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Nonlinear Inversion in Fluorescence Optical
Tomography

Manuel Freiberger Student Member, IEEE, Herbert Egger, and Hermann Scharfetter

Abstract—Fluorescence optical tomography is a non-invasive
imaging modality that employs the absorption and re-emission
of light by fluorescent dyes. The aim is to reconstruct the
fluorophore distribution in a body from measurements of light
intensities at the boundary. Due to the diffusive nature of light
propagation in tissue, fluorescence tomography is a nonlinear
and ill-posed inverse problem, and some sort of regularzation
is required for a stable solution. In this paper we investigate
Tikhonov-type methods, and we utilize nonlinear penalty terms,
namely total-variation regularization and a method of levelset
type, which provide better reconstructions than standard L2-
penalty terms in cases where the unknown distributions are
localized. We also propose iterative methods for the solution of
the corresponding nonlinear least-squares problems, and discuss
some details of a discretization by finite element methods, like
the efficient assembly of the sensitivity system via adjoint meth-
ods. The improvement of reconstructions that can be obtained
by utilizing nonlinear regularization terms is demonstrated in
numerical examples.

I. INTRODUCTION

Fluorescence diffuse optical tomography (FDOT) is a rather
new imaging technology amongst the diffusion limited optical
modalities. This method employs the ability of fluorescent
dyes to absorb light in a certain wavelength range and to re-
emit photons at a longer wavelength. The investigated sample,
which can be a slice of tissue or a small animal, for example,
is excited through a set of light sources placed on the surface
of the sample. The excitation light then spreads through the
tissue and is partially absorbed by fluorophores, which re-emit
part of the light at a longer wavelength. The emitted light then
spreads through the tissue again, and a part is recorded by
detectores at the boundary.

A particularly advantageous feature of fluorescence to-
mography is the fact that the activity of fluorophores can
be influenced by metabolical states or processes, like the
oxygenation of the tissue [1], [2], the pH value [3], [4], or
the temperature [5]. This enables functional imaging, i.e., to
not only acquire anatomical images, but also to determine
physiological activities in biological systems.

Three different measurement principles, which differ in the
type of the excitation source, are mainly used nowadays: (i)
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continuous wave (CW) excitation with constant intensity [6],
(ii) CW light with modulated intensity leading to frequency
domain methods [7], [8], and (iii) time of flight-arrangements
using ultra-short pulsed laser sources [9]. In this paper, we
focus on the first two approaches.

Like other diffusion limited modalities, the spatial resolu-
tion of fluorescence optical tomography is rather low. The
reason for this is that photons are scattered many times while
traversing through the tissue, and thus their trajectories can
be described only in a statistical manner. This leads to the
ill-posedness of the inverse problem, i.e. the diffusive nature
of light does not allow to reconstruct spatial details or high
frequency components of the fluorophore concentration in a
reliable way. In order to achieve a stable inversion, one has
to use regularization methods and add a-priori information
during the reconstruction. This can be assumptions about the
distribution of the fluorescent dye or the covariance of the
measurement data, see e.g. [10].

In order to simplify the light propagation models and to
reduce the complexity of the inverse problem, Born approx-
imations or similar linearizations of the forward system are
frequently used in literature [11], [12]. Methods with linear
regularization terms like the L2- or H1-norm are then applied
for stable solution of the inverse problem, see e.g. [13].

In contrast to these approaches, we consider in this paper
the full non-linear formulation of the forward problem, which
is presented in section II-A. Additionally, we investigate the
use of two non-linear regularization strategies: First, total-
variation (TV) regularization, which penalizes variations in the
fluorophore concentration, and second, a method of levelset
type, which favours reconstructions with only two levels of
fluorphore concentration; typically one level is assigned to the
background, and another one to some object like a tumour
or an organ. These two nonlinear methods are introduced in
detail in section II-B. For the solution of the resulting non-
linear least-squares problems, we present in section III an
efficient numerical algorithm based on Newton-type methods,
and we report on numerical results obtained with the non-
linear regularization methods for simulated data in section IV.

