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Convergence analysis of a Galerkin boundary element

method for the Dirichlet Laplacian eigenvalue problem

O. Steinbach1, G. Unger2

1Institute of Computational Mathematics, TU Graz,
Steyrergasse 30, 8010 Graz, Austria

2Johann Radon Institute for Computational and Applied Mathematics,
Altenberger Strasse 69, 4040 Linz, Austria

Abstract

In this paper, a rigorous convergence and error analysis of a Galerkin boundary
element method for the Dirichlet Laplacian eigenvalue problem is presented. The for-
mulation of the eigenvalue problem in terms of a boundary integral equation yields a
nonlinear boundary integral operator eigenvalue problem. This nonlinear eigenvalue
problem and its Galerkin approximation are analyzed in the framework of eigenvalue
problems for holomorphic Fredholm operator–valued functions. The convergence of
the approximation is shown and quasi–optimal error estimates are presented. Nu-
merical experiments are given confirming the theoretical results.

1 Introduction

We consider a Galerkin boundary element method for the Dirichlet eigenvalue problem of
the Laplace operator,

−∆u(x) = λu(x) for x ∈ Ω, u(x) = 0 for x ∈ Γ = ∂Ω, (1.1)

where we assume that Ω ⊂ R3 is a bounded simply connected Lipschitz domain. Although
the eigenvalue problem (1.1) is linear, boundary integral formulations lead to nonlinear
eigenvalue problems for related boundary integral operators. This is due to the nonlinear
dependence of the eigenvalue parameter in the fundamental solution. Different to finite
element approaches which require a discretization of the computational domain Ω, the use
of boundary integral formulations and boundary element methods to solve the eigenvalue
problem needs only a discretization of the boundary Γ.

For the discretization of the boundary integral eigenvalue problem collocation schemes
[4, 5, 14, 16, 17, 22, 27, 29] and Galerkin methods [6, 7, 31, 34] are considered. Both methods
yield algebraic nonlinear eigenvalue problems where the matrix entries are transcendental

1



functions with respect to the eigenparameter. In several publications different approaches
are suggested to approximate first the nonlinear boundary integral operator eigenvalue
problem by a polynomial one. A Taylor polynomial approximation of the fundamental
solution with respect to the eigenparameter is suggested by so-called multiple reciprocity
methods [4, 5, 16, 17, 27]. In [20] a polynomial interpolation of the fundamental solution
is considered to find eigenvalues in a predescribed interval.

To our knowledge, a rigorous and comprehensive numerical analysis for the discretiza-
tion of boundary integral operator eigenvalue problems has not be done so far. Only in
few works [6, 7, 31] the issue of the numerical analysis is addressed. In [31] we analyzed a
Galerkin discretization of a Newton scheme for the approximation of a boundary integral
operator eigenvalue problem and derived error estimates for eigenpairs for simple eigenval-
ues. However, the case of multiple eigenvalues was not considered in the numerical analysis
nor the questions if discrete spurious eigenvalues are excluded and how the multiplicities
of the eigenvalues are effected by the discretization.

In this paper these issues will be covered for a Galerkin boundary element approxi-
mation of the Dirichlet Laplacian eigenvalue problem. We describe the boundary inte-
gral formulation of the eigenvalue problem (1.1) as eigenvalue problem for a holomorphic
Fredholm operator–valued function. The concept of eigenvalue problems for holomorphic
Fredholm operator–valued functions [9, 10, 21, 37] is a generalization of the theory for
eigenvalue problems of bounded linear operators and provides an important tool for the
numerical analysis of approximations of such eigenvalue problems. This concept is also
used in boundary integral approaches for the theoretical study of eigenvalue perturbation
problems for the Laplacian and the Lamé system with respect to the variation of the do-
main and small inclusions [1]. The analysis of the approximation of eigenvalue problems
for holomorphic Fredholm operator functions has a long tradition [12, 15, 18, 19, 35, 36]
and is usually done in the framework of the concepts of the discrete approximation scheme
[32] and the regular convergence of operators [2, 11]. In this framework a comprehensive
numerical analysis is given by Karma [18, 19]. These results are valid for the Galerkin
setting in the case that the underlying operators of the eigenvalue problem are compact
perturbations of an elliptic operator. This enables us to apply these results to the numer-
ical analysis of the Galerkin boundary element approximation of the Dirichlet Laplacian
eigenvalue problem.

The focus of the present paper is the rigorous analysis of the boundary integral for-
mulation of the Dirichlet Laplacian eigenvalue problem and its Galerkin discretization.
Algorithms for the solution of the discretized boundary integral eigenvalue problem will
be not discussed here but have been addressed in [34, Ch. 6, 7]. However, robust and
efficient algorithms for such nonlinear eigenvalue problems remain an important issue of
the ongoing work.

This paper is organized as follows: in Section 2 we introduce an equivalent boundary
integral formulation of the Dirichlet Laplacian eigenvalue problem and show that it is a
holomorphic eigenvalue problem for a Fredholm operator–valued function. The concept
of eigenvalue problems for holomorphic Fredholm operator–valued functions is introduced
in Section 3 and important properties of such eigenvalue problems are summarized. In
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Section 4 the results of the numerical analysis for the Galerkin approximation of a class of
such eigenvalue problems are presented. The properties of the boundary integral operator
eigenvalue problem are analyzed in Section 5. The general results of the numerical analysis
of Section 4 are applied to the Galerkin boundary element discretization of the Dirichlet
Laplacian eigenvalue problem in Section 6. Numerical experiments are presented in Section
7 which confirm the theoretical results.

2 Boundary integral operator formulations

The Dirichlet eigenvalue problem (1.1) of the Laplace operator can be written in terms of
the Helmholtz equation with λ = κ2,

−∆u(x) − κ2u(x) = 0 for x ∈ Ω, u(x) = 0 for x ∈ Γ. (2.1)

Any solution u ∈ H1
0 (Ω) of the boundary value problem (2.1) can be described by using

the representation formula [23, 30],

u(x) = (Ṽ (κ)
∂

∂n
u)(x) :=

1

4π

∫

Γ

eiκ|x−y|

|x− y|
∂

∂ny
u(y)dsy for x ∈ Ω, (2.2)

where Ṽ (κ) ∈ L(H−1/2(Γ), H1(Ω)) is the single layer potential of the Helmholtz equation.
Applying the interior trace operator γint

0 to (2.2) we obtain a boundary integral equation

0 = γint
0 u(x) =

1

4π

∫

Γ

eiκ|x−y|

|x− y|
∂

∂ny
u(y)dsy for x ∈ Γ (2.3)

which is obviously fulfilled for any solution (κ, u) ∈ C × H1
0 (Ω) of (2.1). The associated

boundary integral operator

(V (κ)t)(x) := γint
0 (Ṽ (κ)t)(x) =

1

4π

∫

Γ

eiκ|x−y|

|x− y|t(y)dsy for x ∈ Γ

is the single layer boundary integral operator of the Helmholtz equation and defines a
continuous mapping V (κ) : H−1/2(Γ) → H1/2(Γ) [23, 30]. The eigenvalue problem (2.1)
allows an equivalent boundary integral formulation in terms of the single layer boundary
integral operator V (κ) which will be shown in the next theorem.

