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Problem 1. Let 1 ≤ p, q ≤ ∞, such that 1
p
+ 1

q
≥ 1 and f ∈ Lp(Rd) and g ∈ Lq(Rd).

Set 1
r
:= 1

p
+ 1

q
− 1 with 1 ≤ r ≤ ∞. Show that f ∗ g ∈ Lr(Rd) and ∥f ∗ g∥Lr(Rd) ≤

∥f∥Lp(Rd)∥g∥Lq(Rd).

Hint: Show the assertion first for the case p = 1, and then for arbitrary 1 < p ≤ ∞ by
considering a decomposition of the form

|f(x− y)g(y)| = |f(x− y)|α|g(y)|β
(
|f(x− y)|1−α|g(y)|1−β

)
,

with α = p/q′ and β = q/p′ and the conjugated exponents† p′, q′ ≥ 1 of p, q ≥ 1. The
generalization of the Hölder inequality to more than two functions may also be helpful.

Problem 2. Let O ∈ Rd be an open set with finite Lebesgue measure. Show the following:

(i) There exist at most countably many pairwise disjoint compact cuboids Qn =

[a
(n)
1 , b

(n)
1 ]× · · · × [a

(n)
d , b

(n)
d ] with a

(n)
j , b

(n)
j ∈ R for all j = 1, . . . , d, such that

O =
∞⋃
n=1

Qn.

(ii) Let N ∈ N and define sN :=
∑N

n=1 1Qn . Prove that sN converges to 1O in L2(Rd).

Problem 3. Let

ρ(x) :=

{
Ce

− 1
1−|x|2 , |x| < 1,

0, |x| ≥ 1,

where C ∈ R is chosen so that
∫
Rd ρ(x)dx = 1. Prove that ρ ∈ D(Rd) and supp(ρ) =

B(0, 1).

Hint: Write ρ as the composition of a function defined on R and a function that maps Rd

to R.

Problem 4. Show that the function space

C0(Rd) :=

{
f ∈ C(Rd)

∣∣∣ lim
|x|→∞

f(x) = 0

}
,

equipped with the supremum norm ∥ · ∥∞, is a Banach space.

†p′ ≥ 1 is called the conjugate exponent of p ≥ 1 if 1
p + 1

p′ = 1 applies.
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Problem 5. Let Ω ⊆ Rd be nonempty and open. Show the following formulae of partial
integration:

(i) Assume additionally that Ω is bounded with a C1-smooth boundary. Then, for
any u, v ∈ C1(Ω)∫

Ω

(∂ju)vdx =

∫
∂Ω

uvνjdσ −
∫
Ω

u∂jvdx, j = 1, . . . , d,

holds, where ν := (ν1, . . . , νd)
T denotes the exterior unit normal vector field of Ω.

(ii) For u ∈ C1(Ω) and v ∈ D(Ω) one has∫
Ω

(∂ju)vdx = −
∫
Ω

u∂jvdx, j = 1, . . . , d.

Hint: Of course, it is allowed to use the classical Gauß divergence theorem in the following
(or another) form:
Let G ⊆ Rd be a bounded domain with C1-smooth boundary and F ∈ C1(G,Rd). Then∫

G

divFdx =

∫
∂G

F · νdσ.

Problem 6. Let d = 1 and ρ ∈ D(R) be the test function from Exercise 3. As in the
lecture, we define ρn(x) := nρ(nx) for all n ∈ N and x ∈ R. Show the following:

(i)
∫
R ρn(x) dx = 1 for all n ∈ N and

lim
n→∞

ρn(x) =

{
∞, if x = 0,

0, if x ̸= 0.

(ii) The regular distributions Tρn converge “pointwise” to the δ-distribution δ0, i.e.

lim
n→∞

∫
R
ρn(x)ψ(x) dx = ψ(0), ψ ∈ D(R).

(iii) The δ-distribution δ0 is not a regular distribution.

Problem 7. For φ ∈ D(0,∞) define

Tφ :=
∞∑

m=1

φ(m)

(
1

m

)
.

Show that T belongs to D′(0,∞) and determine its derivative.

Problem 8. Let α > 0 be real and B(0, 1) ⊆ Rd be the d-dimensional unit sphere.
Furthermore, let the function u : B(0, 1) → [0,∞] be defined by u(x) := |x|−α. For which
α is u ∈ H1(B(0, 1))?



Problem 9. Let Ω ⊆ Rd be open and u ∈ L2(Ω) such that the weak derivative Dαu
exists in L2(Ω) for some α ∈ N0. Let ũ ∈ L2(Rd) be the extension by zero of u. For n ∈ N
let the mollifier ρn be defined as in the lecture and U ⋐ Ω. Show that for each sufficiently
large n the following identity holds almost everywhere on U :

Dα(ρn ∗ ũ) = ρn ∗ D̃αu.

