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Abstract

In this work, we present an overview on the development of space–time finite
element methods for the numerical solution of some parabolic evolution equations
with the heat equation as a model problem. Instead of using more standard semi–
discretization approaches such as the method of lines or Rothe’s method, our specific
focus is on continuous space–time finite element discretizations in space and time
simultaneously. While such discretizations bring more flexibility to the space–time
finite element error analysis and error control, they usually lead to higher compu-
tational complexity and memory consumptions in comparison with standard time–
stepping methods. Therefore, progress on a posteriori error estimation and respective
adaptive schemes in the space–time domain is reviewed, which aims to save a number
of degrees of freedom, and hence reduces complexity, and recovers optimal order er-
ror estimates. Further, we provide a summary on recent advances in efficient parallel
space–time iterative solution strategies for the related large–scale linear systems of
algebraic equations, that are crucial to make such all–at–once approaches compet-
itive with traditional time stepping methods. Finally, some numerical results are
given to demonstrate the benefits of a particular adaptive space–time finite element
method, the robustness of some space–time algebraic multigrid methods, and the
applicability of space–time finite element methods for the solution of some parabolic
optimal control problem.
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1 Introduction

Throughout this paper, we mainly focus on a space–time finite element solution for the
following parabolic model problem:

∂tu(x, t)−∆xu(x, t) = f(x, t) for (x, t) ∈ Q := Ω× (0, T ],

u(x, t) = g(x, t) for (x, t) ∈ Σ := ∂Ω× (0, T ],

u(x, 0) = u0(x) for x ∈ Ω,

(1)

where Ω ⊂ Rd, d = 2, 3, is a convex polygonal or polyhedral bounded Lipschitz domain,
and T is a given final time. Note that f , g, and u0 are given data which are specified
later. For the ease of presentation, modifications of the model problem (1), e.g. including
nonlinear terms, will be stated explicitly in the context.

Classical numerical methods for solving the model problem (1) are the method of lines,
i.e., discretize first in space and then in time, see, e.g., [210], or Rothe’s method, i.e.,
discretize first in time and then in space, see, e.g. [139]. However, here we review alternative
approaches performing Galerkin–type finite element discretizations simultaneously in space
and time.

Galerkin–type finite element methods, continuous in space and possibly discontinuous
in time, on unstructured space–time meshes for the solution of general linear parabolic
equations in a moving domain have been considered already in the 1970s [120], but without
optimal order error estimates. In this approach, time is considered as another variable.
Later, related error estimates were further improved when using discontinuous in time
Galerkin methods, see [78, 79, 80, 81, 83, 160].

In the 1980s, a time–discontinuous Galerkin least–squares formulation for elastodynamics
in mixed displacement–velocity form, along with an optimal convergence rate in a norm
stronger than the total energy norm, was derived in [119]. The basis functions were cho-
sen to be piecewise polynomials on each space–time finite element at a time slab, with
no separation in spatial and temporal variables. The concept of this method has been
recently extended in [202] for continuous space–time finite element discretizations of linear
parabolic problems. Therein, a Petrov–Galerkin finite element method has been derived,
using continuous and piecewise linear finite elements simultaneously in space and time on
arbitrary admissible simplicial meshes, along with optimal error estimates in the respec-
tive energy norm. In a similar spirit, discontinuous Galerkin space–time finite element
discretizations, also allowing hanging nodes, and related optimal error estimates in the re-
spective DG–norms have been consecutively investigated in [122, 123, 124, 171, 172, 173].
Current interests in space–time finite element methods are, e.g., hp–approximations [72],
isogeometric analysis [142, 143], Petrov–Galerkin streamline diffusion and edge average fi-
nite elements [21], finite element exterior calculus [11], fractional diffusion equations [177],
discontinuous Petrov–Galerkin [102], to name a few.

While the above–mentioned space–time finite element methods are based on variational
formulations in the Bochner space L2(0, T ;H1

0 (Ω)) ∩H1(0, T ;H−1(Ω)), an alternative ap-
proach is based on variational formulations in anisotropic Sobolev spaces H1,1/2(Q). This
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goes back to the pioneering work [155] using Fourier analysis in space and time with
T =∞. Related variational formulations were then analyzed in [96], and a corresponding
stability and error analysis of wavelet discretizations is given in [71, 72, 147], where the
Hilbert transformation is used to construct optimal test functions. This approach can be
generalized to the case of a finite time interval (0, T ], see [206] for more details.

Meanwhile, a posteriori error estimates and related adaptive schemes for parabolic
problems have been considerably studied since the early works [77, 78, 79, 80, 81, 82]
in the 1980s–1990s. As it is well known, the general aim of a posteriori error estimates
is to obtain computable upper (reliability) and lower (efficiency) bounds for the error
with respect to a certain norm in terms of local error indicators that are used to drive
a local mesh refinement in order to achieve optimality in the error control. Most of the
techniques to obtain a posteriori error estimates for parabolic problems are borrowed and
adapted from the ones for elliptic problems. Usually, the full error is split into spatial
and temporal contributions, and others, e.g., the error from data approximations, each of
which can be bounded separately. Well studied approaches are parabolic duality methods
[78, 178], using energy arguments [59, 60, 199], reconstruction techniques [24, 68, 159],
functional type estimates [145, 163, 185], residual type estimates [180, 218, 219], flux
reconstruction methods [85, 88], and using recovered gradients [138, 151]. However, many
of these methods demand adaptive refinements in space and in time separately, which
often results in complications of the link between the adaptive mesh refining/coarsening
in space and in time. Recently, we have considered a residual type a posteriori error
indicator [203, 204, 205] in space and time simultaneously, which shows reliability in our
numerical experiments. A posteriori error estimates are also applicable to more involved
parabolic type evolution problems, e.g., for parabolic variational inequalities [1, 170, 179],
the Allen–Cahn equation [94, 127], the Schrödinger equation [126], the p–Laplacian [56,
132], interface problems [198, 199] with jumping coefficients [35, 36], the Navier–Stokes
system [34, 37, 183], and parabolic optimal control problems [157, 167, 181].

With the rapid growth in hardware development, parallel space–time solution meth-
ods become more feasible running on high–performance computers [90, 105, 144], since
we usually face a large–scale system of algebraic equations arising from space–time finite
element discretizations. In comparison with space parallel methods, the time parallel ap-
proach has only a relatively short history [104] due to the naturally sequential feature of
conventional time stepping methods. Very recent advances in parallel space–time solution
methods concern space–time multigrid with concurrency [91, 92, 99, 105] and space–time
domain decomposition by constraints [17]. We have recently considered space–time alge-
braic multigrid (AMG) [204, 205] methods as black box type solvers for the linear system
of algebraic equations arising from the space–time finite element discretization [202] of the
heat equation. In comparison with space–time geometric multigrid methods [105, 172],
coarsening in algebraic multigrid requires special care since the spatial and temporal direc-
tions are not easily detected on the pure algebraic level, and the strength of connections
may need to be taken into account [48, 50, 190].

The remainder of this paper is organized in the following way. Section 2 mainly deals
with Galerkin space–time finite element methods for the discretization of related parabolic
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problems. In Section 3, we review a posteriori error estimates and space–time adaptive
schemes mainly for linear parabolic equations and their variants. In Section 4, we describe
recent developments on space–time solution methods. Some numerical results are presented
in Section 5. Finally, we draw some conclusions in Section 6.

2 Space–time finite element discretization

In this section, we present an overview on space–time Galerkin finite element methods
for an approximate solution of the model problem (1). The main focus is on discontin-
uous approximations either in time or both in space and time, see Subsection 2.1, and
on approximations continuous in space and time, see Subsection 2.2. A Petrov–Galerkin
space–time finite element method [202], that we have used in our numerical experiments,
will be discussed in Subsection 2.3. Subsection 2.4 provides a short report on recent de-
velopments in space–time finite element methods, e.g., for solving the related parabolic
evolution equations, the exterior calculus, fractional diffusion equations, and discontinuous
Petrov–Galerkin methods.

2.1 Discontinuous space–time finite element methods

A general class of Galerkin–type methods, which are based on a weak formulation similar
to the one in [154], for the solution of general linear parabolic equations in a given time
dependent domain were discussed in [120]. The used approximations are continuous in
space and, possibly, discontinuous in time. Although the method in principle allows using
quite flexible space–time finite element meshes, the total space–time domain is decomposed
into time slabs, and each time slab is decomposed into simplicial (or prismatic) elements.
It is possible to have hanging nodes on the interface between two time slabs. The consider-
ation of time slabs allows in most cases the interpretation of discontinuous finite elements
in time as time stepping schemes. The finite element functions restricted to a simplicial
element are polynomials of degree k with respect to the spatial and temporal variables,
and they are in general discontinuous at a time level tn. In this method, time is treated
as another variable, and the discretization is performed in space and time simultaneously.
The convergence of the space–time finite element solution is considered in L2(0, T ;H1(Ω)),
see [120, Theorem 5.1]. Under proper assumptions on the structure of the mesh, improved
error estimates were considered in [78, 79, 80, 81, 83, 160].

