Problem 1. Let $1 \leq p, q \leq \infty$, such that $\frac{1}{p}+\frac{1}{q} \geq 1$ and $f \in L^{p}\left(\mathbb{R}^{d}\right)$ and $g \in L^{q}\left(\mathbb{R}^{d}\right)$. Set $\frac{1}{r}:=\frac{1}{p}+\frac{1}{q}-1$ with $1 \leq r \leq \infty$. Show that $f * g \in L^{r}\left(\mathbb{R}^{d}\right)$ and $\|f * g\|_{L^{r}\left(\mathbb{R}^{d}\right)} \leq$ $\|f\|_{L^{p}\left(\mathbb{R}^{d}\right)}\|g\|_{L^{q}\left(\mathbb{R}^{d}\right)}$.

Hint: Show the assertion first for the case $p=1$, and then for arbitrary $1<p \leq \infty$ by considering a decomposition of the form

$$
|f(x-y) g(y)|=|f(x-y)|^{\alpha}|g(y)|^{\beta}\left(|f(x-y)|^{1-\alpha}|g(y)|^{1-\beta}\right)
$$

with $\alpha=p / q^{\prime}$ and $\beta=q / p^{\prime}$ and the conjugated exponents ${ }^{\dagger} p^{\prime}, q^{\prime} \geq 1$ of $p, q \geq 1$. The generalization of the Hölder inequality to more than two functions may also be helpful.

Problem 2. Let $\mathcal{O} \in \mathbb{R}^{d}$ be an open set with finite Lebesgue measure. Show the following:
(i) There exist at most countably many pairwise disjoint compact cuboids $Q_{n}=$ $\left[a_{1}^{(n)}, b_{1}^{(n)}\right] \times \cdots \times\left[a_{d}^{(n)}, b_{d}^{(n)}\right]$ with $a_{j}^{(n)}, b_{j}^{(n)} \in \mathbb{R}$ for all $j=1, \ldots, d$, such that

$$
\mathcal{O}=\bigcup_{n=1}^{\infty} Q_{n}
$$

(ii) Let $N \in \mathbb{N}$ and define $s_{N}:=\sum_{n=1}^{N} \mathbb{1}_{Q_{n}}$. Prove that s_{N} converges to $\mathbb{1}_{\mathcal{O}}$ in $L^{2}\left(\mathbb{R}^{d}\right)$.

Problem 3. Let

$$
\rho(x):= \begin{cases}C e^{-\frac{1}{1-|x|^{2}}}, & |x|<1 \\ 0, & |x| \geq 1\end{cases}
$$

$\underline{\text { where } C} C \in \mathbb{R}$ is chosen so that $\int_{\mathbb{R}^{d}} \rho(x) \mathrm{d} x=1$. Prove that $\rho \in \mathcal{D}\left(\mathbb{R}^{d}\right)$ and $\operatorname{supp}(\rho)=$ $\overline{B(0,1)}$.

Hint: Write ρ as the composition of a function defined on \mathbb{R} and a function that maps \mathbb{R}^{d} to \mathbb{R}.

Problem 4. Show that the function space

$$
C_{0}\left(\mathbb{R}^{d}\right):=\left\{f \in C\left(\mathbb{R}^{d}\right) \mid \lim _{|x| \rightarrow \infty} f(x)=0\right\}
$$

equipped with the supremum norm $\|\cdot\|_{\infty}$, is a Banach space.

[^0]Problem 5. Let $\Omega \subseteq \mathbb{R}^{d}$ be nonempty and open. Show the following formulae of partial integration:
(i) Assume additionally that Ω is bounded with a C^{1}-smooth boundary. Then, for any $u, v \in C^{1}(\bar{\Omega})$

$$
\int_{\Omega}\left(\partial_{j} u\right) v \mathrm{~d} x=\int_{\partial \Omega} u v \nu_{j} \mathrm{~d} \sigma-\int_{\Omega} u \partial_{j} v \mathrm{~d} x, \quad j=1, \ldots, d,
$$

holds, where $\nu:=\left(\nu_{1}, \ldots, \nu_{d}\right)^{T}$ denotes the exterior unit normal vector field of Ω.
(ii) For $u \in C^{1}(\Omega)$ and $v \in \mathcal{D}(\Omega)$ one has

$$
\int_{\Omega}\left(\partial_{j} u\right) v \mathrm{~d} x=-\int_{\Omega} u \partial_{j} v \mathrm{~d} x, \quad j=1, \ldots, d
$$