Theorem 2.1. If (κ2, u) ∈ R × H1
0 (Ω) \ {0} is an eigenpair of (2.1), then the normal

derivative ∂
∂n
u on Γ is a non trivial solution of the boundary integral equation

(V (κ)
∂

∂n
u)(x) = 0 for x ∈ Γ. (2.4)

Conversely, if (κ, t) ∈ R ×H−1/2(Γ) \ {0} satisfies the boundary integral equation

(V (κ)t)(x) = 0 for x ∈ Γ,
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then
u(x) = (Ṽ (κ)t)(x) for x ∈ Ω

defines an eigenfunction of the eigenvalue problem (2.1) corresponding to the eigenvalue κ2.

Proof. Let (κ2, u) ∈ R×H1
0 (Ω) \ {0} be an eigenpair of the Dirichlet Laplacian eigenvalue

problem (2.1). Using the representation formula (2.2) we can write the eigenfunction u as

u(x) = (Ṽ (κ)
∂

∂n
u)(x) for x ∈ Ω,

which implies that
∂

∂n
u 6≡ 0 on Γ, since u 6≡ 0 in Ω. The boundary integral equation (2.4)

is obviously fulfilled, cf. (2.3).
To prove the second part, let now (κ, t) ∈ R × H−1/2(Γ) \ {0} be a solution of the

boundary integral equation (V (κ)t)(x) = 0 for x ∈ Γ. We have to show that (κ2, u), where

u(x) = (Ṽ (κ)t)(x) for x ∈ Ω,

is an eigenpair of the Dirichlet eigenvalue problem of the Laplace operator. The function
u solves the eigenvalue equation (2.1) in Ω, cf. [23, p. 202], and it is zero on the boundary
Γ, since

γint
0 u(x) = γint

0 (Ṽ (κ)t)(x) = (V (κ)t)(x) = 0 for x ∈ Γ.

It remains to show that u 6≡ 0 in Ω. We have

∂

∂n
u(x) =

∂

∂n
(Ṽ (κ)t)(x) = t(x) for x ∈ Γ,

which follows from the unique solvability of the exterior boundary value problem with
certain incoming and outgoing radiating conditions of the Helmholtz equation [23, 26], and
the jump relation of the single layer potential operator [23, p. 218], for details see [34,
Thm. 2.4.3]. Since ∂

∂n
u = t 6≡ 0 on Γ, we have u 6≡ 0 in Ω, which completes the proof.

Theorem 2.1 provides an equivalent boundary integral formulation of the Dirichlet Lapla-
cian eigenvalue problem (2.1) and it reads as follows: Find (κ, t) ∈ R×H−1/2(Γ)\{0} such
that

(V (κ)t)(x) =
1

4π

∫

Γ

eiκ|x−y|

|x− y|t(y)dsy = 0 for x ∈ Γ. (2.5)

Since the eigenvalue parameter κ appears nonlinearly in the kernel of the boundary integral,
the eigenvalue problem (2.5) is a nonlinear eigenvalue problem.

So far we have analyzed the relation of the boundary integral equation (2.5) and the
boundary value problem (2.1) only for real κ. Therefore let us consider now the case that
Im(κ) 6= 0.

Lemma 2.2. Let Im(κ) 6= 0 and suppose that (V (κ)t)(x) = 0 for x ∈ Γ for some

t ∈ H−1/2(Γ) \ {0}. Then, (Ṽ (κ)t)(x) = 0 for x ∈ Ω.
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Proof. Let Im(κ) 6= 0 and (V (κ)t)(x) = 0 for x ∈ Γ for some t ∈ H−1/2(Γ) \ {0}. Then,

u(x) = (Ṽ (κ)t)(x) for x ∈ Ω is a solution of the boundary value problem (2.1). For
Im(κ) 6= 0 we have either κ2 < 0 or Im(κ2) 6= 0. But since all eigenvalues of the Dirichlet

Laplacian eigenvalue problem are positive, it follows that u(x) = (Ṽ (κ)t)(x) = 0 for
x ∈ Ω.

Remark 2.3. The equivalence of the Dirichlet Laplacian eigenvalue problem (2.1) and the
boundary integral formulation (2.5) is only valid for κ ∈ R. There exist κ ∈ C \ R and

t ∈ H−1/2(Γ) \ {0} such that V (κ)t = 0 on Γ but with Ṽ (κ)t = 0 on Ω [33, Prop. 7.7.10].
Such values describe the scattering frequencies of certain technical applications as the
Helmholtz resonator and are called scattering poles [1, Sect. 5.3].

The properties of the single layer boundary integral operator V (κ) are well known [23, 28,
30]. For κ = 0 the operator V (κ) is H−1/2(Γ)-elliptic, i.e., there exists a constant cV > 0
such that

〈V (0)t, t〉Γ ≥ cV ‖t‖2
H−1/2(Γ) for all t ∈ H−1/2(Γ), (2.6)

where
〈·, ·〉Γ := 〈·, ·〉H1/2(Γ)×H−1/2(Γ)

is the duality pairing with L2(Γ) as pivot space. The operator

V (κ) − V (0) : H−1/2(Γ) → H1/2(Γ)

is compact for any κ ∈ C, see [3, Lem. 2.1]. Hence, the operator V (κ) is a compact
perturbation of the elliptic operator V (0) and therefore Fredholm of index zero.

In the next sections, the boundary integral operator eigenvalue problem (2.5) will be
analyzed in the framework of eigenvalue problems of operator–valued functions. Therefore,
we consider the single layer potential operator Ṽ (κ) and the single layer boundary integral
operator V (κ) also as operator–valued functions which depend on κ.

Lemma 2.4. The operator–valued function defined by

Ṽ : C → L(H−1/2(Γ), H1(Ω)),

κ 7→ Ṽ (κ).
(2.7)

is holomorphic.

