)| dy < ε/2.

Altogether we obtain ∣∣∣∣∫
Ω
U?(x− y, t)u(y) dy − u(x)

∣∣∣∣ < ε

for t small enough which concludes the proof.

One can show that for sufficient regular input data f, g and u0 the solution of the initial
Dirichlet boundary value problem (1.1) is given by the representation formula, i.e. for
(x, t) ∈ Q we have

u(x, t) =

∫
Ω
U?(x− y, t)u0(y) dy +

1
α

∫
Q
U?(x− y, t− τ)f(y, τ) dy dτ

+
1
α

∫
Σ
U?(x− y, t− τ)∂nyu(y, τ) dsy dτ

− 1
α

∫
Σ
∂nyU

?(x− y, t− τ)g(y, τ) dsy dτ.

(4.9)
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Due to the given representation (4.9) for the solution of problem (1.1) it suffices to
determine the yet unknown Cauchy datum ∂nu|Σ to compute the solution in the space-
time domain Q. This can be done by applying the Dirichlet trace operator to (4.9) and
solving the resulting boundary integral equation on the space-time boundary Σ. The
following subsections are devoted to the analysis of the heat potentials in (4.9) and the
resulting boundary integral operators.

4.2 Initial potential

Let u0 ∈ L2(Ω). The function

(M̃0u0)(x, t) :=
∫

Ω
U?(x− y, t)u0(y) dy for (x, t) ∈ Rn × (0, T ) (4.10)

is called initial potential of the heat equation with initial condition u0.

Lemma 4.3. For u0 ∈ L2(Ω) the initial potential M̃0u0 satisfies the homogeneous
heat equation, i.e.[

α∂t − ∆x
]
(M̃0u0)(x, t) = 0 for all (x, t) ∈ Rn × (0, T ).

Proof. For (x, t) ∈ Rn×(0, T ) there exists a compact neighbourhoodO of (x, t) such
that O ⊂ Rn × (0, T ). The restriction of U?(x − y, t) to (x, t) ∈ O and y ∈ Ω is
bounded and differentiable on O for y ∈ Ω. Moreover U?(x − ·, t) is integrable over
Ω. The Leibniz integral rule then implies that we can interchange differentiation and
integration and we obtain

[
α∂t − ∆x

]
(M̃0u0)(x, t) =

∫
Ω

[
α∂t − ∆x

]
U?(x− y, t)u0(y) dy.

The assertion now follows by using[
α∂t − ∆x

]
U?(x− y, t) = 0

for (x, t) ∈ Rn × (0, T ) and y ∈ Ω.

Theorem 4.4. The initial potential M̃0 : L2(Ω) → V(Q) ⊂ H1,1/2(Q) is linear and
bounded, i.e. there exists a constant c > 0 such that∥∥∥M̃0u0

∥∥∥
V(Q)

≤ c ‖u0‖L2(Ω) for all u0 ∈ L2(Ω).

Proof. Follows the lines of the proof of [29, Lemma 7.10] with a restriction to the
space V(Q) at the end.
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Due to Lemma 4.3 and the norm equivalence in Lemma 3.10 we conclude that there
exists a constant cM2 > 0 such that

∥∥∥M̃0u0

∥∥∥
H1,1/2(Q)

≤ cM2 ‖u0‖L2(Ω) for all u0 ∈ L2(Ω). (4.11)

An important property of the initial potential is the continuity in time, i.e. due to (3.15)
and Theorem 4.4 we have M̃0u0 ∈ C([0, T ];L2(Ω)). Together with Lemma 4.2 this
immediately implies (M̃0u0)(x, 0) = u0(x) almost everywhere in Ω. Hence the initial
potential satisfies the initial condition.

Due to the mapping properties of the Dirichlet and Neumann trace operators we
finally conclude that the integral operators

M0 := γint
0 M̃0 : L2(Ω)→ H1/2,1/4(Σ),

M1 := γint
1 M̃0 : L2(Ω)→ H−1/2,−1/4(Σ)

are linear and bounded.

4.3 Newton potential

The Newton potential for a given function f defined on the space-time domain Q and
(x, t) ∈ Rn × (0, T ) is defined as

(Ñ0f)(x, t) :=
1
α

∫ t

0

∫
Ω
U?(x− y, t− τ)f(y, τ) dy dτ. (4.12)

Lemma 4.5. The function u(x, t) = (Ñ0f)(x, t) for (x, t) ∈ Rn× (0, T ) for f regular
enough is a solution of the heat equation

[
α∂t − ∆x

]
u(x, t) =

{
f(x, t), for (x, t) ∈ Ω× (0, T ),
0, for (x, t) ∈ Ωc × (0, T ).

Proof. First, let (x, t) ∈ Ω× (0, T ). Then

[
α∂t − ∆x

]
(Ñ0f)(x, t)

=
[
α∂t − ∆x

](
lim
ε→0

1
α

∫ t−ε

0

∫
Ω
U?(x− y, t− τ)f(y, τ) dy dτ

)
.
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Applying the Leibniz integral rule yields

[
α∂t − ∆x

] 1
α

∫ t−ε

0

∫
Ω
U?(x− y, t− τ)f(y, τ) dy dτ

=

∫ t−ε

0

∫
Ω
∂tU

?(x− y, t− τ)f(y, τ) dy dτ +
∫

Ω
U?(x− y, ε)f(y, t− ε) dy

− 1
α

∫ t−ε

0

∫
Ω

∆xU?(x− y, t− τ)f(y, τ) dy dτ

=
1
α

∫ t−ε

0

∫
Ω

[
α∂t − ∆x

]
U?(x− y, t− τ)f(y, τ) dy dτ

+

∫
Ω
U?(x− y, ε)f(y, t− ε) dy.

Since U?(· − y, · − τ) is, for (y, τ) ∈ Ω × (0, t − ε), a solution of the homogeneous
heat equation, the first integral of the right hand side vanishes. Additionally, Lemma
4.2 implies ∫

Ω
U?(x− y, ε)f(y, t− ε) dy ε→0−−→ f(x, t) for x ∈ Ω.

Note that [α∂t − ∆x]u(x, t) = 0 for x ∈ Ωc follows analogously by considering a
ball BR ⊂ Rn with radius R > 0 such that Ω ∪ {x} ⊂ BR, and by choosing a zero
extension of f in BR \Ω.

The following theorem is essential in order to derive the mapping properties of the
Newton potential and subsequently of the single and double layer potentials in Sub-
sections 4.4 and 4.6. The theorem provides the mapping properties of the convolution
with the fundamental solution of the heat equation, see [5, Section 3] and [30, 31].

Theorem 4.6. The convolution with the fundamental solution U?

A : H̃r,r/2
comp (Rn × (0, T ))→ H̃

r+2,r/2+1
loc (Rn × (0, T ))

f 7→ U? ∗ f

is linear and continuous for any r ∈ R.

Here, H̃r,r/2
comp (Rn × (0, T )) denotes the space of functions with compact support in

space, whereas the subscript ‘loc’ refers to the local behaviour in the spatial variables
[5]. Hence we immediately get the continuity of the Newton potential

Ñ0 : [H1,1/2
;,0 (Q)]′ → H̃

1,1/2
loc (Rn × (0, T )),

and by restriction we obtain the following mapping properties.
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Theorem 4.7. The Newton potential Ñ0 : [H
1,1/2
;,0 (Q)]′ → H

1,1/2
;0, (Q) is linear and

bounded, i.e. there exists a constant cN2 > 0 such that∥∥∥Ñ0f
∥∥∥
H

1,1/2
;0, (Q)

≤ cN2 ‖f‖[H1,1/2
;,0 (Q)]′

for all f ∈ [H
1,1/2
;,0 (Q)]′.

Proof. Follows by applying Theorem 4.6 with r = −1 and by restriction to the space-
time domain Q.

The application of the interior Dirichlet trace operator to the Newton potential defines
a linear bounded operator

N0 := γint
0 Ñ0 : [H1,1/2

;,0 (Q)]′ → H1/2,1/4(Σ)

satisfying

‖N0f‖H1/2,1/4(Σ) ≤ cN0
2 ‖f‖[H1,1/2

;,0 (Q)]′
for all f ∈ [H

1,1/2
;,0 (Q)]′

with some constant cN0
2 > 0. Moreover, the application of the Neumann trace operator

yields the bounded operator

N1 := γint
1 Ñ0 : L2(Q)→ H−1/2,−1/4(Σ),

i.e. there exists cN1
2 > 0 such that

‖N1f‖H−1/2,−1/4(Σ) ≤ cN1
2 ‖f‖L2(Q) for all f ∈ L2(Q).

Here, we have to restrict the domain to the space L2(Q) due to the definition of the
Neumann trace operator γint

1 .

4.4 Single layer potential

We introduce the single layer potential with density w ∈ L1(Σ) as

(Ṽ w)(x, t) :=
1
α

∫ t

0

∫
Γ
U?(x− y, t− τ)w(y, τ) dsy dτ for (x, t) ∈ DΓ (4.13)

whereDΓ := (Rn\Γ)×(0, T ). The fundamental solution U?(x−·, t−·) is smooth on
Σ for (x, t) ∈ DΓ, and hence the single layer potential is well defined for w ∈ L1(Σ).

Theorem 4.8. For w ∈ L1(Σ) the single layer potential Ṽ w satisfies the homogeneous
heat equation, i.e. [

α∂t − ∆x
]
(Ṽ w)(x, t) = 0 for all (x, t) ∈ DΓ.
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Proof. For (x, t) ∈ DΓ there exists a compact neighbourhood O of (x, t) such that
O ⊂ DΓ, and hence dist(O,Σ) > 0. Therefore the restriction of U?(x − y, t − τ) to
(x, t) ∈ O and (y, τ) ∈ Σ is bounded and differentiable onO for (y, τ) ∈ Σ. Moreover
U? is integrable over Σ for (x, t) ∈ O. Hence we can apply the Leibniz integral rule
and get

[
α∂t − ∆x

]
(Ṽ w)(x, t) =

1
α

∫ t

0

∫
Γ

[
α∂t − ∆x

]
U?(x− y, t− τ)w(y, τ) dsy dτ

+ lim
ε→0

∫
Γ
U?(x− y, ε)w(y, t− ε) dsy.