Hint: Of course, it is allowed to use the classical Gauß divergence theorem in the following (or another) form:
Let $G \subseteq \mathbb{R}^{d}$ be a bounded domain with C^{1}-smooth boundary and $F \in C^{1}\left(\bar{G}, \mathbb{R}^{d}\right)$. Then

$$
\int_{G} \operatorname{div} F \mathrm{~d} x=\int_{\partial G} F \cdot \nu \mathrm{~d} \sigma .
$$

Problem 6. Let $d=1$ and $\rho \in \mathcal{D}(\mathbb{R})$ be the test function from Exercise 3. As in the lecture, we define $\rho_{n}(x):=n \rho(n x)$ for all $n \in \mathbb{N}$ and $x \in \mathbb{R}$. Show the following:
(i) $\int_{\mathbb{R}} \rho_{n}(x) d x=1$ for all $n \in \mathbb{N}$ and

$$
\lim _{n \rightarrow \infty} \rho_{n}(x)= \begin{cases}\infty, & \text { if } x=0 \\ 0, & \text { if } x \neq 0\end{cases}
$$

(ii) The regular distributions $T_{\rho_{n}}$ converge "pointwise" to the δ-distribution δ_{0}, i.e.

$$
\lim _{n \rightarrow \infty} \int_{\mathbb{R}} \rho_{n}(x) \psi(x) d x=\psi(0), \quad \psi \in \mathcal{D}(\mathbb{R})
$$

(iii) The δ-distribution δ_{0} is not a regular distribution.

Problem 7. For $\varphi \in \mathcal{D}(0, \infty)$ define

$$
T \varphi:=\sum_{m=1}^{\infty} \varphi^{(m)}\left(\frac{1}{m}\right)
$$

Show that T belongs to $\mathcal{D}^{\prime}(0, \infty)$ and determine its derivative.

Problem 8. Let $\alpha>0$ be real and $B(0,1) \subseteq \mathbb{R}^{d}$ be the d-dimensional unit sphere. Furthermore, let the function $u: B(0,1) \rightarrow[0, \infty]$ be defined by $u(x):=|x|^{-\alpha}$. For which α is $u \in H^{1}(B(0,1))$?

Problem 9. Let $\Omega \subseteq \mathbb{R}^{d}$ be open and $u \in L^{2}(\Omega)$ such that the weak derivative $D^{\alpha} u$ exists in $L^{2}(\Omega)$ for some $\alpha \in \mathbb{N}_{0}$. Let $\widetilde{u} \in L^{2}\left(\mathbb{R}^{d}\right)$ be the extension by zero of u. For $n \in \mathbb{N}$ let the mollifier ρ_{n} be defined as in the lecture and $U \Subset \Omega$. Show that for each sufficiently large n the following identity holds almost everywhere on U :

$$
D^{\alpha}\left(\rho_{n} * \widetilde{u}\right)=\rho_{n} * \widetilde{D^{\alpha} u}
$$

Hint: Use $\frac{\partial}{\partial x_{j}} \rho_{n}(x-y)=-\frac{\partial}{\partial y_{j}} \rho_{n}(x-y)$.

Problem 10. Let $\Omega \subseteq \mathbb{R}^{d}$ be open. Show the following:
(i) Let $u \in H^{1}(\Omega)$. Then, there exists a sequence $\left(u_{n}\right)_{n \in \mathbb{N}} \subseteq \mathcal{D}(\Omega)$ such that $u_{n} \rightarrow u$ in $L^{2}(\Omega)$ and $D^{e_{j}} u_{n} \rightarrow D^{e_{j}} u$ in $L^{2}(U)$ for $j \in\{1, \ldots, d\}$ and any $U \Subset \Omega$, where e_{j} is the j-th unit vector in \mathbb{R}^{d}.
(ii) Let $u, f_{1}, \ldots, f_{d} \in L^{2}(\Omega)$. Assume that there exists a sequence $\left(u_{n}\right)_{n \in \mathbb{N}} \subseteq \mathcal{D}\left(\mathbb{R}^{d}\right)$ such that $u_{n} \rightarrow u$ and $\frac{\partial u_{n}}{\partial x_{j}} \rightarrow f_{j}$ in $L^{2}(U)$ for any $U \Subset \Omega$ and all $j \in\{1, \ldots, d\}$. Then, $u \in H^{1}(\Omega)$ and $D^{e_{j}} u=f_{j}, j \in\{1, \ldots, d\}$.