A time–discontinuous Galerkin least–squares method for a mixed displacement–velocity
formulation in elastodynamics and an optimal convergence result with respect to a special
norm, which is stronger than the energy norm, were derived in [119]. The finite element
mesh for this approach is obtained by a decomposition of tensor–structured time slabs into
triangular elements. The finite element basis functions for the displacement and for the
velocity are piecewise polynomials on each space–time finite element, where no separation
in spatial and temporal variables is considered. Optimal error estimates were numerically
confirmed for arbitrary combinations of polynomial basis functions for the displacement
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and the velocity.
For the heat equation the stability for a class of discontinuous Galerkin methods on

tensor–structured meshes, which are constructed as a product of separate partitions in
space and time, was analyzed in [160]. The finite element spaces consist of piecewise
polynomial functions on each tensor–structured space–time slab, which are the product of
continuous piecewise polynomial functions in space and piecewise polynomial and possible
discontinuous functions in time. The methods were shown to be stable with respect to a
mesh dependent norm, a discrete analogue to the L2 norm in space and time. An optimal
error estimate in L2(0, T ;L2(Ω)) was derived, see [160, Theorem 1.2]. The main tools for
proving the error estimates are the well known finite element interpolation properties in
space [61], the approximation property of the interpolation operator on the time slab [83],
and the stability properties of the L2 projection in time.

Recently, in a series of recent papers [123, 171, 172, 173], discontinuous Galerkin dis-
cretizations in the space–time domain have been analyzed for parabolic problems. There,
the jumping operator in spatial and in the temporal directions and the upwinding operator
in time have been exploited. In fact, time is considered as another spatial coordinate,
and the discrete finite element spaces of piecewise polynomials are designed accordingly
on each space–time finite element. Optimal error estimates in the respective DG–norms
were derived. The method allows to use arbitrary admissible simplex meshes in the space–
time domain, also allowing hanging nodes. For an application in coupled cardiac electro–
mechanics, see [122, 124].

In [149], a global best approximation and an interior best approximation of fully discrete
Galerkin finite element solutions of second order parabolic problems on convex polygonal
and polyhedral domains were shown with respect to the L∞–norm, see [149, Theorems
1,2]. The space–time finite element space for the discrete approximation consists of a
product of continuous piecewise polynomial functions in space and discontinuous piecewise
polynomial functions in time on each space–time slab. The main tools for proving the best
approximation results are corresponding elliptic estimates in weighted norms, weighted
resolvent estimates, and maximal parabolic [150] and smoothing estimates.

2.2 Continuous space–time finite element methods

A novel variational method for approximating the heat equation using continuous spatial
and temporal finite element functions was analyzed in [16]. The tensor–product based
finite element space consists of continuous piecewise polynomials of order p on the spatial
mesh, and continuous piecewise polynomials of order q on the temporal partition. In the
discrete variational formulation, the test function has been differentiated with respect to
the time variable. The solution of the proposed discrete variational formulation can be
computed by successively marching through the time partition while the test function is
of one order less in temporal direction. This explains that the proposed method can be
viewed as a Petrov–Galerkin method with trial functions continuous in space and time, and
test functions continuous in space, but discontinuous in time. Error estimates in different
norms have been derived using the properties of the constructed spatial elliptic projection
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and the one–dimensional temporal projection from the continuous to discrete spaces.
The stability of space–time Petrov–Galerkin discretizations applied to parabolic evolu-

tion problems was discussed in [168]. In order to obtain a mesh independent positive lower
bound in the discrete inf–sup condition, different discretization levels for the trial and test
spaces have to be chosen. In particular, this requirement can be fulfilled by using suitable
hierarchical families of discrete spaces. The method is applicable to both finite element
and wavelet discretizations in space and time [169]. The analysis of the method is based
on some regularity assumption on the spatial partial differential operator involved, and on
the so–called Jackson– and Bernstein estimates and a reverse Cauchy–Schwarz inequality
with respect to the discrete trial and test spaces, that can be easily fulfilled with properly
chosen spaces.

Recently, a new stable single patch space–time isogeometric analysis method [118] for
the numerical solution of parabolic evolution equations in both spatially fixed and moving
computational domains were derived in [143]. Starting from the standard weak space–time
variational formulation [134, 135], a stable discrete weak formulation is achieved by using
a time–upwind test function. The space–time finite element spaces consist of the tensor–
product multivariate B–spline basis functions. Optimal a priori error estimates for such a
stable discretization were shown with respect to a corresponding mesh dependent norm.
This approach has been extended to (time–) multipatch space–time isogemetric analysis
[113, 144]. Further, the stabilization term has been localized in [192, 193]. In [211], the
approach has been extended to stabilized space–time finite element methods using bubble
spaces.

Two stable space–time variational formulations in weighted Bochner spaces for the heat
equation on the unbounded temporal interval were devised in [8]. The discrete weak formu-
lations were shown to be stable with respect to suitable weighted space–time norms. The
space–time finite element spaces were taken as space–time tensor–product spaces of La-
guerre polynomials in time and arbitrary nontrivial finite–dimensional subspaces in space.

In [21], a standard Petrov–Galerkin streamline diffusion method [51] and the edge
average finite element [229] were applied to a time–dependent partial differential equation,
that is embedded into a convection–diffusion type equation with singularity. These schemes
provide proper discretizations for convection–diffusion problems with suitable stability and
approximation properties. The methods allow using arbitrary simplex meshes in high
dimensions, which usually demand extensive memory usage in space–time simulations. To
cure this drawback, accurate dimension reduction algorithms on tetrahedral space–time
meshes have been proposed in, e.g., [148].

2.3 A Petrov–Galerkin space–time finite element method

In [202], a Petrov–Galerkin finite element method for the approximate solution of parabolic
evolution equations was proposed, in which stability conditions and a priori error estimates
were derived for the space–time finite element approximations. Since we have used this
approach in our numerical experiments, we will discuss this method in more detail. Note
that similar weak formulations have been considered in [6, 7, 196, 216], but using wavelet

6



discretization techniques. Since time is considered as another spatial coordinate, we employ
piecewise linear finite elements in both space and time simultaneously where arbitrary
admissible simplex meshes are allowed.

Since the initial condition is, as the Dirichlet boundary condition, considered as an es-
sential boundary condition, we introduce a suitable u0 ∈ L2(0, T ;H1(Ω))∩H1(0, T ;H−1(Ω))
as an arbitrary but fixed extension of the given Dirichlet and initial data. Then the
Petrov–Galerkin variational formulation for the heat equation (1) is to find u ∈ X := {v ∈
L2(0, T ;H1

0 (Ω)) ∩H1(0, T ;H−1(Ω)), v(x, 0) = 0 for x ∈ Ω} such that

a(u, v) = 〈f, v〉 − a(u0, v) (2)

is satisfied for all v ∈ Y := L2(0, T ;H1
0 (Ω)), where

a(u, v) :=

∫ T

0

∫
Ω

[
∂tu(x, t)v(x, t) +∇xu(x, t) · ∇xv(x, t)

]
dx dt,

〈f, v〉 :=

∫ T

0

∫
Ω

f(x, t)v(x, t) dx dt.

Under proper assumptions, the uniqueness of the solution to the varitional problem (2)
can be shown, see also [155, 196, 216].

Theorem 2.1 ([202]) Let u0 ∈ L2(0, T ;H1(Ω)) ∩ H1(0, T ;H−1(Ω)) be an extension of
the initial datum u0 ∈ L2(Ω) and of the Dirichlet datum g ∈ H1/2,1/4(Σ), and assume
f ∈ L2(0, T ;H−1(Ω)). The bilinear form a(·, ·) is bounded,

a(u, v) ≤
√

2 ‖u‖L2(0,T ;H1
0 (Ω))∩H1(0,T ;H−1(Ω))‖v‖0,T ;H1

0 (Ω) (3)

for all u ∈ L2(0, T ;H1
0 (Ω)) ∩ H1(0, T ;H−1(Ω)) and v ∈ L2(0, T ;H1

0 (Ω)). In addition, it
satisfies the stability condition

1

2
√

2
‖u‖L2(0,T ;H1

0 (Ω))∩H1(0,T ;H−1(Ω)) ≤ sup
06=v∈L2(0,T ;H1

0 (Ω))

a(u, v)

‖v‖L2(0,T ;H1
0 (Ω))

. (4)

Then there exists a unique solution u ∈ X of the variational formulation (2) satisfying

‖u‖L2(0,T ;H1
0 (Ω))∩H1(0,T ;H−1(Ω)) ≤ (5)

≤ 2
√

2 ‖f‖L2(0,T ;H−1(Ω)) + 4 ‖u0‖L2(0,T ;H1(Ω))∩H1(0,T ;H−1(Ω)).