Hint: Use ∂
∂xj
ρn(x− y) = − ∂

∂yj
ρn(x− y).

Problem 10. Let Ω ⊆ Rd be open. Show the following:

(i) Let u ∈ H1(Ω). Then, there exists a sequence (un)n∈N ⊆ D(Ω) such that un → u
in L2(Ω) and Dejun → Deju in L2(U) for j ∈ {1, . . . , d} and any U ⋐ Ω, where ej
is the j-th unit vector in Rd.

(ii) Let u, f1, . . . , fd ∈ L2(Ω). Assume that there exists a sequence (un)n∈N ⊆ D(Rd)
such that un → u and ∂un

∂xj
→ fj in L2(U) for any U ⋐ Ω and all j ∈ {1, . . . , d}.

Then, u ∈ H1(Ω) and Deju = fj, j ∈ {1, . . . , d}.

Hint for (i): One can use the same sequence (un)n∈N as in the proof of the statement that
D(Ω) is dense in L2(Ω).
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Problem 11. Let Ω ⊆ Rd be open and u, v ∈ H1(Ω). Verify that uv is weakly dif-
ferentiable and that Dej(uv) = (Deju)v + u(Dejv), where ej is the j-th unit vector in
Rd.

Problem 12. Show the following:

(i) A generalization of the chain rule: let Ω ⊆ Rd be a open set and let f ∈ C1(R) such
that f(0) = 0 and assume that there exists a constantM > 0 such that |f ′(r)| ≤M
holds for all r ∈ R. Then (f ◦ u) ∈ H1(Ω) and Dej(f ◦ u) = (f ′ ◦ u) ·Deju for any
u ∈ H1(Ω) and j = 1, . . . , d, where ej denotes the j-th unit normal vector in Rd.

(ii) The condition f(0) = 0 can be dropped for bounded Ω.

Hint:A result from measure theory sometimes known as the “reverse theorem of Lebesgue”
can be useful.†

Problem 13. Assume that Ω1,Ω2 ⊆ Rd are open sets and F : Ω2 → Ω1 is bijecti-
ve with F ∈ C1(Ω2,Rd) and F−1 ∈ C1(Ω1,Rd). Moreover, assume that the Jacobians
DF and DF−1 of F and F−1, respectively, satisfy sup{∥(DF )(x)∥ | x ∈ Ω2} < ∞ and
sup{∥(DF−1)(y)∥ | y ∈ Ω1} <∞. Finally, let u ∈ H1(Ω1). Show that u ◦F ∈ H1(Ω2) and

Dej(u ◦ F ) =
d∑

k=1

(
(Deku) ◦ F

)
· (DejFk), j ∈ {1, . . . , d}.

Problem 14. Consider d = 1, Ω = (0, 1) and u(x) := x ∈ H1(Ω). Show that the zero
extension ũ is not in H1(R).

Problem 15. Show the following:

(i) Let Ω ⊆ Rd be open and set

H1
c (Ω) :=

{
u ∈ H1(Ω)

∣∣ supp(u) is compact in Ω
}
.

Prove that H1
c (Ω) ⊆ H1

0 (Ω).
(ii) Let Ω = B(0, 1) \ {0} ⊆ R3 and let φ ∈ D(B(0, 1)). Verify that φ ∈ H1

0 (Ω).

Hint for (i): Let (ρn)n∈N be the sequence of mollifiers. Verify that then for a fixed u ∈
H1

c (Ω) and all sufficiently large n the relation ρn ∗ ũ ∈ D(Ω) holds.

†Let fn, f ∈ L2(Ω) such that fn → f with respect to the L2-norm. Then there exists a subsequence
(fnk

)k∈N of (fn)n∈N and g ∈ L2(Ω) such that fnk
(x) → f(x) and |fnk

(x)| ≤ |g(x)| are true for almost all
x ∈ Ω.



Problem 16. Let k > d
2
, m ∈ N0 and u ∈ Hk+m(Rd). Sobolev embedding yields that

u ∈ Cm(Rd). Prove that there exists a constant C > 0 depending only on d and k such
that

∥Dαu∥L∞(Rd) ≤ C∥u∥Hk+m(Rd)

is satisfied for any multi index α ∈ Nd
0 with |α| ≤ m.

Hint: Make use of the definition of the Sobolev spaces by means of the Fourier transform.

Problem 17. Let Ω ⊆ Rd be a open set, u ∈ H1
loc(Ω) and f ∈ Hk

loc(Ω) for some k ∈ N0,
with−∆u = f in the sense of distributional derivatives. As usual denote by ˜ the extension
by zero on Rd. Let η ∈ D(Ω). Show that

∆(η̃u) =
(
u∆η + 2∇η · ∇u− ηf

)∼
holds on Rd in the sense of distributional derivatives.