Hint for (i): One can use the same sequence $\left(u_{n}\right)_{n \in \mathbb{N}}$ as in the proof of the statement that $\mathcal{D}(\Omega)$ is dense in $L^{2}(\Omega)$.

Problem 11. Let $\Omega \subseteq \mathbb{R}^{d}$ be open and $u, v \in H^{1}(\Omega)$. Verify that $u v$ is weakly differentiable and that $D^{e_{j}}(u v)=\left(D^{e_{j}} u\right) v+u\left(D^{e_{j}} v\right)$, where e_{j} is the j-th unit vector in \mathbb{R}^{d}.

Problem 12. Show the following:
(i) A generalization of the chain rule: let $\Omega \subseteq \mathbb{R}^{d}$ be a open set and let $f \in C^{1}(\mathbb{R})$ such that $f(0)=0$ and assume that there exists a constant $M>0$ such that $\left|f^{\prime}(r)\right| \leq M$ holds for all $r \in \mathbb{R}$. Then $(f \circ u) \in H^{1}(\Omega)$ and $D^{e_{j}}(f \circ u)=\left(f^{\prime} \circ u\right) \cdot D^{e_{j}} u$ for any $u \in H^{1}(\Omega)$ and $j=1, \ldots, d$, where e_{j} denotes the j-th unit normal vector in \mathbb{R}^{d}.
(ii) The condition $f(0)=0$ can be dropped for bounded Ω.

Hint: A result from measure theory sometimes known as the "reverse theorem of Lebesgue" can be useful. ${ }^{\dagger}$

Problem 13. Assume that $\Omega_{1}, \Omega_{2} \subseteq \mathbb{R}^{d}$ are open sets and $F: \Omega_{2} \rightarrow \Omega_{1}$ is bijective with $F \in C^{1}\left(\Omega_{2}, \mathbb{R}^{d}\right)$ and $F^{-1} \in C^{1}\left(\Omega_{1}, \mathbb{R}^{d}\right)$. Moreover, assume that the Jacobians $D F$ and $D F^{-1}$ of F and F^{-1}, respectively, satisfy $\sup \left\{\|(D F)(x)\| \mid x \in \Omega_{2}\right\}<\infty$ and $\sup \left\{\left\|\left(D F^{-1}\right)(y)\right\| \mid y \in \Omega_{1}\right\}<\infty$. Finally, let $u \in H^{1}\left(\Omega_{1}\right)$. Show that $u \circ F \in H^{1}\left(\Omega_{2}\right)$ and

$$
D^{e_{j}}(u \circ F)=\sum_{k=1}^{d}\left(\left(D^{e_{k}} u\right) \circ F\right) \cdot\left(D^{e_{j}} F_{k}\right), \quad j \in\{1, \ldots, d\} .
$$

Problem 14. Consider $d=1, \Omega=(0,1)$ and $u(x):=x \in H^{1}(\Omega)$. Show that the zero extension \widetilde{u} is not in $H^{1}(\mathbb{R})$.

Problem 15. Show the following:
(i) Let $\Omega \subseteq \mathbb{R}^{d}$ be open and set

$$
H_{c}^{1}(\Omega):=\left\{u \in H^{1}(\Omega) \mid \operatorname{supp}(u) \text { is compact in } \Omega\right\} .
$$

Prove that $H_{c}^{1}(\Omega) \subseteq H_{0}^{1}(\Omega)$.
(ii) Let $\Omega=B(0,1) \backslash\{0\} \subseteq \mathbb{R}^{3}$ and let $\varphi \in \mathcal{D}(B(0,1))$. Verify that $\varphi \in H_{0}^{1}(\Omega)$.