Proof. According to [38, V.3 Thm.1] it is sufficient to show that Ṽ is weakly holomorphic,
i.e., the function

ft,ℓ(κ) := 〈V (κ)t, ℓ〉H1(Ω)×(H1(Ω))∗

is holomorphic on C for any t ∈ H−1/2(Γ) and for any functional ℓ ∈ (H1(Ω))∗. For κ ∈ C

and ℓ ∈ (H1(Ω))∗ we can write

ft,ℓ(κ) = 〈V (κ)t, ℓ〉H1(Ω)×(H1(Ω))∗ = 〈 1

4π

∫

Γ

eiκ|·−y|

| · −y| t(y)dsy, ℓ〉H1(Ω)×(H1(Ω))∗

=
∞∑

n=0

κn〈 1

4π

∫

Γ

in| · −y|n−1

n!
t(y)dsy, ℓ〉H1(Ω)×(H1(Ω))∗ . (2.8)
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Here we used that the operator An : H−1/2(Γ) → H1(Ω) defined by

(Ant)(x) :=
1

4π

∫

Γ

in|x− y|n−1

n!
t(y)dsy for x ∈ Ω

is linear and bounded for every n ∈ N0. This property of An can be shown for n ≥ 1 in a
similar way as it is done for the case n = 0 in [30, Ch. 6], since the kernel of An for n ≥ 1
is smoother than the kernel of A0. Note that A0 is the single layer potential operator of
the Laplace equation.
The representation (2.8) of the function ft,ℓ shows that ft,ℓ : C → C is holomorphic for any
t ∈ H−1/2(Γ) and ℓ ∈ (H1(Ω))∗ which proves the assertion.

The holomorphy of Ṽ implies the holomorphy of V : C → L(H−1/2(Γ), H1/2(Γ)) with

κ 7→ V (κ), since we have V (κ) = γint
0 Ṽ (κ) and γint

0 ∈ L(H1(Ω), H1/2(Γ)).

3 Eigenvalue problems for holomorphic Fredholm

operator–valued functions

In this section we recall notions and properties of eigenvalue problems for holomorphic
Fredholm operator–valued functions where we follow [21, Appendix]. Let X be a reflexive
Hilbert space and let Λ ⊂ C be open and connected. We assume that A : Λ → L(X,X) is
a holomorphic operator–valued function and that A(λ) : X → X is Fredholm with index
zero for all λ ∈ Λ. The set

ρ(A) := {λ ∈ Λ : ∃A(λ)−1 ∈ L(X,X)}

is called the resolvent set of A. In the following we will assume that the resolvent set of A
is not empty. The complement of the resolvent set ρ(A) in Λ is called spectrum σ(A). A
number λ0 ∈ Λ is an eigenvalue of A if there exists a non trivial x0 ∈ X \ {0} such that

A(λ0)x0 = 0.

x0 is called an eigenelement of A corresponding to the eigenvalue λ0. The spectrum σ(A)
has no cluster points in Λ [9, Cor. IV.8.4] and each λ ∈ σ(A) is an eigenvalue of A
which follows from the Fredholm alternative. The dimension of the nullspace kerA(λ0)
of an eigenvalue λ0 is called the geometric multiplicity. An ordered collection of elements
x0, x1, . . . , xm−1 in X is called a Jordan chain of λ0 if x0 is an eigenelement corresponding
to λ0 and if

n∑

j=0

1

j!
A(j)(λ0)xn−j = 0 for n = 0, 1, . . . , m− 1 (3.1)

is satisfied, where A(j) denotes the j-th derivative. The length of any Jordan chain of an
eigenvalue is finite [21, Lem. A.8.3]. The maximal length of a Jordan chain formed by an
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eigenelement x0 will be denoted by m(A, λ0, x0). The maximal length of a Jordan chain of
the eigenvalue λ0 is denoted by κ(A, λ0). Elements of any Jordan chain of an eigenvalue
λ0 are called generalized eigenelements of λ0. The closed linear hull of all eigenelements of
an eigenvalue λ0 is called generalized eigenspace of λ0 and is denoted by G(A, λ0).

A basis x1
0, . . . , x

J
0 of the eigenspace of an eigenvalue λ0 is called canonical if

i. m(A, λ0, x
1
0) = κ(A, λ0),

ii. xj
0 is an eigenelement of the maximal possible order belonging to some direct com-

plement Mj in kerA(λ0) to the linear hull span{x1
0, . . . , x

j−1
0 }, i.e.,

m(A, λ0, x
j
0) = max

x∈Mj\{0}
m(A, λ0, x) for j = 2, . . . , J.

Obviously, a canonical system of eigenelements of an eigenvalue is not unique, but the order
of the eigenelements of two canonical systems coincides [21, Prop. A.4.6]. Let x1

0, . . . , x
J
0

be a canonical system of the eigenspace kerA(λ0), then the numbers

mi(A, λ0) := m(A, λ0, x
i
0) for i = 1, . . . J

are called partial multiplicities of λ0. The number

m(λ0) :=

J∑

i=1

mi(A, λ0)

is called the algebraic multiplicity of λ0 and coincides with the dimension of the generalized
eigenspace G(A, λ0) [21].

Jordan chains and partial multiplicities of an eigenvalue can also be described by the
concept of Jordan functions/root functions [10, 18, 25]. A function ϕ : Λ → X is called a
Jordan function of order m for A corresponding to an eigenpair (λ0, x0) if ϕ is holomorphic
in λ0 and if

i. ϕ(λ0) = x0 and

ii. λ0 is a zero of multiplicity m of the function defined by λ 7→ A(λ)ϕ(λ), i.e.,

dj

dλj
[A(λ)ϕ(λ)]λ=λ0

= 0 for j = 0, 1, . . . , m− 1 and

dm

dλm
[A(λ)ϕ(λ)]λ=λ0

6= 0. (3.2)

Any Jordan function ϕ of order m defines a Jordan chain of length m by

ϕ(λ0),
1

1!
ϕ′(λ0),

1

2!
ϕ(2)(λ0), . . . ,

1

(m− 1)!
ϕ(m−1)(λ0).

