PDEs and BVPs Summer 2023 Exercise Sheet Nel
20.4.2023

Problem 1. Let 1 < p,q < oo, such that Z—lj—i—% > 1 and f € LP(RY) and g € LI(RY).
Set % = Il]+ % — 1 with 1 < r < oo. Show that fxg € Lr(]Rd) and | f *gHU(Rd) <
HfHLP(Rd)Hg”Lq(Rd).

Hint: Show the assertion first for the case p = 1, and then for arbitrary 1 < p < oo by
considering a decomposition of the form

@ =) = |f@ = n)*lg@) (1= = ) "lgw) ).

with o = p/q¢’ and 8 = ¢/p’ and the conjugated exponents’ p’,¢' > 1 of p,q¢ > 1. The
generalization of the Hélder inequality to more than two functions may also be helpful.

Problem 2. Let O € R? be an open set with finite Lebesgue measure. Show the following:

(i) There exist at most countably many pairwise disjoint compact cuboids @, =
[af™, 6] x - x [af?, b7 with a{, 6" € R for all j =1,...,d, such that

0= @n
n=1

(ii) Let N € N and define sy := 3., 1, . Prove that sy converges to 1o in L*(R%).

Problem 3. Let

__ 1
p(z) = Ce 1P, 2| <1,
o, x| > 1,

where C' € R is chosen so that [, p(z)dz = 1. Prove that p € D(R?) and supp(p) =

B(0,1).

Hint: Write p as the composition of a function defined on R and a function that maps R?
to R.

Problem 4. Show that the function space

Co(R?) := {f € C(R%)

mlﬂmzo}

|z| =00

equipped with the supremum norm || - ||, is a Banach space.

fp’ > 1 is called the conjugate exponent of p > 1 if % + ﬁ = 1 applies.
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Problem 5. Let Q C R? be nonempty and open. Show the following formulae of partial
integration:
(i) Assume additionally that Q is bounded with a C'-smooth boundary. Then, for
any u,v € C1(Q)

/Q(ﬁju)vdm = /ag wovjdo — /Quajvdx, j=1,...,d,

holds, where v := (1, ...,v4)T denotes the exterior unit normal vector field of 2.
(ii) For u € C1(Q2) and v € D(Q) one has

/(@u)vdaz =— / wojude, j=1,...,d.
0

Q

Hint: Of course, it is allowed to use the classical Gaul divergence theorem in the following
(or another) form: B
Let G C R? be a bounded domain with C*-smooth boundary and F € C*(G,R?). Then

/didex:/ F -vdo.
G oG

Problem 6. Let d = 1 and p € D(R) be the test function from Exercise 3. As in the
lecture, we define p,(x) := np(nz) for all n € N and = € R. Show the following:

(i) fgpn(z) dz =1 for all n € N and

r (2) oo, ifx =0,
1m pplx) = X
n%oop 07 lf x 7& 0.

ii) The regular distributions 7T, converge “pointwise” to the d-distribution dy, i.e.
g n g p

lim | pu(a)i(e) de = 6(0), ¥ € DIR).

n—oo

(iii) The é-distribution dy is not a regular distribution.

Problem 7. For ¢ € D(0,00) define
- 1
Ty := m) (=) .
=2 ()

Show that T" belongs to D’'(0, 00) and determine its derivative.

Problem 8. Let a@ > 0 be real and B(0,1) C R? be the d-dimensional unit sphere.
Furthermore, let the function u : B(0,1) — [0, oo] be defined by u(x) := |z|~*. For which
aisu e HY(B(0,1))?



Problem 9. Let Q@ C R? be open and u € L%*(9) such that the weak derivative D%u
exists in L2(Q) for some o € Ny. Let € L*(R?) be the extension by zero of u. For n € N
let the mollifier p,, be defined as in the lecture and U & (2. Show that for each sufficiently
large n the following identity holds almost everywhere on U:

D%(pp x W) = py * Deu.

Hint: Use a%jpn(x —y) = —%pn(x —v).

Problem 10. Let Q C R? be open. Show the following:
(i) Let w € H'(Q). Then, there exists a sequence (u,)nen € D(Q) such that u,, — u
in L*(Q) and D%wu,, — D%wu in L*(U) for j € {1,...,d} and any U € Q, where ¢,
is the j-th unit vector in R?.
(i) Let u, f1,..., fa € L*(Q). Assume that there exists a sequence (uy,)nen € D(RY)
such that u, — v and gi — f; in L*(U) for any U € Q and all j € {1,...,d}.
Then, u € H(Q) and D%u = f;, j € {1,...,d}.

Hint for (i): One can use the same sequence (u,)nen as in the proof of the statement that
D(Q) is dense in L*(1Q).
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Problem 11. Let © C R? be open and u,v € H(Q). Verify that uv is weakly dif-
ferentiable and that D% (uv) = (D%u)v + u(D%v), where e; is the j-th unit vector in
RY.

