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Chapter 1

Distributions and Sobolev spaces

In this chapter we provide preliminaries on distributions, weak derivatives, Sobolev
spaces, and the Fourier transform. We start with a standard procedure for the
approximation of integrable functions by smooth ones.

1.1 Regularization
Let Ω ⊂ Rd be open, nonempty, d ≥ 1. Recall that the support of a function
ϕ : Ω→ C is defined as

suppϕ := {x ∈ Ω : ϕ(x) 6= 0} ⊂ Rd

(closure with respect to standard norm in Rd). If not explicitly stated different,
in this lecture all functions are complex-valued. Recall further that the linear
space L2(Ω) equipped with the inner product

(u, v)L2(Ω) =

∫
Ω

u(x)v(x)dx, u, v ∈ L2(Ω),

and the corresponding norm ‖ · ‖L2(Ω) is a Hilbert space. We use the usual multi-
index notation: For α = (α1, . . . , αd)

> ∈ Nd
0 and x ∈ Rd we write

|α| :=
d∑
j=1

αj, xα :=
d∏
j=1

x
αj
j , and Dα :=

d∏
j=1

∂αj

∂x
αj
j

.

Example (for d = 5): For α = (2, 1, 0, 3, 0)> we have |α| = 6, xα = x2
1x2x

3
4 and

Dαϕ = ∂6ϕ
∂x2

1∂x2∂x3
4
.
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1.1 Regularization 1 Distributions and Sobolev spaces

We write

D(Ω) :=
{
ϕ ∈ C∞(Ω) : suppϕ ⊂ Ω, suppϕ compact

}
.

Then D(Ω) is a linear space. Sometimes we call the functions in D(Ω) test func-
tions.

Define

ρ(x) :=

{
Ce
− 1

1−|x|2 , |x| < 1,

0, else,

where C > 0 is chosen such that
∫
Rd ρ(x)dx = 1. Then ρ ∈ D(Rd) (easy to check;

exercises) and supp ρ = B(0, 1). For n ∈ N define

ρn(x) := ndρ(nx), x ∈ Rd. (1.1)

Then ρn ∈ D(Ω),
∫
Rd ρn(x)dx = 1, and supp ρn = B(0, 1

n
). The functions ρn are

called mollifiers.

Definition 1.1. Let u, v ∈ L2(Rd). Then the function

(u ∗ v)(x) :=

∫
Rd
u(x− y)v(y)dy, x ∈ Rd,

is called convolution of u and v.

Note that u∗v (in contrast to u and v) can be evaluated at each point x ∈ Rd,
and a substitution yields u ∗ v = v ∗ u for all u, v ∈ L2(Rd). We will see a little
later that u ∗ v is in fact continuous. Note further that by the Cauchy–Schwarz
inequality we have

|(u ∗ v)(x)| ≤ ‖u‖L2(Rd)‖v‖L2(Rd), x ∈ Rd. (1.2)

In the following lemma we write as usual

K1 +K2 = {x+ y : x ∈ K1, y ∈ K2}

for two sets K1, K2 ⊂ Rd.

Lemma 1.2. Let u, v ∈ L2(Rd) and let K1, K2 be compact sets such that u(x) = 0
for almost all x ∈ Rd \K1 and v(x) = 0 for almost all x ∈ Rd \K2. Then

(u ∗ v)(x) = 0 for all x ∈ Rd \ (K1 +K2).
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1 Distributions and Sobolev spaces 1.1 Regularization

Proof. Consider functions u, v, i.e. representatives of the equivalence classes u, v,
such that suppu ⊂ K1 and supp v ⊂ K2. Let x ∈ Rd be arbitrary. If there
exists y ∈ Rd such that u(x − y)v(y) 6= 0 then x − y ∈ K1 and y ∈ K2 and thus
x = x− y + y ∈ K1 +K2. Hence for any x ∈ Rd \ (K1 +K2) we have

(u ∗ v)(x) =

∫
Rd
u(x− y)v(y)dy = 0.

In the following the space

C0(Rd) :=

{
u ∈ C(Rd) : lim

|x|→∞
u(x) = 0

}
will be used. It is a closed subspace of the set of all bounded, measurable functions
on Rd equipped with the supremum norm

‖u‖∞ := sup
x∈Rd
|u(x)|

(see the exercises). In particular, C0(Rd) with the supremum norm is a Banach
space.

In the proof of the next proposition we will use that the step functions are
dense in L2(Rd). A step function s is the finite linear combination of characteristic
functions for cuboids, i.e.

s =
N∑
n=1

an1Qn ,

where an ∈ C, n = 1, . . . N , and Qn is a cuboid of the form

Qn =
[
a

(n)
1 , b

(n)
1

]
× · · · ×

[
a

(n)
d , b

(n)
d

]
(1.3)

with some a(n)
i < b

(n)
i , i = 1, . . . , d. The fact that step functions are dense in

L2(Ω) will be verified in the following lemma.

Lemma 1.3. Let Ω ⊂ Rd be open. The step functions are dense in L2(Ω).

Proof. Let f ∈ L2(Rd) and fix ε > 0. It will be shown that there is a step function
s such that

‖f − s‖L2(Ω) < ε.
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1.1 Regularization 1 Distributions and Sobolev spaces

First, since simple functions are dense in L2(Ω), there exists

s̃ :=
M∑
i=1

ai1Xi ,

where ai ∈ C and Xi ⊂ Ω is measurable, i = 1, . . . ,M , such that

‖s̃− f‖L2(Ω) <
ε

3
.

Without loss of generality, we assume that the sets Xi are pairwise disjoint and
ai 6= 0. Hence, the measure of Xi is finite as otherwise s̃ /∈ L2(Ω).

Next, since the Lebesgue measure is regular, there exists for any i ∈ {1, . . . ,M}
an open set Oi with Xi ⊂ Oi ⊂ Ω such that

λ(Oi \Xi) <
ε2

9|ai|2M2
,

where λ is the Lebesgue measure on Ω. Define ŝ :=
∑M

i=1 ai1Oi . Then, using the
triangle inequality and Xi ⊂ Oi we find

‖s̃− ŝ‖L2(Ω) ≤
M∑
i=1

|ai| · ‖1Oi − 1Xi‖L2(Ω) =
M∑
i=1

|ai|
(∫

Oi\Xi
dx

)1/2

<
ε

3
.

Finally, any open set Oi can be written as the at most countable union of
pairwise disjoint cuboids

Oi =
∞⋃
n=1

Qi,n,

where each Qi,n is like in (1.3). Hence, the step functions

sN :=
M∑
i=1

ai

N∑
n=1

1Qi,n

converge pointwise to ŝ. By dominated convergence we see that sN tends also
to ŝ with respect to the L2-norm. Therefore, there exists an N0 ∈ N such that
‖ŝ − sN0‖L2(Ω) <

ε
3
. Eventually, we set s := sN0 . Then, by applying the triangle

inequality we find

‖f − s‖L2(Ω) ≤ ‖f − s̃‖L2(Ω) + ‖s̃− ŝ‖L2(Ω) + ‖ŝ− s‖L2(Ω) < ε,

which is the claimed result.
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1 Distributions and Sobolev spaces 1.1 Regularization

Proposition 1.4. Let u, v ∈ L2(Rd). Then u ∗ v ∈ C0(Rd).

Proof. Let us first consider the case that u = 1Q1 and v = 1Q2 for compact
cuboids Q1, Q2 ⊂ Rd. Let x ∈ Rd be arbitrary and (xn)n ⊂ Rd with xn → x as
n→∞. Then for each y ∈ Rd such that x− y /∈ ∂Q1 we have

1Q1(xn − y) −→ 1Q1(x− y).

Since the y for which x− y ∈ ∂Q1 form a set of Lebesgue measure zero it follows

(1Q1 ∗ 1Q2)(xn) =

∫
Rd
1Q1(xn − y)1Q2(y)dy −→

∫
Rd
1Q1(x− y)1Q2(y)dy

= (1Q1 ∗ 1Q2)(x)

as n → ∞ by the dominated convergence theorem. Moreover, by Lemma 1.2
1Q1∗1Q2 vanishes identically outside the compact set Q1+Q2. Thus u∗v ∈ C0(Rd)
if u, v are characteristic functions of cuboids. The same argument is true if u and
v are finite linear combinations of characteristic functions of cuboids, i.e. step
functions.

Let now u, v ∈ L2(Rd) be arbitrary and let (un)n and (vn)n be sequences of
step functions with ‖un − u‖L2(Rd) → 0 and ‖vn − v‖L2(Rd) → 0 as n→∞. Then
for any x ∈ Rd we have

|(un ∗ vn)(x)− (u ∗ v)(x)|
≤ |(un ∗ vn)(x)− (un ∗ v)(x)|+ |(un ∗ v)(x)− (u ∗ v)(x)|
= |(un ∗ (vn − v))(x)|+ |((un − u) ∗ v)(x)|
(1.2)
≤ ‖un‖L2(Rd)‖vn − v‖L2(Rd) + ‖un − u‖L2(Rd)‖v‖L2(Rd)

−→ 0

as n→∞. Thus ‖un ∗ vn−u ∗ v‖∞ → 0 as n→∞ and hence u ∗ v ∈ C0(Rd).