II. THEORETICAL BACKGROUND

A. The forward model
For a mathematical description of the propagation of inten-

sity modulated light in a turbid medium occupying the domain
Ω, we utilize the following model [13]

−∇ · (κx∇ϕx) + µxϕx = q, in Ω, (1)
−∇ · (κx∇ϕm) + µmϕm = γcϕx, in Ω, (2)
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where ϕi, i = x,m denotes the complex amplitudes of the
excitation (x) and emitted (m) light. If the dependence on the
light source q is important, we write ϕi(q). The functions
κi, µi denote the photon diffusion and (complex) absorption
coefficients at wavelengths λi. These parameters are related to
more basic optical parameters and the fluorophore distribution
by the following relations

κi =
1

3 (µa,x + µ′s,x + cεx)
, (3)

µi = µa,x + cεx +
iω

ν
, γ =

η

1− iωτ
εx.

Here, µa,i, µ′s,i are the absorption and reduced scattering
coefficients characterizing the tissue under investigation; εi
is the specific extinction coefficient of the fluorophore, i.e.,
µf,i = cεi represents the additional absorption due to presence
of the fluorophore; finally, η and τ denote the quantum
efficiency and lifetime of the fluorescent marker, and ω and ν
are the modulation frequency and the speed of light. For details
on mathematical models for light propagation in fluorescence
tomography, refer to [14], [15], and the references therein.

The system (1)–(3) is completed by Robin boundary con-
ditions of the form

ρiϕi + κi∂nϕi = 0, on ∂Ω, (4)

which model the assumption that no light can enter the domain
Ω from outside. The parameters ρi allow to take into account
a mismatch between the refractive indices of the tissue and the
sourrounding space; see [16] for details and further references.

The measureable quantity in fluorescence tomography is the
phase and intensity of the emitted light leaving the domain Ω,
which is given by

κm∂nϕm = −ρmϕm. (5)

Assuming that a detector integrates the outgoing light over
some area ∆i of the boundary, the measurements at the i-th
detector ∆i resulting from the j-th excitation qj can be defined
as

Mij = Cm

∫
∆i

ϕm(qj) ds, (6)

where Cm is a factor taking into account the characteristics of
the detector and the reflection coefficient ρm. The measure-
ment process that assigns to a given fluorophore distribution c
and sources qj , j = 1, . . . , s the corresponding measurements
Mij at the detectors ∆i, i = 1, . . . , d can be described in
compact form via the action of a forward operator

F : Cad ⊂ L2(Ω)→ Cd×s, c 7→M := [Mij ]i≤d,j≤s. (7)

In order to guarantee solvability of the system (1)–(4), the set
Cad of admissible fluorophore distributions is defined as

Cad := {c ∈ L2(Ω) : 0 ≤ c ≤ c in Ω}, (8)

for some c > 0. The forward problem of fluorescence tomog-
raphy then consists of the determination of the measurement
matrix M = [Mij ] corresponding to a given fluorophore
distribution c; this is achieved by solving the boundary value
problems (1)–(4), and computing the measurements according
to (6).

B. Inverse problem and regularization

The inverse problem of fluorescence tomography is the
reconstruction of an unknown fluorophore distribution c from
measurements Mij of the emitted light ϕm for different
detector locations ∆i and sources qj . In abstract form this
reads

Inverse problem 1. Given measurements Mδ of the emitted
light ϕm for different detectors ∆i, i = 1, . . . , d and multiple
excitations qj , j = 1, . . . , s, find a fluorophore distribution
c ∈ Cad such that

F (c) = Mδ, ‖Mδ −M‖ ≤ δ. (9)

Here, Mδ is some possibly perturbed approximation of the
true data M = [Mij ]ij corresponding to the true fluorophore
distribution cf , and the noise level δ is a measure for the
perturbations in the data.