Problem 12. Show the following:

(i) A generalization of the chain rule: let  C R? be a open set and let f € C''(R) such
that f(0) = 0 and assume that there exists a constant M > 0 such that | f'(r)| < M
holds for all 7 € R. Then (f ou) € H'(Q) and D% (f ou) = (f' ou) - D%u for any
u € H(Q) and j = 1,...,d, where e; denotes the j-th unit normal vector in R

(ii) The condition f(0) = 0 can be dropped for bounded 2.

Hint: A result from measure theory sometimes known as the “reverse theorem of Lebesgue”
can be useful.’

Problem 13. Assume that 2,9, C R? are open sets and F : Q, — € is bijecti-
ve with £ € C'(Qy,RY) and F~' € C'(Q,R?). Moreover, assume that the Jacobians
DF and DF~! of F and F~!, respectively, satisfy sup{||(DF)(z)|| |z € Q} < oo and
sup{|[[(DF ()| |y € Q1} < oo. Finally, let u € H'(;). Show that uo F € H'({);) and
d
D% (uoF) = (D*u)o F) - (D% F), je{l,....d}.

k=1

Problem 14. Consider d = 1, Q = (0,1) and u(z) := z € H'(Q). Show that the zero
extension u is not in H*(R).

Problem 15. Show the following:
(i) Let Q C R? be open and set

H}(Q) := {u € H'(Q) | supp(u) is compact in Q}.

Prove that H(Q2) C H}(Q).
(ii) Let Q = B(0,1) \ {0} C R? and let p € D(B(0,1)). Verify that ¢ € H}(Q).

Hint for (i): Let (pn)nen be the sequence of mollifiers. Verify that then for a fixed u €
H}(Q) and all sufficiently large n the relation p, * u € D(2) holds.

"Let f,, f € L?(Q) such that f, — f with respect to the L?-norm. Then there exists a subsequence
(far)ken of (fu)nen and g € L?(Q) such that f,, (z) — f(z) and |f,, (z)| < |g(x)| are true for almost all
x €.



Problem 16. Let k > 4, m € Ny and u € H*™(R%). Sobolev embedding yields that
u € C™(RY). Prove that there exists a constant C' > 0 depending only on d and %k such
that

[ Du| oo ity < C|u]| grim may

is satisfied for any multi index o € N¢ with |a| < m.

Hint: Make use of the definition of the Sobolev spaces by means of the Fourier transform.

Problem 17. Let Q C R? be a open set, u € HL (Q) and f € HF () for some k € N,

with —Awu = f in the sense of distributional derivatives. As usual denote by ~ the extension
by zero on R% Let n € D(€). Show that

A(nu) = (uAn +2Vn-Vu—nf)”

holds on R? in the sense of distributional derivatives.

Problem 18. Let Q C RY, d > 1, be open, bounded and nonempty, and consider for
f € L*(Q) the boundary value problem

(0.1) —Z&B %U—I—QU—]‘ u | 002 =0.
k

Assume that o € C(Q) satisfies a > 0 and that a/* € C'(Q) are real-valued (for all
k,j =1,...,d), symmetric (i.e. a/*(z) = o’ (z), Vo € Q and Vk,j € {1,...,d}) and
fulfill

(@™ (@))f4=18,8) o = Bll€lZa, Vo € QVE € T,

for some E > 0. We say that v € H}(Q) is a weak solution of (0.1), if u satisfies

Z/ 3% a;ik)dx+/ a()u( dl‘—/f v(z)dr Vv e Hy ().

Verify that for any given f € L?*(Q) there exists a uniquely determined weak solution
u € Hg ().

Problem 19. Let Q C R? d > 1, be open, bounded and nonempty. According to Exercise
18 there exists for any f € L*(Q) a uniquely determined weak solution u; € Hj () of the
boundary value problem (0.1). Hence, the solution operator

R:L*Q) — L*(Q), Rf=uy,

mapping a given right hand side to the associated weak solution is well defined. Show
that R is a compact linear operator.

Hint: Write R as the product of a bounded and a compact operator. You are allowed
to use (without proof, see Exercise 18) that the sesquilinear form associated to (0.1) is
coercive.



Problem 20. Let Q2 C R? be open and bounded and let f : © — R be Lipschitz
continuous. Verify, that f € H'(Q). For this, proceed as follows:

(i) Show that f is bounded. Hence, we have f € L?(Q).
(ii) Prove that the weak partial derivatives of f exist and belong to L?(£2).

Hints: Make use of the difference quotient method and related results from the lecture to
show that f is weakly differentiable. In particular, set ), := {x € Q | dist(x,00Q) > h}
and fj = XQhD;?f. Show that f;, is uniformly bounded in L?(2) and verify that these
functions converge weakly to 0, f.
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Problem 21. Prove or disprove (a sketch of the arguments is sufficient) that the following
sets are Lipschitz domains.
() W= (0,1)%
(i) Q= (0,1)*\ ({3} x [0.3]);
(iii) @ :={(z,y) e R?: 2* +y* < 1}.

Problem 22. Let 2 C R? d > 2, be a bounded open Lipschitz domain. Show that there
does not exist a continuous operator T : L?(2) — L?(99) such that Tu = u | 9 holds
for all u € L2(Q) N C(9).