Proposition 1.5. Let u ∈ L2(Rd) and ϕ ∈ D(Rd). Then ϕ ∗ u ∈ C∞(Rd) and

Dα(ϕ ∗ u) = (Dαϕ) ∗ u for all α ∈ Nd
0.

Proof. It suffices to prove that ∂
∂xj

(ϕ∗u) exists and equals ∂ϕ
∂xj
∗u for j = 1, . . . , d;

the assertion of the proposition follows from a repeated application of this fact
and Proposition 1.4. Note first that

1

h

(
(ϕ ∗ u)(x+ hej)− (ϕ ∗ u)(x)

)
=

∫
Rd

1

h

(
ϕ(x+ hej − y)− ϕ(x− y)

)
u(y)dy

(1.4)
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1.1 Regularization 1 Distributions and Sobolev spaces

holds for any h 6= 0, x ∈ Rd and j = 1, . . . , d, where ej is the j-th unit vector
in Rd. Therefore the claim follows if we can show that the dominated convergence
theorem is applicable to the integrand as h→ 0. Indeed, for w, z ∈ Rd we have

ϕ(w + z)− ϕ(w) =

∫ 1

0

d

dt
ϕ(w + tz)dt =

∫ 1

0

(∇ϕ)(w + tz) · zdt

and hence

|ϕ(w + z)− ϕ(w)| ≤
∫ 1

0

|∇ϕ(w + tz) · z|dt ≤
∫ 1

0

|∇ϕ(w + tz)||z|dt ≤ ‖∇ϕ‖∞|z|,

which implies∣∣∣1
h

(
ϕ(x+ hej − y)− ϕ(x− y)

)∣∣∣ ≤ 1

|h|
‖∇ϕ‖∞|h| = ‖∇ϕ‖∞ <∞ (1.5)

for any x ∈ Rd, h 6= 0 and j = 1, . . . , d. As the integrand in (1.4) has compact
support and the integral of u over this compact support is finite, the claim follows
from (1.4) and (1.5).

Theorem 1.6. Let u ∈ L2(Rd) and ρn as in (1.1). Then ρn∗u ∈ C∞(Rd)∩L2(Rd)
and ‖ρn ∗ u− u‖L2(Rd) → 0 as n→∞.

Proof. By Proposition 1.5 we have ρn∗u ∈ C∞(Rd). Let us first verify the identity∫
Rd
|(ρn ∗ u)(x)|2dx ≤

∫
Rd
|u(x)|2dx, (1.6)

which implies, in particular, ρn ∗ u ∈ L2(Rd). Indeed, for any x ∈ Rd we have

|(ρn ∗ u)(x)| ≤
∫
Rd
ρn(x− y)1/2ρn(x− y)1/2|u(y)|dy

≤
(∫

Rd
ρn(x− y)dy︸ ︷︷ ︸

=1

)1/2(∫
Rd
ρn(x− y)|u(y)|2dy

)1/2

by the Cauchy–Schwarz inequality. It follows∫
Rd
|(ρn ∗ u)(x)|2dx ≤

∫
Rd

∫
Rd
ρn(x− y)|u(y)|2dydx
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1 Distributions and Sobolev spaces 1.1 Regularization

=

∫
Rd

(∫
Rd
ρn(x− y)dx︸ ︷︷ ︸

=1

)
|u(y)|2dy,

which leads to (1.6). Let us now show the desired convergence property. Again
we consider first the case that u = 1Q for some compact cuboid Q. Pointwise, for
x ∈ Rd \ Q and each sufficiently large n ∈ N we have x /∈ Q + B(0, 1

n
) and thus

(ρn ∗ 1Q)(x) = 0 by Lemma 1.2. On the other hand, for each inner point x of Q
and each sufficiently large n ∈ N we have

(ρn ∗ 1Q)(x) =

∫
|y|< 1

n

1Q(x− y)ρn(y)dy =

∫
|y|< 1

n

ρn(y)dy = 1.

Thus (ρn ∗ 1Q)(x) → 1Q(x) as n → ∞ for each x ∈ Rd \ ∂Q and the dominated
convergence theorem yields

‖ρn ∗ u− u‖2
L2(Rd) =

∫
Rd
|(ρn ∗ 1Q)(x)− 1Q(x)|2dx −→ 0

as n → ∞ whenever u is the characteristic function of a cuboid. From this the
assertion follows immediately for each step function u.

Let now u ∈ L2(Rd) be arbitrary, let ε > 0, and let v be a step function with
‖v − u‖L2(Rd) < ε/4. By the above reasoning there exists N(ε) ∈ N such that
‖ρn ∗ v − v‖L2(Rd) < ε/2 for each n ≥ N(ε). Hence for each n ≥ N(ε) we have

‖ρn ∗ u− u‖L2(Rd) ≤ ‖ρn ∗ (u− v)‖L2(Rd) + ‖ρn ∗ v − v‖L2(Rd) + ‖v − u‖L2(Rd)

(1.6)
≤ ‖u− v‖L2(Rd) + ‖ρn ∗ v − v‖L2(Rd) + ‖v − u‖L2(Rd)

< ε/4 + ε/2 + ε/4 = ε,

which completes the proof.

We have shown that any u ∈ L2(Rd) can be approximated in L2(Rd) by smooth
functions. Our final goal of this section is to approximate any u ∈ L2(Ω) on any
open set Ω by functions in D(Ω).

Lemma 1.7. Let Ω ⊂ Rd be open and nonempty and let K ⊂ Ω be compact.
Then there exists a function ϕ ∈ D(Rd) such that 0 ≤ ϕ ≤ 1, suppϕ ⊂ Ω, and
ϕ(x) = 1 for all x ∈ K.
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1.1 Regularization 1 Distributions and Sobolev spaces

Proof. As dist(K, ∂Ω) is positive there exists n ∈ N such that 2
n
< dist(K, ∂Ω).

Define the compact set

Kn := K +B(0, 1/n) =
{
y ∈ Rd : ∃x ∈ K with |x− y| ≤ 1/n

}
and set ϕ := 1Kn ∗ ρn. Then ϕ ∈ C∞(Rd) by Proposition 1.5. Moreover, by
Lemma 1.2 we have

suppϕ ⊂ Kn +B(0, 1/n) ⊂ Ω

by the choice of n, and for x ∈ K we have

ϕ(x) =

∫
|y|< 1

n

1Kn(x− y)ρn(y)dy =

∫
|y|< 1

n

ρn(y)dy = 1,

and in the same way 0 ≤ ϕ(x) ≤ 1 for all x ∈ Rd.

We define a sequence of cut-off functions. For n ∈ N let

Ωn := {x ∈ Ω : dist(x, ∂Ω) > 1/n} ∩B(0, n). (1.7)

Then Ωn is open and bounded with Ωn ⊂ Ωn+1 ⊂ Ω for all n ∈ N and Ω =⋃
n∈N Ωn. By Lemma 1.7 for each n ∈ N there exists ηn ∈ D(Rd) such that

0 ≤ ηn ≤ 1, supp ηn ⊂ Ωn+1, and ηn(x) = 1 for all x ∈ Ωn.

In the following for any u ∈ L2(Ω) we denote by ũ the corresponding function in
L2(Rd) defined as

ũ(x) =

{
u(x), x ∈ Ω,

0, else.

Theorem 1.8. Let u ∈ L2(Ω). Then ηn(ρn∗ũ) ∈ D(Rd) with supp(ηn(ρn∗ũ)) ⊂ Ω
and ‖ηn(ρn ∗ ũ)− ũ‖L2(Rd) → 0 as n→∞.

Proof. We have ρn ∗ ũ ∈ C∞(Rd) by Proposition 1.5. Thus ηn(ρn ∗ ũ) ∈ D(Rd)
and supp(ηn(ρn ∗ ũ)) ⊂ Ω follows from the properties of ηn. Moreover,

‖ηn(ρn ∗ ũ)− ũ‖L2(Rd) ≤ ‖ηn(ρn ∗ ũ− ũ)‖L2(Rd) + ‖ηnũ− ũ‖L2(Rd)

≤ ‖ρn ∗ ũ− ũ‖L2(Rd) +
(∫

Ω

|ηn(x)u(x)− u(x)|2dx
)1/2

.

The first term on the right-hand side tends to zero as n → ∞ by Theorem 1.6.
Moreover, as ηn(x)→ 1 as n→∞ for any x ∈ Ω, dominated convergence implies
that also the integral tends to 0.
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1 Distributions and Sobolev spaces 1.1 Regularization

Corollary 1.9. D(Ω) is dense in L2(Ω).

For completeness we note in this context the following more general result,
which may be proved with a similar strategy; cf. [6, Lemma V.1.10].

Proposition 1.10. D(Ω) is dense in Lp(Ω) for all p ∈ [1,∞).