We then use [α∂t − ∆x]U?(x− y, t− τ) = 0 for (x, t) ∈ DΓ and (y, τ) ∈ Σ, and the
dominated convergence theorem to conclude[

α∂t − ∆x
]
(Ṽ w)(x, t) = lim

ε→0

∫
Γ
U?(x− y, ε)w(y, t− ε) dsy = 0.

The explicit representation (4.13) of the operator Ṽ is only suited for w ∈ L1(Σ).
However, the domain of the single layer potential can be extended by using the pre-
viously defined convolution operator A in Theorem 4.6. We define the linear and
bounded operator γ′0 : H−1/2,−1/4(Σ)→ H̃

−1,−1/2
comp (Rn × (0, T )) by

〈γ′0w, v〉 = 〈w, γint
0 v〉Σ for all v ∈ [H̃

−1,−1/2
comp (Rn × (0, T ))]′.

The single layer potential is then given by

Ṽ := Aγ′0 : H−1/2,−1/4(Σ)→ H̃
1,1/2
loc (Rn × (0, T )). (4.14)

Due to the boundedness of the operators A and γ′0, the operator Ṽ : H−1/2,−1/4(Σ)→
H

1,1/2
;0, (Q) is, by restriction, bounded as well, i.e. there exists a positive constant

cṼ2 > 0 such that∥∥∥Ṽ w∥∥∥
H

1,1/2
;0, (Q)

≤ cṼ2 ‖w‖H−1/2,−1/4(Σ) for all w ∈ H−1/2,−1/4(Σ). (4.15)

Recall, that due to construction, the single layer potential is a solution of the homoge-
neous heat equation on DΓ, i.e. for w ∈ H−1/2,−1/4(Σ) we have[

α∂t − ∆x
]
Ṽ w = 0 on DΓ.

Hence Ṽ w ∈ H1,1/2
;0, (Q,L) for w ∈ H−1/2,−1/4(Σ) and therefore the Dirichlet trace

as well as the Neumann trace of the single layer potential are well defined. In order to
show the jump relations we proceed as follows. Let BR ⊂ Rn be a ball with radius
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R > 0, such that Ω ⊂ BR and set Ωc := BR \ Ω. Moreover Qc := Ωc × (0, T ). As
before we obtain the continuity of the mapping

Ṽ : H−1/2,−1/4(Σ)→ H
1,1/2
;0, (Qc,L).

Thus, the Dirichlet and Neumann traces are defined from both sides of Σ. Let γext
0

and γext
1 denote the exterior Dirichlet trace operator and the exterior Neumann trace

operator, respectively. Then the jumps on Σ are defined as

[γ0u] := γext
0 u− γint

0 u,

[γ1u] := γext
1 u− γint

1 u.
(4.16)

Theorem 4.9. The single layer potential Ṽ w satisfies the jump relations[
γ0Ṽ w

]
= 0,

[
γ1Ṽ w

]
= −w, for all w ∈ H−1/2,−1/4(Σ).

Proof. For w ∈ H−1/2,−1/4(Σ) we have u := Ṽ w ∈ H1,1/2
;0, (BR × (0, T )) and there-

fore γint
0 u = γext

0 u. Moreover we have [α∂t − ∆x]u = 0 on Q ∪Qc. By using Green’s
second formula (3.6) with a test function ϕ ∈ C∞0 (BR × (0, T )) we obtain

−〈u, [−α∂t − ∆x]ϕ〉L2(Q) = 〈γint
0 u, γint

1 ϕ〉Σ − 〈γint
1 u, γint

0 ϕ〉Σ,
−〈u, [−α∂t − ∆x]ϕ〉L2(Qc) = −〈γext

0 u, γext
1 ϕ〉Σ + 〈γext

1 u, γext
0 ϕ〉Σ.

Adding both equations and using γint
0 ϕ = γext

0 ϕ as well as γint
1 ϕ = γext

1 ϕ yields

−〈u, [−α∂t − ∆x]ϕ〉L2(BR×(0,T )) = −〈[γ0u], γ
int
1 ϕ〉Σ + 〈[γ1u], γ

int
0 ϕ〉Σ.

Since [γ0u] = 0 we conclude

− 〈u, [−α∂t − ∆x]ϕ〉L2(BR×(0,T )) = 〈[γ1u], γ
int
0 ϕ〉Σ. (4.17)

From the representation (4.14) of the single layer potential Ṽ follows that

[α∂t − ∆x]Ṽ w = [α∂t − ∆x]Aγ′0w = γ′0w

holds in BR × (0, T ) in the distributional sense. Hence, we obtain

〈u, [−α∂t − ∆x]ϕ〉L2(BR×(0,T )) = 〈[α∂t − ∆x]u, ϕ〉BR×(0,T )
= 〈[α∂t − ∆x]Ṽ w, ϕ〉BR×(0,T )
= 〈γ′0w,ϕ〉BR×(0,T ) = 〈w, γint

0 ϕ〉Σ.
Combined with (4.17) we get

〈[γ1Ṽ w], γ
int
0 ϕ〉Σ = −〈w, γint

0 ϕ〉Σ.

The assertion follows since γint
0 C∞0 (BR × (0, T )) is dense in H1/2,1/4(Σ).
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The continuity of Ṽ and γint
0 imply, that the single layer boundary integral operator

V := γint
0 Ṽ : H−1/2,−1/4(Σ)→ H1/2,1/4(Σ) (4.18)

is linear and bounded, i.e. there exists a positive constant cV2 > 0 such that

‖V w‖H1/2,1/4(Σ) ≤ cV2 ‖w‖H−1/2,−1/4(Σ) for all w ∈ H−1/2,−1/4(Σ). (4.19)

4.5 Adjoint double layer potential

The adjoint double layer potential K ′w with density w ∈ H−1/2,−1/4(Σ) is defined as

K ′w :=
1
2

(
γint

1 Ṽ w + γext
1 Ṽ w

)
.

Due to the boundedness of the single layer operator Ṽ and the Neumann trace operators
the operator K ′ : H−1/2,−1/4(Σ)→ H−1/2,−1/4(Σ) is bounded as well. For w regular
enough we have the representation

(K ′w)(x, t) =
1
α

∫ t

0

∫
Γ
∂nxU

?(x− y, t− τ)w(y, τ) dsy dτ

for (x, t) ∈ Σ and Γ smooth in x ∈ Γ.

4.6 Double layer potential

We introduce the double layer potential with density v ∈ L1(Σ) as

(Wv)(x, t) :=
1
α

∫ t

0

∫
Γ
∂nyU

?(x−y, t− τ)v(y, τ) dsy dτ for (x, t) ∈ DΓ. (4.20)

The fundamental solution U?(x − ·, t − ·) is smooth on Σ for (x, t) ∈ DΓ and hence
the double layer potential potential is well defined for v ∈ L1(Σ).

Theorem 4.10. For v ∈ L1(Σ) the double layer potential Wv satisfies the homoge-
neous heat equation, i.e.[

α∂t − ∆x
]
(Wv)(x, t) = 0 for all (x, t) ∈ DΓ.

Proof. For (x, t) ∈ DΓ there exists a compact neighbourhood O of (x, t) such that
O ⊂ DΓ and hence dist(O,Σ) > 0. Therefore the restriction of ∂nyU

?(x− y, t− s) to
(x, t) ∈ O and (y, s) ∈ Σ is bounded and differentiable on O for (y, s) ∈ Σ. Moreover
∂nyU

? is integrable over Σ for (x, t) ∈ O. Hence we can apply the Leibniz integral
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rule and additionally interchange the operators α∂t − ∆x and ∂ny under the integral
sign to get

[
α∂t − ∆x

]
(Wv)(x, t) =

1
α

∫ t

0

∫
Γ
∂ny
[
α∂t − ∆x

]
U?(x− y, t− τ)v(y, τ) dsy dτ

+ lim
ε→0

∫
Γ
∂nyU

?(x− y, ε)v(y, t− ε) dsy.

We then use [α∂t − ∆x]U?(x − y, t − τ) = 0 for (x, t) ∈ DΓ and (y, τ) ∈ Σ and the
dominated convergence theorem to conclude

[α∂t − ∆](Wv)(x, t) = lim
ε→0

∫
Γ
∂nyU

?(x− y, ε)v(y, t− ε) dsy = 0.

As in the case of the single layer potential Ṽ the representation (4.20) is only valid
for v ∈ L1(Σ), and again, we can extend the domain of the double layer operator W
by using the properties of convolution operator A. For v ∈ H1/2,1/4(Σ) we have the
representation Wv = Aγ′1v. Here γ′1v is the distribution defined by

〈γ′1v, ϕ〉 = 〈v, γint
1 ϕ〉Σ for all ϕ ∈ C∞0 (Rn × R).

The proof of the continuity of the operator

W : H1/2,1/4(Σ)→ H
1,1/2
;0, (Q)

follows the lines of [5, Proposition 3.3]. We conclude, that there exists a positive
constant cW2 > 0 such that

‖Wv‖
H

1,1/2
;0, (Q)

≤ cW2 ‖v‖H1/2,1/4(Σ) for all v ∈ H1/2,1/4(Σ).

The double layer potential Wv for v ∈ H1/2,1/4(Σ) is a solution of the homogeneous
heat equation on DΓ, i.e. we have

[α∂t − ∆x]Wv = 0 on DΓ.

Hence Wv ∈ H
1,1/2
;0, (Q,L) for v ∈ H1/2,1/4(Σ) and therefore the traces are well

defined. Analogously as in the case of the single layer potential, see Section 4.4, we
can define the interior and exterior Dirichlet and Neumann traces of Wv and obtain
the following jump relations.