Hint for (i): Let $\left(\rho_{n}\right)_{n \in \mathbb{N}}$ be the sequence of mollifiers. Verify that then for a fixed $u \in$ $H_{c}^{1}(\Omega)$ and all sufficiently large n the relation $\rho_{n} * \widetilde{u} \in \mathcal{D}(\Omega)$ holds.

[^1]Problem 16. Let $k>\frac{d}{2}, m \in \mathbb{N}_{0}$ and $u \in H^{k+m}\left(\mathbb{R}^{d}\right)$. Sobolev embedding yields that $u \in C^{m}\left(\mathbb{R}^{d}\right)$. Prove that there exists a constant $C>0$ depending only on d and k such that

$$
\left\|D^{\alpha} u\right\|_{L^{\infty}\left(\mathbb{R}^{d}\right)} \leq C\|u\|_{H^{k+m}\left(\mathbb{R}^{d}\right)}
$$

is satisfied for any multi index $\alpha \in \mathbb{N}_{0}^{d}$ with $|\alpha| \leq m$.
Hint: Make use of the definition of the Sobolev spaces by means of the Fourier transform.

Problem 17. Let $\Omega \subseteq \mathbb{R}^{d}$ be a open set, $u \in H_{\mathrm{loc}}^{1}(\Omega)$ and $f \in H_{\text {loc }}^{k}(\Omega)$ for some $k \in \mathbb{N}_{0}$, with $-\Delta u=f$ in the sense of distributional derivatives. As usual denote by ${ }^{\sim}$ the extension by zero on \mathbb{R}^{d}. Let $\eta \in \mathcal{D}(\Omega)$. Show that

$$
\Delta(\widetilde{\eta u})=(u \Delta \eta+2 \nabla \eta \cdot \nabla u-\eta f)^{\sim}
$$

holds on \mathbb{R}^{d} in the sense of distributional derivatives.

Problem 18. Let $\Omega \subseteq \mathbb{R}^{d}$, $d \geq 1$, be open, bounded and nonempty, and consider for $f \in L^{2}(\Omega)$ the boundary value problem

$$
\begin{equation*}
-\sum_{j, k=1}^{d} \frac{\partial}{\partial x_{j}} \alpha^{j k} \frac{\partial}{\partial x_{k}} u+\alpha u=f, \quad u \upharpoonright \partial \Omega=0 \tag{0.1}
\end{equation*}
$$

Assume that $\alpha \in C(\bar{\Omega})$ satisfies $\alpha \geq 0$ and that $\alpha^{j k} \in C^{1}(\bar{\Omega})$ are real-valued (for all $k, j=1, \ldots, d$), symmetric (i.e. $\alpha^{j k}(x)=\alpha^{k j}(x), \forall x \in \Omega$ and $\forall k, j \in\{1, \ldots, d\}$) and fulfill

$$
\left(\left(\alpha^{j k}(x)\right)_{j, k=1}^{d} \xi, \xi\right)_{\mathbb{C}^{d}} \geq E\|\xi\|_{\mathbb{C}^{d}}^{2}, \quad \forall x \in \Omega, \forall \xi \in \mathbb{C}^{d}
$$

for some $E>0$. We say that $u \in H_{0}^{1}(\Omega)$ is a weak solution of (0.1), if u satisfies

$$
\sum_{j, k=1}^{d} \int_{\Omega} \alpha^{j k}(x) \frac{\partial u(x)}{\partial x_{j}} \frac{\overline{\partial v(x)}}{\partial x_{k}} \mathrm{~d} x+\int_{\Omega} \alpha(x) u(x) \overline{v(x)} \mathrm{d} x=\int_{\Omega} f(x) \overline{v(x)} \mathrm{d} x \quad \forall v \in H_{0}^{1}(\Omega)
$$

Verify that for any given $f \in L^{2}(\Omega)$ there exists a uniquely determined weak solution $u \in H_{0}^{1}(\Omega)$.