For the stable solution of the inverse problem, we consider
Tikhonov-type regularization methods, where the approximate
solution cδα ∈ Cad of (9) is defined as a minimizer of the
regularized least-squares functional

Jδα(c) := 1
2‖F (c)−M δ‖2 + αR(c). (10)

The least-squares term penalizes the data misfit, while the
regularization term R(c) has a stabilizing effect. The pa-
rameter α > 0 allows to balance between approximation of
the data and stability of the inversion. Assuming that R is
differentiable, any minimizer of the Tikhonov functional (10)
has to satisfy the first order optimality conditions

F ′∗(c)(mδ − F (c)) + αR′(c) = 0, (11)

which will be the basis for the formulation of iterative al-
gorithms for minimizing the Tikhonov functional (10). Here
F ′∗ denotes the adjoint of the derivative operator; see also
section III. For the solution of the optimality system, we
consider Newton-type iterations of the form[

F ′∗(ck)F ′(ck) + αkR̃′′(ck)
]

(ck+1 − ck) (12)

= F ′∗(ck)
[
mδ − F (ck)

]
+ αkR′(ck),

where R̃′′ is an approximation for the Hessian of the regular-
izing functional R. Note that by construction, any stationary
point of the iteration (12) also satisfies the first order optimality
conditions (11).

Since the inverse problem (9) is underdetermined, the choice
of the regularization term will have significant influence on
the quality of the reconstructions. As a benchmark, we will
consider standard L2-regularization, in which case

R(c) = 1
2‖c‖

2
L2 , R′(c) = c, R′′(c) = I. (13)

From (11) and the smoothness of the adjoint operator F ′∗ it
follows that L2-regularization yields smooth reconstructions,
which may oscillate near jumps of the solution due to the
Gibbs-phenomenon. In order to be able to approximate also
jumps in the solutions in a stable way, we consider a relaxed
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version of total-variation regularization [17], where

R(c) =
∫

Ω

√
β + |∇c|2dx, (14)

R′(c)h =
∫

Ω

∇c · ∇h√
β + |∇c|2

dx, 〈R̃′′(c)r, h〉 = R′(c)h,

where β > 0 is some relaxation parameter. As a third choice,
we utilize a regularization term that is related to a method of
levelset-type, namely

R(c) = ‖H−1
β (c)‖2L2 , (15)

R′(c) = H ′β(c)−1H−1
β (c), R̃′′(c) = H ′β(c)−2,

where Hβ is a smooth, strictly monotonically increasing
function. For the numerical tests in section IV, we use the
sigmoidal function

Hβ(x) = cl + 1
2

(
erf(x/β) + 1)(cu − cl), (16)

with relaxation parameter β > 0. Such a choice promotes
bi-modal concentration distributions with lower and upper
concentration niveau cl and cu, respectively.

For this third choice of a regularization term, the unknown
fluorophore concentration can be parameterizd by a levelset
function φ as c = Hβ(φ), and a Newton-type iteration similar
to (12), but now for the levelset function φ, can be used for
finding a solution of (11). In fact, the inverse problem (9)
can then be rephrased as Fβ(φ) = M δ where Fβ(φ) :=
F (Hβ(φ)). The formulation of the corresponding Tikhonov
functional, and the derivation of the optimality system and the
Newton-type iteration is then straight forward; see [18] for
details.

III. NUMERICAL REALIZATION

Application of the forward operator and its derivative re-
quire the solution of systems of linear partial differential
equations, e.g. (1)–(4). For an efficient discretization, we use
standard finite element methods with continuous, piecewise
linear finite elements [19]. The fluorophore distribution c can
be expanded with respect to the same basis as the photon
densities ϕi, i = x,m.

A. Discretized forward problems

The coordinate vectors of the finite element solutions of
(1)–(4) for a set of sources q = [q1, . . . , qs] are stored in
the columns of the matrices Vx, Vm. These are obtained as
solutions of the linear systems

[K(κx) +D(µx) +B(ρx)]Vx = Q(q), (17)
[K(κm) +D(µm) +B(ρm)]Vm = D(γc)Vx.