Theorem 4.11. The double layer potential Wv satisfies the jump relations

[γ0Wv] = v, [γ1Wv] = 0, for all v ∈ H1/2,1/4(Σ).
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Proof. For v ∈ H1/2,1/4(Σ) we define u := Wv ∈ H
1,1/2
;0, (BR × (0, T )), hence

[α∂t − ∆x]u = 0 on Q ∪ Qc. By using Green’s second formula (3.6) with ϕ ∈
C∞0 (BR × [0, T )) we get

−〈u, [−α∂t − ∆x]ϕ〉L2(BR×(0,T )) = −〈[γ0u], γ
int
1 ϕ〉Σ + 〈[γ1u], γ

int
0 ϕ〉Σ.

From the definition of the double layer potential W follows that

[α∂t − ∆x]Wv = γ′1v

holds in BR × (0, T ) in the distributional sense. Hence, we obtain

〈u, [−α∂t − ∆x]ϕ〉L2(BR×(0,T )) = 〈[α∂t − ∆x]u, ϕ〉BR×(0,T )
= 〈[α∂t − ∆x]Wv,ϕ〉BR×(0,T )
= 〈γ′1v, ϕ〉BR×(0,T ) = 〈v, γint

1 ϕ〉Σ.

and conclude
〈[γ1Wv], γint

0 ϕ〉Σ = 〈[γ0Wv]− v, γint
1 ϕ〉Σ. (4.21)

Remark 3.13 then implies, that each side in (4.21) has to be zero, i.e. [γ1Wv] = 0 and
[γ0Wv] = v.

The double layer boundary integral operator K for v ∈ H1/2,1/4(Σ) is defined as

Kv :=
1
2
(
γint

0 Wv + γext
0 Wv

)
. (4.22)

Due to the boundedness of the double layer potential W and the Dirichlet trace opera-
tors, the operator K : H1/2,1/4(Σ)→ H1/2,1/4(Σ) is bounded as well, i.e. there exists
a positive constant cK2 > 0 such that

‖Kv‖H1/2,1/4(Σ) ≤ cK2 ‖v‖H1/2,1/4(Σ) for all v ∈ H1/2,1/4(Σ). (4.23)

4.7 Hypersingular operator

The hypersingular operator D defined as

D := −γint
1 W : H1/2,1/4(Σ)→ H−1/2,−1/4(Σ)

is linear and bounded satisfying

‖Dv‖H−1/2,−1/4(Σ) ≤ cD2 ‖v‖H1/2,1/4(Σ) for all v ∈ H1/2,1/4(Σ) (4.24)

with some positive constant cD2 > 0. If the density v is smooth enough, we have the
representation

(Dv)(x, t) = − 1
α
γint

1,x

∫ t

0

∫
Γ
γint

1,yU
?(x− y, t− τ)v(y, τ) dsy dτ
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for (x, t) ∈ Σ. When assuming that the boundary Γ, for n = 2, 3, is piecewise smooth
we can derive an alternative representation of the bilinear form which is induced by
the hypersingular boundary integral operator D, i.e.

〈Du, v〉Σ = − 1
α

∫
Σ
v(x, t)γint

1,x

∫
Σ
γint

1,yU
?(x− y, t− τ)u(y, τ) dsy dτ dsx dt.

In this case the bilinear form can be written by means of the single layer boundary
integral operator V , i.e. we have weakly singular representations. For n = 2, see, e.g.
[5, Theorem 6.1], we obtain

〈Du,v〉Σ =
1
α

∫
Σ

curlΓ v(x, t)
∫

Σ
U?(x− y, t− τ)curlΓ u(y, τ) dsy dτ dsx dt

− 1
α

∫
Σ
nT(x) v(x, t)

∫
Σ
∂τU

?(x− y, t− τ)n(y)u(y, τ) dsy dτ dsx dt,

where

curlΓ v(x, t) := n1(x)
∂

∂x2
v(x, t)− n2(x)

∂

∂x1
v(x, t) for (x, t) ∈ Σ.

Whereas for n = 3 we have the representation [27, Theorem 2.1]

〈Du,v〉Σ =
1
α

∫
Σ

curlTΓ v(x, t)
∫

Σ
U?(x− y, t− τ)curlΓ u(y, τ) dsy dτ dsx dt

− 1
α

∫
Σ
nT(x) v(x, t)

∫
Σ
∂τU

?(x− y, t− τ)n(y)u(y, τ) dsy dτ dsx dt,

with curlΓ v(x, t) := n(x)×∇xv(x, t) for (x, t) ∈ Σ.

5 Boundary integral equations
In the following section we introduce the Calderón projection operator and deduce
related properties of the boundary integral operators, including the definition of the
Steklov-Poincaré operator in Subsection 5.1. In Subsection 5.2 we discuss the unique
solvability of the model problem (1.1) by means of analyzing related boundary integral
equations.

The solution u ∈ H1,1/2(Q) of problem (1.1) with initial datum u0 ∈ L2(Ω) and
source term f ∈ L2(Q) is given by the representation formula

u = (Ṽ γint
1 u)− (Wγint

0 u) + (M̃0u0) + (Ñ0f) in Q. (5.1)

By applying the Dirichlet trace operator to (5.1) and recalling the jump relations of the
heat potentials we obtain the first boundary integral equation

γint
0 u =(V γint

1 u) +
1
2
γint

0 u− (Kγint
0 u) + (M0u0) + (N0f) on Σ. (5.2)
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The application of the Neumann trace operator to (5.1) yields the second boundary
integral equation

γint
1 u =

1
2
γint

1 u+ (K ′γint
1 u) + (Dγint

0 u) + (M1u0) + (N1f) on Σ. (5.3)

Together these equations lead to the so-called Calderón system of boundary integral
equations. We have(

γint
0 u

γint
1 u

)
=

(
1
2I −K V

D 1
2I +K ′

)
︸ ︷︷ ︸

=: C

(
γint

0 u

γint
1 u

)
+

(
M0u0

M1u0

)
+

(
N0f

N1f

)
.

(5.4)

The operator C is called the Calderón projection operator.

Lemma 5.1. C is a projection, i.e. C = C2.

Proof. Let (ψ,ϕ) ∈ H− 1
2 ,−

1
4 (Σ)×H 1

2 ,
1
4 (Σ). Then the function

u := Ṽ ψ −Wϕ

is a solution of the homogeneous heat equation. By applying the trace operators we
get the boundary integral equations

γint
0 u = V ψ +

(
1
2
I −K

)
ϕ,

γint
1 u =

(
1
2
I +K ′

)
ψ +Dϕ.

(5.5)

Additionally u is a solution of the homogeneous heat equation with Cauchy data
γint

0 u, γint
1 u and inital condition u0 = 0, i.e. we have(

γint
0 u

γint
1 u

)
=

(
1
2I −K V

D 1
2I +K ′

)(
γint

0 u

γint
1 u

)
.

Inserting (5.5) yields(
1
2I −K V

D 1
2I +K ′

)(
ψ

ϕ

)
=

(
1
2I −K V

D 1
2I +K ′

)2(
ψ

ϕ

)
.

Since the functions ψ,ϕ were arbitrarily chosen we conclude C = C2.

As a consequence of the projection property of the Calderón operator C we obtain the
following relations.
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Corollary 5.2. The boundary integral operators satisfy

V D =

(
1
2
I +K

)(
1
2
I −K

)
,

DV =

(
1
2
I +K ′

)(
1
2
I −K ′

)
,

V K ′ = KV,

K ′D = DK.

Proof. Follows from C = C2.

Now we state the main theorem of this section.

Theorem 5.3. The operator

A : H1/2,1/4(Σ)×H−1/2,−1/4(Σ)→ H1/2,1/4(Σ)×H−1/2,−1/4(Σ)

defined as

A :=

(
−K V

D K ′

)
is an isomorphism and there exists a constant c1 > 0 such that〈(

ψ

ϕ

)
,

(
V −K
K ′ D

)(
ψ

ϕ

)〉
Σ×Σ

≥ c1

(
‖ψ‖2

H−1/2,−1/4(Σ) + ‖ϕ‖
2
H1/2,1/4(Σ)

)
for all (ψ,ϕ) ∈ H−1/2,−1/4(Σ)×H1/2,1/4(Σ).

Proof. Follows the lines of [5, Corollary 3.10, Theorem 3.11].

The ellipticity of the operator in Theorem 5.3 then immediately implies the ellipticity
of the single layer boundary integral operator V and the hypersingular operator D.

Lemma 5.4. The single layer boundary integral operator V defines an isomorphism
and there exists a positive constant cV1 > 0 such that

〈V w,w〉Σ ≥ cV1 ‖w‖2
H−1/2,−1/4(Σ) for all w ∈ H−1/2,−1/4(Σ).

Proof. Follows from Theorem 5.3 with ϕ = 0.

Lemma 5.5. The hypersingular operator D defines an isomorphism and there exists a
positive constant cD1 > 0 such that

〈Dv, v〉Σ ≥ cD1 ‖v‖2
H1/2,1/4(Σ) for all v ∈ H1/2,1/4(Σ).

Proof. Follows from Theorem 5.3 with ψ = 0.
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5.1 Steklov-Poincaré operator

We consider the system of boundary integral equations with source term f = 0 and
with homogeneous initial conditions, i.e. u0 = 0. Hence(

γint
0 u

γint
1 u

)
=

(
1
2I −K V

D 1
2I +K ′

)(
γint

0 u

γint
1 u

)
.

Using the first integral equation we can define the Dirichlet to Neumann map

γint
1 u = V −1

(
1
2
I +K

)
γint

0 u. (5.6)

The operator

S := V −1
(

1
2
I +K

)
: H1/2,1/4(Σ)→ H−1/2,−1/4(Σ) (5.7)

is called Steklov-Poincaré operator for the heat equation. When inserting (5.6) into the
second boundary integral equation we obtain

γint
1 u =

[
D +

(
1
2
I +K ′

)
V −1

(
1
2
I +K

)]
γint

0 u.

Hence we get a symmetric representation of the Steklov-Poincaré operator,

S = D +

(
1
2
I +K ′

)
V −1

(
1
2
I +K

)
. (5.8)

Due to the boundedness of the operators K,K ′, D and V −1 the operator S is bounded
as well.

