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Abstract—This paper deals with the design optimization of a synchronous reluctance machine to be used in an X-ray
tube, where the goal is to maximize the torque, by means of gradient-based free-form shape optimization. The presented
approach is based on the mathematical concept of shape derivatives and allows to obtain new motor designs without the
need to introduce a geometric parametrization. We validate our results by comparing them to a parametric geometry
optimization in JMAG by means of a stochastic optimization algorithm. While the obtained designs are of similar shape,
the computational time used by the gradient-based algorithm is in the order of minutes, compared to several hours taken
by the stochastic optimization algorithm. Finally, we show an extension of the free-form shape optimization algorithm to
the case of multiple objective functions and illustrate a way to obtain an approximate Pareto front.

Index Terms—multiobjective shape optimization, shape derivative, synchronous reluctance machine.

I. INTRODUCTION

In many industrial applications, the design of elec-
tric machines has to be tailored to the application
at hand since off-the-shelf solutions are not avail-
able. The design of electric machines is usually based
on engineering knowledge and is sometimes refined
by geometric optimization. The most widely used ap-
proach is to introduce geometric parameters and optimize
these, either using stochastic optimization algorithms
or derivative-based methods, see [1] for an overview
article. While derivative-based optimization algorithms
successively improve a given initial geometry by means
of gradient information and are known to converge to a
local optimum rather fast, stochastic algorihtms include
random effects and are less prone to getting stuck in
local optima. In practice, one is usually confronted with
several conflicting objective functions thus making mul-
tiobjective optimization capabilities for finding a Pareto
optimal set of designs important. The extension to a
multiobjective setting is more straightforward in the case
of many stochastic optimization algorithms, however it
can also be achieved in the case of derivative-based
methods [2].

In recent years, non-parametric shape optimization
methods based on the mathematical concept of shape
derivatives [3] (often refered to free-form shape optimiza-
tion approaches) have become a more and more popular
tool for the design optimization of electric machines, see
e.g. [4], [5], [6] for approaches using the finite element
method or the recent work [7] in the context of isogeo-
metric analysis. In these approaches, the geometry is not
parametrized by a finite number of scalar values, but the
design variable is a set, e.g. the set of points occupied by
ferromagnetic material in the rotor of an electric machine.
Starting out from a given initial design, the design is
updated by the action of a smooth vector field, thus
allowing for any kind of design that is topologically
equivalent to the initial design. This way, often new and

innovative designs can be obtained.
The purpose of this paper is two-fold: On the one hand,

we extend the gradient-based multi-objective optimiza-
tion method introduced in the case of a parametrized
geometry in [2] to the case of free-form shape opti-
mization. This allows to exploit the flexibility of free-
form shape optimization methods, as well as their fast
convergence properties also in the practically important
case of multiple competing objective functions. On the
other hand, we employ this method on both, the more
standard single-objevtive case and, in the case of two
objective functions, to find (Pareto-)optimal designs of a
synchronous reluctance machine. Comparing our results
with the results obtained by a stochastic parameter op-
timization confirms the higher degree of flexibility and
computational efficiency of our approach compared to
parametric design optimization.

The rest of this paper is organized as follows: In
Section II we introduce the problem at hand and state
the mathematical model. We recall the main ingredients
for a free-form shape optimization method and apply the
algorithm to our problem in Section III. In Section IV we
show an extension of the gradient-based free-form shape
optimization algorithm to the case of multiple objective
functions before concluding in Section V.

II. PROBLEM DESCRIPTION

A. Physical model

We consider the design optimization of a synchronous
reluctance machine (SynRM), i.e., a motor that is based
solely on the reluctance principle. This motor generates
torque exclusively by a difference of reluctance between
two axes, namely the d-axis and the q-axis (the location
of the axes is defined by the number of poles of the
machine). Thus, torque generation is not based on any
transient behavior or quantity and a static magnetic field
analysis is sufficient. The machine under investigation



Figure 1. Upper half of synchronous reluctance machine with a three
phase, two pole stator. The rotor consists of alternating magnetically
conducting (blue) and non-conducting layers (gray).