Proof. See the proof for Theorem 2.1 and Corollary 2.3 in [202].

The related discrete Galerkin–Petrov problem is to find uh ∈ Xh ⊂ X such that

a(uh, vh) = 〈f, vh〉 − a(u0, vh) (6)

is satisfied for all vh ∈ Yh ⊂ Y , where we assume Xh ⊂ Yh. The discrete stability condition
is shown in the following theorem, where we use a discrete norm for H1(0, T ;H−1(Ω)),

‖u‖2
Xh

:= ‖wh‖2
L2(0,T ;H1

0 (Ω)) + ‖u‖2
L2(0,T ;H1

0 (Ω))
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with wh ∈ Yh being the unique finite element solution of the quasi–static variational for-
mulation ∫ T

0

∫
Ω

∇xwh(x, t) · ∇xvh(x, t) dx dt =

∫ T

0

∫
Ω

α∂tu(x, t)vh(x, t) dx dt

for all vh ∈ Yh.

Theorem 2.2 ([202]) Assuming Xh ⊂ X, Yh ⊂ Y , and Xh ⊂ Yh, there holds the stability
condition

1

2
√

2
‖uh‖Xh

≤ sup
06=vh∈Yh

a(uh, vh)

‖vh‖L2(0,T ;H1
0 (Ω))

(7)

for all uh ∈ Xh.

Proof. See the proof of Theorem 3.1 in [202].

We then have the following a priori error estimate.

Theorem 2.3 ([202]) Let u ∈ X and uh ∈ Xh be the unique solutions of the variational
problems (2) and (7), respectively. Then there holds the a priori error estimate

‖u− uh‖Xh
≤ 5 inf

zh∈Xh

‖u− zh‖X . (8)

Proof. See the proof of Theorem 3.3 in [202].

In particular, the space–time cylinder Q = Ω × (0, T ) is decomposed into admissible and
shape regular finite elements q`, i.e. Qh = ∪N`=1q`. For simplicity, we assume that Ω is
polygonal or polyhedral bounded, i.e., Q = Qh. The finite element spaces are given by
Xh = S1

h(Qh) ∩ X and Yh = Xh with S1
h(Qh) = span{ϕi}Mi=1 being the span of piecewise

linear and continuous basis functions ϕi. The following energy error estimate is shown in
[202].

Theorem 2.4 ([202]) Let u ∈ X and uh ∈ Xh be the unique solutions of the variational
problem (2) and (6), respectively. Assuming u ∈ H2(Q), then there holds the energy error
estimate

‖u− uh‖L2(0,T ;H1
0 (Ω)) ≤ c h ‖u‖H2(Q), (9)

Proof. See the proof of Theorem 3.3 in [202].

We mention that on the discrete level we obtain a non–symmetric but positive definite
linear system of algebraic equations, that will be solved by algebraic multigrid (AMG)
methods as discussed in Subsection 5.2. The adaptivity related to this method will be
discussed in Subsection 3.8, and corresponding numerical experiments are presented in
Section 5.
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2.4 Some other space–time finite element methods

As an extension of the finite element exterior calculus for linear elliptic problems in mixed
variational formulations [12, 13] to parabolic problems, a Galerkin method for a model
Hodge heat equation was considered in [11]. Both semi–discrete and fully–discrete nu-
merical schemes, which are based on a mixed formulation, were analyzed therein. The
well–posedness of the mixed variational formulation was shown using the Hille–Yosida–
Phillips theory. Error estimates for the finite element approximation to the evolution
equation were obtained by a comparison with a corresponding elliptic projection of the
exact solution into the finite element space. In a special case, this mixed form reduces to
the standard weak formulation for the heat equation, that has been considered in [73, 227].

Recently, another extension of the finite element exterior calculus has been considered
in [107], namely to parabolic and hyperbolic problems. A priori error estimates for Galerkin
finite element approximations in the natural Bochner space norms were derived therein by
combining recent results on the finite element exterior calculus for elliptic problems with a
classical approach in [210]. The method has been recently extended to parabolic evolution
problems on Riemannian manifolds [116] by using the framework developed in [115].

Numerical solution techniques for parabolic equations with fractional diffusion and the
Caputo fractional time derivative were studied in [177]. Therein, the evolution problem
was written as a quasi–stationary elliptic problem with a dynamic boundary condition.
The spatial fractional diffusion is treated as the Caffarelli–Silvestre extension problem on
a semi–infinite cylinder in one more spatial dimension [54]. The finite difference scheme
proposed in [153] was employed to discretize the fractional time derivative. First–degree
tensor product finite elements for the truncation problem with exponential decay adapted
from [176] were used for the spatial discretization. Unconditional stability and error es-
timates for the fully discrete scheme were shown therein. Using a similar discretization
scheme, a convergence analysis for the discretization of a space–time fractional optimal
control problem has been discussed in the recent work [9].

A time–stepping discontinuous Petrov–Galerkin method with optimal test functions
for the heat equation was discussed in [102]. The stability for the semi–discrete and fully–
discrete schemes based on a backward Euler time stepping and an ultra–weak variational
formulation [66] at each time step was shown. We mention that a more detailed discussion
on discontinuous Petrov–Galerkin methods with optimal test functions for elliptic and fluid
problems can be found in, e.g., [65, 66, 67, 75, 76].

3 A posteriori error estimates and adaptivity

In this section, we discuss a posteriori error estimates and corresponding adaptive schemes
for parabolic problems. Well established methods for deriving a posteriori error estimates
and devising respective adaptive refinement strategies are reviewed, namely,

1. parabolic duality – Subsection 3.1,
2. energy arguments – Subsection 3.2,
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3. reconstruction – Subsection 3.3,
4. functional type – Subsection 3.4,
5. residual type – Subsection 3.5,
6. flux reconstruction – Subsection 3.6, and
7. recovered gradient – Subsection 3.7.

Further, we provide some details on our space–time adaptive method relying on a residual
type error indicator with conforming local mesh refinements, see Subsection 3.8, that has
been recently developed [204, 205], and which drives the adaptive refinement in space and
time simultaneously.

A posteriori error estimates in different applications are reported in Subsection 3.9. We
mention that the given overview is not restricted to a posteriori error estimates using space–
time finite element approximations, i.e., time–stepping methods may also be considered.

3.1 Parabolic duality

Adaptive finite element methods for linear parabolic problems using a discontinuous Galerkin
approach in time, and on each time interval a continuous finite element approximation in
space were considered in [78]. The discrete space is a tensor–product space of polynomials
in space and time. This separation offers some flexibility on the spatial and temporal mesh
adaptivity. The a posteriori error estimates in L∞(0, T ;L2(Ω)) were derived using duality
techniques involving both continuous and discrete dual problems, and strong stability prop-
erties of the dual problems. In [79], error estimates have been extended to L∞(0, T ;L∞(Ω))
and L∞(0, T ;L2(Ω)). The a posteriori estimates have been further generalized to nonlinear
parabolic problems in [80], for the error control in L∞(0, T ;L2(Ω)). Using similar tech-
niques from [78], adaptive finite element methods for long–time integration of parabolic
problems have been discussed in [81] for time discontinuous Galerkin methods.

The duality technique has been applied to a posteriori error estimates for a degenerate
parabolic problem in [178], where the related dual problem corresponds to a nonstrictly
parabolic equation in non–divergence form with a vanishing rough diffusion coefficient [101,
175]. Moreover, goal oriented a posteriori error estimates for space–time discretizations
based on dual weighted residual apperoaches are considered, e.g. in [195].

3.2 Energy arguments

Using so the so–called direct energy estimate argument [60], i.e. a coupled system of
one parabolic equation with one variational inequality, the error indicator, which consists
of the time and space error indicators, which are designed for linear parabolic problems
discretized by backward Euler in time and continuous finite elements in space, has been
shown to be an upper bound of the error in the respective norm, see [59, Theorem 2.1].
A new refinement/coarsening strategy based on a bisection algorithm, see, e.g., [23], has
been proposed. In addition, a coarsening error indicator was also provided therein. The
time and space adaptive algorithms were further developed, see Algorithm 3.2 in [59]. The
algorithm includes time and space refining, and space and time coarsening with respect
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to a prescribed spatial and temporal tolerance. The adaptive algorithm has been further
improved in [133] so that it always reaches the final time for a given tolerance.