Lemma 5.6. The Steklov-Poincaré operator S is elliptic, i.e. there exists a positive
constant cS1 > 0 such that

〈Sv, v〉Σ ≥ cS1 ‖v‖2
H1/2,1/4(Σ) for all v ∈ H 1

2 ,
1
4 (Σ).

Proof. For v ∈ H1/2,1/4(Σ) we define ψ := V −1
(1

2I +K
)
v ∈ H−1/2,−1/4(Σ) and

get〈(
ψ

v

)
,

(
V −K
K ′ D

)(
ψ

v

)〉
Σ×Σ

=
1
2

〈
V −1

(
1
2
I +K

)
v, v

〉
Σ
+

〈
v,K ′V −1

(
1
2
I +K

)
v +Dv

〉
Σ

=

〈
v,

(
1
2
I +K ′

)
V −1

(
1
2
I +K

)
v +Dv

〉
Σ

= 〈v, Sv〉Σ.
The assertion now follows with Theorem 5.3.
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5.2 Initial Dirichlet boundary value problem

We consider the initial Dirichlet boundary value problem (1.1) with source term f ∈
L2(Q), boundary datum g ∈ H1/2,1/4(Σ), and initial datum u0 ∈ L2(Ω). The solution
is given by the representation formula

u = (Ṽ γint
1 u)− (Wg) + (M̃0u0) + (Ñ0f) in Q.

It remains to determine the unknown conormal derivative γint
1 u ∈ H−1/2,−1/4(Σ). This

can be done, e.g., by using the first boundary integral equation in (5.4). We have to
find γint

1 u ∈ H−1/2,−1/4(Σ) such that

V γint
1 u =

(
1
2
I +K

)
g −M0u0 −N0f on Σ.

The corresponding variational formulation is to find γint
1 u ∈ H−1/2,−1/4(Σ) such that

〈
V γint

1 u, τ
〉

Σ =

〈(
1
2
I +K

)
g −M0u0 −N0f, τ

〉
Σ

(5.9)

for all τ ∈ H−1/2,−1/4(Σ). Since the boundary integral operators K, M0, N0 and V
are bounded and V is elliptic, there exists a unique solution γint

1 u ∈ H−1/2,−1/4(Σ)
according to the Lemma of Lax-Milgram. The solution γint

1 u then satisfies

∥∥γint
1 u
∥∥
H−1/2,−1/4(Σ) ≤

1
cV1

∥∥∥∥(1
2
I +K

)
g −M0u0 −N0f

∥∥∥∥
H1/2,1/4(Σ)

≤ 1
cV1

(
c̃W2 ‖g‖H1/2,1/4(Σ) + cM0

2 ‖u0‖L2(Ω) + cN0
2 ‖f‖[H1,1/2

;,0 (Q)]′

)
.

Another approach is using an indirect formulation with the single layer potential Ṽ . A
solution of the heat equation with source term f and initial condition u0 is given by

u = (Ṽ w) + (M̃0u0) + (Ñ0f) in Q (5.10)

with an unknown density w ∈ H−1/2,−1/4(Σ) to be determined. By applying the
Dirichlet trace operator to (5.10) we obtain

g = (V w) + (M0u0) + (N0f) on Σ. (5.11)

Thus, we have to find w ∈ H−1/2,−1/4(Σ) such that

V w = g −M0u0 −N0f on Σ.

The corresponding variational formulation is to find w ∈ H−1/2,−1/4(Σ) such that

〈V w, τ〉Σ = 〈g −M0u0 −N0f, τ〉Σ for all τ ∈ H−1/2,−1/4(Σ). (5.12)
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As in the case of the direct formulation with the first boundary integral equation the
unique solvability follows with the Lemma of Lax-Milgram.

In this paper we only consider the Dirichlet boundary value problem. The analysis
of the Neumann boundary value problem will be addressed in future work, see, e.g.,
[6]. In this case one can, e.g., use the second boundary integral equation in (5.4) to
obtain the unknown Dirichlet trace γint

0 u of the solution u. Due to the ellipticity of the
hypersingular operator D, the second boundary integral equation is uniquely solvable
as well. Another approach would be an indirect formulation with the double layer
potential W .

6 Space-time discretization

In this section we discuss two different space-time discretization techniques in order
to compute an approximation of the unknown Neumann datum ∂nu|Σ and derive re-
lated approximation properties. The first one is the so-called tensor product approach,
where we consider separate decompositions of the spatial boundary Γ and the time
interval (0, T ) and use space-time tensor product spaces to compute an approximation
of ∂nu|Σ. The second one is using boundary element spaces which are defined with re-
spect to a shape-regular triangulation of the whole space-time boundary Σ = Γ×(0, T )
into boundary elements, allowing us to apply adaptive refinement in space and time si-
multaneously while maintaining the regularity of the boundary element mesh.

We assume, for n = 2, 3, that the spatial Lipschitz boundary Γ = ∂Ω is piecewise
smooth, thus Γ =

⋃J
j=1 Γj . With Σj := Γj × (0, T ), j = 1, ..., J , we then obtain

Σ =
⋃J
j=1 Σj . For the Galerkin boundary element discretization of the variational

formulations (5.9) or (5.12), we consider a family {ΣN}N∈N of decompositions ΣN :=
{σ`}N`=1 of the space–time boundary Σ into boundary elements σ`, i.e. we have

Σ =

N⋃
`=1

σ` . (6.1)

6.1 One-dimensional problem

In the spatially one-dimensional case we have Γ = {a, b} assuming Ω = (a, b), in-
ducing that Σ = Σa ∪ Σb with Σa = {a} × (0, T ) and Σb = {b} × (0, T ). Hence
the boundary elements σ` are line segments in temporal dimension with fixed spatial
coordinate x` ∈ {a, b} as shown in Figure 1.

Remark 6.1. In the one-dimensional case the spatial component of the space–time
boundary Σ collapses to the points {a, b}, assuming Ω = (a, b), and therefore we can
identify the anisotropic Sobolev spaces Hr,s(Σ) with the isotropic version Hs(Σ).
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Let (x`, t`1) and (x`, t`2) be the nodes of the boundary element σ`. The local mesh size
is then given as h` := |t`2 − t`1 | while h := max`=1,...,N h` is the global mesh size.
The family {ΣN}N∈N is said to be globally quasi-uniform, if there exists a constant
cG ≥ 1 independet of ΣN such that

hmax

hmin
≤ cG.

Ω× (0,T )

x

t

Figure 1: Sample BE mesh. We consider an arbitrary decomposition of the space–time
boundary Σ. Note that there is no time-stepping scheme involved.

For the approximation of the unknown Neumann datum w = γint
1 u ∈ H−1/4(Σ) we

consider the space S0
h(Σ) := span

{
ϕ0
`

}N
`=1 of piecewise constant basis functions ϕ0

` ,
which is defined with respect to the decomposition ΣN . According to Remark 6.1 we
can identify Hr,s(Σ) with Hs(Σ) and hence we have the same approximation proper-
ties as in the case of standard Sobolev spaces Hs(Σ), see, e.g., [33].

Approximation properties. The L2 projection Q0
hu ∈ S0

h(Σ) of u ∈ L2(Σ) is de-
fined as the unique solution of the variational problem

〈Q0
hu, vh〉L2(Σ) = 〈u, vh〉L2(Σ) for all vh ∈ S0

h(Σ).

The operator Q0
h : L2(Σ)→ L2(Σ) satisfies the trivial stability estimate∥∥Q0

hu
∥∥
L2(Σ) ≤ ‖u‖L2(Σ) for all u ∈ L2(Σ).

Next we summarize some error estimates for the L2 projection Q0
hu.

Theorem 6.2 ([33, Theorem 10.2]). Let u ∈ Hs(Σ) with s ∈ [0, 1] and Q0
hu ∈ S0

h(Σ)
be the L2 projection of u. Then there holds the error estimate∥∥u−Q0

hu
∥∥
L2(Σ) ≤ c h

s|u|Hs(Σ).



40 S. Dohr, K. Niino and O. Steinbach

Lemma 6.3 ([33, Corollary 10.3]). Let u ∈ Hs(Σ) with s ∈ [0, 1]. For σ ∈ [−1, 0]
there holds the error estimate∥∥u−Q0

hu
∥∥
H̃σ(Σ) ≤ c h

s−σ|u|Hs(Σ).

Lemma 6.4 ([33, Lemma 10.10]). Assume that the boundary decomposition ΣN is
globally quasi-uniform. For σ ∈ [−1, 0] there holds the inverse inequality

‖τh‖L2(Σ) ≤ c hσ ‖τh‖H̃σ(Σ) for all τh ∈ S0
h(Σ).

6.2 Two- and three-dimensional problems

We consider two different decomposition approaches. The first one is a separate de-
composition of the spatial boundary Γ = ∂Ω and the time interval (0, T ), also dis-
cussed in, e.g., [15, 25, 29]. In this case we use space-time tensor product spaces to
discretize the variational formulations (5.9) or (5.12). We derive error estimates sim-
ply by combining approximation properties of the spatial and temporal discretizations.
The second approach is considering an arbitrary triangulation of the full space-time
boundary Σ = Γ× (0, T ) into boundary elements.

Space-time tensor product decompositions

Let {ΓNx}Nx∈N be a family of admissible decompositions ΓNx := {γl}Nx`=1 of the
boundary Γ into boundary elements γ`, i.e. we have

Γ =

Nx⋃
`=1

γ`. (6.2)

We assume that there are no curved elements and that there is no approximation of the
boundary Γ. The boundary elements γ` are line segments for n = 2 and plane triangles
for n = 3. For each boundary element γ` there exists j ∈ {1, ..., J} such that γ` ⊂ Γj .
The boundary elements γ` can be described as γ` = χ`(γ), where γ is some reference
element in Rn−1. For each boundary element γ` we define its volume

∆` :=
∫
γ`

dsx,

and its local mesh size
h`,x := ∆1/(n−1)

` .

The global mesh size is then given by

hx := max
`=1,...,Nx

h`,x.
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Moreover we define the diameter of the element γ` as

d`,x := sup
x,y∈γ`

|x− y| .