Table I
EXAMPLE CASE MACHINE DESIGN PARAMETERS.

Parameter Value

Stator
Inner radius 26.5 mm
Outer radius 47.5 mm
Number of slots 24
Number of phases 3
Number of poles 2
Axial length 50 mm
Winding type single-layer distributed
No. of turns per slot 64
Phase resistance RS,20◦C 7.1 Ω
Rated voltage Ueff 230 Vac/ 400 Vac
Connection star

Rotor
Outer radius 18.5 mm

is intended for the use in an X-Ray tube for medical
applications. The considered rotor will be operated in
a vacuum and therefore must be built of solid pieces
of metal (as opposed to the commonly used steel sheet
structure). Additionally, the air gap of the motor is unusu-
ally large (e.g., 10 mm with an outer stator diameter of
130 mm) decreasing the torque capability of the machine.
Furthermore, the rotor has to withstand temperatures of
up to 450 ◦C. [10]

The synchronous reluctance machine is particularly
suitable for such an application mainly due to its rugged-
ness and construction simplicity and the absence of
rotor windings [11]. As per the operation mode of the
machine quick acceleration and subsequent braking of a
tungsten disk is required. Typically, this sequence takes
at maximum 10 s. Figure 1 shows the machine under
investigation. The stator is a three phase stator with one
pole pair, the rotor consists of alternating magnetically
conducting (blue) and non-conducting layers (gray). The
reference design parameters of the machine are stated in
Table I.

Figure 2 shows the simplified vector diagram of a syn-
chronous reluctance machine. The d-axis of the machine
is the path with least reluctance, the q-axis is the path
with the highest reluctance. In the d-q axis theory, the
torque is expressed as

T =
3Np

2
(λdIq − λqId),

where Np denotes the number of pole pairs, λd and λq are

q-axis

d-axis

λd = LdId

λq = LqIq

λ

Id

Iq

Is

β

Figure 2. Vector diagram of a synchronous reluctance machine for
the simplified model in d-q reference frame [9].

the magnetic flux linkages, and Id and Iq are the currents
in d-axis and q-axis direction, respectively. Alternatively,
using the inductances Ld and Lq as well as the stator
current Is and current angle β, the torque is expressed as

T =
3Np

4
(Ld − Lq)I2s sin(2β) . (1)

Evidently, as per (1), assuming linear lossless be-
haviour and a fixed stator current Is the maximum torque
can be achieved with a machine current angle β (angle
between current vector and d-axis of the machine, Fig. 2)
of 45◦. [8]

B. Optimization goal

A static analysis is chosen to calculate the reluctance
torque. Therefore, a current is impressed on the windings
according to Table II. Subsequently, the rotor is rotated
and fixed clockwise to create the optimal current angle
β of 45◦. The objective is to increase the torque with the
given stator at a constant current and air gap length at
the optimum current angle β. The number of conducting
and non-conducting layers remains unchanged. Solely
the shape of each individual layer is subject to the
optimization as to increase the d-axis inductance Ld
while, ideally, decreasing the q-axis inductance Lq at the
same time.

Table II
THE CURRENT VALUES FOR EACH WINDING.

U-Phase V-Phase W-Phase

12 A -6 A -6 A

C. Mathematical model

We consider a two-dimensional cross-section of the
machine in the setting of 2D magnetostatics, i.e., B =
curlA where the magnetic vector potential is of the form
A = (0, 0, u(x1, x2))>. Let D ⊂ R2 denote the com-
putational domain which comprises the two-dimensional
cross section of the machine as well as a surrounding air



region, and let Ω ⊂ D denote the ferromagnetic parts
of the machine. The mathematical design optimization
problem reads

max
Ω∈A

T (u) (2)

s.t. − div(νΩ(x, |∇u|)∇u) = Ji, x ∈ D,
u = 0, x ∈ ∂D,

(3)

where T represents the torque for the considered rotor
position, A is a set of admissible shapes, Ji represents
the impressed current density and the magnetic reluctivity
is defined piecewise as

νΩ(x, s) =

{
ν̂(s) x ∈ Ω,

ν0 x ∈ D \ Ω.

