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Abstract

We consider a symmetric coupling of finite and boundary element methods for
a vibro–acoustic interface problem. While the time–harmonic vibrating structure is
described by a finite element variational problem, we use the symmetric formulation
of boundary integral equations to model the acoustic fluid in the unbounded exterior
domain. When using the symmetric coupling we obtain a formulation which excludes
spurious modes, and which is stable for almost all frequencies. In addition to a direct
simulation we also consider the related eigenvalue problem which is nonlinear in
the eigenfrequency, and which can be solved by using a contour integral approach.
Numerical results are given.

1 Vibro–Acoustic Interface Problem

As a vibro–acoustic interface model problem we consider a three–dimensional elastic body,
e.g., a submarine, which is completely immersed in a full space acoustic region, e.g., water
[4]. Other applications in mind are the sound radiation of passenger car bodies, where
the acoustic region is bounded, or of partially immersed bodies such as ships, where the
acoustic region is a half space [2].

In this paper, we consider both a direct simulation of the interface problem by using
a symmetric coupled finite and boundary element approach, and an eigenvalue analysis to
determine the eigenmodes of the coupled system. The time–harmonic vibrating structure
in Ωs is modeled by the Navier equations in the frequency domain, while the acoustic fluid
in the unbounded exterior domain Ωf is described by the Helmholtz equation,

−̺sω
2u− µ∆u− (λ+ µ)grad divu = f in Ωs, κ2p+∆p = 0 in Ωf . (1.1)

In (1.1), λ and µ are the Lamé parameters, ̺s and ̺f are the densities of the structure
and of the acoustic fluid, respectively, ω is the frequency, and κ = ω/c ∈ R is the wave
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number. Note that Ωs ⊂ R3 is in general a bounded, multiple connected domain with an
interior boundary ΓI = ΓD ∪ ΓN , ΓD ∩ ΓN = ∅, see Fig. 1, where boundary conditions of
Dirichlet and Neumann type are given,

u = gD on ΓD, Tu := λ(divu)n+ 2µ
∂

∂n
u+ µn× curlu = gN on ΓN . (1.2)

Figure 1: Computational domain and boundary conditions

In addition to the partial differential equations (1.1) and the boundary conditions (1.2) we
consider transmission conditions on Γ = Ωs ∩ Ωf ,

Tu+ pn = 0, ̺fω
2u · n = n · ∇p on Γ. (1.3)

Finally, p has to satisfy a radiation condition at infinity,

lim
r→∞

∫

|x|=r

∣∣∣∣
∂

∂nx
p(x)− iκp(x)

∣∣∣∣
2

dsx = 0. (1.4)

For complex wave numbers κ ∈ C with ℑ(κ) < 0, instead of (1.4) one has to use a radiation
condition in terms of spherical Hankel functions in order to describe outgoing waves, see
[11].

The aim of this paper is to derive and to discuss a symmetric coupled finite and bound-
ary element formulation which is stable for almost all frequencies ω ∈ R, and to characterize
all eigenfrequencies ω ∈ C which imply non–trivial solutions of the homogeneous transmis-
sion problem (1.1)–(1.4), i.e. for f = 0, gD = 0, gN = 0. In fact, in this case only one of
the three following situations may appear [8]:

i. A real eigenfrequency ω ∈ R implies p = 0, and any non–trivial solution u is a
so–called Jones mode satisfying Tu = 0 and u · n = 0 on Γ [5].

ii. A complex value ω ∈ C with ℑ(ω) > 0 implies u = 0 and p = 0.

iii. If ω ∈ C\R is an eigenfrequency, then ℑ(ω) < 0.

In the low frequency regime one may consider an approximation of the Helmholtz equa-
tion in (1.1) by the Laplace equation, for related coupled finite and boundary element
formulations, see [9].
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2 Coupled finite and boundary element methods

The symmetric coupling of finite and boundary elements for the transmission boundary
value problem (1.1)–(1.4) relies on the standard variational formulation of the Navier equa-
tions in Ωs, and the use of the exterior Calderon projection of boundary integral equations
[12] to describe the solution of the Helmholtz equation in Ωf . The resulting variational
formulation is to find u ∈ [H1(Ωs)]

3, u = gD on ΓD, such that

∫

Ωs

[
2µ e(u) : e(v) + λ divu divv

]
dx− ̺sω

2

∫

Ωs

u · v dx (2.1)

−̺fω
2〈Vκ[u · n],v · n〉Γ + 〈(1

2
I +Kκ)p,v · n〉Γ =

∫

Ωs

f · v dx+

∫

ΓN

gN · v dsx

is satisfied for all v ∈ [H1(Ωs)]
3, v = 0 on ΓD, where p ∈ H1/2(Γ) is a solution of the

hypersingular boundary integral equation

1

̺fω2
Dκp+ (

1

2
I +K ′

κ)[u · n] = 0 on Γ. (2.2)

