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A parallel space-time finite element method for
the simulation of an electric motor

Peter Gangl, Mario Gobrial, Olaf Steinbach

1 Introduction

Shape and topology optimization of electrical machines [2] as well as the optimal
control [4] subject to parabolic evolution equations require an efficient solution of
the direct simulation problem which is forward in time, and in most cases also of
the adjoint problem which is backward in time. Space-time discretization methods
[8] are therefore a method of choice to solve the overall system at once, and also to
allow for adaptive refinements and a parallel solution simultaneously in space and
time. In the case of a fixed spatial domain the numerical analysis of a space-time
finite element method was given, e.g., in [7], see also the review article [8] and the
references given therein. In this note we present an extension of this approach in order
to simulate an electric motor where one part, the rotor, is rotating in time, while the
stator is fixed. In addition to the stator and the rotor we have to include an air domain
which is non-conducting. Hence we have to deal with an elliptic-parabolic interface
problem for the eddy current approximation of the Maxwell system in two space
dimensions. In this paper we present its space-time finite element discretization and
provide first numerical results using parallel solution strategies in order to handle the
overall system in the space-time domain. More details on the numerical analysis of
the proposed method and further numerical results will be given in our forthcoming
paper [3].

This paper is structured as follows: In Section 2 we describe the mathematical
model and its space-time variational formulation. Unique solvability is based on the
Babuška–Nečas theorem, i.e., on injectivity and surjectivity of the operator which is
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associated to the bilinear form of the variational formulation. The space-time finite
element discretization is given in Section 3, which also provides an a priori error
estimate, i.e., Cea’s lemma, for the numerical solution. Numerical results are given
in Section 4, and finally we provide some conclusions and comment on ongoing
work.

2 Mathematical model and space-time variational formulation

To model the electromagnetic fields in a rotating electric machine, we consider the
eddy current approximation of the Maxwell equations,

curlyH(y, t) = j(y, t), curlyE(y, t) = −∂tB(y, t), divyB(y, t) = 0,

subject to the constitutive equations

B(y, t) = µ(y)H(y, t) + M(y, t), j(y, t) = ji(y, t) + σ(y)
[
E(y, t) + v(y, t) × B(y, t)

]
,

with thematerial dependentmagnetic permeability µ, the electric conductivityσ, and
an impressed electric current ji . Moreover, M is the magnetization which vanishes
outside permanent magnets. For a reference point x ∈ R3 we consider the trajectory
y(t) = ϕ(t, x), where the deformation ϕ is assumed to be bijective and sufficiently
regular for all t ∈ (0,T), satisfying ϕ(0, x) = x. Here, T > 0 is a given time
horizon. Finally, we introduce the velocity v(y, t) = d

dt y(t). In addition we consider
appropriate boundary and initial conditions to be specified.

When using the vector potential ansatz B(y, t) = curly A(y, t), and following the
standard approach to consider a spatially two-dimensional reference domainΩ ⊂ R2

describing the cross section of the electric machine, this gives an evolution equation
to find u(y, t) as third component of A = (0,0,u)> such that

σ(y)
d
dt

u(y, t) − divy[ν(y)∇yu(y, t)] = ji(y, t) − divy[ν(y)M⊥(y, t)] (1)

is satisfied in the space-time domain

Q :=
{
(y, t) ∈ R3 : y = ϕ(t, x) ∈ Ω(t), x ∈ Ω ⊂ R2, t ∈ (0,T)

}
.

Note that in (1) we use the reluctivity ν = 1/µ, and the total time derivative

d
dt

u(y, t) := ∂tu(y, t) + v(y, t) · ∇yu(y, t).

Moreover, M⊥ = (−M2,M1)
> is the perpendicular of the first two components of the

magnetization M . In addition to (1) we consider homogeneous Dirichlet boundary
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conditions u = 0 on Σ := ∂Ω × (0,T), and the homogeneous initial condition
u(x,0) = 0 whenever σ(x) > 0 is satisfied for x ∈ Ω.