Here, ν̂ is a nonlinear function which represents the
magnetic reluctivity of the ferromagnetic material, and
ν0 corresponds to the magnetic reluctivity of air. The
partial differential equation (PDE) constraint (3) admits
a unique solution under natural assumptions on the non-
linear function ν̂ [12]. Note that the torque T depends
on the shape Ω of the ferromagnetic components via the
solution to the PDE constraint (3). Denoting the unique
solution to (3) for given Ω ∈ A by uΩ, we define the
reduced cost function T (Ω) := T (uΩ).

III. FREE-FORM SHAPE OPTIMIZATION

We propose a free-form shape optimization algorithm
based on the mathematical concept of shape derivatives,
which is capable of improving the shape of a given
initial geometry without the need of defining geometric
parameters. We will outline the main ingredients to the
method in the following. We introduce the theory for a
general cost function J and will choose J := −T later
in Section III-C.

A. Shape derivative
The shape derivative of a general shape function J =

J (Ω) represents the sensitivity of J when the domain
Ω is perturbed by the action of a given vector field V .
Given a smooth vector field V which is defined on D,
let Ωt = (id + tV )(Ω) denote the perturbed domain for
t > 0. The shape derivative of J in the direction given
by V is defined as

dJ (Ω;V ) := lim
t↘0

J (Ωt)− J (Ω)

t
, (4)

provided that this limit exists and the mapping V 7→
dJ (Ω;V ) is linear and continuous [3].

The shape derivative for problem (2)–(3) can be de-
rived in an analogous way as it was done in [4] and, for
a vector field V that is only supported on the rotor, reads

dJ (Ω;V ) =

+

∫
D

νΩ(x, |∇u|)
(
(divV )I − ∂V T − ∂V

)
∇u · ∇p dx

−
∫
D

∂sνΩ(x, |∇u|)
|∇u|

(∂V T∇u · ∇u)(∇u · ∇p) dx.

(5)

Here, p denotes the solution to the adjoint equation which
for the case of the maximization of the torque reads in
its strong form

s.t. − div (AΩ(u)∇p) =
∂T

∂u
, x ∈ D,

p = 0, x ∈ ∂D.
(6)

with

AΩ(u) := νΩ(x, |∇u|)I +
ν′Ω(x, |∇u|)
|∇u|

∇u⊗∇u.

B. Descent direction

Given a closed formula for the shape derivative, a
descent vector field V can be obtained by solving an
auxiliary boundary value problem as follows. Let X be
a Hilbert space and b : X × X → R a symmetric and
positive definite bilinear form. Then the solution W ∈ X
to the variational problem

b(W,V ) = −dJ (Ω;V ) ∀V ∈ X (7)

is a descent direction since it satisfies by construction

dJ (Ω;W ) = −b(W,W ) < 0.

Thus, it follows from the definition in (4) that perturbing
Ω a small distance into the direction W will yield a
decrease of the cost function J .

The user has some degrees of freedom in the choice
of the bilinear form b(·, ·) as well as the space X . Com-
mon choices include X = H1(D,R2) and b(W,V ) =∫
D
∂W : ∂V + W · V dx or b(W,V ) =

∫
D
Cε(W ) :

ε(V ) + W · V dx where ε(V ) = 1
2 (∂V + ∂V >) and

C is a fourth-order elasticity tensor. The latter choice
is known to preserve mesh quality better compared to
other choices of b(·, ·) [13]. An alternative strategy for
extracting a descent direction which also allows for
the extension to multiple objective functions will be
discussed in Section IV-A.

C. Numerical results

The procedure outlined in Sections III-A and III-B
constitutes the following free-form shape optimization
algorithm for minimization of shape function J = J (Ω):

Algorithm 1. Given initial design Ω0, cost function J ,
tolerance tol, k = 0.