The family {ΓNx}Nx∈N of decompositions is said to be globally quasi-uniform, if there
exists a constant cG,x ≥ 1 independent of ΓNx such that

hx,max

hx,min
≤ cG,x.

We assume that the boundary elements γ` are shape regular, i.e. there exists a constant
cB independent of ΓNx such that

d`,x ≤ cBh`,x for all ` = 1, ..., Nx.

Moreover we consider a family {INt}Nt∈N of decompositions INt := {τk}Ntk=1 of the
time interval I = (0, T ) into line segments τk, i.e. we have

I = [0, T ] =
Nt⋃
k=1

τk. (6.3)

The local mesh size of an element τk = (tk1 , tk2) is then given by hk,t := tk2 − tk1 ,
whereas the global mesh size is defined as ht := maxk=1,...,Nt hk,t. Again, the family
{INt}Nt∈N of decompositions is said to be globally quasi-uniform, if there exists a
constant cG,t ≥ 1 independent of INt such that

ht,max

ht,min
≤ cG,t.

The set BN := {σ`}Nl=1 of the boundary elements σ` in (6.1) is then given by

BN := {σ = γi × τj , i ∈ {1, ..., Nx} , j ∈ {1, ..., Nt}} .
These space-time boundary elements are rectangles for n = 2 and triangular prisms
for n = 3. A sample decomposition of the space-time boundary of Q = (0, 1)3 is
shown in Figure 2 (a).

Since the normal derivative of u on Σ could be discontinuous depending on the spa-
tial boundary Γ it is reasonable to approximate the conormal derivative w = γint

1 u by
discontinuous functions. Thus, we use the space of piecewise constant basis functions
for the approximation of w. Let S0

h(I) := span
{
ϕ0
`

}Nt
l=1 be the space of piecewise

constant basis functions on (0, T ) corresponding to the temporal decomposition INt ,
and let S0

h(Γ) := span
{
ψ0
i

}Nx
i=1 be the space of piecewise constant basis functions

on Γ, which is defined with respect to the spatial decomposition ΓNx . The boundary
element space is then given as

S0,0
hx,ht

(Σ) := S0
hx(Γ)⊗ S0

ht(I). (6.4)

Due to the structure of the decomposition we can combine the approximation proper-
ties in spatial and temporal dimension in order to derive the approximation properties
of the boundary element space S0,0

hx,ht
(Σ).
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(a) Tensor product decomposition (b) Triangulation

Figure 2: Sample space-time boundary decompositions of Q = (0, 1)3.

Approximation properties. The L2 projection Qhxu ∈ S0
hx
(Γ) of u ∈ L2(Γ) is

defined as the unique solution of the variational problem

〈Qhxu, vh〉L2(Γ) = 〈u, vh〉L2(Γ) for all vh ∈ S0
hx(Γ). (6.5)

Analogously theL2 projectionQhtu ∈ S0
ht
(I) of u ∈ L2(0, T ) is defined as the unique

solution of the variational problem

〈Qhtu, vh〉L2(I) = 〈u, vh〉L2(I) for all vh ∈ S0
ht(I). (6.6)

The L2 projection operator Qhx,ht : L2(Σ) → S0,0
hx,ht

(Σ) with Qhx,htu ∈ S0,0
hx,ht

(Σ)
defined as the unique solution of the variational problem

〈Qhx,htu, vh〉L2(Σ) = 〈u, vh〉L2(Σ) for all vh ∈ S0,0
hx,ht

(Σ), (6.7)

has the representation Qhx,ht = QΣ
hx
QΣ
ht

, where for u ∈ L2(Σ)

(QΣ
hxu)(x, t) := (Qhxu(·, t))(x),

(QΣ
htu)(x, t) := (Qhtu(x, ·))(t).

Hence we can use the well known approximation properties of the operators Qhx and
Qht to derive estimates for the L2 projection Qhx,htu, see, e.g. [5, 29].

Theorem 6.5. Let u ∈ Hr,s(Σ) for some r, s ∈ [0, 1] and let Qhx,htu ∈ S0,0
hx,ht

(Σ) be
the L2 projection of u. Then there hold the error estimates

‖u−Qhx,htu‖L2(Σ) ≤ ‖u‖L2(Σ) ,

‖u−Qhx,htu‖L2(Σ) ≤ c (hrx + hst ) ‖u‖Hr,s(Σ) .
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Lemma 6.6. Let u ∈ Hr,s(Σ) for some r, s ∈ [0, 1]. For σ, µ ∈ [0, 1] there holds the
error estimate

‖u−Qhx,htu‖H̃−σ,−µ(Σ) ≤ c (h
σ
x + hµt ) (h

r
x + hst ) ‖u‖Hr,s(Σ) .

Lemma 6.7 (Global inverse inequality). Assume that the decompositions ΓNx and INt
are globally quasi-uniform. For r ∈ [0, 1) there holds the global inverse inequality

‖τh‖L2(Σ) ≤ c
(
h−rx + h

−r/2
t

)
‖τh‖H̃−r,−r/2(Σ) for all τh ∈ S0,0

hx,ht
(Σ).

Proof. Let τh ∈ S0,0
hx,ht

(Σ) and 0 ≤ r < 1
2 . By applying the inverse inequality in

spatial and temporal direction we get

‖τh‖2
Hr,r/2(Σ) ≤ c

∫
Γ
‖τh(x, ·)‖2

Hr/2((0,T )) dsx + c

∫ T

0
‖τh(·, t)‖2

Hr(Γ) dt

≤ c h−rt
∫

Γ
‖τh(x, ·)‖2

L2((0,T )) dsx + c h−2r
x

∫ T

0
‖τh(·, t)‖2

L2(Γ) dt

≤ c
(
h−2r
x + h−rt

)
‖τh‖2

L2(Σ) .

Applying this estimate yields

‖τh‖2
L2(Σ) = 〈τh, τh〉L2(Σ) ≤ ‖τh‖Hr,r/2(Σ) ‖τh‖H̃−r,−r/2(Σ)

≤ c
(
h−rx + h

−r/2
t

)
‖τh‖L2(Σ) ‖τh‖H̃−r,−r/2(Σ) ,

and we conclude

‖τh‖L2(Σ) ≤ c
(
h−rx + h

−r/2
t

)
‖τh‖H̃−r,−r/2(Σ) for all τh ∈ S0,0

hx,ht
(Σ).

It remains to prove the estimate for r ∈ [1
2 , 1). For τh ∈ S0,0

hx,ht
(Σ) we have

‖τh‖L2(Σ) ≤ c
(
h−r/2
x + h

−r/4
t

)
‖τh‖H̃−r/2,−r/4(Σ) . (6.8)

By using interpolation results, see, e.g., [21, 22], we get

‖τh‖2
H̃−r/2,−r/4(Σ) ≤ c ‖τh‖L2(Σ) ‖τh‖H̃−r,−r/2(Σ)

≤ c
(
h−r/2
x + h

−r/4
t

)
‖τh‖H̃−r/2,−r/4(Σ) ‖τh‖H̃−r,−r/2(Σ) ,

and together with (6.8) we conclude

‖τh‖L2(Σ) ≤ c
(
h−rx + h

−r/2
t

)
‖τh‖H̃−r,−r/2(Σ) for all τh ∈ S0,0

hx,ht
(Σ).
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For a shape regular boundary element mesh, i.e. hk,x ∼ hk,t, the global mesh size is
given by h := max`=1,...,N h` where h` := |σ`|1/n is the local mesh size. We define
Q0,0
h := Q0,0

h,h and S0,0
h (Σ) := S0,0

h,h(Σ) and we obtain the following estimates.

Corollary 6.8. Assume that ΣN is a shape regular boundary element mesh, and let
u ∈ Hr,s(Σ) for some r, s ∈ [0, 1]. For σ, µ ∈ [0, 1] there holds the error estimate∥∥∥u−Q0,0

h u
∥∥∥
H̃−σ,−µ(Σ)

≤ c hmin (r,s)+min (σ,µ) ‖u‖Hr,s(Σ) .

Proof. Follows by applying Lemma 6.6 with hx ∼ ht.

Corollary 6.9. Assume that ΣN is a shape regular and globally quasi-uniform bound-
ary element mesh. For r ∈ [0, 1) there holds the inverse inequality

‖τh‖L2(Σ) ≤ c h−r ‖τh‖H̃−r,−r/2(Σ) for all τh ∈ S0,0
h (Σ).

Proof. Follows by applying Lemma 6.7 with hx ∼ ht.

Triangulation of Σ

Let {ΣN}N∈N be a family of admissible triangulations of Σ into boundary elements σ`
given by (6.1). Again we assume that there are no curved elements and that there is
no approximation of the space-time boundary Σ. For each boundary element σ` there
exists exactly one j ∈ {1, ..., J} such that σ` ⊂ Σj . The boundary elements σ` can be
described as σ` = χ`(σ), where σ is some reference element in Rn. The elements σ`
are plane triangles for n = 2 and tetrahedra for n = 3. For each boundary element σ`
we define its volume

∆` :=
∫
σ`

dsx dt

and its local mesh size h` := ∆1/n
` . The global mesh size is then given by h :=

max`=1,...,N h`. The family {ΣN}N∈N of decompositions is said to be globally quasi-
uniform, if there exists a constant cG ≥ 1 independent of ΣN such that

hmax

hmin
≤ cG.

We consider shape regular boundary elements only, i.e. there exists a constant cB
independent of the boundary decomposition ΣN such that

d` ≤ cBh` for ` = 1, ..., N (6.9)

with diameter d` given by

d` := sup
(x,t),(y,s)∈σ`

|(x, t)− (x, s)|.
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A sample triangulation of the boundary Σ of the space-time domain Q = (0, 1)3 is
shown in Figure 2 (b).

For the approximation of the conormal derivative w = γint
1 u we consider the space

of piecewise constant basis functions S0
h(Σ) := span

{
ϕ0
`

}N
`=1, which is defined with

respect to the decomposition ΣN .