Conversely, for any Jordan chain x0, . . . , xm−1 with m = m(A, λ0, x0) the polynomial

ϕ(λ) = x0 + (λ− λ0)x1 + . . .+ (λ− λ0)
m−1xm−1

is a Jordan function of order m of A corresponding to (λ0, x0).
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4 Galerkin approximation of eigenvalue problems for

coercive operator–valued functions

The numerical analysis of eigenvalue problems for holomorphic Fredholm operator–valued
functions [12, 18, 19, 35, 36] is usually done in the framework of the concepts of the discrete
approximation scheme [32] and the theory of regular convergence of operators [2, 11].
The Galerkin approximation of holomorphic eigenvalue problems where the underlying
operators are compact perturbations of an elliptic operator fits into this framework which
will be shown in Lemma 4.1. For the Galerkin approximation of such eigenvalue problems
the same results of the numerical analysis as given in the above mentioned articles have
been derived without using the concept of regular convergence of operators in [34]. Before
summarizing these results we specify the required properties of the eigenvalue problem and
of its approximation.

We consider the eigenvalue problem for a holomorphic coercive operator–valued function
A : Λ → L(X,X) of the from

A(λ) = D + C(λ), (4.1)

where D ∈ L(X,X) is X-elliptic, i.e.,

(Dx, x)X ≥ cD‖x‖2
X for all x ∈ X

and where C(λ) ∈ L(X,X) is compact for all λ ∈ Λ. Since A(λ) is a compact perturba-
tion of an elliptic operator, it is a Fredholm operator with index zero. For the Galerkin
approximation of the eigenvalue problem

A(λ0)x0 = 0 (4.2)

we consider a sequence of conforming finite dimensional subspaces {Xn}n∈N ⊂ X with the
approximation property

lim
n→∞

inf
xn∈Xn

‖x− xn‖X = 0 for all x ∈ X. (4.3)

The Galerkin variational eigenvalue problem of (4.2) is to find (λn, xn) ∈ Λ×Xn \{0} such
that

(A(λn)xn, vn)X = 0 (4.4)

is satisfied for all vn ∈ Xn. Let Pn : X → Xn be the orthogonal projection of X into Xn,
then the orthogonality relation

(A(λn)xn − PnA(λn)xn, vn)X = 0 for all vn ∈ Xn

implies that (4.4) is equivalent to

PnA(λn)xn = 0. (4.5)

In the next lemma the properties of the Galerkin approximation of eigenvalue problems
for coercive operator–valued functions are specified which are required in order to apply in
the following the results of the numerical analysis of [18, 19].
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Lemma 4.1. Let A : Λ → L(X,X) be a holomorphic coercive operator function of the
form (4.1). Suppose that {Xn}n∈N ⊂ X is a sequence of finite dimensional spaces which
satisfies the approximation property (4.3) and let Pn : X → Xn be the orthogonal projection
of X into Xn. Define Bn(λ) : Xn → Xn by

Bn(λ)yn := PnA(λ)yn

for λ ∈ Λ and yn ∈ Xn. Then:

i. The sequence {Xn}n∈N is a discrete approximation of X in the sense of [32].

ii. Bn(λ) is Fredholm of index zero for all λ ∈ Λ.

iii. The sequence {Bn(·)}n∈N is equibounded on each compact Λ0 ⊂ Λ, i.e., there exists a
C(Λ0) > 0 such that

‖Bn(λ)‖L(Xn,Xn) ≤ C(Λ0) for all λ ∈ Λ0, n ∈ N.

iv. The sequence {Bn(λ)}n∈N approximates A(λ) for all λ ∈ Λ, i.e.,

lim
n→∞

‖[Bn(λ)Pn − PnA(λ)]x‖X → 0 for allλ ∈ Λ, x ∈ X.

v. The sequence {Bn(λ)}n∈N is regular for every λ ∈ Λ, i.e., for every sequence
{Bn(λ)xn}n∈N which has a converging subsequence in X there exists a converging
subsequence of {xn}n∈N in X.

Proof. i. The approximation property (4.3) of {Xn}n∈N is sufficient that {Xn}n∈N is a
discrete approximation of X in the sense of [32].
ii. The operator Bn(λ) : Xn → Xn is a linear and bounded operator which maps from a
finite dimensional space into itself. This implies that Bn(λ) is Fredholm of index zero.
iii. Using ‖Pn‖L(X,X) = 1 and the holomorphy of A : Λ → L(X,X) we get

sup
λ∈Λ0

‖Bn(λ)‖L(Xn,Xn) ≤ sup
λ∈Λ0

‖A(λ)‖L(X,X) ≤ C(Λ0).

iv. The approximation property (4.3) implies that ‖(Pn − IX)x‖X → 0 as n → ∞ for all
x ∈ X. Hence, we conclude that

‖Bn(λ)Pn − PnA(λ)]x‖X = ‖PnA(λ)Pn − PnA(λ)]x‖X ≤ c(λ)‖(Pn − IX)x‖X → 0

for all λ ∈ Λ and x ∈ X.
v. A proof of the regularity of the sequence {Bn(λ)}n∈N is given in [12, Satz 32].

The last lemma enables us to apply the results of the numerical analysis in [18, 19] to the
Galerkin approximation (4.4). The first result which was already proven in [13, Satz 2]
and [12, Satz 32] shows that every eigenvalue of the continuous eigenvalue problem (4.2)
may be approximated by a converging sequence of eigenvalues of the Galerkin eigenvalue
problem (4.4) and that any limit of a converging sequence of eigenvalues of the Galerkin
eigenvalue problem is an eigenvalue of the continuous eigenvalue problem [18, Thm. 1,
Thm. 2].
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Theorem 4.2. For each eigenvalue λ0 ∈ σ(A) there exists a sequence {λn}n∈N of eigen-
values of the Galerkin eigenvalue problem PnA(λn)xn = 0 such that

lim
n→∞

λn = λ0.

On the other hand, if {(λn, xn)}n∈N is a sequence of eigenpairs of the Galerkin eigenvalue
problem

PnA(λn)xn = 0,

where ‖xn‖X = 1, then
lim

n→∞
λn = λ0 ∈ σ(A).

Furthermore, there exists a subsequence of {xn}n∈N which converges to an eigenelement
corresponding to λ0.

The next result shows that there are no discrete spurious eigenvalues [18, Thm. 1], [34,
Lem. 4.2.3].

Lemma 4.3. Let Λc ⊂ Λ be a compact set in C such that ρ(A) ⊂ Λc. Then, ρ(PnA) ⊂ Λc

for sufficiently large n ∈ N.

The convergence order both of the eigenvalues and the eigenelements of the Galerkin eigen-
value problem (4.4) to an eigenpair (λ0, x0) of the continuous eigenvalue problem (4.2)
depends on the approximation property of the sequence of trial spaces {Xn}n∈N with re-
spect to the generalized eigenspace G(A, λ0) and with respect to the generalized eigenspace
G(A∗, λ0) of the adjoint eigenvalue problem

A∗(λ0)y0 := [A(λ0)]
∗ y0 = 0.