Problem 19. Let $\Omega \subseteq \mathbb{R}^{d}, d \geq 1$, be open, bounded and nonempty. According to Exercise 18 there exists for any $f \in L^{2}(\Omega)$ a uniquely determined weak solution $u_{f} \in H_{0}^{1}(\Omega)$ of the boundary value problem (0.1). Hence, the solution operator

$$
R: L^{2}(\Omega) \rightarrow L^{2}(\Omega), \quad R f=u_{f},
$$

mapping a given right hand side to the associated weak solution is well defined. Show that R is a compact linear operator.

Hint: Write R as the product of a bounded and a compact operator. You are allowed to use (without proof, see Exercise 18) that the sesquilinear form associated to (0.1) is coercive.

Problem 20. Let $\Omega \subseteq \mathbb{R}^{d}$ be open and bounded and let $f: \Omega \rightarrow \mathbb{R}$ be Lipschitz continuous. Verify, that $f \in H^{1}(\Omega)$. For this, proceed as follows:
(i) Show that f is bounded. Hence, we have $f \in L^{2}(\Omega)$.
(ii) Prove that the weak partial derivatives of f exist and belong to $L^{2}(\Omega)$.

Hints: Make use of the difference quotient method and related results from the lecture to show that f is weakly differentiable. In particular, set $\Omega_{h}:=\{x \in \Omega \mid \operatorname{dist}(x, \partial \Omega)>h\}$ and $f_{j, h}:=\chi_{\Omega_{h}} D_{j}^{h} f$. Show that $f_{j, h}$ is uniformly bounded in $L^{2}(\Omega)$ and verify that these functions converge weakly to $\partial_{j} f$.

Problem 21. Prove or disprove (a sketch of the arguments is sufficient) that the following sets are Lipschitz domains.
(i) $W:=(0,1)^{2}$;
(ii) $Q:=(0,1)^{2} \backslash\left(\left\{\frac{1}{2}\right\} \times\left[0, \frac{1}{2}\right]\right)$;
(iii) $\Omega:=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}<1\right\}$.

Problem 22. Let $\Omega \subseteq \mathbb{R}^{d}, d \geq 2$, be a bounded open Lipschitz domain. Show that there does not exist a continuous operator $T: L^{2}(\Omega) \rightarrow L^{2}(\partial \Omega)$ such that $T u=u \upharpoonright \partial \Omega$ holds for all $u \in L^{2}(\Omega) \cap C(\bar{\Omega})$.

Problem 23. Let $\Omega \subseteq \mathbb{R}^{d}, d \geq 2$, be a bounded open Lipschitz domain and let T : $H^{1}(\Omega) \rightarrow L^{2}(\partial \Omega)$ be the trace operator defined as in the lecture. ${ }^{\dagger}$ Prove that $T u=u \upharpoonright \partial \Omega$ for any $u \in C(\bar{\Omega}) \cap H^{1}(\Omega)$. For this, proceed as follows:
(i) Construct (locally) for a fixed $u \in C(\bar{\Omega}) \cap H^{1}(\Omega)$ a continuous extension \bar{u} of u as in the proof that a Lipschitz domain has the extension property, which is defined in an open neighborhood of Ω.
(ii) Set $u_{n}:=\left(\rho_{n} * \widehat{u}\right) \upharpoonright \Omega$, where $\left(\rho_{n}\right)$ is the sequence of mollifiers and \widehat{u} is an extension of \bar{u} onto \mathbb{R}^{d} by zero. Show that u_{n} converges to u in the $\|\cdot\|_{\infty}$ - norm.
(iii) Deduce that $T u=u \upharpoonright \partial \Omega$ for any $u \in C(\bar{\Omega}) \cap H^{1}(\Omega)$.

Hint: Use that functions that are continuous on compact sets are uniformly continuous.

Problem 24. Let $\Omega \subseteq \mathbb{R}^{d}$ be a bounded Lipschitz domain.
(i) Show that

$$
\begin{equation*}
\int_{\Omega}(\Delta u) v d x+\int_{\Omega} \nabla u \cdot \nabla v d x=\int_{\partial \Omega} \frac{\partial u}{\partial \nu} v d \sigma \tag{0.2}
\end{equation*}
$$