3.3 Reconstruction methods

Using the so–called elliptic reconstruction of the finite element solution of a spatially semi–
discretized equation, which is considered as an “a posteriori dual” to the elliptic projection
in the classical a priori error analysis for semidiscrete linear parabolic problems [106, 111,
112, 210, 227], a posteriori error estimates for parabolic problems in L∞(0, T ;L2(Ω)) were
derived in [159]. A similar idea, the so–called postprocessed Galerkin approximation has
been used to derive a posteriori error estimates for nonlinear parabolic problems [63, 64,
106]. A posteriori analysis of evolution problems based on both spatial and temporal
reconstructions can be found in [58].

As an extension of [159], and using a combination of the elliptic reconstruction and
other properly related techniques, e.g., main parabolic error estimates, heat kernel est-
mates [15], pointwise boundedness of the spatial derivatives of the Green’s function for
the parabolic problem [74], a posteriori error estimates for fully discrete linear parabolic
problems were derived in various norms. In particular, the following spaces were consid-
ered: L∞(0, T ;L2(Ω)), see [24, 136, 137], L∞(0, T ;H1

0 (Ω)), see [136], L∞(0, T ;H1(Ω)) and
H1(0, T ;L2(Ω)), see [136], L∞(0, T ;L∞(Ω)), see [41, 68, 129, 130], and L∞(D ⊂ Q) [69].

3.4 Functional type estimates

As an extension of functional type a posteriori error estimates derived for elliptic problems
in [161, 184, 186], error bounds for the heat equation were derived in [185]. These functional
estimates are upper bounds (majorants) for the difference in a certain norm between the
exact solution of the heat equation and any admissible approximation from the associated
function space. Error majorants have been further derived for evolutionary convection–
diffusion problems in [187]. In [164], both the error majorant and error minorant (lower
bound) were derived for evolutionary reaction–diffusion problems with mixed Dirichlet–
Neumann boundary conditions.

Functional type a posteriori error estimates for time–periodic parabolic boundary value
problems have been derived in [145], which provide guaranteed and fully computable upper
bounds (majorants) for the error in H1,1/2(Q). As an extension, functional type a posteri-
ori error estimates for the state and adjoint errors in distributed time–periodic parabolic
optimal control problems were derived in [146]. Further, guaranteed and computable upper
bounds for the cost functionals, and their sharpness, were derived therein, using a poste-
riori estimates for the state equation. Similar results for elliptic optimal control problems
can be found in [103, 186].

Recently, following the approaches [164, 185], error majorants for the stabilized space–
time weak formulation of the parabolic problem using isogeometric analysis [143] have
been derived in [140, 141]. A comparison of efficiency of the functional type a posteriori
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error estimates applied to a class of parabolic problems, using both the time–marching and
space–time approaches, was discussed in [114].

3.5 Residual type methods

Based on a general framework [218], the work [219] derives a residual type posteriori error
estimate in Lr(0, T ;W 1,ρ(Ω)) for a space–time finite element discretization of a nonlin-
ear parabolic boundary value problem and non–stationary incompressible Navier–Stokes
equations. With additional regularity assumptions, a residual type posteriori error in the
weaker space Lr(0, T ;Lρ(Ω)) with 1 < r, ρ <∞ has been shown in [220].

Under the assumption that the triangulations are nested, residual a posteriori error
indicators with respect to L2(0, T ;H1

0 (Ω)) for a standard discretization of the heat equation
has been reported in [180].

Residual a posteriori error indicators with respect to a certain norm were derived in
[221] for a discretization of the heat equation by A–stable θ–schemes (θ ∈ [0.5, 1]) in time
and conforming finite elements in space.

Residual a posteriori error indicators in L∞(0, T ;L2(Ω)) for a discretization of the heat
equation using Euler’s implicit scheme in time and continuous, piecewise polynomial finite
elements in space were constructed in [32].

3.6 Flux reconstruction methods

A posteriori error estimates in a broken norm for an approximate solution of the heat
equation were derived in [88]. The estimates are based on H1–conforming reconstructions
of the potential, which is continuous and piecewise affine in time, and a locally conservative
H(div)–conforming reconstruction of the flux, which is piecewise constant in time. Such
a method is inspired by a posteriori error estimates for elliptic problems in [84, 87, 224,
225]. Further, the H(div)–conforming flux reconstruction can be found in [2, 32, 43, 125].
Whereas the potential reconstruction is discussed in [53, 125, 221].

In [85], a posteriori error estimates in L2(0, T ;H1(Ω))∩H1(0, T ;H−1(Ω)) for the error
and for the temporal jumps of the numerical solution of parabolic problems were considered.
This technique can be viewed as a natural extension of flux reconstructions for elliptic
problems [43, 44, 70, 89]. Such estimators have been shown to be unconditionally locally
space–time efficient with respect to local errors, with constants independent of both the
spatial and temporal approximation orders. They also allow very general refinement and
coarsening strategies between the time steps.

The equilibrated flux reconstruction has been used in [86] to obtain a posteriori es-
timates in L2(0, T ;H1(Ω)) of the error and of the temporal jumps. Under the so–called

one–side parabolic condition h2 <∼ τ , it was shown that the constants in the bounds are

robust with respect to the mesh and time step sizes h and τ , respectively, the spatial
polynomial degrees, and the refinement and coarsening strategies between time steps.

12



3.7 Recovered gradient approach

In [151], gradient recovery a posteriori error estimators [4, 22, 55, 95, 152] have been ex-
tended from elliptic equations to the linear heat equation, under the condition that the
time–stepping error must be strictly smaller than the space discretization error. As im-
provement, in [138], a posteriori error estimates in the energy norm using gradient recovery
approaches have been investigated for the full discretization of the linear heat equation,
without such restrictive assumptions on the time step size. Here, gradient recovery is a
local weighted averaging with gradient sampled from neighbouring elements.

3.8 A residual type error indicator with conforming space–time
local mesh refinements

3.8.1 A space–time local error indicator

In our recent work [204, 205], a residual based a posteriori error indicator for the space–time
Petrov–Galerkin finite element method [202] has been proposed.

Let uh ∈ Xh be the space–time finite element solution of the variational problem (6),
where Xh is a properly defined finite element space, see Subsection 2.3. Then we can define
the local residuals

Rq`(uh) := f + ∆xuh − ∂tuh
on each space–time finite element q`, and the jumps

Jγ(uh) := [nx · ∇xuh]|γ

of the normal flux in the spatial direction across the inner boundaries γ between q` and its
neighbouring elements. Then, the local error indicator on each element q` is given as

ηq` =
{
c1h

2
q`
‖Rq`‖2

L2(q`)
+ c2hq`‖Jγ‖2

L2(∂q`)

} 1
2
, (10)

with suitably chosen positive constants c1, c2, which may depend on the model problem
and the shape of the considered domain. In all our numerical examples we have used
c1 = c2 = 1 for simplicity. For more details, we refer to our recent work [203]. It is obvious
that this method allows performing spatial and temporal adaptivity simultaneously.

3.8.2 An adaptive space–time finite element loop

The adaptive loop in the space–time finite element method follows the standard adaptive
finite element approach, see, e.g., [223], which consists of the following four main steps:
Given a conforming decomposition Q0 at the initial mesh level k = 0,

1. SOLVE: Solve the discrete problem (6) on the adaptive mesh level k,
2. ESTIMATE: Compute the local error indicators (10) on each element q` and the

global error indicator, stop if the solution is accurate enough,
3. MARK: Mark the elements for refinement using a proper marking strategy,
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4. REFINE: Perform the local mesh refinement using octasection or bisection (see the
following description), increase the level k := k+ 1, obtain the conforming decompo-
sition Qk, and go to Step 1.

For the module MARK, we use the maximal marking strategy: For a given parameter
ϑ ∈ [0, 1], mark all elements qk that fulfill

ηqk ≥ ϑ max
`=1...,Nk

ηq` , (11)

where Nk denotes the total number of space–time finite elements on the current level k.
Those marked and the affected neighbouring elements will be refined on the next level
k + 1. In our numerical experiments, we use ϑ = 0.5 for the adaptive mesh refinement.

3.8.3 An octasection based adaptive mesh refinement method

For the adaptive local mesh refinement, we first adopt a method mainly following the
idea in [38], i.e., the so–called octasection, which is strongly connected to the Red–Green
refinement in two dimensions [19, 20, 201]. In the software package UG [27], a similar
method has been implemented, while in [109], a parallel version of this method has been
developed. Here, we have only considered a refining procedure without coarsening. While
in the following the focus is to discuss a Galerkin–Petrov space–time finite element method
on simplicial meshes, space–time adaptivity can be considered for more general situations
as well, e.g., for higher order tensor product spaces, or hexahedral meshes.