The boundary integral operators are defined as, for x ∈ Γ,

(Vκq)(x) =

∫

Γ

U∗
κ(x, y)q(y)dsy, (Kκp)(x) =

∫

Γ

∂

∂ny

U∗
κ(x, y)p(y)dsy,

(K ′
κq)(x) =

∫

Γ

∂

∂nx
U∗
κ(x, y)q(y)dsy, (Dκp)(x) = − ∂

∂nx

∫

Γ

∂

∂ny
U∗
κ(x, y)p(y)dsy,

where the Helmholtz fundamental solution is

U∗
κ(x, y) =

1

4π

eiκ|x−y|

|x− y| for x, y ∈ R
3.

For the mapping properties of all boundary integral operators, see, for example, [12]. In
particular, the hypersingular integral operator Dκ : H1/2(Γ) → H−1/2(Γ) is coercive and
injective, if κ2 is not an eigenvalue of the related interior Neumann eigenvalue problem of
the Laplace operator in R3\Ωf . However, since we are using a direct approach we find
(1
2
I+K ′

κ)[u ·n] ∈ ImDκ even in the case when κ2 is an eigenvalue of the interior Neumann
eigenvalue problem with a related eigensolution pκ2|Γ ∈ H1/2(Γ) [13], i.e.

−∆pκ2 = κ2pκ2 in R
3\Ωf ,

∂

∂n
pκ2 = 0 on Γ.

The general solution of the hypersingular boundary integral equation (2.2) is then given
by

p = −̺fω
2D−1

κ (
1

2
I +K ′

κ)[u · n] + αpκ2, (2.3)
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where D−1
κ has to be understood as a pseudoinverse. Note that α ∈ R is an arbitrary

constant. However, when inserting the solution p as given in (2.3) into the variational
formulation (2.1), we have to evaluate

(
1

2
I +Kκ)p = −̺fω

2(
1

2
I +Kκ)D

−1
κ (

1

2
I +K ′

κ)[u · n] + α(
1

2
I +Kκ)pκ2

= −̺fω
2(
1

2
I +Kκ)D

−1
κ (

1

2
I +K ′

κ)[u · n]

due to kerDκ = ker (1
2
I +Kκ). In fact, the Poincaré–Steklov operator

Tκ := Vκ + (
1

2
I +Kκ)D

−1
κ (

1

2
I +K ′

κ) : H
−1/2(Γ) → H1/2(Γ)

is well defined for all frequencies ω. Hence we conclude the variational problem to find
u ∈ [H1(Ωs)]

3, u = gD on ΓD, such that

∫

Ωs

[
2µ e(u) : e(v) + λ divu divv

]
dx (2.4)

−ω2

[
̺s

∫

Ωs

u · v dx+ ̺f〈Tκ[u · n],v · n〉Γ
]
=

∫

Ωs

f · v dx+

∫

ΓN

gN · v dsx

is satisfied for all v ∈ [H1(Ωs)]
3, v = 0 on ΓD. Since the bilinear form which is related

to the variational formulation (2.4) is coercive, injectivity ensures unique solvability of the
variational problem (2.4), see also [7, 8].

Theorem 2.1 Assume that ω ∈ R is not a Jones frequency. Then there exists a unique
solution u of the variational problem (2.4).

Remark 2.1 Although boundary value problems of the exterior Helmholtz equation are
unique solvable, related boundary integral equations may suffer from spurious modes which
correspond to solutions of related interior eigenvalue problems for the Laplacian. Formula-
tions which are stable for all frequencies, are usually based on complex linear combinations
of different boundary integral operators, see, e.g., [2, 8]. However, when using a direct
boundary integral approach as presented here, this also leads to a stable formulation, see
[13] for a further discussion.

In what follows we consider a frequency ω ∈ R which is not a Jones mode. If the displace-
ment field u is known as the unique solution of the variational problem (2.4), we may use
the boundary integral equation (2.2) to determine the pressure p. In the case when κ2 is
an eigenvalue of the interior Neumann eigenvalue problem, the solution p as given in (2.3)
is not unique. However, using the transmission conditions (1.3) we find

p = −Tu · n, (2.5)
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in fact (u, p) is the unique solution of the coupled variational formulation (2.1). The
representation (2.5) can be used to modify the boundary integral equation (2.2) to obtain
a formulation which admits a unique solution p for all frequencies, for example we may
consider the boundary integral equation