In the following we write U b Ω if U is bounded and open with U ⊂ Ω.
For p ∈ [1,∞) we define the spaces of locally (that is, on each compact subset)
p-integrable functions

Lploc(Ω) :=

{
u : Ω→ C measurable :

∫
U

|u(x)|pdx <∞ ∀U b Ω

}
,

and the space of locally bounded functions L∞loc(Ω) is defined accordingly. Mostly
we will be using L2

loc(Ω) only. Note however that Lqloc(Ω) ⊂ Lploc(Ω) for q ≥ p and
that, in particular, Lqloc(Ω) ⊂ L1

loc(Ω) for all q ∈ [1,∞].

Example 1.11. x 7→ 1/
√
x belongs to L2

loc(0,∞) but not to L2(0,∞).

Corollary 1.12. Let u ∈ L1
loc(Ω) such that∫

Ω

u(x)ϕ(x)dx = 0 for all ϕ ∈ D(Ω).

Then u(x) = 0 for almost all x ∈ Ω.

Proof. We shall verify the result in the special case u ∈ L2
loc(Ω) only. For a proof

of the L1
loc(Ω) case, see e.g. [1, Lemma 3.31]. Let u ∈ L2

loc(Ω) and U b Ω. Then
u|U ∈ L2(U) and for each ϕ ∈ D(U) we have∫

U

u(x)ϕ(x)dx =

∫
Ω

u(x)ϕ̃(x)dx = 0

since ϕ̃|Ω ∈ D(Ω). Hence Corollory 1.9 yields u|U = 0 in L2(U) and thus u(x) = 0
for almost all x ∈ U . Applying this to U = Ωn, n ∈ N, with Ωn defined in (1.7)
we get the claim.
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1.2 Distributions and weak derivatives 1 Distributions and Sobolev spaces

1.2 Distributions and weak derivatives
In order to establish a satisfactory theory for partial differential equations the
classical notion of differentiable functions is not sufficient. An appropriate gener-
alization can be done by using distributions. This is motivated by the δ-calculus
in theoretical physics (Dirac, Heaviside), where a (differentiable) “function” δ with
the properties ∫

R
δ(x)dx = 1 and δ = 0 on R \ {0}

is required. The idea is to introduce a class of “generalized functions” (distribu-
tions) such that

• (at least) each continuous function is a distribution;

• each distribution can be differentiated (arbitrarily often) and for differen-
tiable functions this is compatible with the classical definition of differen-
tiability;

• usual rules for derivatives hold.

This is done in the following way. We equip the space D(Ω) with a notion of
convergence:

Definition 1.13. Let ϕn, ϕ ∈ D(Ω). We say that (ϕn)n converges to ϕ in D(Ω)
if

(i) there exists a compact set K ⊂ Ω such that suppϕ ⊂ K and suppϕn ⊂ K
for all n ∈ N, and

(ii) Dαϕn → Dαϕ uniformly on Ω for all α ∈ Nd
0.

We write shortly ϕn → ϕ in D(Ω).

Recall that uniform convergence is equivalent to convergence with respect to
the supremum norm.

Definition 1.14. A distribution on Ω is a linear mapping T : D(Ω) → C which
is continuous with respect to convergence in D(Ω), i.e.,

ϕn → ϕ in D(Ω) =⇒ Tϕn → Tϕ in C.

10



1 Distributions and Sobolev spaces 1.2 Distributions and weak derivatives

Sums and multiples of distributions are defined via

(T + T̂ )ϕ := Tϕ+ T̂ϕ and (λT )ϕ := λ(Tϕ), ϕ ∈ D(Ω),

for λ ∈ C and distributions T, T̂ . The set of all distributions on Ω equipped with
these operations is a linear space, which we denote by D ′(Ω). It is the dual space
of D(Ω) with respect to the topology induced by the notion of convergence in
Definition 1.13.

In the first example the so-called δ-distribution is discussed.

Example 1.15. For x ∈ Ω define

Txϕ := ϕ(x), ϕ ∈ D(Ω).

This is the mathematical formalization of the “δ-function” (see exercises) and is
called δ-distribution. Usually one writes δx instead of Tx. Is it a distribution?
Linearity:

Tx(λϕ+ µψ) = (λϕ+ µψ)(x) = λϕ(x) + µψ(x) = λ(Txϕ) + µ(Txψ)

for λ, µ ∈ C and ϕ, ψ ∈ D(Ω). Continuity: Let ϕn → ϕ in D(Ω). Then, in
particular, ϕn(x)→ ϕ(x) in C and, hence,

Txϕn = ϕn(x)→ ϕ(x) = Txϕ.

It follows that Tx ∈ D ′(Ω).

Next it will be shown that any u ∈ L1
loc(Ω) gives rise to a distribution. These

distributions are typically refered to as regular distributions; cf. Definition 1.17.

Example 1.16. Let u ∈ L1
loc(Ω) and define

Tuϕ :=

∫
Ω

u(x)ϕ(x)dx, ϕ ∈ D(Ω). (1.8)

Then Tu is a distribution: linearity is an immediate consequence of the linearity
of the integral in (1.8). For the continuity let ϕn → ϕ in D(Ω) and let K ⊂ Ω be
compact such that suppϕn, suppϕ ⊂ K. Then

|Tuϕn − Tuϕ| =
∣∣∣∣ ∫

Ω

u(x)
(
ϕn(x)− ϕ(x)

)
dx

∣∣∣∣ ≤ ∫
K

|u(x)||ϕn(x)− ϕ(x)|dx

≤ ‖ϕn − ϕ‖∞
∫
K

|u(x)|dx︸ ︷︷ ︸
<∞

−→ 0

as n→∞. It follows that Tu ∈ D ′(Ω).

11



1.2 Distributions and weak derivatives 1 Distributions and Sobolev spaces

Definition 1.17. A distribution on Ω is called regular if there exists u ∈ L1
loc(Ω)

such that T = Tu as defined in (1.8).

Note that not every distribution is regular! For instance, the δ-distribution
cannot be represented in the form (1.8), see the exercises.

Lemma 1.18. Let T be a regular distribution. Then there exists a unique u ∈
L1

loc(Ω) such that T = Tu.

Proof. Assume there exist u, v ∈ L1
loc(Ω) with Tu = T = Tv. Then∫

Ω

(
u(x)− v(x)

)
ϕ(x)dx = 0 for all ϕ ∈ D(Ω),

and hence Corollary 1.12 implies u(x) = v(x) for almost all x ∈ Ω.

Definition 1.19. Let T ∈ D ′(Ω). The distributional derivative of T with respect
to the multi-index α ∈ Nd

0 is defined as

(DαT )ϕ := (−1)|α|T (Dαϕ), ϕ ∈ D(Ω).

Remark 1.20. (i) DαT ∈ D ′(Ω): Linearity follows from the definition and the
linearity of T and Dα. For the continuity let ϕn → ϕ in D(Ω). Then also
Dαϕn → Dαϕ in D(Ω) and, thus,

(DαT )ϕn = (−1)|α|T (Dαϕn) −→ (−1)|α|T (Dαϕ) = (DαT )ϕ as n→∞

since T ∈ D ′(Ω).
(ii) Each distribution can be differentiated arbitrarily often. In particular,

each u ∈ L1
loc(Ω) can be differentiated arbitrarily often (when identified with the

corresponding regular distribution). However, its derivatives may be non-regular
distributions, see Example 1.21 (iii) below.

(iii) For u ∈ C1(Ω) the distributional derivative is in line with the classical
derivative: let, e.g., Ω = (a, b) ⊂ R and u ∈ C1([a, b]). Then integration by parts
yields

(Tu)
′ϕ = −Tu(ϕ′) = −

∫ b

a

u(x)ϕ′(x)dx

=

∫ b

a

u′(x)ϕ(x)dx = Tu′ϕ, ϕ ∈ D(a, b),

(boundary evaluations vanish as ϕ(a) = ϕ(b) = 0). Accordingly it follows

DαTu = TDαu for all α ∈ Nd
0

whenever Dαu exists in the classical sense.
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1 Distributions and Sobolev spaces 1.2 Distributions and weak derivatives

Example 1.21. Ω = R, T = δ0:

δ′0ϕ = −δ0(ϕ′) = −ϕ′(0), ϕ ∈ D(R),

and, analogously,

δ
(k)
0 ϕ = (−1)kδ0(ϕ(k)) = (−1)kϕ(k)(0), ϕ ∈ D(R).

Example 1.22. Ω = (−1, 1), T = Tf with f(x) = |x|, x ∈ (−1, 1):

T ′fϕ = −Tf (ϕ′) = −
∫ 1

−1

|x|ϕ′(x)dx =

∫ 0

−1

xϕ′(x)dx−
∫ 1

0

xϕ′(x)dx

= xϕ(x)
∣∣∣0
−1
−
∫ 0

−1

ϕ(x)dx− xϕ(x)
∣∣∣1
0

+

∫ 1

0

ϕ(x)dx

= −
∫ 0

−1

ϕ(x)dx+

∫ 1

0

ϕ(x)dx

where we have used integration by parts and the facts that ϕ has compact support
and that f(0) = 0. Hence T ′f = Ts, where

s(x) =

{
1, x ≥ 0,

−1, x < 0,

is the sign function.