The electric motor consists of a rotor inΩr (t), the stator inΩs , and the air domain
Ωair which is non-conducting, i.e., σ = 0 inΩair . This shows that we can formulate
(1) as an elliptic-parabolic interface problem. While the stator domain Ωs is fixed in
time, i.e., v ≡ 0, the rotating subdomain Ωr (t) can be described, when using polar
coordinates, as

x = r
(
cos ϕ
sin ϕ

)
, y(t) = ϕ(t, x) = r

(
cos(ϕ + αt)
sin(ϕ + αt)

)
∈ Ωr (t), t ∈ (0,T),

with α > 0 describing the velocity

v(y, t) =
d
dt

y(t) = αr
(
− sin(ϕ + αt)
cos(ϕ + αt)

)
= α

(
−y2
y1

)
.

The variational formulation of the parabolic-elliptic interface problem (1) is to find
u ∈ X such that

b(u, z) :=
∫ T

0

∫
Ω(t)

[
σ

d
dt

u z + ν ∇yu · ∇y z
]

dy dt (2)

=

∫ T

0

∫
Ω(t)

[
ji z + ν M⊥ · ∇y z

]
dy dt

is satisfied for all z ∈ Y , where Y := L2(0,T ; H1
0 (Ω(t))) and

X :=
{
u ∈ Y : σ

d
dt

u ∈ Y ∗, u(x,0) = 0 for x ∈ Ω : σ(x) > 0
}
.

Related norms are given by

‖z‖2Y :=
∫ T

0

∫
Ω(t)

ν |∇y z |2 dy dt, ‖u‖2X := ‖u‖2Y + ‖wu ‖
2
Y ,

where wu ∈ Y is the unique solution of the variational formulation∫ T

0

∫
Ω(t)

ν ∇ywu · ∇y z dy dt =
∫ T

0

∫
Ω(t)

σ
d
dt

u z dy dt for all z ∈ Y . (3)

The bilinear form b(·, ·) as defined in (2) is bounded and satisfies an inf-sup stability
condition, see [3, 7], i.e., for all u ∈ X and z ∈ Y there holds

|b(u, z)| ≤
√

2 ‖u‖X ‖z‖Y ,
1
√

2
‖u‖X ≤ sup

0,z∈Y

b(u, z)
‖z‖Y

.

Moreover, the bilinear form b(·, ·) is surjective, i.e., for any z ∈ Y there exists a
uz ∈ X such that b(uz, z) > 0 is satisfied, see [3]. Hence, all assumptions of the



4 Peter Gangl, Mario Gobrial, Olaf Steinbach

Babuška–Nečas theorem [1, 5] are satisfied, i.e. we conclude unique solvability of
the space-time variational formulation (2).

3 Space-time finite element discretization

For the space-time finite element discretization of the variational formulation (2)
we introduce conforming finite dimensional spaces Xh ⊂ X and Yh ⊂ Y where
we assume as in the continuous case Xh ⊂ Yh . For our specific purpose we even
consider Xh = Yh := S1

h
(Qh)∩X = span{ϕk}Mk=1 as the space of piecewise linear and

continuous basis functions ϕk which are defined with respect to some admissible
locally quasi-uniform decomposition Th = {τ`}N`=1 of the space-time domain Q into
shape-regular simplicial finite elements τ` of mesh size h` , see, e.g., [6].