[ 1

̺fω2
Dκ + iηD̃0

]
p+ (

1

2
I +K ′

κ)[u · n] + iηD̃0(Tu · n) = 0 on Γ,

where D̃0 is the stabilized hypersingular boundary integral operator of the Laplacian [12],
and η ∈ R is some parameter to be chosen. For simplicity of the presentation we only
consider the discretization of the variational formulation (2.4) by using piecewise linear
finite elements which are defined with respect to some admissible triangulation of Ωs, and
by using piecewise linear boundary elements on Γ. This leads to the linear system

(
KFEM

h − ω2[̺sM
FEM

h + ̺fN
⊤
h V

BEM

h Nh] N⊤
h (

1
2
MBEM

h +KBEM

h )

(1
2
MBEM,⊤

h +K ′
h
BEM)Nh

1
ω2̺f

DBEM

h

)(
u

p

)
=

(
f

0

)
.

Here, KFEM

h and MFEM

h are the finite element stiffness and mass matrices, respectively,
and V BEM

h , MBEM

h , KBEM

h , and DBEM

h are the Galerkin boundary element matrices, see, e.g.,
[10], and Nh corresponds to the application of the normal component, u · n. From the
standard theory, e.g., [12], we expect a second order of convergence when measuring the
error ‖u− uh‖L2(Ωs). Although the pressure p on the boundary Γ may not be unique, the
computation of the pressure p in Ωf by means of the exterior representation formula

p̃(x) = −̺fω
2

∫

Γ

U∗
κ(x, y)[uh(y) · ny] dsy +

∫

Γ

∂

∂ny

U∗
κ(x, y)ph(y)dsy for x ∈ Ωf

is unique, and we conclude a second order convergence of the pointwise error [12].
As a numerical example for the direct simulation we consider the Neumann boundary

value problem (1.1)–(1.4) with

Ωs :=
{
x ∈ R

3 : 0.8 < |x| < 1
}
, Ωf :=

{
x ∈ R

3 : 1 < |x|
}
,

where the exact solution is given by, r = |x|,

p(x) =
eiκr

r
for r > 1, u(r) = [c1u1(r) + c2u2(r)]er for r ∈ (0.8, 1),

and

u1(r) = −
√
λ+ 2µ cos

r
√
̺sω√

λ+2µ

r
√
̺sω

+
(λ+ 2µ) sin

r
√
̺sω√

λ+2µ

r2̺sω2
,

u2(r) = −
√
λ+ 2µ sin

r
√
̺sω√

λ+2µ

r
√
̺sω

−
(λ+ 2µ) cos

r
√
̺sω√

λ+2µ

r2̺sω2
.
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NFEM

‖u− uh‖L2(Ωs)

‖u‖L2(Ω)

‖u− uh‖H1(Ωs)

‖u‖H1(Ω)

|p(x̂)− p̃(x̂)|

1948 9.93 –2 2.56 –1 5.37 –2
15584 2.71 –2 1.45 –1 1.44 –2
124672 7.27 –3 7.62 –2 3.69 –3

Table 1: Convergence of the FEM/BEM approach for direct simulation

Note that the constants c1 and c2 have to be chosen accordingly to satisfy the transmission
conditions (1.3). The material constants are given as E = 105 · 109N/m2, ν = 0.34, while
the densities of the structure and of the fluid are chosen as
̺s = 1000 kg/m3 and ̺f = 4500 kg/m3, respectively. Recall that the speed of sound is
c = 1484m/s. As frequency we have chosen ω = 3090 s−1 which corresponds to an eigen-
frequency of the hypersingular boundary integral operator Dκ. In Table 1 we present the
relative errors of the displacement field both in the L2(Ω) and in the energy norm, where
we observe quadratic and linear convergence, as predicted. In addition, we also give the
pointwise error for the pressure which is evaluated in x̂ = (2, 0, 0)⊤, again we observe a
quadratic convergence as predicted [12].

3 Eigenvalue analysis

In this section we discuss the solution of the eigenvalue problem which is related to the
transmission problem (1.1)–(1.4). Based on the coupled formulation (2.4) of the transmis-
sion problem the following related eigenvalue problem is considered: Find (ω,u, p) with
(u, p) 6= (0, 0) such that

A(ω)

(
u

p

)
:=

(
−ω2ρSMS +KS − ρfω

2N∗VκN N∗(1
2
I +Kκ)

(1
2
I +K ′

κ)N
1

ω2ρf
Dκ

)(
u

p

)
=

(
0

0

)
,

(3.1)
where MS represents the mass term and KS the stiffness term of the structure, and Nu =
u|Γ ·n. The boundary integral operators depend nonlinearly on the wave number κ = ω/c,
hence (3.1) is a nonlinear eigenvalue problem in ω. For the eigenvalue problem (3.1), in
addition to the requested eigenvalues we also obtain eigenvalues which correspond to the
Neumann Laplacian. However, in practice the latter can be filtered out very easily.