Example 1.23. Ω = (−1, 1), T = Ts:

T ′sϕ = −Ts(ϕ′) =

∫ 0

−1

ϕ′(x)dx−
∫ 1

0

ϕ′(x)dx = 2ϕ(0) = 2δ0ϕ, ϕ ∈ D(−1, 1),

that is, the derivative of the sign function is twice the δ-distribution.

Definition 1.24. Let u ∈ L1
loc(Ω) and α ∈ Nd

0. If there exists v ∈ L1
loc(Ω) such

that DαTu = Tv then v is called weak derivative of u with respect to α. In this
case we simply write Dαu = v. If α = ek we shall also use the notation ∂

∂xk
or

simply ∂k instead of Dα.

In words: If the regular distribution associated with v is the distributional
derivative of the regular distribution associated with u (with respect to α) then
we say that v is the weak derivative (with respect to α) of u.

13



1.2 Distributions and weak derivatives 1 Distributions and Sobolev spaces

Example 1.25. We have seen in Example 1.22 that the sign function s is the
weak derivative of the absolute value function.

Note: An equivalent formulation of the definition of the weak derivative is the
following: v = Dαu if and only if∫

Ω

u(x)Dαϕ(x)dx = (−1)|α|
∫

Ω

v(x)ϕ(x)dx ∀ϕ ∈ D(Ω) (1.9)

holds. Moreover, the weak derivative is determined uniquely by (1.9) as Corol-
lary 1.12 shows.

Lemma 1.26. Let Ω be connected and let u ∈ L2(Ω) such that the weak derivative
∂u
∂xj

exists and is zero almost everywhere on Ω for each j ∈ {1, . . . , d}. Then there
exists c ∈ C such that u(x) = c for almost all x ∈ Ω.

Proof. Let un := ηn(ρn ∗ ũ), cf. Theorem 1.8. Then un ∈ D(Rd) with suppun ⊂ Ω
and un → ũ in L2(Rd). Moreover, let U b Ω. Then for each sufficiently large
n ∈ N

∂

∂xj
(ρn ∗ ũ) = ρn ∗ D̃eju = 0, j = 1, . . . , d,

(exercise; cf. also Proposition 1.5) almost everywhere inside U . Hence for each
sufficiently large n ∈ N there exists cn ∈ C such that un(x) = cn for all x ∈ U
(since ηn = 1 identically on U for sufficiently large n). As

|U ||cn − cm|2 =

∫
U

|un(x)− um(x)|2dx −→ 0 as m,n→∞,

(cn)n is a Cauchy sequence in C and thus has a limit c. Hence∫
U

|un(x)− c|2dx = |U ||cn − c|2 → 0 as n→∞,

which implies u(x) = c for almost all x ∈ U . As in the proof of Corollary 1.12 it
follows u(x) = c for almost all x ∈ Ω by applying the above reasoning to U = Ωn,
n ∈ N, with Ωn defined in (1.7).

Sometimes it is useful to multiply a distribution by a smooth function.

Definition 1.27. Let w ∈ C∞(Ω) and T ∈ D ′(Ω). Then the product wT is
defined as

(wT )ϕ := T (wϕ), ϕ ∈ D(Ω).

Note that wT is well-defined since wϕ ∈ D(Ω) for each ϕ ∈ D(Ω). Note
further that wT ∈ D ′(Ω) (easy exercise).

14



1 Distributions and Sobolev spaces 1.3 Sobolev spaces

1.3 Sobolev spaces
Sobolev spaces are linear spaces consisting of (equivalence classes of) weakly dif-
ferentiable functions.

Definition 1.28. Let k ∈ N0. The Sobolev space of order k is given by

Hk(Ω) :=
{
u ∈ L2(Ω) :Dαu exists in L2(Ω) ∀α ∈ Nd

0 with |α| ≤ k
}
.

Example 1.29. On Ω = (−1, 1) we have already seen in Example 1.21 (ii) that
the function f = | · | ∈ L2(−1, 1) is weakly differentiable with

f ′(x) = s(x) =

{
−1, x ≤ 0,

1, x > 0.

In particular, f ′ ∈ L2(−1, 1) and therefore f ∈ H1(−1, 1).

The standard inner product and norm on Hk(Ω) is provided in the next propo-
sition. If not something different is specified explicitly, we always equip Hk(Ω)
with this norm and inner product.

Proposition 1.30. For each k ∈ N0 the mapping (·, ·)Hk(Ω) : Hk(Ω)×Hk(Ω)→ C
given by

(u, v)Hk(Ω) :=
∑
|α|≤k

(Dαu,Dαv)L2(Ω) =
∑
|α|≤k

∫
Ω

(Dαu)(x)(Dαv)(x)dx, u, v ∈ Hk(Ω),

is an inner product on Hk(Ω). Moreover, Hk(Ω) equipped with the corresponding
norm

‖u‖Hk(Ω) =
√

(u, u)Hk(Ω) =

( ∑
|α|≤k

∫
Ω

|(Dαu)(x)|2dx
)1/2

, u ∈ Hk(Ω),

is a Hilbert space.

Note that for k = 1 the inner product can be written as

(u, v)H1(Ω) =

∫
Ω

u(x)v(x)dx+

∫
Ω

∇u(x) · ∇v(x)dx

= (u, v)L2(Ω) + (∇u,∇v)L2(Ω;Cd)

for all u, v ∈ H1(Ω).

15



1.3 Sobolev spaces 1 Distributions and Sobolev spaces

Proof of Proposition 1.30. We show only completeness. Let (un)n be a Cauchy
sequence in Hk(Ω), i.e., for each ε > 0 there exists N(ε) ∈ N such that∑

|α|≤k

‖Dαun −Dαum‖2
L2(Ω) < ε ∀m,n ≥ N(ε). (1.10)

Then (un)n is a Cauchy sequence in L2(Ω) and there exists u ∈ L2(Ω) such that
‖un−u‖L2(Ω) → 0 as n→∞. In the same way it follows from (1.10) that for each
α ∈ Nd

0 with |α| ≤ k there exists uα ∈ L2(Ω) such that ‖Dαun − uα‖L2(Ω) → 0 as
n→∞. Moreover, for any α with |α| ≤ k and any ϕ ∈ D(Ω) we have∫

Ω

u(x)Dαϕ(x)dx = lim
n→∞

∫
Ω

un(x)Dαϕ(x)dx

= lim
n→∞

(−1)|α|
∫

Ω

(Dαun(x))ϕ(x)dx

= (−1)|α|
∫

Ω

uα(x)ϕ(x)dx,

where the continuity of the inner product in L2(Ω) was used in order to exchange
limits and integrals. It follows that Dαu exists and equals uα. In particular,
u ∈ Hk(Ω). Finally,

‖un − u‖2
Hk(Ω) =

∑
|α|≤k

‖Dαun −Dαu‖2
L2(Ω) =

∑
|α|≤k

‖Dαun − uα‖2
L2(Ω) −→ 0

as n→∞.

The proofs of the following two lemma are left for the exercises.

Lemma 1.31. Let u ∈ H2(Ω). Then ∂2u
∂xj∂xk

= ∂2u
∂xk∂xj

for j, k = 1, . . . , d.

Lemma 1.32. Let u ∈ Hk(Rd). Then the identity

Dα(ρn ∗ u) = ρn ∗Dαu

holds for all n ∈ N and all α ∈ Nd
0 with |α| ≤ k.

As shown in Proposition 1.30, the space Hk(Ω) is complete. Moreover, Hk(Ω)
is dense in L2(Ω) (with respect to the norm ‖ · ‖L2(Ω)) since D(Ω) ⊂ Hk(Ω) and
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D(Ω) is dense in L2(Ω) by Corollary 1.9. On the other hand, in general D(Ω) is
not dense in Hk(Ω), as we will see later. We define

Hk
0 (Ω) := D(Ω)

‖·‖
Hk(Ω) ,

the closure of D(Ω) in Hk(Ω). Note that Hk
0 (Ω) (with the norm ‖ · ‖Hk(Ω)) is a

Hilbert space as it is a closed subspace of Hk(Ω). In general Hk
0 (Ω) is a proper

subspace of Hk(Ω). For k = 1 it consists, roughly speaking, of all functions in
H1(Ω) which vanish on the boundary of Ω in a certain sense. Lemma 1.34 and
Lemma 1.35 confirm this intuition.

Proposition 1.33. Let u ∈ Hk
0 (Ω). Then ũ ∈ Hk(Rd) and Dαũ = D̃αu holds for

all α ∈ Nd
0 with |α| ≤ k.

Proof. By definition of Hk
0 (Ω) there exists a sequence (un)n ⊂ D(Ω) such that

‖un − u‖Hk(Ω) → 0 as n → ∞. Note that ‖ũn − ũ‖L2(Rd) → 0 as n → ∞. Then
for all ϕ ∈ D(Rd) and all α with |α| ≤ k we have∫

Rd
ũ(x)Dαϕ(x)dx = lim

n→∞

∫
Rd
ũn(x)Dαϕ(x)dx

= (−1)|α| lim
n→∞

∫
Rd

(Dαũn)(x)ϕ(x)dx

= (−1)|α| lim
n→∞

∫
Ω

(Dαun)(x)ϕ(x)dx

=

∫
Ω

(Dαu)(x)ϕ(x)dx

=

∫
Rd

(̃Dαu)(x)ϕ(x)dx,

which implies the assertions.