The Galerkin space-time finite element variational formulation of (2) reads to
find uh ∈ Xh , such that

b(uh, zh) =
∫ T

0

∫
Ω(t)

[
ji zh + ν M⊥ · ∇y zh

]
dy dt for all zh ∈ Yh . (4)

Unique solvability of (4) is based on the discrete inf-sup stability condition

1
√

2
‖uh ‖Xh

≤ sup
0,zh ∈Yh

b(uh, zh)
‖zh ‖Y

for all uh ∈ Xh,

which follows as in the continuous case [3, 7], but makes use of the discrete norm

‖uh ‖2Xh
:= ‖uh ‖2Y + ‖wuhh ‖

2
Y ≤ ‖uh ‖

2
Y + ‖wuh ‖

2
Y = ‖uh ‖

2
X,

where wuhh ∈ Yh is the unique solution of the variational formulation

〈ν∇ywuhh,∇y zh〉L2(Q) = 〈σ
d
dt

uh, zh〉Q for all zh ∈ Yh . (5)

As in [7] we can then derive Cea’s lemma,

‖u − uh ‖Xh
≤ 3 inf

zh ∈Xh

‖u − zh ‖X,

from which we conclude optimal order of convergence when assuming sufficient
regularity for the solution. In particular we obtain linear convergence in the space-
time mesh size h when assuming u ∈ H2(Q), see [3, 7].
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4 Numerical results

As numerical example we consider an electric motor, where both the rotor and the
stator are made of iron, with 16 magnets and 48 coils, see Fig. 1.

Fig. 1 The unstructured mesh of the bottom of the motor, showing the different materials.

The motor is pulled up in time, where the rotation of the rotating parts, i.e., the rotor,
the magnets and the air around the magnets, is already considered within the mesh
for a 90 degree rotation. The time component is treated as the third spatial dimension
with a time span (0,T), T = 0.015 seconds. Moreover, 30 time slices are inserted in
order to have a good temporal resolution, where the mesh is differently unstructured
at every time t ∈ (0,T), see Figure 2.

Fig. 2 The full space-time cylinder of the motor for a 90 degree rotation with 333, 288 nodes and
1, 978, 689 elements. The time is treated as the third spatial component divided into 30 time slices.
The rotating parts are already considered within the mesh.
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The electricmotor consists of isotropicmaterials, hencewe choose the linearmaterial
parameters as given in Table 1.

Table 1 Material parameters
material σ ν

air 0 107/(4π)
coils 5.8 · 107 107/(4π)
magnets 106 107/(4π)
iron 107 107/(20400π)

We solve the resulting linear system in parallel, using a mesh decomposition method
provided by the finite element library Netgen/NGSolve1, see Fig. 3.

Fig. 3 Space-time mesh decomposition into 5 subdomains.

We use MUMPS2 supported by PETSc3, to solve the linear system. Figure 4 shows
the time for solving the system in relation to the number of processors used for the
parallel computation.
The solution of the Galerkin space-time finite element formulation (4) for the time
span (0,T) with T = 0.015 is not sufficient to visualize, since in this short time the
solution is close to zero due to the zero initial condition. Instead, one may consider
periodic conditions u(x,T) = u(x,0) for x ∈ Ω, see [3]. Here, we also present the
results for the quasi-static problem using σ = 0 for all material regions at any time,
see Fig. 5 for the solution at different time slices. Note that this corresponds to the
problem of magnetostatics which is widely used in practical applications together
with time-stepping methods.

1 https://www.ngsolve.org
2 http://mumps-solver.org
3 https://petsc.org
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Fig. 4 The computation times
using the MUMPS solver and
GMRES solver.

Solution at t = 0 Solution at t = 0.005

Solution at t = 0.01 Solution at t = 0.015

Fig. 5 The solution of the static problem visualized on different time slices.

5 Conclusions

In this note we have described a space-time finite element discretization of an
elliptic-parabolic interface problem to model an electric motor. The computed elec-
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tromagnetic fields can be used to compute other characteristic quantities such as the
torque and iron losses in order to optimize the shape and the topology of electric ma-
chines. Instead of initial conditions and a linear description of the involved materials
one can easily include periodic conditions in time and a nonlinear material model.
Although we have provided first results for a parallel solution of the resulting linear
system of algebraic equations also using mesh decomposition algorithms, further
work is required in the design of more efficient solution strategies using appropriate
preconditioning and domain decomposition methods.
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