Starting from an initial mesh with shape regular tetrahedral elements, we mark the
tetrahedra that shall be refined on the next level. Each of these marked tetrahedra is
divided into four congruent tetrahedra and one octahedron by connecting middle edge
points on each face of the tetrahedron. Following the shortest–interior–edge strategy [231],
we further divide the remaining octahedron into four tetrahedra.

During the regular refining procedure, hanging nodes appear, i.e., some edges of the
tetrahedron are divided but the tetrahedron itself is not yet divided, which has to be
closed by a combined regular and irregular refinement strategy. According to how many,
i.e., maximal five, and which edges of a tetrahedron are divided, there exist 62 possible
cases for the irregular refinement. Due to a symmetry argument, the number of cases is
reduced to nine. In [38, 42], only four types of irregular refinement are considered for
simplicity.

By building proper connections among the tetrahedral vertex and the middle edge
points on the face of a tetrahedron locally, we obtain a hybrid mesh without hanging nodes,
but with a mixture of different elements: tetrahedra, pyramids and triangular prisms; see
Figure 1 for an illustration.

The remaining task is to further divide the pyramids and triangular prisms into tetra-
hedra in a conformal way, which does not introduce any additional nodes in the mesh and
at the same time subdivide each rectangular face shared by two elements into two triangles
in a conforming way. This is realized in the same manner as detailed in [230].

It is important that on the next refinement levels, the tetrahedra from the irregular
refinement will never be refined again. If such an element is marked for further refinement,
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Figure 1: Irregular refinements of a tetrahedron with local vertex numbering 0, ..., 3 into
hybrid elements: tetrahedra, pyramids and triangular prisms: Case 1 (two tetrahedra),
Case 2 (four tetrahedra), Case 3 (one tetrahedron and one pyramid), Case 4 (four tetra-
hedra), Case 5 (one tetrahedron and one triangular prism), Case 6 (one tetrahedron and
two triangular prisms), Case 7 (two triangular prisms), Case 8 (two tetrahedra and two
pyramids), Case 9 (two tetrahedra, one triangular prism and one pyramid).

we will return to its “parent”, which is regular, and make a regular refinement for this
element and meanwhile remark all neighboring elements that are affected. In this way, we
avoid a mesh degeneration during the adaptive refinement procedure.

For high dimensions, the regular (Red) refinement has been considered in [39] using
Freudenthal’s algorithm [100]. The conforming Red–Green refinement of simplicial meshes
in arbitrary dimensions has been recently investigated in [108] using the placing triangula-
tion technique. A special refinement strategy to decompose pentatopes into smaller ones
for the four–dimensional space–time cylinder has been introduced in [173].

15



3.8.4 A bisection based adaptive mesh refinement method

We further consider a bisection–based mesh refinement method [14] in three dimensions,
which is strongly related to the newest vertex bisection method proposed and developed
in [23, 131, 156]. The local mesh refinement is summarized as follows: For each marked
tetrahedron we choose one edge as the so–called refinement edge, and the two faces in-
tersecting at this edge as the refinement faces. For the other two nonrefinement faces, we
choose a particular edge on each face as the so–called marked edge. Once a tetrahedron is
marked for refinement, we will divide this tetrahedron into two smaller ones by connecting
the middle point on the refinement edge with the other two tetrahedral vertices that are
not lying on the refinement edge. This simplifies the local refinement patterns.

In fact, according to the relative position between the marked and refinement edges,
the marked tetrahedra can be grouped into four types: Type P (planar, where the marked
edges and the refinement edge are coplanar), Type A (adjacent, where each marked edge
shares a common vertex with the refinement edge, but they are not coplanar), Type O
(opposite, where the marked edges have no intersection with the refinement edge), and
Type M (mixed, one marked edge does not intersect the refinement edge, and the other
does), see Figure 2 for an illustration.

P A O M

Figure 2: The four types of marked tetrahedra (from left to right): P , A, O and M . The
refinement edge is indicated by the thick solid line, and the marked edge is highlighted by
a double line. The two faces sharing the refinement edge are the refinement faces, and the
other remaining two faces the nonrefinement faces.

In addition, a flag fτ ∈ {0, 1} is attached to the type P so that P is classified as type Pf
(fτ = 1) or Pu (fτ = 0). The local refinement follows the rules:

Pu −→ Pf , A −→ Pu, M −→ Pu, O −→ Pu, Pf −→ A. (12)

It is sufficient and necessary to obtain conforming refinements in three dimensions provided
that the refinement edges of two neighboring elements have to coincide, when they are on
the common sharing face [174]. This condition is easily fulfilled for any initial conforming
triangulation by, e.g., choosing the longest edge of each tetrahedral element as the refine-
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ment edge [14]. A conforming mesh is obtained by a recursive calling of the local mesh
refinement until no hanging nodes exist, see [14, Theorem 3.1].

We mention that bisection methods have been extended to any dimension in [165, 207,
212], which is very useful for the space–time adaptivity in four dimensions. In addition,
it has been shown in [207] that the newest vertex bisection refinement stays local for any
dimension, which is extended from the result [40] in two dimensions.

Compared with the octasection–based method, the refinement pattern for each tetra-
hedron has been fixed from the very beginning in the bisection–based approach. During
the adaptive refinement procedure, the tetrahedron chosen for refinement will be contin-
uously refined according to the strict rules (12) specified above. Some related numerical
results concerning adaptive space–time finite element methods for both linear and nonlinear
parabolic problems are shown in Subsection 5.1.

3.9 Some other topics of a posteriori error estimates in space–
time FEM

In [170], a residual type a posteriori error analysis was derived for a fully discrete method
using piecewise linear finite elements in space and backward Euler discretization in time
of parabolic variational inequalities in the pricing of American options for baskets. A
posteriori error estimators were derived for the error in L2(0, T ;H1(Ω)). Two residual type
error indicators have been considered in [1] for a posteriori error estimates for parabolic
variational inequalities. In [179], an a posteriori error analysis was investigated for a class
of integral equations and variational inequalities in the pricing of European or American
options under Lévy processes, discretized by piecewise linear finite elements in space and
the implicit Euler method in time. A residual type a posteriori error estimator was derived
for the error in Hs, s ∈ (0, 2].

A posteriori error estimates for space–time discretizations with discontinuous finite
elements in time for a parabolic obstacle problem were derived in [25].

Using the so–called energy argument and a topological continuation argument, a pos-
teriori error control in L∞(0, T ;L2(Ω)) for the Allen–Cahn’s problem was derived in [127],
which only has a low order polynomial dependence in ε−1 with ε being the interface thick-
ness parameter. A similar result has been also achieved in [94]. These results have been
improved from the old results which have an exponential dependence on ε−2. Similarly,
in [26], quasi–optimal a posteriori error estimates in L∞(0, T ;L2(Ω)) for the finite ele-
ment approximation of Allen–Cahn equations were derived, with a low order polynomial
dependence in ε−1.

In [126], optimal order residual type a posteriori error estimates for the fully discrete
linear Schrödinger–type equations in L∞(0, T ;L2(Ω)) were derived, using a Crank–Nicolson
method in time, and a finite element method in space which may change in time. In addi-
tion, a practical space–time adaptive algorithm was realized, which guarantees rigorously
that the total error remains below a given tolerance as long as the algorithm converges.

As an extension of the a posteriori estimates for the linear heat equation considered
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in [221], a reliable and efficient a posteriori estimate for the fully discrete implicit Euler
Galerkin finite element scheme of the nonlinear p–Laplacian problem was derived in [132].
In an earlier work [56], a posteriori error estimates for the finite element approximation of
the nonlinear p–Laplacian have been derived, too.

Following the reconstruction approaches studied in [5, 24, 136], residual type a posteriori
error estimates for the linear parabolic problems with two transmission conditions on the
common space–time interface were derived in [198]. In [199], using an energy argument,
residual–based a posteriori error estimates for linear parabolic interface problems were
derived with optimal order convergence in L2(0, T ;H1(Ω)), and with an almost optimal
order in L∞(0, T ;L2(Ω)).

Following the approach in [180, 221], residual type a posteriori error estimates were
derived in [35] for the heat equation with a diffusion coefficient which is constant in time
and piecewise constant within the subdomains. In [36], as an extension of the results in [35],
a residual based a posteriori error estimator was further derived for a new discretization
method, i.e. Crank–Nicolson in time and a conforming finite element method in space, of
the heat equation with jumping diffusion coefficients. This method allows varying time
step sizes on different elements at the same time.

A fully combined spatial and temporal adaptive scheme was applied to the unsteady
Navier–Stokes equations in [37], using the results of a posteriori error estimates and
adaptive algorithms for the steady Navier–Stokes system [34, 183], the heat equation
[32, 35, 180, 221], an unsteady reaction–convection–diffusion equation [222], and the un-
steady Stokes system [33]. In particular, local–in–space error indicators [34] and local–in–
time error indicators [32, 33, 35, 180, 221] were adopted in the adaptive algorithm in space
and in time.