Let us therefore define

δn := max
x0∈G(A,λ0)
‖x0‖X≤1

inf
xn∈Xn

‖x0 − xn‖X , δ∗n := max
y0∈G(A∗,λ0)

‖y0‖X≤1

inf
xn∈Xn

‖y0 − xn‖X .

The following asymptotic error estimate for the eigenvalues can be found in [19, Thm. 3],
[34, Thm. 4.3.6]. For the estimate of the eigenelements we refer to [34, Thm. 4.3.7]. Similar
results for the estimates of the eigenelements are presented in [35, p. 75] and [36, Thm. 4].

Theorem 4.4. Let Λc ⊂ Λ be a compact set such that the boundary ∂Λc ⊂ ρ(A) and
Λc ∩ σ(A) = {λ0}. Then there exist a constant C > 0 and a N ∈ N such that

|λn − λ0| ≤ C (δnδ
∗
n)1/κ(A,λ0) (4.6)

holds for all λn ∈ σ(PnA) ∩ Λc and all n ≥ N . Furthermore, for the corresponding
eigenelements xn of λn with ‖xn‖X = 1 there exists a constant c > 0 such that

inf
x0∈ker A(λ0)

‖xn − x0‖X ≤ c



|λn − λ0| + max
z0∈ker A(λ0)

‖z0‖X≤1

inf
zn∈Xn

‖z0 − zn‖X



 (4.7)

holds for all n ≥ N .
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A crucial point of the approximation of eigenvalue problems is the behavior of the mul-
tiplicities of the discrete eigenvalues. Galerkin approximations of eigenvalue problems for
holomorphic coercive operator–valued functions are stable with respect to the algebraic
multiplicities of the eigenvalues [8, Thm. 1], [18, Thm. 5], [34, Thm. 4.4.2].

Theorem 4.5. Let Λc ⊂ Λ be compact and connected with a simple rectifiable boundary.
Suppose that ∂Λc ⊂ ρ(A) and Λc ∩ σ(A) = {λ0}. Then there exists a N(Λc) ∈ N such that
for all n ≥ N(Λc) we have

m(A, λ0) =
∑

λn∈σ(PnA)∩Λc

m(PnA, λn). (4.8)

Since the algebraic multiplicity of an eigenvalue λ0 coincides with the dimension of the
generalized eigenspace G(A, λ0), the result (4.8) implies that

dimG(A, λ0) =
∑

λn∈σ(PnA)∩Λc

dimG(PnA, λn).

5 Properties of the boundary integral operator

eigenvalue problem

The variational formulation of the boundary integral operator eigenvalue problem (2.5) is
to find (κ, t) ∈ R ×H−1/2(Γ) \ {0} such that

〈V (κ)t, v〉Γ = 0 (5.1)

is satisfied for all v ∈ H−1/2(Γ). In the following we will also use a representation of
the variational formulation (5.1) in terms of the inner product in H−1/2(Γ). To this end,
consider the Riesz map J : H1/2(Γ) → H−1/2(Γ), then

(u, w)H1/2(Γ) = 〈u, Jw〉H1/2(Γ)×H−1/2(Γ) = 〈u, Jw〉Γ

holds for all u, w ∈ H1/2(Γ). The operator I : H1/2(Γ) → H−1/2(Γ) defined by the complex
conjugate

Iw := Jw for w ∈ H1/2(Γ)

is an isomorphism. Hence, we can write

(u, w)H1/2(Γ) = 〈u, Jw〉Γ = 〈u, Iw〉Γ

for all u, w ∈ H1/2(Γ). Using that I−1 = I∗, we can represent the sesquilinear form 〈·, ·〉Γ
by the inner products of H1/2(Γ) and H−1/2(Γ)

〈u, v〉Γ = 〈u, II∗v〉Γ = (u, I∗v)H1/2(Γ) = (Iu, v)H−1/2(Γ) (5.2)
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for all u ∈ H1/2(Γ) and v ∈ H−1/2(Γ). The variational formulation (5.1) of the eigenvalue
problem (2.5) can therefore be written as

〈V (κ)t, v〉Γ = (IV (κ)t, v)H−1/2(Γ) = 0 (5.3)

for all v ∈ H−1/2(Γ).

Theorem 5.1. Consider the operator–valued function

IV : C → L(H−1/2(Γ), H−1/2(Γ)),

κ 7→ IV (κ).

Then:

i. The function IV : C → L(H−1/2(Γ), H−1/2(Γ)) is holomorphic and the operator
IV (κ) is a compact perturbation of the H−1/2(Γ)-elliptic operator IV (0) for all
κ ∈ C.

ii. The spectra of V and IV coincide and

kerV (κ) = ker IV (κ)

for any κ ∈ C. Further, for any eigenvalue κ0 ∈ σ(V ) the maximal length of a Jordan
chain and the algebraic multiplicity are equal for V and IV ,

κ(V, κ0) = κ(IV, κ0), m(V, κ0) = m(IV, κ0).

Proof. The assertions follow from the fact that I : H1/2(Γ) → H−1/2(Γ) is an isomorphism,
see [21, Appendix].

For the error estimates of the Galerkin approximation of the boundary integral operator
eigenvalue problem (5.3) we have to consider the Hilbert space adjoint operator of IV (κ).

Lemma 5.2. Let κ ∈ R, then

[IV (κ)]∗ = IV (−κ).

Proof. Let κ ∈ R and t, w ∈ H−1/2(Γ), then

(IV (κ)t, v)H−1/2(Γ) = 〈V (κ)t, v〉Γ =
1

4π

∫

Γ

∫

Γ

eiκ|x−y|

|x− y|t(y)dsyv(x)dsx

=
1

4π

∫

Γ

∫

Γ

e−iκ|x−y|

|x− y| v(x)dsxt(y)dsy

=
1

4π

∫

Γ

∫

Γ

e−iκ|x−y|

|x− y| v(x)dsxt(y)dsy = 〈V (−κ)v, t〉Γ

= (IV (−κ)v, t)H−1/2(Γ) = (t, IV (−κ)v)H−1/2(Γ).

Hence, [IV (κ)]∗ = IV (−κ).
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The maximal length of a Jordan chain of an eigenvalue affects the rate of convergence of its
approximation. An optimal convergence rate can be achieved only if the maximal length
of a Jordan chain of an eigenvalue is one, cf. Theorem 4.4.