Lemma 1.34. Let u ∈ H1
0 (Ω) with ∂u

∂xj
= 0 almost everywhere on Ω for each

j ∈ {1, . . . , d}. Then u(x) = 0 for almost all x ∈ Ω.

Proof. By Proposition 1.33 we have ũ ∈ H1(Rd) and ∂ũ
∂xj

= 0 for j = 1, . . . , d.
Thus by Lemma 1.26 there exists c ∈ C such that ũ(x) = c for almost all x ∈ Ω.
Now ũ ∈ L2(Rd) implies c = 0.

The following lemma is left for the exercise classes.
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1.3 Sobolev spaces 1 Distributions and Sobolev spaces

Lemma 1.35. Let u ∈ H1(Ω) and U b Ω. If u(x) = 0 for a.e. x ∈ Ω \ U then
u ∈ H1

0 (Ω).

Since Ω = Rd has no boundary it seems intuitive that H1
0 (Rd) = H1(Rd). In

fact, one has the more general result:

Theorem 1.36. Hk
0 (Rd) = Hk(Rd) for all k ∈ N0.

Proof. Let u ∈ Hk(Rd). Then

Dα(ρn ∗ u) = ρn ∗Dαu

for all n ∈ N and all α ∈ Nd
0 with |α| ≤ k by Lemma 1.32. In particular,

Dα(ρn ∗ u) ∈ L2(Rd) ∩ C∞(Rd) and ‖Dα(ρn ∗ u)−Dαu‖L2(Rd) → 0 as n→∞ by
Theorem 1.6. Hence ρn ∗ u → u in Hk(Rd). Furthermore, by Lemma 1.7 there
exists η ∈ D(Rd) such that 0 ≤ η ≤ 1, η(x) = 1 for all x with |x| ≤ 1 and η(x) = 0
for all x with |x| ≥ 2. For m ∈ N let further ηm(x) := η( x

m
) for x ∈ Rd. Then

Dα(ηm(ρn ∗ u)) =
∑
β≤α

(
α

β

)
(Dα−βηm)(Dβ(ρn ∗ u)),

where β ≤ α means βj ≤ αj, j = 1, . . . , d, and
(
α
β

)
=
∏d

j=1

(
αj
βj

)
. Thus for each

x ∈ Rd

Dα(ηm(ρn ∗ u))(x) =
∑
β≤α
β 6=α

(
α

β

)
(Dα−βηm)(x)(Dβ(ρn ∗ u))(x) + ηm(x)Dα(ρn ∗ u)(x)

=
∑
β≤α
β 6=α

1

m|α−β|

(
α

β

)
(Dα−βη)(x/m)(Dβ(ρn ∗ u))

+ ηm(x)Dα(ρn ∗ u)(x)

−→ Dα(ρn ∗ u)(x)

as m → ∞. Using Dβ(ρn ∗ u) ∈ L2(Rd) for |β| ≤ k with dominated convergence
we obtain

‖Dα(ηm(ρn ∗ u))−Dα(ρn ∗ u)‖L2(Rd) −→ 0 as m→∞

for any α with |α| ≤ k, that is, ηm(ρn ∗ u) → ρn ∗ u in Hk(Rd). As ηm(ρn ∗ u) ∈
D(Rd) for all m,n, the claim follows.
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1 Distributions and Sobolev spaces 1.3 Sobolev spaces

In the following theorem we say that Ω is bounded with respect to one direction
if there exist j ∈ {1, . . . , d} and δ > 0 such that |xj| < δ for all x ∈ Ω.

Theorem 1.37 (Poincaré inequality). Let Ω be bounded with respect to one di-
rection with δ > 0 as above. Then

‖u‖L2(Ω) ≤
√

2δ‖∇u‖L2(Ω;Cd) ∀u ∈ H1
0 (Ω).

Proof. In order to simplify notation we assume |x1| < δ for all x ∈ Ω. Then for
any h ∈ C1([−δ, δ]) with h(−δ) = 0 we have∫ δ

−δ
|h(t)|2dt =

∫ δ

−δ

∣∣∣∣ ∫ t

−δ
h′(s) · 1ds

∣∣∣∣2dt ≤ ∫ δ

−δ

∫ t

−δ
|h′(s)|2ds(t+ δ)dt

≤
∫ δ

−δ
|h′(s)|2ds

∫ δ

−δ
(t+ δ)dt = 2δ2

∫ δ

−δ
|h′(s)|2ds

by the Cauchy–Schwarz inequality. Thus for any u ∈ D(Ω) we obtain∫
Ω

|u(x)|2dx ≤
∫
R
· · ·
∫
R

∫ δ

−δ
2δ2
∣∣∣ ∂ũ
∂x1

(x1, . . . , xd)
∣∣∣2dx1dx2 · · · dxd

≤ 2δ2

∫
Ω

|∇u(x)|2dx,

which shows the assertion for u ∈ D(Ω). For general u ∈ H1
0 (Ω) it follows by

approximation.

Corollary 1.38. If Ω is bounded with respect to one direction then

|u|H1(Ω) := ‖∇u‖L2(Ω;Cd), u ∈ H1
0 (Ω),

defines a norm on H1
0 (Ω), which is equivalent to the norm ‖ · ‖H1(Ω) on H1

0 (Ω).

The next theorem is due to Meyers and Serrin; a proof can be found in, e.g.
[1, Theorem 3.17]

Theorem 1.39. Let Ω ⊂ Rd be an open set. Then C∞(Ω) ∩ Hk(Ω) is dense in
Hk(Ω) for all k ∈ N0.
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1.4 Fourier transforms 1 Distributions and Sobolev spaces

1.4 Sobolev spaces via Fourier transformation
In this section we express the Sobolev space Hk(Rd) in terms of the Fourier
transformation. Recall that for u ∈ L1(Rd) the Fourier transform of u is defined
as

û(x) :=
1

(2π)d/2

∫
Rd
e−ix·yu(y)dy, x ∈ Rd.

Moreover, recall that by the Riemann–Lebesgue lemma

û ∈ C0(Rd) :=
{
v ∈ C(Rd) : lim

|x|→∞
v(x) = 0

}
holds for each u ∈ L1(Rd). The following theorem is known as Plancherel theorem.

Theorem 1.40. There exists a unique unitary operator F : L2(Rd) → L2(Rd)
such that Fu = û holds for all u ∈ L1(Rd) ∩ L2(Rd). In particular, the Parseval
identity

(Fu,Fv)L2(Rd) = (u, v)L2(Rd), u, v ∈ L2(Rd),

holds. Moreover, (F−1u)(x) = (Fu)(−x), x ∈ Rd, holds for all u ∈ L2(Rd).

Lemma 1.41. Let k ∈ N0 and u ∈ Hk(Rd). Then

(F(Dαu))(x) = i|α|xα(Fu)(x) for almost all x ∈ Rd

holds for any α ∈ Nd
0 with |α| ≤ k.

Proof. Let first u ∈ D(Rd) and α ∈ Nd
0 arbitrary. Then integration by parts yields

(F(Dαu))(x) =
1

(2π)d/2

∫
Rd
e−ix·y(Dαu)(y)dy

= (−1)|α|
1

(2π)d/2

∫
Rd

(−i)|α|xαe−ix·yu(y)dy = i|α|xα(Fu)(x)

for all x ∈ Rd. Now fix u ∈ Hk(Rd) and pick a sequence (un) in D(Rd) such
that un → u as n → ∞ in Hk(Ω). Since F : L2(Rd) → L2(Rd) is continuous
and Dαun → Dαu for |α| ≤ k it is clear that F(Dαun) → F(Dαu) and Fun →
Fu in L2(Rd) as n → ∞. Choose a subsequence such that (F(Dαunk))(x) →
(F(Dαu))(x) and (Funk)(x) → (Fu)(x) for a.e. x ∈ Rd as k → ∞ and, in fact
it can be assumed that (un) was chosen right away such that (F(Dαun))(x) →
(F(Dαu))(x) and (Fun)(x) → (Fu)(x) for a.e. x ∈ Rd. It is clear that also
i|α|xα(Fun)(x) → i|α|xα(Fu)(x) for a.e. x ∈ Rd as n → ∞, and hence the
assertion follows.
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Note that in the above lemma one has F(Dαu) ∈ L2(Rd) and hence also
x→ i|α|xα(Fu)(x) ∈ L2(Rd).

Theorem 1.42. Let k ∈ N0. Then

Hk(Rd) =

{
u ∈ L2(Rd) :

∫
Rd

(1 + |x|2)k|(Fu)(x)|2dx <∞
}
.

Moreover, there exist constants c, C > 0 such that

c‖u‖2
Hk(Rd) ≤

∫
Rd

(1 + |x|2)k|(Fu)(x)|2dx ≤ C‖u‖2
Hk(Rd) ∀u ∈ Hk(Rd).