Following the approach in [28], an anisotropic a posteriori error estimate for controlling
the error between the true and the computed cost functional in an optimal control problem
governed by a parabolic equation was derived in [181], which is discretized by a Crank–
Nicolson scheme in time, and continuous piecewise linear finite elements in space. In the
error analysis, a space–time interpolation operator was built as a combination of a Clément
[62] or Scott–Zhang [197] type quasi–interpolation operator on strongly anisotropic meshes
[10, 97, 98] in space, and the standard Lagrange interpolation in time. With the help of
the simple Zienkiewicz–Zhu type error estimator [3, 189], and assuming that the time step
size is small enough, an anisotropic a posteriori error estimate for the cost functional was
designed.

In [157], a posteriori error estimates for both the state and the control approximation
of a quadratic optimal control problem governed by a linear parabolic equation were de-
rived. In [200], equivalent a posteriori error estimators of residual type with lower and
upper bounds for both the state and control approximations of a constrained optimal con-
trol problem governed by a parabolic integro–differential equation on multi–meshes were
considered.

As an extension of the work [29, 30, 31], a posteriori error estimates were derived for
a cost functional of parabolic optimization problems in [167]. In [195], as an extension
of an optimal control approach to a posteriori error estimation in finite element methods
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proposed in [18, 29], an a posteriori error estimator and an adaptive space–time algorithm
for parabolic equations have been considered, that allow dynamic locally refined meshes
and nonuniform time discetizations.

4 Solution methods

For a general discussion on parallel solution methods for time dependent problems we refer
to the recent review work [104] and the references therein, where four main types of space–
time solution methods have been discussed in detail: Shooting type time parallel methods,
space–time domain decomposition methods, geometric multigrid methods in space and
time, and direct solvers. Here, we are mainly concerned with very recent developments
of space–time geometric multigrid methods, algebraic multigrid methods, and space–time
domain decomposition by constraints as discussed in Subsections 4.1–4.3, respectively.

We mention that there are many other techniques for designing parallel space–time
solvers. For example, in [90, 91, 92], optimal–scaling parallel multigrid–reduction–in–time
and multigrid methods with space–time concurrency were developed for solving linear and
nonlinear parabolic model problems with both implicit and explicit time discretizations,
which are mainly based on multigrid reduction [188]. In [110], so–called semi–geometric
multigrid methods for a new continuous space–time finite element discretization of transient
problems in continuum mechanics have been developed.

4.1 Space–time geometric multigrid

In [105, 172], a new space–time parallel geometric multigrid method was developed for
solving fully discrete parabolic equations, i.e., using an arbitrarily high order discontinuous
Galerkin discretization in time and a finite element method in space. Using exponential
local Fourier mode analysis [45, 47, 117, 226], block Jacobi smoothing factors and two–
grid convergence factors for arbitrary discontinuous Galerkin time discretization schemes
were investigated, which lead to a precise criterion, i.e. a restriction on the discretization
parameter µ = τh−2 with respect to the polynomial degree in time, for determining semi–
coarsening in time or full coarsening in space and time. It is concluded that semi–coarsening
in time within the two–grid cycle always converges to the exact solution, while full space–
time coarsening can be applied when the discretization parameter µ is large enough in
comparison with the critical value.

Instead of an adaptive coarsening as proposed in, e.g., [105, 117], a space–time multi-
grid method using an adaptive smoothing strategy in combination with standard coarsen-
ing in both temporal and spatial domains was developed in [99]. According to a critical
value, the adaptive strategy determines a choice of smoothers between zebra line–in–time
relaxation/read–black line–in–time relaxation and zebra line–in–space relaxation/zebra
plane–in–space relaxation in one/two space dimensions, respectively. This critical value is
obtained by performing a local Fourier analysis [45, 47, 209, 214, 226, 228]. The proposed
multigrid method is robust for both first–order Euler and second–order Crank–Nicolson
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temporal discretization schemes.

4.2 Space–time algebraic multigrid

In our recent work [204, 205], considering local mesh refinement and using arbitrary simplex
meshes in three and four space–time dimensions in a space–time finite element discretiza-
tion method [202] for the heat equation, we have compared algebraic multigrid methods
[48, 50, 190, 208] using different coarsening for solving the arising linear system of algebraic
equations:

Ax = b. (13)

It is clear from [202] that the matrix A is non–symmetric but positive definite. The
linear system (13) is solved by a preconditioned GMRES method with different algebraic
multigrid preconditioners. In particular, we use two V(1,1)–cycles with one pre– and post–
smoothing step as a preconditioner in the GMRES method. We have considered a pure
matrix–graph [128], a greedy coarse–grid selection [158], compatible relaxation [49, 93],
and Petrov–Galerkin smoothed aggregation [217].

The simple pure matrix–graph coarsening strategy yields a very aggressive coarsening
method, and a rather low operator and grid complexities. It treats all connection equally
without taking into account the strength of a connection in the classical Ruge–Stüben alge-
braic multigrid [50, 190], that is actually important in our space–time algebraic multigrid
methods.

In the greedy strategy, the strength of a connection has been taken into account and
only strong connections are to be considered in the definition of the interpolation operator,
by using a dynamic measure to determine the diagonal dominance of a row among those
rows already selected as fine degrees of freedom or undesignated.

In the compatible relaxation algebraic multigrid, the coarse grid set is selected by
performing compatible relaxation restricted to the fine degrees of freedom only.

In the smoothed aggregation algebraic multigrid method, the interpolation operator is
constructed by smoothing a tentative interpolation operator, e.g., using piecewise constant
basis functions, on the decomposition of degrees of freedom into small disjoint subsets.
More details are reported in our recent work [205] and the related references therein.

Further, we employ one sweep of the Kaczmarz relaxation scheme [121] as pre– and
postsmoother for the non–symmetric and positive definite system on multigrid levels: Let
x0 be a given initial guess, for i = 1, ..., n, compute

xi = xi−1 +
bi − 〈Ai, xi−1〉
‖Ai‖2

l2

Ai, (14)

with Ai being the ith row of A presented as a column vector, and bi the ith component
of b. The algebraic multigrid smoothing property of the Kaczmarz relaxation scheme for
even more general non–symmetric matrices has been discussed in [46, 182].

All methods have shown relative robustness with respect to the mesh discretization
parameters in space and time, the heat capacity constant, and local mesh adaptivity.
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Some numerical results concerning algebraic multigrid performance will be demonstrated
in Subsection 5.2.

4.3 Space–time balancing domain decomposition by constraints

In [17], weakly scalable space–time preconditioners based on non–overlapping multilevel
balancing domain decomposition by constraints (BDDC) methods have been developed
for solving both linear and nonlinear parabolic problems discretized using finite elements
in space and backward Euler schemes in time. The essential components in the space–
parallel BDDC method [162, 215], namely, sub–assembled spaces and operators, coarse
degrees of freedom, and transfer operators, have been extended to space–time. In this
method, the space domain is decomposed into fine space elements, and coarse space sub-
domains partitions, and the time domain is decomposed into a fine–time interval and
coarse time subdomain partitions. The space–time subdomain partition is then defined as
Cartesian product of the space and time subdomains. A sub–assembled problem involv-
ing independent subdomain corrections within the sub–assembled space is then defined on
the space–time subdomain partition, with introduced perturbation terms on inner time
interfaces, i.e. the first and last time steps of the time subinterval. The coarse degrees
of freedom are associated with the geometrical objects, namely, vertices, edges, and faces,
among space–time subdomains. Every coarse degree of freedom is enforced to be con-
tinuous among subdomains by respective constraints. The space–time transfer operator
is then constructed as a combination of the so–called space–time weighting operator and
space–time “harmonic” extension operator. Finally, using all these components, the space
time BDDC preconditioner is built as in the additive Schwarz method.

5 Numerical experiments

5.1 Space–time finite element adaptivity

5.1.1 A linear model problem

We first consider some numerical results for the adaptive solution of the linear model
equation (1). For this purpose, we consider the exact solution

u(x1, x2, t) = (x2
1 − x1)(x2

2 − x2)(t2 − t)e−100((x1−t)2+(x2−t)2) (15)

for (x1, x2) ∈ (0, 1)2 and t ∈ (0, 1], i.e. Q = (0, 1)3, and the given data are defined
accordingly. The mesh information is prescribed in Table 1: number of degrees of freedom
(#Dofs), number of tetrahedral elements (#Tets), and spatial and temporal mesh size
(h/τ). The estimated order of convergence (eoc) for the absolute errors in L2(0, T ;H1

0 (Ω))
on five mesh levels L1–L5 are given in Table 2.