Lemma 5.3. Let κ0 ∈ R be an eigenvalue of the eigenvalue problem (2.5). Then, for the
maximal length of a Jordan chain of κ0 we have

κ(V, κ0) = 1.

Proof. Let (κ0, t0) ∈ R × H−1/2(Γ) be an eigenpair of the boundary integral operator

eigenvalue problem (2.5). Define u0(x) = (Ṽ (κ0)t0)(x) for x ∈ Ω, then (κ2
0, u0) is by

Theorem 2.1 an eigenpair of the Dirichlet Laplacian eigenvalue problem (2.1). Let ϕ(κ)
be a Jordan function of V corresponding to (κ0, t0), i.e., in a neighborhood Uε0(κ0) of κ0

the function ϕ : Uε0(κ0) → H−1/2(Γ) is holomorphic, ϕ(κ0) = t0, and V (κ0)ϕ(κ0) = 0.
The maximal length of a Jordan chain of κ0 beginning with t0 is the order of κ0 as zero
of the function V (κ)ϕ(κ). Therefore we have to show that the multiplicity of the zero κ0

of V (κ)ϕ(κ) is one. Since V (κ)ϕ(κ) is holomorphic and V (κ0)ϕ(κ0) = 0, there exists a
neighborhood Uδ0(κ0) ⊂ Uε0(κ0) of κ0 such that

V (κ)ϕ(κ) = (κ2 − κ2
0)ψ(κ) (5.4)

with a holomorphic function ψ : Uδ0(κ0) → H1/2(Γ). Note that κ0 6= 0 and that therefore
the representation (5.4) is possible. Define

u(κ)(x) = (Ṽ (κ)ϕ(κ))(x) for x ∈ Ω,

then u(κ) is a solution of the boundary value problem

−∆u(κ)(x) − κ2u(κ)(x) = 0 for x ∈ Ω, γ0(u(κ))(x) = (κ2 − κ2
0)ψ(κ)(x) for x ∈ Γ.

Using Green’s second identity we obtain

∫

Ω

u(κ)(x)u0(x)dx =
1

κ2 − κ2
0

∫

Γ

γ0u(κ)(x)γ1u0(x)dsx =

∫

Γ

ψ(κ)(x)γ1u0(x)dsx.

By Theorem 2.4, the function Ṽ : C → L(H−1/2(Γ), H1(Ω)) is holomorphic. Together with

the holomorphy of the function ϕ : Uε0(κ0) → H−1/2(Γ) it follows that u(κ) = Ṽ (κ)ϕ(κ)
is holomorphic in Uε0(κ0). This implies that u(κ) → u(κ0) = u0 as κ → κ0. Therefore we
have

0 6=
∫

Ω

u0(x)u0(x)dx =

∫

Γ

ψ(κ0)(x)γ1u0(x)dsx,

since ψ(κ) is also holomorphic. Hence, ψ(κ0) 6≡ 0. Using the definition (5.4) of ψ(κ), we
conclude that κ0 is a simple zero of V (κ)ϕ(κ). Thus, the maximal length of a Jordan chain
of κ0 beginning with t0 is one.
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6 Galerkin approximation of the boundary integral

operator eigenvalue problem

In the following we will apply the results of the numerical analysis of Section 4 to the
Galerkin discretization of the eigenvalue problem (5.3). Let {Xn}n∈N ⊂ H−1/2(Γ) be some
sequence of conforming boundary element spaces with

lim
n→∞

inf
zn∈Xn

‖z − zn‖H−1/2(Γ) = 0 for all z ∈ H−1/2(Γ).

The Galerkin approximation of the eigenvalue problem (5.3) is to find (κn, tn) ∈ C×Xn\{0}
such that

(IV (κn)tn, vn)H−1/2(Γ) = 〈V (κn)tn, vn〉Γ = 0 (6.1)

is satisfied for all vn ∈ Xn. Let Pn : Xn → H−1/2(Γ) be the orthogonal projection of X
into Xn, then the Galerkin variational formulation (6.1) is equivalent to

PnIV (κn)tn = 0. (6.2)

Since IV : C → L(H−1/2(Γ), H−1/2(Γ)) is a holomorphic operator–valued function where
the underlying operator is a compact perturbation of an elliptic operator, the numerical
analysis of Section 4 can be applied to (6.2).

Lemma 6.1.

i. For each eigenvalue κ0 of IV there exists a sequence of eigenpairs {(κn, tn)}n∈N of
the Galerkin variational problem (6.2) with ‖tn‖H−1/2(Γ) = 1 such that

lim
n→∞

|κ0 − κn| = 0

and
lim

n→∞
inf

t0∈ker IV (κ0)
‖t0 − tn‖H−1/2(Γ) = 0.

ii. Let {κn}n∈N be a sequence of eigenvalues of the Galerkin variational problem (6.2)
with

lim
n→∞

κn = µ0.

Then µ0 is an eigenvalue of IV .

The error estimate for an eigenpair (κn, tn) of (6.2) depends on the approximation property
εn of the trial space Xn with respect to the eigenspace of the corresponding continuous
eigenvalue κ0,

εn = max
t0∈ker IV (κ0)

‖t0‖H−1/2(Γ)
≤1

inf
zn∈Xn

‖t0 − zn‖H−1/2(Γ).
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Theorem 6.2. Let κ0 ∈ σ(IV ) ∩ R. Suppose that Λc ⊂ C is a compact set such that
∂Λc ⊂ ρ(IV ) and Λc ∩ σ(IV ) = {κ0}. Then there exist a constant C > 0 and a N ∈ N

such that for all n ≥ N the estimate

|κ0 − κn| ≤ Cε2
n (6.3)

holds for all κn ∈ σ(PnIV )∩Λc. Further, for any tn ∈ kerPnIV (κ0) with ‖tn‖H−1/2(Γ) = 1
there exists a constant c > 0 such that for all n ≥ N we have

inf
t0∈ker IV (κ0)

‖t0 − tn‖H−1/2(Γ) ≤ c (|κ0 − κn| + εn) . (6.4)

Proof. Applying Theorem 4.4 to (6.2) we obtain for sufficiently large n ∈ N the error
estimate

|κn − κ0| ≤ C(δnδ
∗
n)1/κ(IV,κ0) for all κn ∈ σ(PnIV ) ∩ Λc,

where δn and δ∗n represent the approximation property of the trial space Xn with respect
to the generalized eigenspace G(IV, κ0) and G((IV )∗, κ0), respectively. Lemma 5.3 shows
that κ(IV, κ0) = 1 which implies that the generalized eigenspace G(IV κn) coincides with
the eigenspace ker IV (κn). Hence, δn = εn. It remains to consider the adjoint of IV (κ0).
Since κ0 is assumed to be real, we have for the adjoint [IV (κ0)]

∗ = IV (−κ0) by Lemma
5.2. Using that ker IV (κ0) = ker IV (−κ0), the error estimates (6.3) and (6.4) follow.