Problem 23. Let Q C R?% d > 2, be a bounded open Lipschitz domain and let 7' :
HY(Q) — L*(99) be the trace operator defined as in the lecture.’ Prove that Tu = u | 99
for any u € C(Q) N H'(Q). For this, proceed as follows:

(i) Construct (locally) for a fixed u € C(Q) N H'(£2) a continuous extension @ of u as
in the proof that a Lipschitz domain has the extension property, which is defined
in an open neighborhood of €.

(ii) Set u, := (po*u) | 2, where (p,) is the sequence of mollifiers and u is an extension
of 4 onto R? by zero. Show that u,, converges to u in the || - || - norm.

(iii) Deduce that Tu = u | 9 for any u € C(2) N H(S).

Hint: Use that functions that are continuous on compact sets are uniformly continuous.

Problem 24. Let Q C R be a bounded Lipschitz domain.
(i) Show that

(0.2) /(Au)vdx—i—/Vu-Vvdx :/ @vda,
Q Q a0 OV

where v is the outer unit normal vector at 92 and % := v - Vu is the normal
derivative, is true for all u € C*(Q) and all v € C1(Q).

(i) Show that the Neumann trace Tyu = 2%, u € C?(Q), can be extended to a bounded
operator Ty : H*(Q2) — L*(09).

(iii) Prove that

(0.3) /(Au)vda:—i—/Vu-Vvdx:/ TyuTpvdo,
0 0 o9

holds for any u € H?(Q) and all v € H'(Q), where Tp is the Dirichlet trace
operator defined as in the lecture.

Recall that T was defined to be the extension by continuity of 7' : C*(Q) — L2(89Q), Tu = u | 9.



Hint: You are allowed to use, without proof, that C%(€2) is dense in H?(Q2) and that the
classical Gaufl divergence theorem is also valid for bounded Lipschitz domains.

Problem 25. Let © C R? be a bounded Lipschitz domain, A\ € C, f € L*Q) and
¥ : 90 — [0,00) a bounded and measurable function. Denote by T : H*(Q2) — L*(0Q)
the trace operator, as in the lecture. Show that v € H'() is a (distributional) solution
of the Robin boundary value problem

(A —=XNu=f inQ,

ou

— +9Tu=0 on 01,
ov

if and only if

/ Vu- Vv dr — / v de+ [ H(Tu)(Tv) do = / fvdx
Q Q Ge) Q

holds for all v € H'(Q).

Problem 26. Let S be a densely defined and linear operator in Hilbert space H. Show
the following properties of the adjoint operator.

dom (5*) = {g e H ’ 3¢’ € H such that (Sf,g)u = (f.¢')u Vf € dom(S)}
S*g=4.
is well-defined, i.e. the element ¢’ € H in the definition of S* is unique.

S
S* is a linear operator.
S* is closed.

Problem 27. Let S be a symmetric operator in a Hilbert space H and assume that there
exists a A € R such that ran (S — \) = H." Show the following statements:

(i) A is not an eigenvalue of S.
(ii) S is self-adjoint.

Problem 28. Let Q2 C RY d > 2, be a smooth bounded domain. We consider in L?(£2)
the operator

dom(S) = Hy(Q) ={f € H*(Q) |u] 02 =v-(Vu | Q) =0},
Sf=-Af,

where v is the normal vector in €2 and traces are build in the sense of trace operators.
Show the following statements:

"Recall that the range of a linear operator A is ran(A) = {Az |z € dom(A)}, where dom(A) denotes
the domain of definition of A.



(i) S is symmetric.
(ii) The adjoint of S is given by

dom (S*) = {f € L*(Q) | Af € L*(2) in the distributional sense}
S*f=—-Af.

Recall: Af € L*() in the distributional sense means that there is an ¢ € L?(2) such that

/fA(pdx:/ggpdx
Q Q

holds for all ¢ € D(Q2). In this case, we define Af = g.

Problem 29. Let Q C R?, d > 2, be a smooth, bounded domain and S be the linear
operator of Exercise 28. Show that S is a closed operator. For this, proceed as follows:

(i) Show that the mapping || - [|a : HZ(2) — R, defined by
[ulla = lullZ2) + 1Aul72),  Yu € H5(Q),

is a norm in HZ(f2) which is equivalent to the H?({2)-norm.
(ii) Conclude from item (i) that S is a closed operator.

Problem 30. Let Q C R%, d > 2, be a bounded C?-domain. The Dirichlet Laplacian in
Q) is defined by
dom(Ag) = H*(Q) N Hy ()
Aof = —=Af.
Show o(Ag) = 0,(Ag) = {M\ | n € N}, where (A\,)nen € (0,00) is a sequence of real

numbers with A\, — oo for n — oco. Furthermore, show that the corresponding eigenvectors
(tn)nen € dom(Ap) form an orthonormal basis of L?(2).

Hint: Show that there exists an A € p(Ap) such that the resolvent (Ag— \)~! is a compact
operator in L?*(€2). Then deduce the form of o(Ag) from the knowledge of the spectrum
of (A() — /\)71.