A comparison of the convergence history using uniform and adaptive refinements is
shown in Figure 3. We mention that, for the adaptive mesh refinements, the octasection
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Level #Dofs #Tets h/τ

L1 125 384 0.25
L2 729 3072 0.125
L3 4913 24586 0.0625
L4 35937 196608 0.03125
L5 274625 1572864 0.015625

Table 1: Mesh information on five uniformly refined levels: L1–L5.

[38] and bisection [14] methods have been used. We use the a posteriori error estimators
and the adaptive method as discussed in Subsection 3.8. From the results, we observe
a linear order of convergence with both the uniform and two adaptive mesh refinements.
The adaptive methods show more efficiency than the uniform one, in particular in saving
a number of degrees of freedom.

Level ‖e‖L2(0,T ;H1
0 (Ω)) eoc

L1 1.64 · 10−2 −
L2 1.49 · 10−2 0.13
L3 1.08 · 10−2 0.46
L4 6.14 · 10−3 0.82
L5 3.17 · 10−3 0.96

Table 2: The estimated order of convergence (eoc) for the linear model problem on the
mesh levels L1-L5.

Figure 3: Convergence history of the space–time finite element methods for the linear
model problem: uniform (−+−), octasection (− ◦ −) , bisection (− ∗ −) and linear (−).

In Figure 4, we visualize the adaptive meshes using the octasection and bisection at
the time levels t = 0.25k, k = 0, ..., 4. In Figure 5, we show the numerical solution and
adaptive space–time meshes on three planes: x1 = 0.5, x2 = 0.5, t = 0.5. Our adap-
tive methods can effectively capture the moving interface in the space–time domain and
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make the corresponding adaptive mesh refinements in space–time. More results concerning
space–time adaptivity can be found in [203, 205].

Figure 4: Visualization of numerical solutions and adaptive meshes at time levels t = 0.25k,
k = 0, ..., 4, for the linear model problem: Numerical solution (top), adaptive meshes using
octasection at the 9th refinement level (middle) and bisection at the 19th refinement level
(bottom).

Figure 5: Visualization of the numerical solution and adaptive space-time meshes at x1 =
0.5, x2 = 0.5, t = 0.5 for the linear model problem: Numerical solution (left), adaptive
meshes using octasection at the 9th refinement level (middle) and bisection at the 19th
refinement level (right).

5.1.2 A nonlinear model problem

As an extension of the linear heat equation (1) we also consider the following nonlinear
parabolic equation with a third order reaction term and a positive constant ε,

∂tu(x, t)−∆xu(x, t) +
1

ε2

(
u3(x, t)− u(x, t)

)
= 0, (16)
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which is the so–called Schlögl model [194] or the Nagumo equation [166], with applications
in optimal control [52, 57]. We now consider an example with the exact solution

u(x1, x2, t) =
1

2

(
1− tanh

x1 − st
2
√

2ε

)
, (17)

in the space–time domain Q := (17, 19)2 × (0, 5], and with ε = 0.38, s = 3√
2ε

. Note that

the spatial domain Ω = (17, 19)2 is chosen such that we can observe the moving interface
in the space–time domain Q. The solution and uniform meshes on level 1 are plotted in
Figure 6. It is easy to see that the solution changes from 0 to 1 smoothly within a narrow
time interval.

Figure 6: Visualization of the solution (left) for the nonlinear problem, the plot of the
solution along the line (time) with the starting point (18, 18, 0) and end point (18, 18, 5)
(right).

For this nonlinear model problem, we observe a linear order of convergence of the
numerical solution as shown in Table 3. A comparison of adaptive and uniform refinements
is demonstrated in Figure 7, where the adaptive ones show a better efficiency. As for the
linear model problem, we use the residual based local error indicator (10) on each element
to drive the adaptive mesh refinements, where the local residual is replaced by the residual
for the nonlinear problem. Note that we observe a better efficiency of the bisection method
than the octasection one in this particular example.

Level #Dofs h(τ) ‖e‖L2(0,T ;H1
0 (Ω)) eoc

1 225 0.5 1.35 · 10−0 −
2 1377 0.25 8.23 · 10−1 0.71
3 9537 0.125 4.78 · 10−1 0.78
4 70785 0.0625 2.48 · 10−1 0.95
5 545025 0.03125 1.19 · 10−1 1.06

Table 3: The estimated order of convergence (eoc) for the nonlinear model problem on five
mesh levels.
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Figure 7: Convergence history of the space-time finite element for the nonlinear model
problem: uniform (−+−), octasection (− ◦ −) , bisection (− ∗ −) and linear (−).

We visualize the numerical solution on the planes x1 = 18, x2 = 18 and t = 3.0, and the
adaptive space–time meshes on the boundary and on the plane x2 = 18 as given in Figure
8. From the results, we see that the transient interface of the solution in the space–time
domain can be captured by the two adaptive methods for this nonlinear model problem.

5.2 Space–time algebraic multigrid methods

To study the performance of the algebraic multigrid methods, we focus on a comparison of
algebraic multigrid preconditioned GMRES methods for solving the linear model problem
(1), using the greedy (AMG Greedy) and smoothed aggregation (AMG SA) coarsening, as
discussed in Subsection 4.2. That is because of the pure matrix–graph coarsening leads to
a poor performance, and the compatible relaxation scheme leads to a similar performance
as the greedy scheme. More numerical results in three and four dimensions are reported
in [205].

We use the relative residual reduction tol = 10−8 as a stopping criterion for the GMRES
method with one V(1,1)–cycle as a preconditioner. The number of AMG Greedy and
AMG SA preconditioned GMRES iterations and costs in seconds (s) with one V(1,1)–cycle
are compared in Table 4. We mention that for this example we use uniform refinements
from a bisection method [207]. The preconditioners show relatively good robustness and
performance with respect to mesh refinements.

AMG Greedy AMG SA
#Dofs It sec It sec

961 8 0.01 15 0.04
2881 10 0.06 18 0.1

11457 11 0.3 16 0.5
53569 17 2.4 43 7.6

168577 27 13.6 53 27.8

Table 4: Comparison of GMRES iterations and costs in seconds using one V(1,1)–cycle
preconditioner on the uniform meshes.
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Figure 8: Visualization of the numerical solution on the planes x1 = 18, x2 = 18 and
t = 3.0 (left), adaptive space-time meshes on the boundary (middle) and on the plane
x2 = 18 (right) using octasection at the 8th refinement level (top) and bisection at the
18th refinement level (bottom), for the nonlinear model problem.

5.3 An application to a parabolic optimal control problem

In this example, we apply the Petrov–Galerkin space–time finite element method [202] to
a parabolic optimal control problem. We consider the following model problem: Minimize
the cost functional

J (u, z) :=
1

2

∫
Ω

[u(x, T )− ū(x)]2dx+
1

2
ρ‖z‖2

L2(Q) (18)

with respect to the state u and control z subject to the following parabolic problem

∂tu(x, t)−∆xu(x, t) = z(x, t) for (x, t) ∈ Q := Ω× (0, T ),

u(x, t) = g(x, t) for (x, t) ∈ Σ := Γ× (0, T ),

u(x, 0) = u0(x) for x ∈ Ω,

(19)

where ū(x) denotes a desired final temperature distribution, z = z(x, t) is a control acting
on the space–time cylinder Q, and ρ > 0 is a regularization parameter; see similar problems
considered in [213].

The related optimality system consists of the following three parts:
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The primal problem

∂tu(x, t)−∆xu(x, t) = z(x, t) for (x, t) ∈ Q := Ω× (0, T ),

u(x, t) = g(x, t) for (x, t) ∈ Σ := Γ× (0, T ),

u(x, 0) = u0(x) for x ∈ Ω,

(20)

the adjoint problem

−∂tp(x, t)−∆xp(x, t) = 0 for (x, t) ∈ Q,
p(x, t) = 0 for (x, t) ∈ Σ,

p(x, T ) = u(x, T )− ū(x) for x ∈ Ω,

(21)

and the optimality condition

p(x, t) + ρz(x, t) = 0 for (x, t) ∈ Q. (22)

We apply the space–time finite element discretization method [202] to this optimality
system. We consider Ω = (0, 1)2, T = 1, i.e. Q = (0, 1)3, and the exact solutions

u(x, t) =
3

4
ζe2π2t sin(πx1) sin(πx2),

p(x, t) = −3ρπ2ζe2π2t sin(πx1) sin(πx2),

z(x, t) = 3π2ζe2π2t sin(πx1) sin(πx2)

with ζ = 10−9. The initial condition for the primal variable is then given by

u0(x) =
3

4
ζ sin(πx1) sin(πx2),

and the target is

ū(x) = (
3

4
+ 3ρπ2)ζe2π2

sin(πx1) sin(πx2).