Proof. Note first that there exist constants c, C > 0 such that

c
∑
|α|≤k

|xα|2 ≤ (1 + |x|2)k ≤ C
∑
|α|≤k

|xα|2 ∀x ∈ Rd (1.11)

(exercise). Let u ∈ Hk(Rd). Then the Parseval identity yields

‖u‖2
Hk(Rd) =

∑
|α|≤k

‖Dαu‖2
L2(Rd) =

∑
|α|≤k

‖F(Dαu)‖2
L2(Rd)

Lemma 1.41
=

∑
|α|≤k

∫
Rd
|xα(Fu)(x)|2dx

(1.11)
≥ 1

C

∫
Rd

(1 + |x|2)k|(Fu)(x)|2dx;

(1.12)

in particular the last integral is finite. Let now, conversely, u ∈ L2(Rd) such that∫
Rd(1+ |x|2)k|(Fu)(x)|2dx <∞. Then due to (1.11) the functions x 7→ xα(Fu)(x)
belong to L2(Rd) for |α| ≤ k. In particular, for each α with 1 ≤ |α| ≤ k there
exists uα ∈ L2(Rd) such that

i|α|xα(Fu)(x) = (Fuα)(x) for almost all x ∈ Rd.

Thus for any ϕ ∈ D(Rd) and any α with |α| ≤ k with the Parseval identity we
have

(−1)|α|
∫
Rd
u(x)(Dαϕ)(x)dx = (−1)|α|(u,Dαϕ)L2(Rd)

= (−1)|α|(Fu,F(Dαϕ))L2(Rd)

= (−1)|α|
∫
Rd

(Fu)(x)i|α|xα(Fϕ)(x)dx
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= (Fuα,Fϕ)L2(Rd)

= (uα, ϕ)L2(Rd)

=

∫
Rd
uα(x)ϕ(x)dx,

which implies u ∈ Hk(Rd). The second statement follows from (1.12) and (1.11).

In general functions in Sobolev spaces are not automatically continuous (cf.
exercises). However, this is true if the space dimension is small enough in com-
parison with the Sobolev index.

Theorem 1.43 (Sobolev embedding theorem). If k > d/2 then Hk(Rd) ⊂ C0(Rd).

Proof. Let u ∈ Hk(Rd). First we show that Fu ∈ L1(Rd). Indeed,∫
Rd
|(Fu)(x)|dx =

∫
Rd

(1 + |x|2)k/2|(Fu)(x)|(1 + |x|2)−k/2dx

≤
(∫

Rd
(1 + |x|2)k|(Fu)(x)|2dx

)1/2(∫
Rd

(1 + |x|2)−kdx

)1/2

by the Hölder inequality. The first integral on the right-hand side is finite by
Theorem 1.42. Moreover, the integrand of the second integral is bounded and∫
|x|≥1

(1 + |x|2)−kdx ≤
∫
|x|≥1

|x|−2kdx = Cd

∫ ∞
1

r−2krd−1dr = Cd

∫ ∞
1

rd−2k−1dr,

which is finite since d − 2k − 1 < −1 by assumption; here the Cd is the surface
area of the unit sphere in Rd. Thus Fu ∈ L1(Rd). As u(x) = (F−1(Fu))(x) =
(F(Fu))(−x) for almost all x ∈ Rd by the Plancherel theorem, the Riemann–
Lebesgue lemma implies u ∈ C0(Rd).

Corollary 1.44. Let k ∈ N with k > d/2 and m ∈ N0. Then Hk+m(Rd) ⊂
Cm(Rd).

Proof. For m = 0 this follows from Theorem 1.43. Now by induction: Assume
Hk+m(Rd) ⊂ Cm(Rd) for a fixed m and let u ∈ Hk+m+1(Rd) ⊂ Hk+m(Rd). Then
u ∈ Cm(Rd) and ∂u

∂xj
∈ Hk+m(Rd) ⊂ Cm(Rd) for j = 1, . . . , d by assumption. It

follows u ∈ Cm+1(Rd).
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In the following we call the identity map from H1
0 (Ω) to L2(Ω) the embedding

of H1
0 (Ω) into L2(Ω). Recall that a linear operator T : U → V between Banach

spaces U and V is called compact if for each bounded sequence (un)n ⊂ U there
exists a subsequence (unk)k such that (Tunk)k converges in V . Recall further that
a sequence (un)n in a Banach space U converges weakly to some u ∈ U if F (un)
converges to F (u) in C for each bounded, linear functional F : U → C, and that in
a Hilbert space each bounded sequence contains a weakly convergent subsequence.

Theorem 1.45 (Rellich embedding theorem). Let Ω be bounded. Then the em-
bedding of H1

0 (Ω) into L2(Ω) is compact.

Proof. Let (un)n ⊂ H1
0 (Ω) be bounded in H1

0 (Ω), that is, there exists c > 0 with
‖un‖H1(Ω) ≤ c for all n. Then (un)n contains a weakly convergent subsequence;
without loss of generality we assume that (un)n itself converges weakly in H1(Ω)
to some u ∈ H1(Ω). (Note: ‖u‖H1(Ω) ≤ c.) Then the sequence (ũn)n belongs to
H1(Rd) (see Proposition 1.33) and converges weakly in H1(Rd) to ũ (for this write
down inner products). Moreover, ‖ũn‖H1(Rd) ≤ c for all n and ‖ũ‖H1(Rd) ≤ c. Our
aim is to show ‖ũn − ũ‖L2(Rd) → 0 as n → ∞. For this let ε > 0 and let R > 0
such that 4c2C(1 +R2)−1 < ε, where C > 0 is as in Theorem 1.42. Note that for
any x ∈ Rd the linear mapping Fx : H1(Rd)→ C,

Fx(v) :=
1

(2π)d/2

∫
Ω

e−ix·yv(y)dy, v ∈ H1(Rd),

is bounded since

|Fx(v)| ≤ 1

(2π)d/2

∫
Ω

|v(y)|dy ≤ 1

(2π)d/2

(∫
Ω

12dx

)1/2(∫
Ω

|v(y)|2dy
)1/2

≤ 1

(2π)d/2
|Ω|1/2‖v‖H1(Rd)

(1.13)

for all v ∈ H1(Rd). Thus

(F ũn)(x) = Fx(ũn) −→ Fx(ũ) = (F ũ)(x) as n→∞

for all x ∈ Rd. Moreover, by (1.13) we have

|(F ũn −F ũ)(x)| ≤ 1

(2π)d/2
|Ω|1/22c

23



1.4 Fourier transforms 1 Distributions and Sobolev spaces

for all n. Thus by dominated convergence∫
|x|≤R

|(F ũn)(x)− (F ũ)(x)|2dx −→ 0 as n→∞. (1.14)

On the other hand, by Theorem 1.42∫
|x|>R

|(F ũn)(x)− (F ũ)(x)|2dx

=

∫
|x|>R

(1 + |x|2)−1(1 + |x|2)|(F ũn)(x)− (F ũ)(x)|2dx

≤ C

1 +R2
‖ũn − ũ‖2

H1(Rd)

≤ C

1 +R2

(
‖ũn‖H1(Rd) + ‖ũ‖H1(Rd)

)2
< ε.

From this and (1.14) we obtain

lim sup
n→∞

∫
Rd
|(F ũn)(x)− (F ũ)(x)|2dx < ε.

As ε > 0 was chosen arbitrarily it follows ‖F(ũn − ũ)‖L2(Rd) → 0 and thus ‖ũn −
ũ‖L2(Rd) → 0 as n→∞. It follows ‖un − u‖L2(Ω) → 0.
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Chapter 2

The Poisson equation with Dirichlet
boundary conditions

Let Ω ⊂ Rd, d ≥ 1, be open and nonempty. In this chapter we deal with the
Poisson equation

−∆u− λu = f in Ω,

u = 0 on ∂Ω,
(2.1)

where f ∈ L2(Ω) and λ ≤ 0 are given. In the setting of Sobolev spaces the
equation (2.1) is only formal since in general ∂Ω is a set of measure zero and thus
evaluation of some Sobolev function u on ∂Ω is not well-defined. As mentioned
above, for u ∈ H1(Ω) the Dirichlet boundary condition u|∂Ω = 0 can be modeled
via the requirement u ∈ H1

0 (Ω). Therefore the equation under consideration in
this chapter is

−∆u− λu = f, u ∈ H1
0 (Ω), (2.2)

where −∆u has to be understood in the sense of distributional derivatives and the
equality is an equality of distributions. Note that −∆u− λu = f with f ∈ L2(Ω)
and u ∈ H1

0 (Ω) implies −∆u ∈ L2(Ω).

Lemma 2.1. Let u ∈ H1(Ω). Then u is a solution of −∆u − λu = f (in the
distributional sense) if and only if∫

Ω

∇u(x) · ∇ϕ(x) dx− λ
∫

Ω

u(x)ϕ(x) dx =

∫
Ω

f(x)ϕ(x) dx

holds for all ϕ ∈ H1
0 (Ω).
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2 The Poisson equation with Dirichlet boundary conditions

Proof. If u ∈ H1(Ω) satisfies −∆u− λu = f distributionally then∫
Ω

f(x)ϕ(x)dx = (−∆Tu)(ϕ)− λ
∫

Ω

u(x)ϕ(x)dx

= −
d∑
j=1

∂2Tu
∂x2

j

(ϕ)− λ
∫

Ω

u(x)ϕ(x) dx

=
d∑
j=1

∂Tu
∂xj

( ∂ϕ
∂xj

)
− λ

∫
Ω

u(x)ϕ(x) dx

u∈H1(Ω)
=

d∑
j=1

∫
Ω

∂u

∂xj
(x)

∂ϕ

∂xj
(x) dx− λ

∫
Ω

u(x)ϕ(x)dx

=

∫
Ω

∇u(x) · ∇ϕ(x)dx− λ
∫

Ω

u(x)ϕ(x) dx

for each ϕ ∈ D(Ω). Via approximation this identity extends to all ϕ ∈ H1
0 (Ω).