The matrices K(κi), D(µi), B(ρi) stem from integration of
the diffusion, absorption and boundary terms with correspond-
ing parameters, i.e. K denotes the stiffness matrix, D the mass
matrix and B the boundary mass matrix. The columns of the
matrix Q(q) are assembled by integration of the source terms,
and the measurements are finally given by M = EVm, where
E is a matrix mapping the solution field to the measurement
data according to (6).

B. The discretized Tikhonov functional

The discrete Tikhonov functional is given by

Jh(c) = 1
2

∑
i,j

|Mij(c)−M δ
ij |2 + αR(c), (18)

where R is a discretization of the regularization term, and
Mij(c) denotes the measurements corresponding to the pa-
rameter c. Note that one could easily include weighting or
correlation matrices in the least squares term.

The derivative of this regularized least-squares functional in
direction h then has the form

J ′h(c)h = Re
(∑
i,j

(
Mij(c)−Mδ

ij

)
∆Mij(c)

)
+ αR′(c)h,

where R′ denotes the derivative of the discretized regulariza-
tion term, and ∆M = EWm = F ′(c)h denotes the directional
derivative of the forward map. The matrices Wm, Wx (i.e. the
derivatives of the solutions Vx, Vm of the forward problem)
are given as solutions of the sensitivity system

[K(κx) +D(µx) +B(ρx)]Wx = −[K(κ′xh) +D(µ′xh)]Vx,
[K(κm) +D(µm) +B(ρm)]Wm

= −[K(κ′mh) +D(µ′mh)]Vm +D(γh)Wx.

The functions κ′i and µ′i denote the derivatives of the param-
eters defined in (4) with respect to the concentration c.

C. Adjoints and sensitivities

Let us shortly comment on the efficient assembly of the
system matrix for the iteration (12). The application of the
adjoint derivative S∗k := F ′(ck)∗ to some element r ∈ Cd×s
(in the space of measurements) can be realized as follows: Let
Px, Pm denote the solutions of the adjoint system

[K(κm) +D(µm) +B(ρm)]Pm = ET r. (19)
[K(κx) +D(µx) +B(ρx)]Px = D(γc)]Pm.

Then the action of the discretized adjoint derivative S∗k is given
by S∗kr =

∑
i,j [Sk]ijrij where the vectors [Sk]ij , 1 ≤ i ≤ s,

1 ≤ j ≤ d are defined by

D(1)[Sk]ij = −K(κ′mP
i
m)V jm −D(µ′mP

i
m)V jm −K(κ′xP

i
x)V jx

−D(µ′xP
i
x)V jx +D(γP ix)V jm. (20)

Hence a matrix representation of Sk respectively S∗k can be
assembled by solving (i) the forward problem (17) with s right
hand sides, (ii) the adjoint system (19) with j right hand sides,
and using the representation (20).

The discretization of the regularization terms required for
the iteration (12) is finally given by

R′(c) = D(1)c, R̃′′(c) = D(1)

in case of L2-regualrization, and by

R′(c) = K(cβ)c, R̃′′(c) = K(cβ), cβ :=
1√

β + |∇c|2

for the total-variation regularization. Note that by substitution
c = Hβ(φ), the regularization term (15) of the levelset-type
method amounts to L2-regularization for the levelset function
φ and needs no further discussion.
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IV. RESULTS

Our numerical tests are performed on a cylinder with
a diameter of 30 mm and a height of 60 mm. 48 optodes
(24 sources and 24 detectors) are placed on 3 rings at the
boundary with a spacing of 10 mm between them. A sketch
of the arrangement is depicted in Fig. 1. In Table I we list
the background tissue parameters for excitation and emission
wavelength, which have been compiled from literature [20],
[21], [22].

Fig. 1. For the numerical experiment a 30 mm × 60 mm cylinder model
with 48 optodes on three rings spaced by 10 mm was used.

TABLE I
VALUES OF OPTICAL PARAMETERS USED FOR THE FORWARD SIMULATION

COMPILED FROM [20], [21], [22], [23].