Approximation properties. The L2 projection Qhu ∈ S0
h(Σ) of u ∈ L2(Σ) is de-

fined as the unique solution of the variational problem

〈Qhu, vh〉L2(Σ) = 〈u, vh〉L2(Σ) for all vh ∈ S0
h(Σ). (6.10)

By using Lemma 2.1 and the well known approximation properties in standard Sobolev
spaces, e.g., [33], we immediately obtain the following results.

Theorem 6.10. Let u ∈ Hr,s(Σ) for some r, s ∈ [0, 1], and let Qhu ∈ S0
h(Σ) be the L2

projection of u. Then there hold the error estimates

‖u−Qhu‖L2(Σ) ≤ ‖u‖L2(Σ) ,

‖u−Qhu‖L2(Σ) ≤ c hmin (r,s) ‖u‖Hr,s(Σ) .

Proof. First let u ∈ L2(Σ). By using

〈u−Qhu, vh〉L2(Σ) = 0 for all vh ∈ S0
h(Σ)

we obtain

‖u−Qhu‖2
L2(Σ) = 〈u−Qhu, u−Qhu〉L2(Σ) = 〈u−Qhu, u〉L2(Σ)

≤ ‖u−Qhu‖L2(Σ) ‖u‖L2(Σ)

and we conclude the first error estimate. For u ∈ Hr,s(Σ) for some r, s ∈ [0, 1] and
m := min (r, s) we argue as follows. Analogously to [33, Theorem 10.2] we get

‖u−Qhu‖L2(Σ) ≤ c hm ‖u‖Hm(Σ) .

According to Lemma 2.1 we have Hr,s(Σ) ↪→ Hm(Σ) and we therefore conclude

‖u−Qhu‖L2(Σ) ≤ c hm ‖u‖Hr,s(Σ) .

Lemma 6.11. Let u ∈ Hr,s(Σ) for some r, s ∈ [0, 1] and σ, µ ∈ [0, 1]. Then there
holds the error estimate

‖u−Qhu‖H̃−σ,−µ(Σ) ≤ c h
min (r,s)+min (σ,µ) ‖u‖Hr,s(Σ) .
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Proof. Let u ∈ Hr,s(Σ). Using (6.10) this yields

‖u−Qhu‖H̃−σ,−µ(Σ) = sup
06=v∈Hσ,µ(Σ)

〈u−Qhu, v〉Σ
‖v‖Hσ,µ(Σ)

= sup
06=v∈Hσ,µ(Σ)

〈u−Qhu, v −Qhv〉Σ
‖v‖Hσ,µ(Σ)

.

By applying the Cauchy-Schwarz inequality and Theorem 6.10 we obtain

‖u−Qhu‖H̃−σ,−µ(Σ) ≤ ‖u−Qhu‖L2(Σ) sup
06=v∈Hσ,µ(Σ)

‖v −Qhv‖L2(Σ)

‖v‖Hσ,µ(Σ)

≤ c hmin (r,s)hmin (σ,µ) ‖u‖Hr,s(Σ) .

Since we consider shape regular boundary elements the following inverse inequality
holds.

Lemma 6.12 (Global inverse inequality). For a globally quasi-uniform boundary de-
composition ΣN and for σ, µ ∈ [0, 1] there holds

‖τh‖L2(Σ) ≤ c h−max (σ,µ) ‖τh‖H̃−σ,−µ(Σ) for all τh ∈ S0
h(Σ). (6.11)

Proof. Let τh ∈ S0
h(Σ) and σ, µ ∈ [0, 1]. Application of the standard inverse inequal-

ity, see, e.g., [33, Section 10.2], yields

‖τh‖L2(Σ) ≤ c h−max (σ,µ) ‖τh‖H̃−max (σ,µ)(Σ) . (6.12)

Since Hmax (σ,µ)(Σ) ↪→ Hσ,µ(Σ), see Lemma 2.1, we obtain

‖τh‖H̃−max (σ,µ)(Σ) = sup
06=v∈Hmax (σ,µ)(Σ)

〈τh, v〉Σ
‖v‖Hmax (σ,µ)(Σ)

≤ c sup
06=v∈Hσ,µ(Σ)

〈τh, v〉Σ
‖v‖Hσ,µ(Σ)

= c ‖τh‖H̃−σ,−µ(Σ) ,
(6.13)

and the assertion follows from combining (6.12) and (6.13).

Remark 6.13. For r = 1/2 and s = 1/4 we have H̃−1/2,−1/4(Σ) = H−1/2,−1/4(Σ)
and therefore we obtain

‖τh‖L2(Σ) ≤ c h−1/2 ‖τh‖H−1/2,−1/4(Σ) for all τh ∈ S0
h(Σ).
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7 Boundary element methods
In this section we discretize the variational formulation (5.9) by using the previously
introduced boundary element spaces and we derive a priori error estimates for the
Galerkin approximation of the Neumann datum w = γint

1 u, see Subsection 7.1. The
numerical analyis of the discretized indirect formulation (5.12) follows exactly the
same path. In Subsection 7.2 we prove error estimates for the related approximation
of the solution u in the space-time domain Q.

For the discretization of the variational formulation (5.9) we consider the space of
piecewise constant basis functions Xh ∈

{
S0,0
h (Σ), S0

h(Σ)
}

defined with respect to a
shape regular boundary element mesh ΣN . The Galerkin-Bubnov variational formula-
tion of (5.9) is to find wh ∈ Xh such that

〈V wh, τh〉Σ = 〈(1
2
I +K)g −M0u0 −N0f, τh〉Σ for all τh ∈ Xh. (7.1)

Due to the ellipticity of the single layer boundary integral operator V and the bound-
edness of the integral operators, problem (7.1) admits a unique solution.

Note that we only consider shape regular boundary element meshes ΣN , both for
an arbitrary triangulation of Σ as well as for a tensor product decomposition, since we
want to compare the theoretical and practical results of the two discretization tech-
niques. Hence, for the tensor product approach we choose ht ∼ hx. A priori error
estimates and numerical experiments for a different refinement strategy, e.g. ht ∼ h2

x,
can be found in [5, 29].

7.1 Error estimates

Since the operator V is elliptic and bounded we can apply Cea’s lemma to conclude
quasi-optimality of the Galerkin approximation wh ∈ Xh, i.e. we have

‖w − wh‖H−1/2,−1/4(Σ) ≤
cV2
cV1

inf
τh∈Xh

‖w − τh‖H−1/2,−1/4(Σ)

where w ∈ H−1/2,−1/4(Σ) is the unique solution of the variational problem (5.9).
Hence we can use the approximation properties of the boundary element space Xh

to derive error estimates for the solution wh of (7.1). Recall that Γ is assumed to be
piecewise smooth, i.e. we have the representation Σ =

⋃J
j=1 Σj with Σj = Γj×(0, T ).

Due to the local definition of the trial space Xh and by applying Lemma 2.6 we obtain

‖w − wh‖H−1/2,−1/4(Σ) ≤
cV2
cV1

J∑
j=1

inf
τ jh∈Xh|Σj

∥∥∥w|Σj − τ jh∥∥∥
H̃−1/2,−1/4(Σj)

. (7.2)

Note that all the approximation properties shown in the previous section also hold for
an open part Σj ⊂ Σ of the space-time boundary Σ, i.e. we can replace the space
Hr,s(Σ) with the larger space Hr,s

pw (Σ) and we still get the same error estimates in the
appropriate norms.
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One-dimensional problem

Recall that in the one-dimensional case we can identify the Sobolev spaces Hr,s(Σ)
with Hs(Σ).

Theorem 7.1. Let wh ∈ S0
h(Σ) be the unique solution of the Galerkin variational

problem (7.1). For w ∈ Hs
pw(Σ) with s ∈ [0, 1] there holds the error estimate

‖w − wh‖H−1/4(Σ) ≤ c hs+1/4|w|Hs
pw(Σ).

Proof. Follows by applying Lemma 6.3 in (7.2).

Moreover we can derive an error estimate in the L2(Σ)-norm, assuming that the family
of boundary decompositions {ΣN}N∈N is globally quasi-uniform.

Theorem 7.2. Let wh ∈ S0
h(Σ) be the unique solution of the Galerkin variational

problem (7.1). For w ∈ Hs
pw(Σ) with s ∈ [0, 1] there holds

‖w − wh‖L2(Σ) ≤ c hs|w|Hs
pw(Σ).

Proof. The assertion follows by using the triangle inequality

‖w − wh‖L2(Σ) ≤
∥∥w −Q0

hw
∥∥
L2(Σ)] +

∥∥Q0
hw − wh

∥∥
L2(Σ) ,

and by applying Lemma 6.2, Lemma 6.4 and Theorem 7.1.

Two- and three-dimensional problem

Theorem 7.3. Let wh ∈ Xh be the unique solution of the Galerkin-Bubnov variational
formulation (7.1). For w ∈ Hr,s

pw (Σ) for some r, s ∈ [0, 1] there holds

‖w − wh‖H−1/2,−1/4(Σ) ≤ c hmin (r,s)+1/4 ‖w‖Hr,s
pw (Σ) .

Proof. The assertion follows by applying Corollary 6.8 if Xh = S0,0
h (Σ), and Lemma

6.11 if Xh = S0
h(Σ) in (7.2).

Theorem 7.4. Assume that the boundary decomposition ΣN is globally quasi-uniform.
Letwh ∈ Xh be the unique solution of the Galerkin-Bubnov variational problem (7.1).
For w ∈ Hr,s

pw (Σ) for some r, s ∈ [1/4, 1] there holds

‖w − wh‖L2(Σ) ≤ c hmin (r,s)−1/4 ‖w‖Hr,s
pw (Σ) .
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Proof. By using the triangle inequality, Theorem 6.5, and Corollary 6.9 for Xh =
S0,0
h (Σ), and Theorem 6.10 and Remark 6.13 for Xh = S0

h(Σ) respectively. In both
cases we get

‖w − wh‖L2(Σ) ≤ ‖w −Qhw‖L2(Σ) + ‖Qhw − wh‖L2(Σ)

≤ c hmin (r,s) ‖w‖Hr,s
pw (Σ) + c h−1/2 ‖Qhw − wh‖H−1/2,−1/4(Σ) .