Note that the error estimate for the eigenfunctions (6.4) is quasi–optimal. As already
used in the last proof, the generalized eigenspace G(IV, κ0) coincides with the eigenspace
ker IV (κ0). This implies that the geometric multiplicity of an eigenvalue is equal to its
algebraic multiplicity. Using Theorem 4.5 we get the following stability result for the
multiplicities of the eigenvalues of the Galerkin approximation (6.2).

Theorem 6.3. Let κ0 ∈ σ(IV ) ∩ R. Suppose that Λc is compact and connected with a
simple rectifiable boundary such that ∂Λc ⊂ ρ(IV ) and σ(IV ) ∩ Λc = {κ0}. Then, there
exists a N ∈ N such that for all n ≥ N

dim ker IV (κ0) =
∑

κn∈σ(IPnV )∩Λc

dim kerPnIV (κn).

Next, we want to consider the approximation property of the space of piecewise constant
functions S0

h(Γ) ⊂ H−1/2(Γ) for the discretization of the boundary integral operator eigen-
value problem (2.5). Let S0

h(Γ) be defined with respect to some globally quasi–uniform
boundary element mesh with mesh size h. Using the approximation property of S0

h(Γ), see
[28, Ch. 4], [30, Ch. 10], we get for a discrete eigenpair (κh, th) with ‖th‖H−1/2(Γ) = 1 the
following asymptotic error estimates,

|κ0 − κh| ≤ ch2s+1 max
w0∈ker IV (κ0), ‖w0‖H−1/2(Γ)

=1
|w0|Hs

pw(Γ) (6.5)
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and
inf

t0∈ker IV (κ0),
‖t0‖H−1/2(Γ)

=1

‖t0 − th‖H−1/2(Γ) ≤ Chs+1/2 max
w0∈ker IV (κ0), ‖w0‖H−1/2(Γ)

=1
|w0|Hs

pw(Γ)

when assuming that ker IV (κ0) ⊂ Hs
pw(Γ) for some s ∈ (−1/2, 1]. The Sobolev spaces

Hs
pw(Γ) are defined with respect to a piecewise smooth boundary Γ, see, e.g., [30, Ch. 2].

Remark 6.4. The spectrum σ(IV ) contains two types of eigenvalues. The real eigenvalues
of σ(IV ) correspond to the eigenvalues of the Laplace operator with Dirichlet boundary
conditions and whereas the nonreal ones correspond to the scattering poles, see Remark
2.3. According to Lemma 4.3, the Galerkin approximation (6.2) of the eigenvalue problem
for the function IV exhibits no discrete spurious eigenvalues. In practical computations,
the decision weather an approximation κn of an eigenvalue of σ(IV ) which lies close to the
real axis is an eigenvalue of the Laplacian or a scattering pole can be done by computing
(Ṽ (κn)tn)(x) for x ∈ Ω. If κn is an approximation of an eigenvalue of the Laplacian, then

(Ṽ (κn)tn)(x) 6≡ 0 for x ∈ Ω. In the case that κn is an approximation of a scattering pole,

Lemma 2.2 implies that Ṽ (κn)tn ≈ 0 on Ω.

7 Numerical results

In this section we present some numerical results of the Galerkin approximation of the
boundary integral formulation (2.5) of the Dirichlet Laplacian eigenvalue problem. As
domain Ω we choose the cube Ω = (0, 1

2
)3. The eigenvalues are given by

λk = 4π2
[
k2

1 + k2
2 + k2

3

]

and the associated eigenfunctions are

uk(x) = (sin 2πk1x1)(sin 2πk2x2)(sin 2πk3x3).

It turns out that the first eigenvalue (k1 = k2 = k3 = 1)

λ1 = 12π2, κ1 =
√
λ1 = 2

√
3π

is simple, while the second eigenvalue (k1 = 2, k2 = k3 = 1)

λ2 = 24π2, κ2 =
√
λ2 = 2

√
6π

is multiple.
We use the space of piecewise constant functions S0

h(Γ) as trial space where the bound-
ary Γ is decomposed into nh uniform triangles τℓ. Let

{
ψh

ℓ

}nh

ℓ=1
be a basis of S0

h(Γ) such

that ψh
ℓ is constant one on the boundary element τℓ and elsewhere zero. The Galerkin

variational eigenvalue problem reads then as follows: Find (κh, th) ∈ C × S0
h(Γ) \ {0} such

that
(IV (κh)th, vh)H−1/2(Γ) = 〈V (κh)th, vh〉Γ = 0 (7.1)
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is satisfied for all vh ∈ S0
h(Γ). Set

th =

nh∑

ℓ=1

tℓψ
h
ℓ ,

then the variational problem (7.1) is equivalent to the algebraic nonlinear eigenvalue prob-
lem: Find (κh, t) ∈ C × Cnh \ {0} such that

Vh(κh)t = 0, (7.2)

where

Vh(κh)[k, ℓ] :=
1

4π

∫

τℓ

∫

τk

eiκh|x−y|

|x− y| dsydsx for k, ℓ = 1, . . . , nh.

We use the inverse iteration for nonlinear eigenvalue problems [24] to solve the algebraic
nonlinear eigenvalue problem (7.2). The numerical results of the boundary element ap-
proximations for the eigenvalue κ1 and κ2 are presented in Table 1 and Table 2. A cubic
convergence order with respect to mesh size h of the boundary discretization can be ob-
served which confirms the theoretical error estimate (6.5).

L h nh κBEM
1,h |κ1 − κBEM

1,h | eoc

2 2−3 384 10.8768 - 1.1e-05i 5.986e-03 -
3 2−4 1536 10.8821 - 2.4e-07i 6.962e-04 3.1
4 2−5 6144 10.8827 - 6.0e-09i 8.619e-05 3.0

Table 1: BEM approximation of κ1 = 2
√

3π ≈ 10.8828, simple eigenvalue.