µ′s µa,i ε ρ
mm−1 mm−1 mm−1 M−1

excitation 0.275 0.036 8.35 · 103 0.2
emission 0.235 0.029 2.81 · 103 0.2

For our numerical tests, we use synthetic measurement data
that are assembled by finite element simulations on a fine
mesh. We incorporate tissue autofluorescence into the forward
model by adding a uniformly distributed random background
fluorophore concentration, cf. [24]. This results in an relative
error in the measurement data of around 3 % in the `2-norm.
Additionally, Gaussian noise with zero mean and a relative
standard deviation of 2 % is added to the synthetic data, such
that the overall relative error in the data is around 5 %.

In order to avoid inverse crimes, we use finite element
methods on a coarser mesh for the reconstructions. It is as-
sumed that all tissue properties except the concentration of the
fluorphore are known beforehand; in practice, these parameters
could be estimated a-priori by other imaging modalities or
additional measurements.

A. Test case 1

In the first experiment, we consider a spherical fluorophore
inclusion with a diameter of 5 mm at a depth of 5 mm; cf.
Fig. 2(a), which displays the cross section at half height of
the cylinder. For the reconstruction, we utilize Tikhonov-type
methods with the three different regularization terms discussed
in section II-B, and for the minimization of the Tiklhonov
functionals, we employ the iteratively regularized Gauss-
Newton schemes (12), where the parameter αk is reduced
successively. The algorithm is stopped when the regulariza-
tion parameter reaches a predefined minimum value. For our
numerical tests, the bounds have been set to αmin = 1× 10−4

for the L2 regularization, αmin = 1× 10−7 for the TV
reconstruction, and to αmin = 1× 10−9 for the method of
levelset type. The relaxation parameter is set to β = 1× 10−10

for the TV regularization and to β = 1 for the levelset type
approach.

Fig. 2. Comparison of the reconstructed images of (a) a single fluorescent
sphere with a concentration of 10µM using (b) L2 regularization, (c)
TV regularization and a (d-f) levelset method with three different upper
concentration niveaus cu. Displayed are the cross sections at half height of
the cylinder.

The L2 reconstruction (Fig. 2(b)) clearly exhibits a Gibbs-
phenomenon, so-called ringing artifacts, around the center
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Fig. 3. (a) Simulation model including four spherical perturbations with
concentrations of 10µM, 9µM, 8µM and 7µM (ccw, starting with the right
one) and its reconstructions using (b) L2 regularization, (c) TV regularization
and (d) a levelset type method.

of the inclusion. The reconstructed object is also smoothed
considerably making the border between the object and the
background hard to distinguish. The reconstructions obtained
with TV regularization (Fig. 2(c)) have a much more ho-
mogeneous background, and the transition from the object
to the background is sharper. Note that both, L2- and TV-
regularization underestimate the maximal fluorophore concen-
tration on expense of an enlarged region occupied by the
fluorophore.

As the second column of Fig. 2 illustrates, the size of the
inclusions reconstructed by the levelset-type method depend
on the values used for upper concentration niveau cu in (16).
Since this dependence is not very strong, one can expect that
reasonable approximate a-priori guesses for cu already yield
good reconstructions. Also note, that the reconstructions show
a very good localization, which was the aim of introducing
the nonlinear regularization terms.

B. Test case 2

In our second test case, we place four spherical fluorescent
targets with a diameter of 5 mm at a distance of 5 mm from
the boundary in the mid-plane of the cylinder; see Fig. 3(a).
Different fluorophore concentrations of 10µM, 9µM, 8µM
and 7µM are associated to the spheres in counter-clockwise
direction starting with the right-most one. Fig. 3(b)-(d) dis-
plays cross section images of the reconstructions obtained with
L2-, levelset-type, and TV-regularization, respectively.

Like in the previous example, the L2 reconstruction suffers
from ringing artifacts, and is not very well localized. The
TV method eliminates these artifacts, and yields better local-
ization and slightly better quantitative estimates of the fluo-

TABLE II
COMPARISON OF RECONSTRUCED FLUORESCENT INCLUSIONS.