Problem 18. Let Ω ⊆ Rd, d ≥ 1, be open, bounded and nonempty, and consider for
f ∈ L2(Ω) the boundary value problem

(0.1) −
d∑

j,k=1

∂

∂xj
αjk ∂

∂xk
u+ αu = f, u ↾ ∂Ω = 0.

Assume that α ∈ C(Ω) satisfies α ≥ 0 and that αjk ∈ C1(Ω) are real-valued (for all
k, j = 1, . . . , d), symmetric (i.e. αjk(x) = αkj(x), ∀x ∈ Ω and ∀k, j ∈ {1, . . . , d}) and
fulfill (

(αjk(x))dj,k=1ξ, ξ
)
Cd ≥ E∥ξ∥2Cd , ∀x ∈ Ω, ∀ξ ∈ Cd,

for some E > 0. We say that u ∈ H1
0 (Ω) is a weak solution of (0.1), if u satisfies

d∑
j,k=1

∫
Ω

αjk(x)
∂u(x)

∂xj

∂v(x)

∂xk
dx+

∫
Ω

α(x)u(x)v(x)dx =

∫
Ω

f(x)v(x)dx ∀v ∈ H1
0 (Ω).

Verify that for any given f ∈ L2(Ω) there exists a uniquely determined weak solution
u ∈ H1

0 (Ω).

Problem 19. Let Ω ⊆ Rd, d ≥ 1, be open, bounded and nonempty. According to Exercise
18 there exists for any f ∈ L2(Ω) a uniquely determined weak solution uf ∈ H1

0 (Ω) of the
boundary value problem (0.1). Hence, the solution operator

R : L2(Ω) → L2(Ω), Rf = uf ,

mapping a given right hand side to the associated weak solution is well defined. Show
that R is a compact linear operator.

Hint: Write R as the product of a bounded and a compact operator. You are allowed
to use (without proof, see Exercise 18) that the sesquilinear form associated to (0.1) is
coercive.



Problem 20. Let Ω ⊆ Rd be open and bounded and let f : Ω → R be Lipschitz
continuous. Verify, that f ∈ H1(Ω). For this, proceed as follows:

(i) Show that f is bounded. Hence, we have f ∈ L2(Ω).
(ii) Prove that the weak partial derivatives of f exist and belong to L2(Ω).

Hints: Make use of the difference quotient method and related results from the lecture to
show that f is weakly differentiable. In particular, set Ωh := {x ∈ Ω | dist(x, ∂Ω) > h}
and fj,h := χΩh

Dh
j f . Show that fj,h is uniformly bounded in L2(Ω) and verify that these

functions converge weakly to ∂jf .
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Problem 21. Prove or disprove (a sketch of the arguments is sufficient) that the following
sets are Lipschitz domains.

(i) W := (0, 1)2;
(ii) Q := (0, 1)2 \

(
{1
2
} × [0, 1

2
]
)
;

(iii) Ω := {(x, y) ∈ R2 : x2 + y2 < 1}.

Problem 22. Let Ω ⊆ Rd, d ≥ 2, be a bounded open Lipschitz domain. Show that there
does not exist a continuous operator T : L2(Ω) → L2(∂Ω) such that Tu = u ↾ ∂Ω holds
for all u ∈ L2(Ω) ∩ C(Ω).

Problem 23. Let Ω ⊆ Rd, d ≥ 2, be a bounded open Lipschitz domain and let T :
H1(Ω) → L2(∂Ω) be the trace operator defined as in the lecture.† Prove that Tu = u ↾ ∂Ω
for any u ∈ C(Ω) ∩H1(Ω). For this, proceed as follows:

(i) Construct (locally) for a fixed u ∈ C(Ω)∩H1(Ω) a continuous extension ū of u as
in the proof that a Lipschitz domain has the extension property, which is defined
in an open neighborhood of Ω.

(ii) Set un := (ρn∗ û) ↾ Ω, where (ρn) is the sequence of mollifiers and û is an extension
of ū onto Rd by zero. Show that un converges to u in the ∥ · ∥∞ - norm.

(iii) Deduce that Tu = u ↾ ∂Ω for any u ∈ C(Ω) ∩H1(Ω).

Hint: Use that functions that are continuous on compact sets are uniformly continuous.

Problem 24. Let Ω ⊆ Rd be a bounded Lipschitz domain.