L h nh κBEM
21,h |κ2 − κBEM

21,h | eoc

2 2−3 384 15.373851 - 5.1e-05i 1.7e-02 -
3 2−4 1536 15.3887048 - 9.4e-07i 1.9e-03 3.1
4 2−5 6144 15.39037160 - 2.1e-08i 2.3e-04 3.1

L h nh κBEM
22,h |κ2 − κBEM

22,h | eoc

2 2−3 384 15.37364 - 5.1e-05i 1.7e-02 -
3 2−4 1536 15.3887060 - 9.4e-07i 1.9e-03 3.1
4 2−5 6144 15.39037171 - 2.1e-08i 2.3e-04 3.1

L h nh κBEM
23,h |κ2 − κBEM

23,h | eoc

2 2−3 384 15.373876 - 5.1e-05i 1.7e-02 -
3 2−4 1536 15.3887071 - 9.4e-07i 1.9e-03 3.1
4 2−5 6144 15.39037180 - 2.1e-08i 2.3e-04 3.1

Table 2: BEM approximation of κ2 = 2
√

6π ≈ 15.3906, multiple eigenvalue.
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For a discussion and comparison of different algorithms for the solution of the algebraic
nonlinear eigenvalue (7.2) problem we refer to [34, Ch. 6, 7]. A comparsion with the accu-
racy of a FEM approximation is presented in [31] which shows that with a comparatively
coarse mesh of the boundary element discretization the same accuracy as for the FEM dis-
cretization can be achieved. However, the inverse iteration which is used for the solution of
the discretized boundary integral eigenvalue problem is only locally convergent and in one
run only one eigenvalue can be approximated. Therefore, robust and efficient algorithms
are important issuses for the ongoing work.

8 Conclusions

The formulation of the Dirichlet Laplacian eigenvalue problem in terms of boundary inte-
gral operators yields a nonlinear boundary integral eigenvalue problem. In this paper we
have analyzed a Galerkin discretization of this eigenvalue problem by using the concept
of eigenvalue problems for holomorphic Fredholm operator–valued functions. The con-
vergence of the Galerkin discretization of the boundary integral eigenvalue problem has
been shown and quasi–optimal error estimates have been derived. Furthermore, a stabil-
ity result for the multiplicities of the eigenvalues is given. We want to mention that the
Neumann eigenvalue problem may be treated in the same way and that similar results of
the numerical analysis can be obtained [34].

The solution of the discretization of the boundary integral operator eigenvalue problems
requires numerical algorithms for algebraic nonlinear eigenvalue problems which has been
not discussed in this paper. Such algorithms have been adressed in [34] and are a topic of
the ongoing work.
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[26] J.-C. Nédélec. Acoustic and electromagnetic equations. Springer-Verlag, New York,
2001.

[27] A. J. Nowak and A. C. Neves, editors. The Multiple Reciprocity Boundary Element
Method. International Series on Computational Engineering. Computational Mechan-
ics Publications, Southampton, 1994.

[28] S. A. Sauter and C. Schwab. Randelementmethoden. Analyse, Numerik und Imple-
mentierung schneller Algorithmen. B. G. Teubner, Stuttgart, 2004.

[29] R. P. Shaw and G. R. C. Tai. Helmholtz–equation eigenvalues and eigenmodes for
arbitrary domains. J. Acoust. Soc. Am., 56(3):796–804, 1974.

[30] O. Steinbach. Numerical Approximation Methods for Elliptic Boundary Value Prob-
lems. Finite and Boundary Elements. Springer, New York, 2008.

[31] O. Steinbach and G. Unger. A boundary element method for the Dirichlet eigenvalue
problem of the Laplace operator. Numer. Math., 113:281–298, 2009.

[32] F. Stummel. Diskrete Konvergenz linearer Operatoren. I. Math. Ann., 190:45–92,
1970/71.

[33] M. E. Taylor. Partial Differential Equations. II. Springer-Verlag, New York, 1996.

[34] G. Unger. Analysis of Boundary Element Methods for Laplacian Eigenvalue Problems.
Dissertation, TU Graz, 2009.

20



[35] G. Vainikko. Funktionalanalysis der Diskretisierungsmethoden. B. G. Teubner Verlag,
Leipzig, 1976.

[36] G. M. Vainikko and O. Karma. The rate of convergence of approximation meth-
ods for an eigenvalue problem in which the parameter occurs nonlinearly. U.S.S.R.
Computational Math. and Math. Phys., 14:23–39, 1974.

[37] W. L. Wendland. Bemerkungen zu Randelementmethoden bei Rissproblemen. In
Mathematical papers given on the occasion of Ernst Mohr’s 75th birthday, pages 307–
322. Tech. Univ. Berlin, Berlin, 1985.

[38] K. Yosida. Functional Analysis. Springer-Verlag, Berlin, 1978.

21



Erschienene Preprints ab Nummer 2008/1

2008/1 P. Urthaler: Schnelle Auswertung von Volumenpotentialen in der Randelement-
methode.

2008/2 O. Steinbach (ed.): Workshop on Numerical Simulation of the Maxwell Equations.
Book of Abstracts.

2008/3 G. Of, O. Steinbach, P. Urthaler: Fast Evaluation of Newton Potentials in the
Boundary Element Method.

2008/4 U. Langer, O. Steinbach, W. L. Wendland (eds.): 6th Workshop on Fast Boundary
Element Methods in Industrial Applications, Book of Abstracts.

2008/5 D. Brunner, G. Of, M. Junge, O. Steinbach, L. Gaul: A Fast BE-FE Coupling
Scheme for Partly Immersed Bodies

2009/3 G. Of, O. Steinbach: The All–Floating Boundary Element Tearing and Intercon-
necting Method.

2009/4 O. Steinbach: A note on the stable coupling of finite and boundary elements.

2009/5 O. Steinbach, M. Windisch: Stable boundary element domain decomposition meth-
ods for the Helmholtz equation.

2009/6 G. Of, W. L. Wendland, N. Zorii: On the Numerical Solution of Minimal Energy
Problems.

2009/7 U. Langer, O. Steinbach, W. L. Wendland (eds.): 7th Workshop on Fast Boundary
Element Methods in Industrial Applications, Book of Abstracts.

2009/8 H. Egger, M. Freiberger, M. Schlottbom: Analysis of Forward and Inverse Models
in Fluorescence Optical Tomography.

2009/9 O. Steinbach, M. Windisch: Robust boundary element domain decomposition solvers
in acoustics.

2009/10 M. Freiberger, H. Egger, H. Scharfetter: Nonlinear Inversion in Fluorescence Optical
Tomography.

2009/11 H. Egger, M. Hanke, C. Schneider, J. Schöberl, S. Zaglmayr: Adjoint Sampling
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