where ν is the outer unit normal vector at $\partial \Omega$ and $\frac{\partial u}{\partial \nu}:=\nu \cdot \nabla u$ is the normal derivative, is true for all $u \in C^{2}(\bar{\Omega})$ and all $v \in C^{1}(\bar{\Omega})$.
(ii) Show that the Neumann trace $T_{N} u=\frac{\partial u}{\partial \nu}, u \in C^{2}(\bar{\Omega})$, can be extended to a bounded operator $T_{N}: H^{2}(\Omega) \rightarrow L^{2}(\partial \Omega)$.
(iii) Prove that

$$
\begin{equation*}
\int_{\Omega}(\Delta u) v d x+\int_{\Omega} \nabla u \cdot \nabla v d x=\int_{\partial \Omega} T_{N} u T_{D} v d \sigma \tag{0.3}
\end{equation*}
$$

holds for any $u \in H^{2}(\Omega)$ and all $v \in H^{1}(\Omega)$, where T_{D} is the Dirichlet trace operator defined as in the lecture.

[^2]Hint: You are allowed to use, without proof, that $C^{2}(\bar{\Omega})$ is dense in $H^{2}(\Omega)$ and that the classical Gauß divergence theorem is also valid for bounded Lipschitz domains.

Problem 25. Let $\Omega \subseteq \mathbb{R}^{d}$ be a bounded Lipschitz domain, $\lambda \in \mathbb{C}, f \in L^{2}(\Omega)$ and $\vartheta: \partial \Omega \rightarrow[0, \infty)$ a bounded and measurable function. Denote by $T: H^{1}(\Omega) \rightarrow L^{2}(\partial \Omega)$ the trace operator, as in the lecture. Show that $u \in H^{1}(\Omega)$ is a (distributional) solution of the Robin boundary value problem

$$
\begin{array}{ll}
(-\Delta-\lambda) u=f & \text { in } \Omega \\
\frac{\partial u}{\partial \nu}+\vartheta T u=0 & \text { on } \partial \Omega
\end{array}
$$

if and only if

$$
\int_{\Omega} \nabla u \cdot \nabla v d x-\int_{\Omega} \lambda u v d x+\int_{\partial \Omega} \vartheta(T u)(T v) d \sigma=\int_{\Omega} f v d x
$$

holds for all $v \in H^{1}(\Omega)$.

Problem 26. Let S be a densely defined and linear operator in Hilbert space \mathcal{H}. Show the following properties of the adjoint operator.

$$
\begin{aligned}
\operatorname{dom}\left(S^{*}\right) & =\left\{g \in \mathcal{H} \mid \exists g^{\prime} \in \mathcal{H} \text { such that }(S f, g)_{\mathcal{H}}=\left(f, g^{\prime}\right)_{\mathcal{H}} \quad \forall f \in \operatorname{dom}(S)\right\} \\
S^{*} g & =g^{\prime}
\end{aligned}
$$

(i) S^{*} is well-defined, i.e. the element $g^{\prime} \in \mathcal{H}$ in the definition of S^{*} is unique.
(ii) S^{*} is a linear operator.
(iii) S^{*} is closed.
(iv) $\operatorname{ran}(S)^{\perp}=\operatorname{ker}\left(S^{*}\right)$.

Problem 27. Let S be a symmetric operator in a Hilbert space \mathcal{H} and assume that there exists a $\lambda \in \mathbb{R}$ such that ran $(S-\lambda)=\mathcal{H} .^{\dagger}$ Show the following statements:
(i) λ is not an eigenvalue of S.
(ii) S is self-adjoint.

Problem 28. Let $\Omega \subseteq \mathbb{R}^{d}, d \geq 2$, be a smooth bounded domain. We consider in $L^{2}(\Omega)$ the operator

$$
\begin{aligned}
\operatorname{dom}(S) & =H_{0}^{2}(\Omega)=\left\{f \in H^{2}(\Omega) \mid u \upharpoonright \partial \Omega=\nu \cdot(\nabla u \upharpoonright \partial \Omega)=0\right\} \\
S f & =-\Delta f
\end{aligned}
$$

where ν is the normal vector in Ω and traces are build in the sense of trace operators. Show the following statements:

[^3](i) S is symmetric.
(ii) The adjoint of S is given by
\[

$$
\begin{aligned}
\operatorname{dom}\left(S^{*}\right) & =\left\{f \in L^{2}(\Omega) \mid \Delta f \in L^{2}(\Omega) \text { in the distributional sense }\right\} \\
S^{*} f & =-\Delta f
\end{aligned}
$$
\]

Recall: $\Delta f \in L^{2}(\Omega)$ in the distributional sense means that there is an $g \in L^{2}(\Omega)$ such that

$$
\int_{\Omega} f \Delta \varphi \mathrm{~d} x=\int_{\Omega} g \varphi \mathrm{~d} x
$$

holds for all $\varphi \in \mathcal{D}(\Omega)$. In this case, we define $\Delta f=g$.

