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Abstract

We present several coupled finite and boundary element formulations for the
vibro–acoustic simulation of completely immersed bodies such as submarines. All
formulations are based on the different use of standard boundary integral equations.
In addition to the well known symmetric coupling we discuss two different approaches
which are based on the weakly singular boundary integral equation only.

1 Introduction

The simulation of the sound radiation of time–harmonic vibrating elastic structures is of
main interest in many applications where the acoustic fluid is modeled either in air or in
water. Applications in mind are the sound radiation of passenger car bodies, where the
acoustic region is bounded, of partially immersed bodies such as ships, where the acoustic
region is a half space, or of completely immersed bodies such as submarines with a full
space acoustic region.
In this paper, we consider coupled finite and boundary element formulations for a direct
simulation of a three–dimensional time–harmonic vibrating structure in a surrounding fluid
[3, 7]. In particular, the time–harmonic vibrating structure in ΩS is modeled by the Navier
equations in the frequency domain,

−̺Sω2u(x) − µ∆u(x) − (λ + µ)grad divu(x) = f(x) for x ∈ ΩS, (1.1)

where λ and µ are the Lamé parameters, ̺S is the density of the structure, ω is the fre-
quency, and u is the unknown displacement field. Note that ΩS is in general a bounded,
multiple connected domain with an interior boundary ΓN where Neumann boundary con-
ditions

t(x) = λ div u(x) nx + 2µ
∂

∂nx
u(x) + µ nx × curl u(x) = g(x) for x ∈ ΓN (1.2)
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are considered, and with an exterior boundary Γ where transmission conditions are for-
mulated for the coupling with the surrounding fluid. In particular, in the low frequency
regime we use the Laplace equation

−∆p(x) = 0 for x ∈ ΩF (1.3)

to describe the acoustic pressure p in the unbounded domain ΩF surrounding the structure
in ΩS. Note that p has to satisfy a radiation condition at infinity,

p(x) = O
( 1

|x|

)
as |x| → ∞.

In addition to the partial differential equations (1.1) and (1.3) and the Neumann boundary
conditions (1.2) we consider the transmission conditions on the interface Γ = ΩF ∩ ΩS,

q(x) =
∂

∂nx
p(x) = ̺F ω2[u(x) · nx], t(x) = −p(x)nx for x ∈ Γ, (1.4)

where ̺F is the density of the fluid, and nx is the exterior normal vector with respect to
ΩS.
The aim of this paper is to derive and to discuss different coupled finite and boundary
element formulations for the solution of the transmission boundary value problem (1.1)–
(1.4). Besides an efficient solution of the direct problem a main interest in applications is
the determination of critical frequencies ω which correspond to eigenvalues of the coupled
problem with homogeneous data, see, e.g., [1, 2] and the references given therein.

2 Integral equations and variational formulations

The solution of the Laplace equation (1.3) in the unbounded exterior domain ΩF is given
by the representation formula for x ∈ ΩF , see, e.g., [5],

p(x) = −
1

4π

∫

Γ

1

|x − y|
q(y)dsy +

1

4π

∫

Γ

(x − y, ny)

|x − y|3
p(y)dsy. (2.1)

From (2.1) we obtain a system of boundary integral equations given as

(
p

q

)
=

(
1

2
I + K −V

−D 1

2
I − K ′

)(
p

q

)
. (2.2)

For the structural part we introduce the bilinear forms

aS(u, v) :=

∫

ΩS

3∑

i,j=1

σij(u(x))eij(v(x)) dx, 〈u, v〉ΩS
:=

∫

ΩS

u(x) · v(x) dx,
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for u, v ∈ [H1(ΩS)]3 as well as the duality pairing, for t ∈ [H−1/2(Γ)]3,

〈t, v〉Γ :=

∫

Γ

t(x) · v(x)|Γ dsx.

The variational formulation of the structural problem (1.1) and (1.2) is to find the dis-
placement field u ∈ [H1(ΩS)]3 such that

aS(u, v) − ̺Sω2〈u, v〉ΩS
− 〈t, v〉Γ = F (v) (2.3)

is satisfied for all v ∈ [H1(ΩS)]3, where the linear form of the right hand side is given by

F (v) :=

∫

ΩS

f(x) · v(x) dx +

∫

ΓN

g(x) · v(x)|Γ dsx .