The converse implication follows by going the same steps backwards.

Theorem 2.2. Let f ∈ L2(Ω) and λ ≤ 0. Assume in addition that Ω is bounded
with respect to one direction or that λ < 0. Then (2.2) is uniquely solvable.

In the proof we use the Lax–Milgram theorem. Recall that a symmetric
sesquilinear form on a (complex) Hilbert space V is a mapping a : V × V → C
which satisfies

a[αu+ βw, v] = αa[u, v] + βa[w, v], u, v, w ∈ V, α, β ∈ C,

and

a[u, v] = a[v, u], u, v ∈ V.

In particular, a[u, αv] = αa[u, v] for all u, v ∈ V , α ∈ C, and a[u] := a[u, u] is real
for all u ∈ V . We denote by V ∗ the anti-dual of V , i.e. the space of all bounded,
antilinear functionals F : V → C.

Theorem (Lax–Milgram theorem). Let V be a Hilbert space and let a : V×V → C
be a symmetric sesquilinear form such that

(a) a is bounded, i.e., there exists M > 0 with |a[u, v]| ≤ M‖u‖V ‖v‖V for all
u, v ∈ V ;
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2 The Poisson equation with Dirichlet boundary conditions

(b) a is coercive, i.e., there exists η > 0 with a[u] ≥ η‖u‖2
V for all u ∈ V .

Then for each F ∈ V ∗ there exists a unique u ∈ V such that

a[u, ϕ] = F (ϕ), ϕ ∈ V.

Proof of Theorem 2.2. Define a : H1
0 (Ω)×H1

0 (Ω)→ C,

a[u, v] :=

∫
Ω

∇u(x) · ∇v(x) dx− λ
∫

Ω

u(x)v(x) dx, u, v ∈ H1
0 (Ω).

Then a is sesquilinear and symmetric. Moreover, by the Cauchy–Schwarz inequal-
ity

|a[u, v]| ≤ ‖∇u‖L2(Ω;Cd)‖∇v‖L2(Ω;Cd) + λ‖u‖L2(Ω)‖v‖L2(Ω)

≤ (1 + λ)‖u‖H1(Ω)‖v‖H1(Ω)

for all u, v ∈ H1
0 (Ω), that is, a is bounded. Moreover, a is coercive: if λ < 0 then

a[u] = ‖∇u‖2
L2(Ω;Cd) − λ‖u‖

2
L2(Ω) ≥ min{1,−λ}‖u‖2

H1(Ω), u ∈ H1
0 (Ω).

If Ω is bounded with respect to one direction and λ = 0 then the Poincaré in-
equality (Theorem 1.37) yields

a[u] =
1

2
‖∇u‖2

L2(Ω;Cd) +
1

2
‖∇u‖2

L2(Ω;Cd) ≥
1

2

1

2δ2
‖u‖2

L2(Ω) +
1

2
‖∇u‖2

L2(Ω;Cd)

≥ min
{ 1

4δ2
,
1

2

}
‖u‖2

H1(Ω)

for all u ∈ H1
0 (Ω). Hence in both cases a is coercive. Moreover, the mapping

F : H1
0 (Ω)→ C,

F (ϕ) :=

∫
Ω

f(x)ϕ(x) dx, ϕ ∈ H1
0 (Ω),

is bounded. Thus by the Lax–Milgram theorem there exists a unique u ∈ H1
0 (Ω)

such that

a[u, ϕ] = F (ϕ), ϕ ∈ H1
0 (Ω),

and Lemma 2.1 yields the desired assertion.
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2 The Poisson equation with Dirichlet boundary conditions

Let us next consider the case Ω = Rd. We show that solutions are more regular
in this case.

Lemma 2.3. For f ∈ L2(Rd) the equation −∆u + u = f has a unique solution
u ∈ H2(Rd). In particular, if v, f ∈ L2(Rd) with −∆v + v = f then v ∈ H2(Rd).

Proof. Since f ∈ L2(Rd) we have∫
Rd

1

(1 + |x|2)2
|(Ff)(x)|2dx ≤

∫
Rd
|(Ff)(x)|2dx <∞.

Hence by the Plancherel theorem there exists u ∈ L2(Rd) such that

1

1 + |x|2
(Ff)(x) = (Fu)(x) for almost all x ∈ Rd.

Moreover, ∫
Rd

(1 + |x|2)2|(Fu)(x)|2dx =

∫
Rd
|(Ff)(x)|2dx <∞.

With the help of Theorem 1.42 it follows u ∈ H2(Rd). Furthermore, Lemma 1.41
implies (

F(−∆u+ u)
)
(x) = (|x|2 + 1)(Fu)(x) = (Ff)(x)

for almost all x ∈ Rd and hence −∆u+ u = f , that is, u is the unique solution of
−∆u+ u = f in H1(Rd).

Let now v ∈ L2(Rd) such that −∆v + v = f and define w := u− v. Then one
has −∆w + w = 0 and hence∫

Rd
w(x)(ϕ(x)−∆ϕ(x)) dx =

∫
Rd

(−∆w(x) + w(x))ϕ(x) dx = 0, ϕ ∈ D(Rd),

and thus for any ϕ ∈ H2(Rd). By the first part of the lemma we can choose ϕ ∈
H2(Rd) such that ϕ−∆ϕ = w and it follows w = 0 and thus v = u ∈ H2(Rd).

The following theorem is sometimes called a regularity shift theorem.

Theorem 2.4. Let u ∈ L2(Rd) and let f ∈ Hk(Rd) for some k ∈ N0. If −∆u = f
then u ∈ Hk+2(Rd).
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2 The Poisson equation with Dirichlet boundary conditions

Proof. We use induction over k. For k = 0 we have −∆u + u = f + u ∈ L2(Rd)
and Lemma 2.3 yields u ∈ H2(Rd). Assume now that the assertion of the theorem
holds for a fixed k and let f ∈ Hk+1(Rd) ⊂ Hk(Rd). Then u ∈ Hk+2(Rd) and
hence −∆u+ u = f + u =: g ∈ Hk+1(Rd). It follows∫

Rd
(1 + |x|2)k+3|(Fu)(x)|2dx =

∫
Rd

(1 + |x|2)k+1
∣∣(1 + |x|2)(Fu)(x)

∣∣2dx
=

∫
Rd

(1 + |x|2)k+1|(Fg)(x)|2dx <∞

as g ∈ Hk+1(Rd). Hence u ∈ Hk+3(Rd).

For Ω 6= Rd the regularity issue is more involved and ∆u ∈ L2(Ω) does in
general not imply u ∈ H2(Ω). Our main goal will be to show below local regularity
properties making use of the so-called difference quotient method. First we define
the spaces

Hk
loc(Ω) :=

{
u ∈ L2

loc(Ω) : Dαu ∈ L2
loc(Ω) ∀α ∈ Nd

0 with |α| ≤ k
}

and note that the following properties hold:

• Ck(Ω) ⊂ Hk
loc(Ω).

• u ∈ Hk
loc(Ω) and U b Ω ⇒ u|U ∈ Hk(U).

The next lemma is useful to relate the local spaces Hk
loc(Ω) with the spaces

Hk
0 (Ω).

Lemma 2.5. The identity

Hk
loc(Ω) =

{
u ∈ L2

loc(Ω) : ηu ∈ Hk
0 (Ω) for all η ∈ D(Ω)

}
(2.3)

holds for each k ∈ N. Moreover, for u ∈ Hk
loc(Ω) and η ∈ D(Ω) we have

Dα(ηu) =
∑
β≤α

(
α

β

)
(Dα−βη)(Dβu) (2.4)

for all α ∈ Nd
0 such that |α| ≤ k.
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2 The Poisson equation with Dirichlet boundary conditions

Proof. Let u ∈ Hk
loc(Ω). Then for any η ∈ D(Ω) we have ηu ∈ L2(Ω) and

(Dγη)(Dβu) ∈ L2(Ω) for all β, γ ∈ Nd
0 with |β| ≤ k. A computation shows that

for each ϕ ∈ D(Ω) and each α with |α| ≤ k we have∑
β≤α

(
α

β

)
(−1)|β|Dβ

(
(Dα−βη)ϕ

)
= (−1)|α|ηDαϕ (2.5)

and hence∫
Ω

∑
β≤α

(
α

β

)
(Dα−βη)(x)(Dβu)(x)ϕ(x) dx

=
∑
β≤α

(
α

β

)
(−1)|β|

∫
Ω

Dβ
(
(Dα−βη)(x)ϕ(x)

)
u(x) dx

= (−1)|α|
∫

Ω

(ηu)(x)Dαϕ(x)dx.