Sphere Concentration FWHM
location (µM) (mm)

original L2 TV LS L2 TV LS
0◦ 10.0 2.7 2.9 9.4 12.5 7.5 5.3
90◦ 9.0 2.9 3.0 9.4 10.9 6.7 4.5

180◦ 8.0 2.5 2.4 8.9 11.2 7.4 4.6
270◦ 7.0 1.8 1.5 9.5 11.0 7.8 3.8

rophore concentrations. Note also that the relative strenghts
of the different inclusions are reconstructed correctly. The
best results are again obtained by the levelset-type method.
Although in principle, the function Hβ could be chosen to
be space dependent, or also to promote several different
values, we have decided to use a simple function here, which
incorporates only the a-priori knowledge about the maximal
expected fluorophore concentration. Due to this choice, the
fluorophore concentrations at the weak inclusions are slightly
overestimated on the expense of a slight underestimation of
the sizes of the inclusions.

In Fig. 4, we display profiles of the reconstructed fluo-
rophore concentration along the x-axis. This plot highlights
that the L2- and TV-regularization substantially underestimate
the concentration in the fluorophore whereas the method
of levelset-type provides rather accurate reconstructions. A
comparison of the maximum fluorophore concentration of the
different inclusions is given in Table II.

The horizontal bars below the curves in Fig. 4 are centered
at the peak concentration values and their width is equal to the
full-width at half-maximum (FWHM) of the respective con-
centration. Along the x-axis, the smallest FWHM is obtained
with the levelset method followed by the L2-regularization and
finally the TV reconstruction.

However, different half-width measures are obtained when
considering the whole transversal plane instead of only the
axes. The maximum FWHM-diameter of all four inclusions
is to be found in Table II. The L2 reconstruction clearly has
the worst performance which is due to the large spread in
the angular direction. The total-variation algorithm has fairly
good agreement with the original object size. The best result
is again obtained using the levelset formulation. However, this
algorithm tends to slightly underestimate the object size if the
upper concentration niveau is too large which can be seen
from the result of the sphere with the lowest concentration
(last column in Table II).

V. DISCUSSION

In this paper, we compare three different reconstruction
methods for fluorescence tomography with small inclusions.
The standard L2-regularization exhibits typical ringing arti-
facts and smoothed reconstructions, resulting in a substan-
tial underestimation of the maximal fluorophore concentra-
tions. The two nonlinear regularization methods, namely total-
variation regularization and the method of levelset-type, elim-
inate the ringing artifacts, and provide better localization of
the reconstructed inclusions.
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Fig. 4. Reconstructed concentrations along the x-axis of the cylinder’s
midplane for all three reconstruction methods. The horizontal bars below the
concentration curves represent the location and full-width at half-maximum
of the objects.

We would like to mention, that a different levelset approach
has been investigated for fluorescence lifetime imaging in [24].
The method proposed here utilizes a relaxation of the original
levelset formulation, which facilitates the reconstruction and
allows to exploit algorithms very similar to L2-regularization,
which are widely used in practice, and with a comparable
numerical effort.

The iterative methods used for minimizing the Tikhonov
functionals utilize decaying sequences of parameters αk. This
allows to circumvent expensive line searches typically required
to ensure global convergence of Newton-type iterations. This
strategy also enables to choose the regularization parameter
adaptively, e.g. by a discrepancy principle. For our numerical
test, we chose a different strategy: we performed several
reconstructions on typical known phantoms, and then deter-
mined a suitable regularization parameter, which gave good
reconstructions in all cases.

As we have demonstrated by our numerical tests, the recon-
structions obtained by the levelset-type method are not very
sensitive to the choice of the maximal expected fluorescent
dye concentrations cu. In principle, this parameter could be
estimated in the reconstruction as well.

VI. CONCLUSION

We have presented algorithms for fluorescence tomography
using the full non-linear forward problem together with two
nonlinear regularization strategies to overcome the inherent
smoothness of typical fluorescence optical tomography recon-
structions. The elimination of background variations enhances
the contrast and facilitates the detection and separation of
inclusions.
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