Problem 29. Let $\Omega \subseteq \mathbb{R}^{d}$, $d \geq 2$, be a smooth, bounded domain and S be the linear operator of Exercise 28. Show that S is a closed operator. For this, proceed as follows:
(i) Show that the mapping $\|\cdot\|_{\Delta}: H_{0}^{2}(\Omega) \rightarrow \mathbb{R}$, defined by

$$
\|u\|_{\Delta}^{2}:=\|u\|_{L^{2}(\Omega)}^{2}+\|\Delta u\|_{L^{2}(\Omega)}^{2}, \quad \forall u \in H_{0}^{2}(\Omega)
$$

is a norm in $H_{0}^{2}(\Omega)$ which is equivalent to the $H^{2}(\Omega)$-norm.
(ii) Conclude from item (i) that S is a closed operator.

Problem 30. Let $\Omega \subseteq \mathbb{R}^{d}, d \geq 2$, be a bounded C^{2}-domain. The Dirichlet Laplacian in Ω is defined by

$$
\begin{aligned}
\operatorname{dom}\left(A_{0}\right) & =H^{2}(\Omega) \cap H_{0}^{1}(\Omega) \\
A_{0} f & =-\Delta f .
\end{aligned}
$$

Show $\sigma\left(A_{0}\right)=\sigma_{p}\left(A_{0}\right)=\left\{\lambda_{n} \mid n \in \mathbb{N}\right\}$, where $\left(\lambda_{n}\right)_{n \in \mathbb{N}} \subseteq(0, \infty)$ is a sequence of real numbers with $\lambda_{n} \rightarrow \infty$ for $n \rightarrow \infty$. Furthermore, show that the corresponding eigenvectors $\left(u_{n}\right)_{n \in \mathbb{N}} \subseteq \operatorname{dom}\left(A_{0}\right)$ form an orthonormal basis of $L^{2}(\Omega)$.
Hint: Show that there exists an $\lambda \in \rho\left(A_{0}\right)$ such that the resolvent $\left(A_{0}-\lambda\right)^{-1}$ is a compact operator in $L^{2}(\Omega)$. Then deduce the form of $\sigma\left(A_{0}\right)$ from the knowledge of the spectrum of $\left(A_{0}-\lambda\right)^{-1}$.

[^0]: ${ }^{\dagger} p^{\prime} \geq 1$ is called the conjugate exponent of $p \geq 1$ if $\frac{1}{p}+\frac{1}{p^{\prime}}=1$ applies.

[^1]: ${ }^{\dagger}$ Let $f_{n}, f \in L^{2}(\Omega)$ such that $f_{n} \rightarrow f$ with respect to the L^{2}-norm. Then there exists a subsequence $\left(f_{n_{k}}\right)_{k \in \mathbb{N}}$ of $\left(f_{n}\right)_{n \in \mathbb{N}}$ and $g \in L^{2}(\Omega)$ such that $f_{n_{k}}(x) \rightarrow f(x)$ and $\left|f_{n_{k}}(x)\right| \leq|g(x)|$ are true for almost all $x \in \Omega$.

[^2]: ${ }^{\dagger}$ Recall that T was defined to be the extension by continuity of $\widetilde{T}: C^{1}(\bar{\Omega}) \rightarrow L^{2}(\partial \Omega), \widetilde{T} u=u \upharpoonright \partial \Omega$.

[^3]: ${ }^{\dagger}$ Recall that the range of a linear operator A is $\operatorname{ran}(A)=\{A x \mid x \in \operatorname{dom}(A)\}$, where $\operatorname{dom}(A)$ denotes the domain of definition of A.