Here Qh is either the L2 projection onto S0,0
h (Σ), or onto S0

h(Σ). The assertion follows
with

‖Qhw − wh‖H−1/2,−1/4(Σ) ≤ ‖Qhw − w‖H−1/2,−1/4(Σ) + ‖w − wh‖H−1/2,−1/4(Σ) ,

Theorem 7.3, Corollary 6.8 for Xh = S0,0
h (Σ) and Lemma 6.11 for Xh = S0

h(Σ),
respectively.

Hence we can prove the same convergence rates for Xh = S0,0
h (Σ) and Xh = S0

h(Σ)
of the Galerkin approximation wh in the energy norm as well as in the L2(Σ)-norm,
assuming that the boundary element mesh ΣN is shape regular. However, the numerical
results in Section 8 show that the L2(Σ)-error estimate is not optimal.

7.2 Domain error estimates

Let wh ∈ Xh be the unique solution of the Galerkin variational problem (7.1). We
obtain an approximate solution of the initial Dirichlet boundary value problem (1.1)
in Q by using the representation formula (5.1) with the approximation wh, i.e for
(x, t) ∈ Q we have

ũ(x, t) = (Ṽ wh)(x, t)− (Wg)(x, t) + (M̃0u0)(x, t) + (Ñ0f)(x, t). (7.3)

For the related error we obtain for (x, t) ∈ Q

|u(x, t)− ũ(x, t)| =
∣∣∣(Ṽ (w − wh))(x, t)

∣∣∣
=

1
α

∣∣∣∣∫
Σ
U?(x− y, t− τ)(w − wh)(y, τ) dsy dτ

∣∣∣∣ .
Since (x, t) ∈ Q and (y, τ) ∈ Σ, the fundamental solution U?(x− y, t− τ) is smooth
and we therefore conclude U?(x− ·, t− ·) ∈ H−σ,−σ/2(Σ) for any σ ∈ R. Hence,

|u(x, t)− ũ(x, t)| ≤ 1
α
‖U?(x− ·, t− ·)‖H−σ,−σ/2(Σ) ‖w − wh‖H̃σ,σ/2(Σ) . (7.4)

Thus, in order to derive an error estimate for the pointwise error |u(x, t) − ũ(x, t)|,
(x, t) ∈ Q, we need an error estimate for ‖w − wh‖H̃σ,σ/2(Σ) where σ ∈ R is minimal.
In the following, Qh : L2 → Xh denotes the L2 projection onto the space Xh.
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Theorem 7.5 (Aubin-Nitsche Trick). Letw ∈ Hr,s
pw (Σ) for some r ∈ [−1/2, 1] and s ∈

[−1/4, 1] be the unique solution of (5.9), and let wh ∈ Xh be the unique solution of
the Galerkin variational problem (7.1). Assume that the adjoint single layer operator

V ∗ : H−1−σ,−1/2−µ(Σ)→ H−σ,−µ(Σ)

is continuous and bijective for some −2 ≤ σ ≤ −1/2 and µ = σ/2. Then there holds
the error estimate

‖w − wh‖H̃σ,σ/2(Σ) ≤ c h
min (r,s)+1/2+min (−1−σ,−1/2−µ) ‖w‖Hr,s

pw (Σ) .

Proof. For σ < −1/2 and µ = σ/2 we have

‖w − wh‖H̃σ,µ(Σ) = sup
06=v∈H−σ,−µ(Σ)

〈w − wh, v〉Σ
‖v‖H−σ,−µ(Σ)

.

By assumption, the adjoint single layer operator

V ∗ : H−1−σ,−1/2−µ(Σ)→ H−σ,−µ(Σ)

is continuous and bijective. Hence, for v ∈ H−σ,−µ(Σ) there exists a unique z ∈
H−1−σ,−1/2−µ(Σ) such that v = V ∗z. Therefore, and by applying the Galerkin or-
thogonality

〈V (w − wh), τh〉Σ = 0 for all τh ∈ Xh,

we obtain

‖w − wh‖H̃σ,µ(Σ) = sup
06=z∈H−1−σ,−1/2−µ(Σ)

〈w − wh, V ∗z〉Σ
‖V ∗z‖H−σ,−µ(Σ)

= sup
06=z∈H−1−σ,−1/2−µ(Σ)

〈V (w − wh), z −Qhz〉Σ
‖V ∗z‖H−σ,−µ(Σ)

.

Since V ∗ is bijective, there exists a constant c > 0, such that [11, Lemma A.40]

‖V ∗z‖H−σ,−µ(Σ) ≥ c ‖z‖H−1−σ,−1/2−µ(Σ) for all z ∈ H−1−σ,−1/2−µ(Σ).

Thus, by using the boundedness of the operator V : H−1/2,−1/4(Σ) → H1/2,1/4(Σ)
we conclude

‖w − wh‖H̃σ,µ(Σ)

≤ c̃ ‖w − wh‖H−1/2,−1/4(Σ) sup
06=z∈H−1−σ,−1/2−µ(Σ)

‖z −Qhz‖H−1/2,−1/4(Σ)

‖z‖H−1−σ,−1/2−µ(Σ)
.

When considering −1 − σ ≤ 1, i.e. σ ≥ −2, we obtain from the approximation
properties of the operator Qh the error estimate

‖w − wh‖H̃σ,µ(Σ) ≤ ĉ h
min (−1−σ,−1/2−µ)+1/4 ‖w − wh‖H−1/2,−1/4(Σ) ,

and the assertion follows by applying the error estimate for the Galerkin approximation
wh in the energy norm.
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Now assume, that the solution w of the variational formulation (5.9) is sufficiently
smooth, i.e. w ∈ H1,1

pw (Σ). From estimate (7.4) and by choosing σ = −2 in Theorem
(7.5) we get, for (x, t) ∈ Q, the pointwise error estimate

|u(x, t)− ũ(x, t)| ≤ c̃ ‖U?(x− ·, t− ·)‖H2,1(Σ) ‖w − wh‖H̃−2,−1(Σ)

≤ c h2 ‖U?(x− ·, t− ·)‖H2,1(Σ) ‖w‖H1,1
pw (Σ) .

(7.5)

Let us now consider problem (3.7) with source term f = 0. To estimate the global
error ‖u− ũ‖H1,1/2(Q) we proceed as follows. We first consider the Dirichlet trace of
the discretized representation formula (7.3), i.e. we have

ĝ := V wh +
1
2
g −Kg.

Moreover, the first boundary integral equation in (5.4) gives

g = V w +
1
2
g −Kg,

and we therefore conclude the relation

g − ĝ = V (w − wh). (7.6)

Theorem 7.6 (Domain error estimate). Let u ∈ H1,1/2
;0, (Q) be the unique solution of the

Dirichlet boundary value problem (3.7) with source term f = 0, and let ũ ∈ H1,1/2
;0, (Q)

be the corresponding approximation given by (7.3), where f = 0 and u0 = 0. Then
there holds the error estimate

‖u− ũ‖
H

1,1/2
;0, (Q)

≤ c ‖w − wh‖H−1/2,−1/4(Σ) .

Proof. The solution u = ū + E0g ∈ H
1,1/2
;0, (Q) of problem (3.7) with source term

f = 0 is given as the unique solution of the variational problem

a(ū, v) = −a(E0g, v) for all v ∈ H1,1/2
0;,0 (Q).

For the approximation ũ we consider the decomposition ũ = û + E0ĝ ∈ H1,1/2
;0, (Q),

which satisfies

a(û, v) = −a(E0ĝ, v) for all v ∈ H1,1/2
0;,0 (Q).

By subtracting the last two equations we obtain

a(ū− û, v) = a(E0(ĝ − g), v) for all v ∈ H1,1/2
0;,0 (Q).
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Since ū− û ∈ H1,1/2
0;0, (Q), we can apply the stability estimate (3.11) to get

1
2
‖ū− û‖

H
1,1/2
0;0, (Q)

≤ sup
06=v∈H1,1/2

0;,0 (Q)

a(ū− û, v)
‖v‖

H
1,1/2
0;,0 (Q)

= sup
06=v∈H1,1/2

0;,0 (Q)

a(E0(ĝ − g), v)
‖v‖

H
1,1/2
0;,0 (Q)

≤ c ‖E0(ĝ − g)‖H1,1/2
;0, (Q)

.

Hence, by using the triangle inequality, the Poincaré inequality and the boundedness
of the inverse trace operator E0 we obtain

‖u− ũ‖
H

1,1/2
;0, (Q)

≤ ‖ū− û‖
H

1,1/2
;0, (Q)

+ ‖E0(ĝ − g)‖H1,1/2
;0, (Q)

≤ c̃ ‖ū− û‖
H

1,1/2
0;0, (Q)

+ ‖E0(ĝ − g)‖H1,1/2
;0, (Q)

≤ ĉ ‖E0(ĝ − g)‖H1,1/2
;0, (Q)

≤ c̄ ‖ĝ − g‖H1/2,1/4(Σ) ,

and the assertion follows with the relation (7.6).

Note, that for w ∈ H1,1
pw (Σ) we finally conclude the error estimate

‖u− ũ‖
H

1,1/2
;0, (Q)

≤ c h5/4 ‖w‖
H1,1

pw (Σ) .

8 Numerical results
We consider the model problem (1.1) with source term f = 0, final time T = 1,
and with the heat capacity constant α = 10. We present examples for the one- and
two-dimensional case, and compare the tensor product decomposition with a triangu-
lation of the space-time boundary Σ. All of the following examples refer to a shape
regular boundary decomposition. The Galerkin boundary element discretization of
the variational formulation (5.9) is done by using piecewise constant basis functions
Xh = span {ϕ`}N`=1. The resulting system of linear equations Vhw = f with

Vh[`, k] := 〈V ϕk, ϕ`〉Σ, f [`] = 〈(1
2
I +K)g −M0u0, ϕ`〉Σ for `, k = 1, ..., N,

is solved by using the GMRES method with a relative accuracy of 10−8 as stopping
criteria.