We run simulations on the five mesh levels as provided for the linear model problem in
Section 5.1. The estimated order of convergence (eoc) for u, p, and z in L2(0, T ;H1

0 (Ω))
are given in Table 5 and Table 6 for ρ = 1 and ρ = 0.001, respectively. We observe a
linear convergence rate as expected. Moreover, in L2(Q) we observe a quadratic order of
convergence, see Table 7 and Table 8 for ρ = 1 and ρ = 0.001, respectively.
To solve the discrete optimality system, we utilize a monolithic AMG method using a block-
wise ILU smoother [191], and a simple blockwise coarsening strategy [128]. We observe
a quite robust AMG performance with respect to the mesh refinements and the regular-
ization parameter; see Table 9. However, due to the high cost of the ILU smoother, the
computation is rather expensive, which needs further investigations on finding more robust
and efficient smoothers for the solution of such an optimality system.
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#Dofs ‖eu‖0,1 eoc ‖ep‖0,1 eoc ‖ez‖0,1 eoc

375 2.3e− 1 − 7.7e− 0 − 7.7e− 0 −
2187 1.4e− 1 0.68 4.5e− 0 0.79 4.5e− 0 0.79

14739 7.1e− 2 1.00 2.4e− 0 0.92 2.4e− 0 0.92
107811 3.2e− 2 1.13 1.2e− 0 0.98 1.2e− 0 0.98
823875 1.5e− 2 1.09 6.0e− 1 1.01 6.0e− 1 1.01

Table 5: The estimated order of convergence (eoc) in L2(0, T ;H1
0 (Ω)) for u, p and z, ρ = 1.

‖ev‖0,1 := ‖v − vh‖L2(0,T ;H1
0 (Ω)), v = u, p, z.

#Dofs ‖eu‖0,1 eoc ‖ep‖0,1 eoc ‖ez‖0,1 eoc

375 2.2e− 1 − 7.6e− 2 − 7.6e− 0 −
2187 1.3e− 1 0.76 4.4e− 2 0.79 4.4e− 0 0.79

14739 6.6e− 2 0.98 2.5e− 2 0.82 2.5e− 0 0.82
107811 3.1e− 2 1.09 1.3e− 2 0.94 1.3e− 0 0.94
823875 1.5e− 2 1.04 6.6e− 3 1.01 6.6e− 1 1.01

Table 6: The estimated order of convergence (eoc) for the optimal control problem in
L2(0, T ;H1

0 (Ω)) for u, p and z, ρ = 0.001. ‖ev‖0,1 := ‖v − vh‖L2(0,T ;H1
0 (Ω)), v = u, p, z.

6 Conclusions

This work has reviewed space–time finite element methods for the approximate solution
of related parabolic type evolution equations. In particular, the following issues have been
addressed: space–time finite element discretization, a posteriori error estimates and corre-
sponding space–time adaptive schemes, and modern parallel space–time solution methods.

Some numerical examples using the Petrov–Galerkin space–time finite element
method proposed in [202] have been performed for both linear and nonlinear parabolic
problems, which show advantages using simultaneous space–time adaptivity. We have
provided numerical tests on algebraic multigrid methods for solving the large–scale lin-
ear systems of space–time finite element equations, which show the relative robustness
of the solution methods with respect to the mesh refinements. Applicability of the pro-
posed space–time finite element method [202] to the parabolic optimal control problems is
confirmed by our numerical examples as well.
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suggestions and remarks.
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#Dofs ‖eu‖0,0 eoc ‖ep‖0,0 eoc ‖ez‖0,0 eoc

375 4.0e− 2 − 1.1e− 0 − 1.1e− 0 −
2187 2.5e− 2 0.7 5.6e− 1 0.9 5.6e− 1 0.9

14739 1.1e− 2 1.2 2.3e− 1 1.3 2.3e− 1 1.3
107811 3.5e− 3 1.6 7.3e− 2 1.6 7.3e− 2 1.6
823875 9.6e− 4 1.9 2.0e− 2 1.8 2.0e− 2 1.8

Table 7: The estimated order of convergence (eoc) for the optimal control problem in L2(Q)
for u, p and z, ρ = 1. ‖ev‖0,0 := ‖v − vh‖L2(Q), v = u, p, z.

#Dofs ‖eu‖0,0 eoc ‖ep‖0,0 eoc ‖ez‖0,0 eoc

375 3.8e− 2 − 1.0e− 2 − 1.0e− 0 −
2187 2.3e− 2 0.7 5.0e− 3 1.0 5.0e− 1 1.0

14739 9.9e− 3 1.2 2.0e− 3 1.3 2.0e− 1 1.3
107811 3.2e− 3 1.6 6.4e− 4 1.6 6.4e− 2 1.6
823875 8.7e− 4 1.9 1.8e− 4 1.9 1.8e− 2 1.9

Table 8: The estimated order of convergence (eoc) for the optimal control problem in L2(Q)
for u, p and z on five mesh levels, ρ = 0.001. ‖ev‖0,0 := ‖v − vh‖L2(Q), v = u, p, z.
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29



#Dofs ρ = 102 ρ = 101 ρ = 100 ρ = 10−1 ρ = 10−2

#Dofs It sec It sec It sec It sec It sec

375 2 0.03 2 0.03 2 0.02 2 0.03 2 0.03
2187 3 0.09 3 0.10 3 0.09 3 0.10 3 0.10

14739 3 0.98 3 1.21 3 1.03 3 1.04 3 1.01
107811 3 19.6 3 18.9 4 24.3 4 23.3 4 25.3
823875 4 509 4 522 4 500 4 518 4 585

Table 9: AMG iterations and computational costs for solving the optimality system

[7] , Stability of sparse space–time finite element discretizations of linear
parabolic evolution problems, IMA J. Numer. Anal. 33 (2013), 242–260.

[8] , On long time integration of the heat equation, Calcolo 53 (2016), 19–34.

[9] H. Antil, E. Otárola and A. J. Salgado, A space–time fractional optimal control
problem: Analysis and discretization, SIAM J. Control Optim. 54 (2016), 1295–1328.

[10] T. Apel, Interpolation of non–smooth functions on anisotropic finite element meshes,
ESAIM: M2AN 33 (1999), 1149–1185.

[11] D. N. Arnold and H. Chen, Finite element exterior calculus for parabolic problems,
ESAIM: M2AN 51 (2017), 17–34.

[12] D. N. Arnold, R. S. Falk and R. Winther, Finite element exterior calculus, homolog-
ical techniques, and applications, Acta Numerica. 15 (2006), 1–155.

[13] , Finite element exterior calculus: from Hodge theory to numerical stability,
Bull. Amer. Math. Soc. 47 (2010), 281–354.

[14] D. N. Arnold, A. Mukherjee and L. Pouly, Locally adapted tetrahedral meshes using
bisection, SIAM J. Sci. Comput. 22 (2000), 431–448.

[15] D. G. Aronson, Non–negative solutions of linear parabolic equations, Ann. Sc. Norm.
Super. Pisa Cl. Sci. 22 (1968), 607–694.

[16] A. K. Aziz and P. Monk, Continuous finite elements in space and time for the heat
equation, Math. Comput. 52 (1989), 255–274.

[17] S. Badia and M. Olm, Space-time balancing domain decomposition, SIAM J. Sci.
Comput. 39 (2017), C194–C213.

[18] W. Bangerth and R. Rannacher, Adaptive finite element methods for differential
equations, Lectures in Mathematics, ETH Zürich, Springer Basel AG, Berlin, 2006.
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[43] D. Braess, V. Pillwein and J. Schöberl, Equilibrated residual error estimates are
p–robust, Comput. Methods Appl. Mech. Engrg. 198 (2009), 1189–1197.
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[84] A. Ern, S. Nicaise and M. Vohraĺık, An accurate H(div) flux reconstruction for dis-
continuous Galerkin approximations of elliptic problems, C. R. Math. Acad. Sci.
Paris 345 (2007), 709–712.

[85] A. Ern, I. Smears and M. Vohraĺık, Guaranteed, locally space–time efficient, and
polynomial–degree robust a posteriori error estimates for high-order discretizations
of parabolic problems, (2016), arXiv:1610.01804 [math.NA].

[86] A. Ern, I. Smears and M. Vohraĺık, Equilibrated flux a posteriori error esti-
mates in L2(H1)–norms for high–order discretization of parabolic problems, (2017),
arXiv:1703.04987 [math.NA].

[87] A. Ern, A. F. Stephansen and M. Vohraĺık, Guaranteed and robust discontinuous
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[189] R. Rodŕıguez, Some remarks on Zienkiewicz–Zhu estimator, Numer. Methods Partial
Differential Equations 10 (1994), 625–635.
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