1) Solve state equation (3) and adjoint equation (6)
2) Compute shape derivative dJ (Ωk;V ) given in (5)
3) Compute shape gradient W as solution to (7)
4) If ‖W‖ < tol then stop

else set Ωk+1 = (id + tW )(Ωk) where t =
max{1, 1

2 ,
1
4 ,

1
8 , . . . } such that J (Ωk+1) < J (Ωk).

5) k ← k + 1 and go back to 1)

In step 4) the parameter t is chosen by a line search
in order to guarantee a descent of the cost function J .

We applied Algorithm 1 to problem (2)–(3), i.e. we
chose to minimize J (Ω) := −T (Ω), using the finite



Figure 3. Top: Initial design of rotor, T = 1.007 Nm. Bottom:
Optimized design obtained after 70 iterations of Algorithm 1, T =
1.270 Nm.

element software package NGSolve [14]. In particular,
we used the automated shape differentiation capabilities
provided by NGSolve which enables the automated
computation of the shape derivative dJ (Ω;V ) for a
large class of PDE-constrained shape optimization prob-
lems [15].

For the space X in (7), we chose the space of all
vector-valued H1 functions defined on the rotor of the
machine whose normal component vanishes on the top
and bottom boundary parts of the rotor and which vanish
at the left and right boundary parts. For the bilinear form
b(·, ·) we chose the H1 inner product

b(V,W ) : =

∫
Drot

∂V : ∂W +
1

100
V ·W dx,

where Drot denotes the union of the five iron and four air
layers as depicted in Figure 3. The results obtained after
70 iterations of Algorithm 1 are depicted in Figure 3.
The torque was increased by about 26% from 1.007 Nm
to 1.270 Nm. The computational time to obtain the
optimized design was about 10 minutes on a single core.

D. Validation

In this section, we validate the results obtained in
our numerical experiments by comparing them to an
optimization run in JMAG [16]. Motivated by the re-
sults of the gradient-based optimization, see Fig. 3, we
parametrized our rotor geometry by means of 14 geo-
metric parameters under symmetry conditions, see Fig. 4,
and ran a genetic algorithm which is built into JMAG to
maximize the torque. We started with a population size of
300 and ran the algorithm for 50 generations, allowing

Figure 4. Geometric parameters used for genetic algorithm.

(a) (b)

(c) (d)
Figure 5. Best results obtained by genetic algorithm in JMAG based
on geometric parametrization of Fig. 4 after 300 generations. (a) best
design, T = 1.2119Nm. (b) second best design, T = 1.2091Nm.
(c) third best design, T = 1.2082Nm. (d) fourth best design, T =
1.2067Nm.

for 60 children in each generation. The computational
time used by the genetic algorithm was about 19 hours
and a total of 15000 designs were examined. The four
designs with the highest torque values are depicted in
Fig. 5. It can be seen that the best designs are similar to
the design we obtained by the gradient-based algorithm
(Fig. 3), but also that the torque values were not quite
reached. While one might be tempted to explain such
a discrepancy by the fact that different simulation tools
were used, we mention that the calculated torques in the
two simulation softwares (NGSolve and JMAG) showed
a good match for the initial geometry. Thus, it seems like
the design in Fig. 3 is superior to those obtained by the
genetic algorithm in JMAG since more general geometries
can be obtained. Of course, the computation time of
19 hours could be reduced by reducing the parameters
of the genetic algorithm, however the general order of
magnitude remains. Finally note that, since the choice
of the geometric parameters was inspired by Fig. 3, the
designs in Fig. 5 would have been unlikely to be found
without the knowledge provided by the free-form shape
optimization algorithm.