By using the second transmission boundary condition in (1.4), we can rewrite the varia-
tional formulation (2.3) as

aS(u, v) − ̺Sω2〈u, v〉ΩS
+ 〈p, v · n〉Γ = F (v) for all v ∈ [H1(ΩS)]3, (2.4)

where in addition to u ∈ [H1(ΩS)]3 also p ∈ H1/2(Γ) is unknown. By using the boundary
integral equations as given in (2.2), and by using the first transmission condition in (1.4),
we will derive a second variational equation to link the two unknowns u and p. Since such
an approach is not unique, we will discuss several possible methodologies.

3 Symmetric coupling of finite and boundary elements

When inserting the first boundary integral equation as given in (2.2) and by using the first
transmission condition in (1.4), i.e.,

p(x) =
1

2
p(x) + (Kp)(x) − (V q)(x), q(x) = ̺F ω2[u(x) · nx] for x ∈ Γ,

into the variational problem (2.4), we have to find (u, p) ∈ [H1(ΩS)]3 × H1/2(Γ) satisfying

aS(u, v) − ̺Sω2〈u, v〉ΩS
− ̺F ω2〈V [u · n], v · n〉Γ + 〈(

1

2
I + K)p, v · n〉Γ = F (v) (3.1)

for all v ∈ [H1(ΩS)]3. In addition we consider the weak formulation of the second, hyper-
singular, boundary integal equation in (2.2). Together with the first transmission condition
in (1.4), this gives

〈Dp, π〉Γ + ̺F ω2(
1

2
I + K ′)[u · n], π〉Γ = 0 for all π ∈ H1/2(Γ). (3.2)

From the hypersingular boundary integral equation (3.2) as well as from the coupled vari-
ational form (3.1) we conclude that the acoustic pressure p is only unique up to constants.
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Hence, to fix the constants we may introduce the modified hypersingular boundary integral
operator via the bilinear form

〈D̃p, π〉Γ := 〈Dp, π〉Γ + 〈p, 1〉Γ〈π, 1〉Γ for all p, π ∈ H1/2(Γ).

Instead of (3.2) we now consider the modified variational problem

〈D̃p, π〉Γ + ̺F ω2〈(
1

2
I + K ′)[u · n], π〉Γ = 0 for all π ∈ H1/2(Γ), (3.3)

which implies the related scaling of the pressure by 〈p, 1〉Γ = 0. To summarize, we have
to find (u, p) ∈ [H1(ΩS)]3 ×H1/2(Γ) from the coupled variational problem (3.1) and (3.3).

Since the modified hypersingular boundary integral operator D̃ is H1/2(Γ)–elliptic, we
obtain from (3.3) the representation

p = −̺F ω2D̃−1(
1

2
I + K ′)[u · n],

and therefore the continuous Schur complement problem to find u ∈ [H1(ΩS)]3 such that

aS(u, v) − ω2

[
̺S〈u, v〉ΩS

+ ̺F 〈T [u · n], v · n〉Γ

]
= F (v) (3.4)

for all v ∈ [H1(ΩS)]3. Note that

T := V + (
1

2
I + K)D̃−1(

1

2
I + K ′) : H−1/2(Γ) → H1/2(Γ) (3.5)

is the symmetric and H−1/2(Γ)–elliptic representation of the Poincaré–Steklov operator
realizing the Neumann to Dirichlet map which is related to the Neumann boundary value
problem of the Laplace equation in the unbounded exterior domain ΩF . As a direct conse-
quence of the mapping properties of all involved operators, we can formulate the following
result.

Lemma 3.1 If ω2 is not an eigenvalue of the eigenvalue problem

aS(u, v) = λ
[
̺S〈u, v〉ΩS

+ ̺F 〈T [u · n], v · n〉Γ

]
for all v ∈ [H1(ΩS)]3,

then there exists a unique solution of the variational problem (3.4), and therefore of the
coupled variational problem (3.1) and (3.3).