(i) Show that

(0.2)

∫
Ω

(∆u)vdx+

∫
Ω

∇u · ∇vdx =

∫
∂Ω

∂u

∂ν
vdσ,

where ν is the outer unit normal vector at ∂Ω and ∂u
∂ν

:= ν · ∇u is the normal

derivative, is true for all u ∈ C2(Ω) and all v ∈ C1(Ω).
(ii) Show that the Neumann trace TNu = ∂u

∂ν
, u ∈ C2(Ω), can be extended to a bounded

operator TN : H2(Ω) → L2(∂Ω).
(iii) Prove that

(0.3)

∫
Ω

(∆u)vdx+

∫
Ω

∇u · ∇vdx =

∫
∂Ω

TNuTDvdσ,

holds for any u ∈ H2(Ω) and all v ∈ H1(Ω), where TD is the Dirichlet trace
operator defined as in the lecture.

†Recall that T was defined to be the extension by continuity of T̃ : C1(Ω) → L2(∂Ω), T̃ u = u ↾ ∂Ω.



Hint: You are allowed to use, without proof, that C2(Ω) is dense in H2(Ω) and that the
classical Gauß divergence theorem is also valid for bounded Lipschitz domains.

Problem 25. Let Ω ⊆ Rd be a bounded Lipschitz domain, λ ∈ C, f ∈ L2(Ω) and
ϑ : ∂Ω → [0,∞) a bounded and measurable function. Denote by T : H1(Ω) → L2(∂Ω)
the trace operator, as in the lecture. Show that u ∈ H1(Ω) is a (distributional) solution
of the Robin boundary value problem

(−∆− λ)u = f in Ω,

∂u

∂ν
+ ϑTu = 0 on ∂Ω,

if and only if ∫
Ω

∇u · ∇v dx−
∫
Ω

λuv dx+

∫
∂Ω

ϑ(Tu)(Tv) dσ =

∫
Ω

fv dx

holds for all v ∈ H1(Ω).

Problem 26. Let S be a densely defined and linear operator in Hilbert space H. Show
the following properties of the adjoint operator.

dom (S∗) =
{
g ∈ H

∣∣ ∃g′ ∈ H such that (Sf, g)H = (f, g′)H ∀f ∈ dom(S)
}

S∗g = g′.

(i) S∗ is well-defined, i.e. the element g′ ∈ H in the definition of S∗ is unique.
(ii) S∗ is a linear operator.
(iii) S∗ is closed.
(iv) ran(S)⊥ = ker (S∗).

Problem 27. Let S be a symmetric operator in a Hilbert space H and assume that there
exists a λ ∈ R such that ran (S − λ) = H.† Show the following statements:

(i) λ is not an eigenvalue of S.
(ii) S is self-adjoint.

Problem 28. Let Ω ⊆ Rd, d ≥ 2, be a smooth bounded domain. We consider in L2(Ω)
the operator

dom(S) = H2
0 (Ω) =

{
f ∈ H2(Ω)

∣∣ u ↾ ∂Ω = ν · (∇u ↾ ∂Ω) = 0
}
,

Sf = −∆f,

where ν is the normal vector in Ω and traces are build in the sense of trace operators.
Show the following statements:

†Recall that the range of a linear operator A is ran(A) = {Ax | x ∈ dom(A)}, where dom(A) denotes
the domain of definition of A.



(i) S is symmetric.
(ii) The adjoint of S is given by

dom (S∗) =
{
f ∈ L2(Ω)

∣∣∆f ∈ L2(Ω) in the distributional sense
}
,

S∗f = −∆f.

Recall: ∆f ∈ L2(Ω) in the distributional sense means that there is an g ∈ L2(Ω) such that∫
Ω

f∆φdx =

∫
Ω

gφdx

holds for all φ ∈ D(Ω). In this case, we define ∆f = g.

Problem 29. Let Ω ⊆ Rd, d ≥ 2, be a smooth, bounded domain and S be the linear
operator of Exercise 28. Show that S is a closed operator. For this, proceed as follows:

(i) Show that the mapping ∥ · ∥∆ : H2
0 (Ω) → R, defined by

∥u∥2∆ := ∥u∥2L2(Ω) + ∥∆u∥2L2(Ω), ∀u ∈ H2
0 (Ω),

is a norm in H2
0 (Ω) which is equivalent to the H2(Ω)-norm.

(ii) Conclude from item (i) that S is a closed operator.

Problem 30. Let Ω ⊆ Rd, d ≥ 2, be a bounded C2-domain. The Dirichlet Laplacian in
Ω is defined by

dom(A0) = H2(Ω) ∩H1
0 (Ω)

A0f = −∆f.

Show σ(A0) = σp(A0) = {λn | n ∈ N}, where (λn)n∈N ⊆ (0,∞) is a sequence of real
numbers with λn → ∞ for n→ ∞. Furthermore, show that the corresponding eigenvectors
(un)n∈N ⊆ dom(A0) form an orthonormal basis of L2(Ω).

Hint: Show that there exists an λ ∈ ρ(A0) such that the resolvent (A0−λ)−1 is a compact
operator in L2(Ω). Then deduce the form of σ(A0) from the knowledge of the spectrum
of (A0 − λ)−1.