IV. MULTI-OBJECTIVE SHAPE OPTIMIZATION

In this section we consider an extension of the
gradient-based free-form shape optimization method pre-
sented in Section III to the setting of multiple objective



functions. We show how to compute a descent vector field
W that assures a descent with respect to several objective
functions and use this approach in order to obtain an
approximation of the Pareto front. We apply the method
to the bi-objective free-form shape optimization problem

min
Ω

(
J1(Ω)
J2(Ω)

)
where J1(Ω) := −T (Ω) corresponds to the negative of
the torque related to Ω and J2(Ω) := Vol(Ω) denotes the
volume of the ferromagnetic subdomains of the machine.

A. Multi-objective descent direction

Given two shape functions J1, J2 and their corre-
sponding shape derivatives dJi(Ω;V ), i = 1, 2, we want
to find a vector field W such that

dJ1(Ω;W ) < 0 and dJ2(Ω;W ) < 0.

We extend the ideas introduced in the framework of
parametric shape optimization in [2] to the setting of free-
form shape optimization. For that purpose, we consider
a finite element discretization using piecewise linear
and globally continuous finite elements on a triangular
mesh. Denoting the corresponding hat basis functions by
ϕ1, . . . , ϕn where n is the number of mesh points and
Φi = (ϕi, 0)>, and Φn+i = (0, ϕi)

>, i = 1, . . . , n, we
have that

{Φ1, . . . ,Φ2n}

is a basis for the set of all two-dimensional vector fields
on the mesh. Thus, after discretization each vector field
Wh can be written as Wh =

∑2n
i=1WiΦi with the

coefficient vector W := (W1, . . .W2n)>. Note that we
can identify the finite element function Wh with its
coefficient vector W . In order to obtain a discrete bi-
descent direction Wh, we solve the auxiliary optimization
problem to find (ρ,W ) ∈ R× R2n

min
ρ,W

ρ+
1

2

2n∑
i=1

W 2
i ,

s.t. dJ1(Ω;Wh) ≤ ρ,
dJ2(Ω;Wh) ≤ ρ.

(8)

Due to the linearity of the shape derivatives dJi(Ω;Wh)
with respect to Wh, the solution (ρ,W ) = (0,0) ∈ R×
R2n is a feasible point of (8). Therefore, it follows that
the solution (ρ,W ) to (8) satisfies dJi(Ω;Wh) ≤ ρ ≤ 0,
i = 1, 2, thus giving a bi-descent direction Wh whenever
the optimal ρ is negative. The second term in the cost
function of (8) is meant to keep the norm of Wh bounded.

We remark that, in contrast to the widely used
weighted-sum method, this approach is also feasible for
finding non-convex parts of a Pareto front [2]. Of course,
an extension of this approach to account for more than
two cost functions J1, . . . ,JN is straightforward.

B. Obtaining a Pareto front

Proceeding as described in Section IV-A allows to
obtain a bi-descent direction Wh. Thus, starting out from
an initial design, iteratively computing a bi-descent vector
field and moving the interface a small distance in the
direction given by this vector field constitutes a gradient-
based free-form shape optimization algorithm for two
cost functions. When no further decrease can be obtained,
a Pareto optimal point is found.

In order to obtain many Pareto optimal points, one
could start with many different initial designs. However,
it turns out to be more convenient to proceed as follows:
Consider different scalings of the two objective func-
tions, i.e. apply the gradient-based biobjective descent
algorithm for the two objective functions J1 and wJ2

with different values of the weight w, see also [2]. Each
choice of the weight w corresponds to a run of the bi-
objective descent algorithm and will yield a point on the
Pareto front.

C. Numerical results

The proposed algorithm to obtain an approximation of
a Pareto front consists in a loop over different weights
w where each iteration uses an algorithm similar to
Algorithm 1 to obtain an optimized design. In contrast
to Algorithm 1, however, here the descent direction is
obtained by solving the auxiliary optimization problem
(8) rather than an auxiliary boundary value problem of
the form (7). The algorithm reads as follows:

Algorithm 2. Given initial design Ω0, cost functions
J1,J2, tolerance tol, set of weights {w1, . . . , wM}.
For j = 1, . . . ,M :

1) If j > M then stop
else set J̃1 ← J1, J̃2 ← wjJ2.