8.1 One-dimensional problem

Let us start with the simple one-dimensional problem. We consider the spatial domain
Ω = (0, 1) and homogeneous Dirichlet conditions g = 0. Recall, that the boundary
elements are line segments in temporal dimension.
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Uniform refinement. The first example corresponds to the initial datum

u0(x) = sin (2πx) for x ∈ Ω = (0, 1)

and a globally uniform boundary element mesh of mesh size h = 2−L. Table 1 shows
the error ‖w −wh‖L2(Σ) and the estimated order of convergence (eoc), which is linear
as expected according to Theorem 7.2. Moreover, the iteration numbers of the GMRES
method are given.

L N ‖w − wh‖L2(Σ) eoc It.

5 64 7.950 · 10−2 1.01 31
6 128 3.959 · 10−2 1.01 41
7 256 1.976 · 10−2 1.00 50
8 512 9.872 · 10−3 1.00 59
9 1 024 4.929 · 10−3 1.00 70

10 2 048 2.468 · 10−3 1.00 82
11 4 096 1.233 · 10−3 1.00 96

Table 1: L2(Σ)-error and convergence rate of the Galerkin approximation wh, and
iteration numbers of the GMRES method in the case of uniform refinement.

Adaptive refinement. For the second example we consider the initial datum

u0(x) = 5 exp (−10x) sin (πx) for x ∈ Ω = (0, 1)

which motivates the use of a locally quasi-uniform boundary element mesh resulting
from some adaptive refinement strategy. The Galerkin approximation wh is shown in
Figure 3. In Figure 4 the convergence history of the approximation for uniform and
adaptive refinement is given.

8.2 Two-dimensional problem

For the following numerical examples we choose Ω = (0, 1)2, i.e. Q = (0, 1)3.

Uniform refinement. We consider the exact solution

u(x, t) = exp
(
− t
α

)
sin
(
x1 cos

π

8
+ x2 sin

π

8

)
for (x, t) = (x1, x2, t) ∈ Q,

and determine the Dirichlet datum g and the initial datum u0 accordingly. We use a
globally quasi-uniform boundary element mesh with mesh size h = O(2−L), both for



54 S. Dohr, K. Niino and O. Steinbach

0 0.2 0.4 0.6 0.8 1

0

2

4

6

8

10

12

14

t

w
h
(·,
t)

x = 0
x = 1

Figure 3: Galerkin approximation wh in the case of adaptive refinement in 1D.

the tensor product approach as well as for a triangulation of the space-time boundary
Σ. Table 2 and Table 3 show the error ‖w − wh‖L2(Σ) of the Galerkin approximation
wh as well as the pointwise error |(u − ũ)(x, t)| in x = (0.5, 0.5), t = 0.5, and the
corresponding convergence rates (eoc). Additionally, the iteration numbers of the GM-
RES method are listed. While the convergence rate of the pointwise error is quadratic
and therefore in line with the theoretical findings (7.5), we obtain linear convergence
of the Galerkin approximation wh in the L2(Σ)-norm, which is, according to Theorem
7.4, better than expected.

As already mentioned before, we consider shape-regular boundary elements only,
i.e. in case of the tensor product approach we choose hx ∼ ht. Although the rela-
tion ht ∼ h2

x is recommended in order to obtain optimal convergence results of the
Galerkin approximation wh in the energy norm [5, 29], we get linear convergence of
the approximation in the L2(Σ)-norm in our experiments. Note that numerical results
in [5, Section 6] indicate that the relation ht ∼ h2

x is not necessary for an optimal
convergence rate in the L2(Σ)-norm.

Adaptive refinement. As a second example we consider the initial datum

u0(x1, x2) = 40 exp (−10(x1 + x2)) sin (πx1) sin (πx2) for (x1, x2) ∈ Ω,

see Figure 5, and we use a globally quasi-uniform as well as a locally quasi-uniform tri-
angulation of the space-time boundary resulting from some adaptive refinement strat-
egy. In Figure 7 the convergence history of the approximation for uniform and adaptive
refinement is given, while the resulting boundary element mesh is shown in Figure 6.
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Figure 4: Convergence of the Galerkin approximation wh for uniform and adaptive
refinement in 1D.

9 Conclusion and outlook

In this work we have described space-time boundary element discretizations for the
initial Dirichlet boundary value problem for the heat equation. After the derivation of
the representation formula for the solution of the model problem (1.1) we summarised
the mapping properties of the heat potentials and of the resulting boundary integral
operators as well as we discussed the unique solvability of related boundary integral
equations in the setting of anisotropic Sobolev spaces. The unknown Neumann datum
∂nu|Σ can be determined by solving a weakly singular boundary integral equation.
The ellipticity of the single layer operator ensures unique solvability of the problem.
We compared two different space-time discretization techniques in order to compute
an approximation of the Neumann datum ∂nu|Σ, namely a tensor-product decomposi-
tion, and an arbitrary triangulation of the space-time boundary Σ. Both methods allow
us to parallelize the computation of the global solution of the whole space-time sys-
tem, which leads to improved parallel scalability in distributed memory systems in
contrast to, e.g., time-stepping schemes. A parallel solver for space-time boundary
element methods for the heat equation was introduced in [10]. One possible draw-
back of the tensor product approach is, that we can only apply adaptive refinement in
space and time separately. This can be resolved, e.g., by allowing hanging nodes in
the mesh, which is reasonable if the discretization of the integral equation is done by
using piecewise constant basis functions, as we did. However, an arbitrary triangula-
tion of the space-time boundary Σ allows for adaptive refinement in space and time
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L N ‖w − wh‖L2(Σ) eoc |(u− ũ)(x, t)| eoc It.

0 4 2.795 · 10−1 - 2.5967 · 10−2 - 2
1 16 1.413 · 10−1 0.98 5.544 · 10−3 2.23 9
2 64 6.882 · 10−2 1.04 9.146 · 10−4 2.60 14
3 256 3.353 · 10−2 1.04 2.485 · 10−4 1.88 18
4 1 024 1.650 · 10−2 1.02 6.315 · 10−5 1.98 24
5 4 096 8.172 · 10−3 1.01 1.563 · 10−5 2.01 35
6 16 384 4.066 · 10−3 1.01 3.748 · 10−6 2.06 50
7 65 536 2.030 · 10−3 1.00 8.468 · 10−7 2.15 67

Table 2: Error and convergence rates of the Galerkin approximation wh and the ap-
proximated solution ũ in the interior, and iteration numbers of the GMRES method in
the case of uniform refinement for a tensor product decomposition of Σ.

L N ‖w − wh‖L2(Σ) eoc |(u− ũ)(x, t)| eoc It.

0 16 1.588 · 10−1 - 2.046 · 10−2 - 9
1 64 6.326 · 10−2 1.33 5.395 · 10−3 1.92 16
2 256 2.502 · 10−2 1.34 1.337 · 10−3 2.01 23
3 1 024 1.084 · 10−2 1.21 3.336 · 10−4 2.00 32
4 4 096 5.040 · 10−3 1.11 8.348 · 10−5 2.00 44
5 16 384 2.447 · 10−3 1.04 2.093 · 10−5 2.00 62
6 65 536 1.233 · 10−3 0.99 5.265 · 10−6 1.99 85

Table 3: Error and convergence rates of the Galerkin approximation wh and the ap-
proximated solution ũ in the interior, and iteration numbers of the GMRES method in
the case of uniform refinement for a triangulation of Σ.

simultaneously while maintaining the admissibility of the mesh. We derived a priori
error estimates for both discretization techniques and provided numerical experiments
in order to confirm the theoretical findings.

In the numerical experiments we used the exact solution in order to compute the
errors of the Galerkin approximation and for the application of adaptive refinement.
Of course, in general we do not know the exact solution. Thus, we have to establish a
posteriori error estimators for space-time boundary element methods in order to define
suitable adaptive refinement strategies. One possible approach is the method described
in [32] in case of the Laplace equation, which is based on an approximation of a second
kind Fredholm integral equation by a Neumann series in order to compute the error.
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Figure 5: Initial datum u0 for the 2D problem.

Figure 6: Triangular boundary element mesh in the case of adaptive refinement in 2D.

However, this method utilizes the contraction property of the double layer potential,
which is, in the case of the heat equation, not yet proven for a general Lipschitz domain
Ω. The development of a posteriori error estimators for space-time boundary element
methods for the heat equation is left for future work.

As already mentioned before, one advantage of space-time discretization methods is
the ability to use parallel iterative solution strategies for time-dependent problems. But
in order to get a competitive space-time solver, an efficient iterative solution technique
for the global space-time system is necessary, i.e. the solution requires an applica-
tion of space-time preconditioners. A popular preconditioning strategy in boundary
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Figure 7: Convergence of the Galerkin approximation wh for uniform and adaptive
refinement in 2D.

element methods is operator preconditioning [17, 35], which is based on boundary
integral operators of opposite order, such as the single layer operator V and the hyper-
singular operator D, but which requires a related stability condition for the boundary
element spaces used for the discretization to be satisfied. In [8] we analyzed this robust
preconditioning strategy for space-time boundary element methods for the heat equa-
tion and discussed suitable choices of boundary element spaces. The parallel solver
introduced in [10] is also applicable to the preconditioned space-time system, see [7].

The matrices related to the discretized space-time integral equations are dense and
thus, fast methods are necessary in order to tackle large scale problems, especially for
space-time systems. Fast methods for solving boundary integral equations for the heat
equations were introduced in [37, 39]. The parabolic fast multipole method applied
to a space-time Galerkin discretization is discussed in [26], where the discretization
is done with respect to a tensor product decomposition of the space-time boundary.
The extension of fast methods, e.g. adaptive cross approximation and the parabolic
fast multipole method, to an arbitrary triangulation of Σ is still open and left for future
work.

An advantage of boundary element methods is the natural handling of problems in
exterior, unbounded domains. Thus, boundary element methods are a popular choice
when solving transmission problems. The introduced domain variational formulation
(3.10) in the setting of anisotropic Sobolev spaces allows us to establish symmetric and
non-symmetric FEM-BEM coupling methods in an appropriate functional framework.
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