Next we consider a Galerkin discretization of the coupled variational formulation (3.1)
and (3.3). Let S1

h(ΩS) ⊂ H1(ΩS) be a conformal finite element space of, e.g., piecewise
linear and continuous basis functions with respect to some admissible finite element mesh
ΩS,h, and let S1

h(Γ) be some boundary element ansatz space of, e.g., piecewise linear and
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continuous basis functions which can be defined independent of S1

h(ΩS). The Galerkin
discretization of the coupled variational problem (3.1) and (3.3) results in the linear system

(
KS − ̺Sω2MS − ̺F ω2C⊤VhC C⊤(1

2
Mh + Kh)

(1

2
M⊤

h + K⊤
h )C 1

̺F ω2 D̃h

)(
u

p

)
=

(
f

0

)
(3.6)

where KS and MS are the finite element stiffness and mass matrices, respectively. D̃h

is the Galerkin matrix of the modified hypersingular boundary integral operator D̃. The
matrix C describes the basis transformation of a piecewise linear and continuous vector
function uh to a scalar piecewise linear but discontinuous function uh · n when considering
a polygonal boundary mesh Γh. Note that Vh is the Galerkin discretization of the single
layer potential V when using piecewise linear but discontinuous basis functions, while Kh

and Mh are the Galerkin boundary element matrices of the double layer potential K and
of the identity.
Since the Galerkin discretization D̃h of the modified hypersingular boundary integral op-
erator D̃ is invertible, the Schur complement system of (3.6) is given by

(
KS − ω2

[
̺SMS + ̺F C⊤[Vh + (

1

2
Mh + Kh)D̃

−1

h (
1

2
M⊤

h + K⊤
h )]C

])
u = f. (3.7)

As in the continuous case, see (3.4), we conclude unique solvability of the Schur complement
system (3.6), if ω2 is not an eigenvalue of the algebraic eigenvalue problem

KSu = λ
(
̺SMS + ̺F C⊤[Vh + (

1

2
Mh + Kh)D̃

−1

h (
1

2
M⊤

h + K⊤
h )]C

)
u (3.8)

which is the discrete counterpart of the eigenvalue problem as considered in Lemma 1.
Note that

Th = Vh + (
1

2
Mh + Kh)D̃

−1

h (
1

2
M⊤

h + K⊤
h )

is a symmetric boundary element approximation of the Poincaré–Steklov operator as de-
fined in (3.5).

4 Nonsymmetric FE/BE coupling

Instead of the symmetric coupling of finite and boundary elements, the use of the weakly
singular boundary integral equation is very popular in applications in engineering and
in industry. This is due to the use of the single layer potential V and the double layer
potential K only. Hence we will discuss related formulations which also allow the use of
simpler collocation methods for the boundary element discretization.
For the non–sysmmetric coupling we consider two different combinations of the first bound-
ary integral equation as given in (2.2), of the first transmission condition as given in (1.4),
and of the variational formulation (2.4).
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4.1 A second kind boundary integral equation approach

Inserting the first transmission condition of (1.4) into the first boundary integral equation
in (2.2), this gives the second kind boundary integral equation

(
1

2
I − K)p = −V q = −̺F ω2V [u · n] on Γ. (4.1)

Since 1

2
I − K : H1/2(Γ) → H1/2(Γ) is invertible, see, e.g., [6], we obtain

p = −̺F ω2(
1

2
I − K)−1V [u · n] = −̺F ω2T [u · n],

where

T := (
1

2
I − K)−1V : H−1/2(Γ) → H1/2(Γ).

is a second representation of the Poincaré–Steklov operator as introduced in (3.5). From
(2.4) we obtain the variational formulation to find u ∈ [H1(ΩS)]3 such that

aS(u, v) − ω2

[
̺S〈u, v〉ΩS

+ ̺F 〈T [u · n], v · n〉Γ

]
= F (v)

for all v ∈ [H1(ΩS)]3, which corresponds to the variational problem (3.4). However, the
Galerkin discretization of the variational formulation (2.4) and of the boundary integral
equation (4.1) now results in the different linear system