2) Set k ← 0, Ω
(j)
0 ← Ω0

3) For k = 0, 1, 2, . . .

(i) Solve state equation (3) and adjoint equa-
tion (6)

(ii) Compute shape derivatives dJ̃1(Ω
(j)
k ;V ),

dJ̃2(Ω
(j)
k ;V )

(iii) Compute bi-objective descent direction Wh as
solution to (8) with dJ̃1(Ω

(j)
k ; ·), dJ̃2(Ω

(j)
k ; ·)

(iv) If ‖Wh‖ < tol then j ← j + 1 and go to 1)
else set Ω

(j)
k+1 = (id + tWh)(Ω

(j)
k ) where t =

max{1, 1
2 ,

1
4 ,

1
8 , . . . } such that Ji(Ω(j)

k+1) <

Ji(Ω(j)
k ), i = 1, 2.

In our implementation, we solved the quadratic opti-
mization problem involving linear inequality constraints
(8) by means of a sequential least squares program-
ming optimization algorithm using the functionality
scipy.optimize(...). In order to reduce compu-
tation time, we restricted problem (8) to the degrees of
freedom on the material interfaces which are subject
to optimization and neglected the interior degrees of
freedom. This is motivated by the fact that a movement
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Figure 6. Left: Values of different designs obtained in the course
of gradient based two-objective optimization algorithm for different
weights w. Right: Zoom on approximated Pareto front.

w = 0.065 w = 0.035 w = 0.005
T = 1.260 T = 1.203 T = 1.176

V = 2.89 · 10−4 V = 2.60 · 10−4 V = 2.55 · 10−4

Figure 7. Three different designs obtained on the approximated Pareto
front by using different weights w for J2.

of points inside a subdomain does not alter the shape.
Proceeding like this, we obtain a deformation vector field
that is only supported on the material interfaces and
vanishes on all interior mesh nodes. In order to avoid
intersection of the mesh when updating the geometry, we
extend the vector field from the interfaces to the whole
rotor domain by harmonic extension, i.e., by solving an
elliptic PDE. As additional constraints, we imposed the
linear equality constraints that the normal component of
the vector field on the boundary on the rotor domain
vanishes, i.e. Wx(z)nx(z) + Wy(z)ny(z) = 0 for all
mesh points z ∈ ∂Drot. These constraints ensure that
the radius of the rotor remains unchanged.

Figure 6 (left) shows the results of the bi-objective
descent algorithm for minimizing the negative torque and
w times the volume, J1(Ω) = −T (Ω) and wJ2(Ω) =
wVol(Ω), for different choices of the weighting factor
w. The right picture of Figure 6 depicts a zoom on the
obtained Pareto optimal points. The computational effort
for obtaining one Pareto optimal design is comparable
to the cost of one single-objective optimization run (see
Sec. III-C), amounting to a computational time of about
two hours on a single core to obtain the depicted Pareto
front. The Pareto optimal designs corresponding to three
different choices of w can be seen in Figure 7.

V. CONCLUSION AND OUTLOOK

We addressed the problem of finding the optimal shape
of the rotor of a synchronous reluctance machine as
used in an X-ray tube by means of a gradient-based
free-form shape optimization method which is based on
the shape derivative. This approach allowed to obtain an
optimized shape which exhibits an increase of the torque
by 26% within only several minutes of computation

time. The results are confirmed by a geometric parameter
optimization in JMAG where the parametrization is moti-
vated by the design obtained by free-form optimization.
Moreover, we introduced an extension to the setting of
multi-objective shape optimization and showed a way to
obtain an approximate Pareto front while significantly
decreasing the computation time when compared to evo-
lutionary algorithms.

In this paper we only considered shape optimization
approaches which cannot alter the connectivity of the
initial design. A next step would be to consider topology
optimization methods to additionally allow for changing
topologies, in particular in the context of multi-objective
optimization. While this was beyond the scope of this
paper, it is subject of future work.
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