A Galerkin finite and boundary element discretization of (3.1) results in a nonlinear
matrix eigenvalue problem of the form

Ah(ωh)

(
u
p

)
=

(
0
0

)
. (3.2)
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h/dof 0.5/8794 0.25/36792 0.15/109455 anal. approx.

(58.19,-1.44) (55.82,-1.18) (55.65,-1.16) 56.02
(58.26,-1.45) (55.84,-1.18) (55.66,-1.16)
(58.50,-1.48) (55.84,-1.18) (55.66,-1.16)
(58.62,-1.50) (56.03,-1.20) (55.78,-1.18)
(58.96,-1.54) (56.04,-1.21) (55.78,-1.18)

(83.61,-1.00) (71.47,-0.32) (70.45,-0.31) 70.52
(83.73,-1.03) (71.53,-0.32) (70.53,-0.31)
(84.51,-1.08) (71.63,-0.32) (70.53,-0.31)
(85.10,-1.14) (71.63,-0.32) (70.54,-0.31)
(85.47,-1.16) (71.72,-0.33) (70.60,-0.31)
(85.94,-1.18) (71.74,-0.33) (70.61,-0.31)
(87.96,-1.37) (71.80,-0.34) (70.62,-0.32)

Table 2: Approximations of the two smallest non–zero eigenvalues f = ω/(2π)

A rigorous numerical analysis of the Galerkin eigenvalue problem (3.2) can be carried out
within the framework of the concept of eigenvalue problems for holomorphic Fredholm
operator-valued functions [14] and will be addressed in a forthcoming paper. This concept
provides comprehensive convergence results which include error estimates for the eigenval-
ues and eigenspaces.

For the numerical solution of (3.2) we use the contour integral method [1]. This method
is suitable for the extraction of all eigenvalues which lie inside of a predefined contour in
the complex plane. An alternative approach for the numerical solution of the nonlinear
eigenvalue problem (3.2) is presented in [3] which is based on a polynomial interpolation.

As a numerical example we consider the Neumann eigenvalue problem for the spherical
shell ΩS := {x ∈ R3 : 4.95 < |x| < 5} and for the fluid domain Ωf := {x ∈ R3 :
|x| > 5}. For this example analytical approximations of the eigenvalues are derived in
[6]. The material constants for the shell are E = 207 · 109N/m2, ν = 0.3 and ρS =
7669 kg/m3. For the surrounding fluid, we choose c = 1483.24m/s. As ansatz spaces for
the Galerkin eigenvalue problem (3.2) we use piecewise linear finite elements and piecewise
linear boundary elements as in the previous section. The eigenvalues of practical interest
are those which are lying close to the real axis, since the imaginary part of an eigenvalue
corresponds to the damping of the related eigenfunction in time. As domain of interest
for the eigenfrequencies f = ω/(2π) we have chosen the strip {f ∈ C : 1 < ℜ(f) <
90, −5 < ℑ(f) < 5}. In this domain two analytical approximations are given in [6].
The results of the contour integral method are presented in Table 2 for different meshes.
The approximations of the eigenvalues on the two finest mesh levels match well with the
analytical approximations.
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4 Conclusions

The symmetric formulation of finite and boundary element methods for vibro–acoustic
interface problems turns out to be stable for almost all freqencies. If we exclude Jones
frequencies, no spurious modes appear. In fact, we can avoid the use of combined bound-
ary integral equation formulations such as Brakhage/Werner and Burton/Miller, see, e.g.,
[2, 13], which require sufficient smoothness of the coupling interface. For the accelera-
tion of the numerical simulations one may use fast boundary element methods such as
the adaptive cross approximation [10] or the fast multipole method [2]. In addition, the
design of appropriate preconditioned iterative solvers is a challenging task not only for the
direct simulation. In fact, the contour integral method allows an reliable and accurate
computation of eigenvalues within a given domain of interest, without any knowledge on
the number and on the position of eigenvalues. Applications of the proposed methodologies
include the simulation and eigenvalue analysis of ships, see Fig. 2 for a simplified model of
a submarine made of titanium. The length is 12m, its diameter 2m, and its wall thickness
0.1m. The first eigenfrequency is f = 52.12− 0.007i, the related eigensolution is given in
Fig. 2. This simulation was done by using 67.145 tetrahedral finite elements and 17.372
triangular boundary elements, which results in 74.523 global degrees of freedom.

Figure 2: Real and imaginary part of an eigensolution of a simplified submarine
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