(
KS − ̺Sω2 C⊤

−V C 1

̺F ω2 [
1

2
Mh − Kh]

)(
u

p

)
=

(
f

0

)
. (4.2)

Note that the test functions to be used in the Galerkin discretization of the second kind
boundary integral equation (4.1) are the piecewise linear and continous basis functions of
S1

h(Γ) as used for the approximation of the pressure p. Although, to our best knowledge,
there is still no rigorous stability analysis available for general Lipschitz boundaries Γ, the
elimination of p results in the Schur complement system

(
KS − ω2

[
̺SMS + ̺F C⊤(

1

2
Mh − Kh)

−1V hC
])

u = f, (4.3)

which is uniquely solvable if ω2 is not an eigenvalue of the related discrete eigenvalue
problem

KSu = λ
(
̺SMS + ̺F C⊤(

1

2
Mh − Kh)

−1V hC
)
u.

Note that

Th = (
1

2
Mh − Kh)

−1V h

is a non–symmetric boundary element approximation of the Poincaré–Steklov operator T

which is based on an approximate solution of the second kind boundary integral equation
(4.1).
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4.2 A first kind boundary integral equation approach

Since the single layer potential V : H−1/2(Γ) → H1/2(Γ) is invertible, we obtain from the
first boundary integral equation of (2.2), and by using the first transmission boundary
condition of (1.4), the relation

q = V −1(−
1

2
I + K)p = −Sp = ̺F ω2[u · n] on Γ,

where

S = V −1(
1

2
I − K) : H1/2(Γ) → H−1/2(Γ)

is the Steklov–Poincaré operator describing the Dirichlet to Neumann map which is related
to the Laplace equation in the exterior domain. We therefore obtain

p = −̺F ω2S−1[u · n] = −̺F ω2T [u · n], T = S−1 = (
1

2
I − K)−1V,

which obviously corresponds to the nonsymmetric approach which is based on the solu-
tion of the second kind boundary integral equation (4.1). Hence, unique solvability of the
continuous problem follows as above. However, for a finite and boundary element dis-
cretization we consider the coupled system based on the variational formulation (2.4), the
first boundary integral equation in (2.2), and the first transmission condition in (1.4). The
Galerkin discretization of the coupled system then results in the linear system




KS − ̺Sω2MS C⊤

−̺F ω2C M⊤
h

1

2
Mh − Kh Vh







u

p

q


 =




f

0

0


 . (4.4)

Since the discrete single layer potential Vh is invertible, after elimination of q we obtain
the reduced system

(
KS − ̺Sω2MS C⊤

C 1

̺F ω2 M
⊤
h V −1

h (1

2
Mh − Kh)

)(
u

p

)
=

(
f

0

)
. (4.5)

Note that

Sh := M⊤
h V −1

h (
1

2
Mh − Kh)

is a non–symmetric representation of the Steklov–Poincaré operator. For stability we need
to assume an appropriate choice of the boundary element spaces for an approximation of p

and q, respectively, see, e.g., [4]. If Sh is invertible, the Schur complement system of (4.5),
(
KS − ω2

[
̺SMS + ̺F C⊤S−1

h C
])

u = f,

is uniquely solvable, if ω2 is not an eigenvalue of the related eigenvalue problem

KSu = λ
(
̺SMS + ̺F C⊤S−1

h C
)
u.
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5 Conclusions

The symmetric coupling of finite and boundary element methods as described in Sect. 3
admits a complete error and stability analysis, but requires the use of the hypersingular
boundary integral operator D, and a Galerkin approach for the discretization of the bound-
ary integral equations. Contrary, both nonsymmetric formulations as given in Sect. 4 are
based on the single and double layer potential operators V and K only, and allow the use
of a collocation scheme for a boundary element discretization.
Challenging problems appear in the construction of efficient and robust preconditioning
strategies for the solution of the resulting linear systems, in the consideration of the
Helmholtz equation instead of the Laplace equation when simulating the sound radia-
tion in the mid frequency regime, and in the analysis of appropriate eigensolvers for the
determination of critical frequencies. For preliminary and promising results, see [1, 2, 7].
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