Thus ηu ∈ Hk(Ω) and (2.4) holds. As ηu vanishes outside a compact subset of Ω it
follows ηu ∈ Hk

0 (Ω) (exercise). For the converse inclusion in (2.3) let u ∈ L2
loc(Ω)

such that ηu ∈ Hk
0 (Ω) holds for each η ∈ D(Ω). Let U b Ω and let η ∈ D(Ω)

such that η(x) = 1 for all x ∈ U ; cf. Lemma 1.7. Then for each ϕ ∈ D(Ω) with
suppϕ ⊂ U

(−1)|α|
∫
U

u(x)Dαϕ(x) dx = (−1)|α|
∫

Ω

(ηu)(x)Dαϕ(x) dx =

∫
Ω

Dα(ηu)(x)ϕ(x) dx

=

∫
U

Dα(ηu)(x)ϕ(x)dx

for each α with |α| ≤ k, i.e., Dαu = Dα(ηu) on U . Since ηu ∈ Hk(Ω) by
assumption, we obtain (Dαu)|U ∈ L2(U). Hence u ∈ Hk

loc(Ω).

The following theorem is a local version of the Sobolev embedding theorem.

Theorem 2.6. Let k ∈ N with k > d/2 and m ∈ N0. Then Hk+m
loc (Ω) ⊂ Cm(Ω).

Proof. Let u ∈ Hk+m
loc (Ω) and U b Ω and let η ∈ D(Ω) such that η(x) = 1 for

all x ∈ U . Then ηu ∈ Hk+m
0 (Ω) by Lemma 2.5 and thus η̃u ∈ Hk+m(Rd) by

Proposition 1.33, and Theorem 1.43 yields η̃u ∈ Cm(Rd). Hence u ∈ Cm(U).

We come to the local regularity result.

30



2 The Poisson equation with Dirichlet boundary conditions

Theorem 2.7. Let u ∈ L2
loc(Ω) and let f ∈ Hk

loc(Ω) for some k ∈ N0. If −∆u = f
then u ∈ Hk+2

loc (Ω). In particular, f ∈ C∞(Ω) implies u ∈ C∞(Ω).

Proof. Step 1. We assume that f ∈ L2
loc(Ω) and show u ∈ H2

loc(Ω). Let η ∈ D(Ω)
be fixed and define

F (ϕ) :=

∫
Ω

(ηu)(x)(ϕ−∆ϕ)(x) dx, ϕ ∈ D(Rd).

Then the mapping D(Rd) 3 ϕ 7→ F (ϕ) is antilinear and satisfies

F (ϕ) =

∫
Ω

(
ηuϕ− u∆(ϕη) + uϕ∆η + 2u∇ϕ · ∇η

)
(x) dx, ϕ ∈ D(Rd), (2.6)

where we have used the product rule ∆(ϕη) = η∆ϕ+ 2∇ϕ · ∇η + ϕ∆η and, as a
consequence,

−u∆(ϕη) + uϕ∆η + 2u∇ϕ · ∇η = −uη∆ϕ.

Note that ϕ|Ωη ∈ D(Ω) and hence

−
∫

Ω

u(x)∆(ϕη)(x) dx = Tu(−∆(ϕη)) = −(∆Tu)(ϕη) = Tf (ϕη)

=

∫
Ω

f(x)ϕ(x)η(x) dx

by the definition of the distributional derivative. From this and (2.6) it follows

F (ϕ) =

∫
Ω

(ηu+ fη + u∆η)(x)ϕ(x) dx+ 2

∫
Ω

∇ϕ(x) · ∇η(x)u(x) dx, ϕ ∈ D(Rd).

Thus an application of Cauchy–Schwarz shows that ϕ 7→ F (ϕ) is bounded with
respect to the norm inH1(Rd) and, hence, can be extended to a bounded antilinear
functional F : H1(Rd)→ C. By the Fréchet–Riesz theorem there exists a unique
v ∈ H1(Rd) such that∫

Rd
v(x)ϕ(x) dx+

∫
Rd
∇v(x) · ∇ϕ(x) dx = F (ϕ) =

∫
Rd
η̃u(x)(ϕ−∆ϕ)(x) dx

for all ϕ ∈ D(Rd) and thus∫
Rd
v(x)(ϕ−∆ϕ)(x) dx =

∫
Rd
η̃u(x)(ϕ−∆ϕ)(x) dx, ϕ ∈ D(Rd), (2.7)
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2 The Poisson equation with Dirichlet boundary conditions

using the definition of the weak derivative. The last identity extends by continuity
to all ϕ ∈ H2(Rd). By Lemma 2.3 there exists a unique ϕ ∈ H2(Rd) such that
ϕ−∆ϕ = v − η̃u. Plugging this ϕ into (2.7) leads to∫

Rd
|v − η̃u|2(x)dx = 0

and thus v = η̃u almost everywhere on Rd. In particular, ηu = v|Ω ∈ H1(Ω) and
ηu has compact support. Hence ηu ∈ H1

0 (Ω) and Lemma 2.5 implies u ∈ H1
loc(Ω).

In order to show u ∈ H2
loc(Ω) observe that the product rule for the Laplacian and

−∆u = f imply

∆(η̃u) =
(
u∆η + 2∇η · ∇u− ηf

)̃
(2.8)

on Rd in the sense of distributional derivatives (exercise). As u ∈ H1
loc(Ω) the

right-hand side belongs to L2(Rd) and Theorem 2.4 implies η̃u ∈ H2(Rd). As
above it follows ηu ∈ H2

0 (Ω) and hence u ∈ H2
loc(Ω) by Lemma 2.5.

Step 2. We use induction in order to establish the general statement. For
k = 0 the assertion was proven in Step 1. Assume that for a fixed k the assertion is
true and let f ∈ Hk+1

loc (Ω) ⊂ Hk
loc(Ω). Then u ∈ Hk+2

loc (Ω) and for each η ∈ D(Ω)
it follows from (2.8) ∆(η̃u) ∈ Hk+1(Rd). Another application of Theorem 2.4
implies η̃u ∈ Hk+3(Rd) and hence u ∈ Hk+3

loc (Ω).
Finally, if f ∈ C∞(Ω) then f ∈ Hk

loc(Ω) for each k ∈ N and thus u ∈ Hk+2
loc (Ω)

for each k. With Theorem 2.6 it follows u ∈ Cm(Ω) for each m and thus u ∈
C∞(Ω).

Remark 2.8. (i) Theorem 2.7 shows that each distributional solution of−∆u = f
with f ∈ L2(Ω) is in fact a weak solution, i.e., the derivatives are weak derivatives.

(ii) For each open, nonempty Ω ⊂ Rd, d ≥ 2, one can construct functions
u, f ∈ C(Ω) with compact supports such that −∆u = f distributionally but u /∈
C2(Ω). Thus there always exist weak solutions which are not classical solutions.

The main objective in the following is to prove a result on the regularity of
solutions up to the boundary of Ω. For this the so-called difference quotient
operators will be defined. For a function u : Ω→ C, i = 1, . . . , d, and h > 0 let

D+h
i u(x) =

u(x+ hei)− u(x)

h
and D−hi u(x) =

u(x)− u(x− hei)
h

. (2.9)

The functions D±hi in (2.9) are well-defined for all x ∈ Ω such that x ± hei ∈ Ω.
These subsets of Ω will sometimes be denoted by Ω±h. Occassionally it is also
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2 The Poisson equation with Dirichlet boundary conditions

useful to extend u by zero to a neighbourhood of Ω and to regard D±hi u as a
function on Ω. The following preparatory lemma provides some elemenentary
properties of the difference quotients D±hi .

Lemma 2.9. Let u, v : Ω → C and i = 1, . . . , d. Then the following assertions
are true.

(i) For h > 0 and all x ∈ Ω±h the product rules hold:

(D+h
i uv)(x) = u(x+ hei)D

+h
i v(x) + (D+h

i u(x))v(x),

(D−hi uv)(x) = u(x)D−hi v(x) + (D−hi u(x))v(x− hei).

(ii) If u, v ∈ L2
loc(Ω) and at least one of the functions has compact support in Ω

then for h > 0 sufficiently small one has

(u,D+h
i v)L2(Ω) = −(D−hi u, v)L2(Ω).

Proof. (i) Making use of the definition of D+h
i in (2.9) one has

u(x+ hei)D
+h
i v(x) + (D+h

i u(x))v(x)

= u(x+ hei)
v(x+ hei)− v(x)

h
+
u(x+ hei)− u(x)

h
v(x)

=
(uv)(x+ hei)− (uv)(x)

h
= (D+h

i uv)(x)

for all x ∈ Ω+h. The product rule for D−hi is shown in the same way.
(ii) Let u, v ∈ L2

loc(Ω) and assume that suppu is compact. Choose h > 0 such
that also suppu(· − hei) ⊂ Ω. Then it follows that

(u,D+h
i v)L2(Ω) + (D−hi u, v)L2(Ω)

=
1

h

∫
Ω

u(x)(v(x+ hei)− v(x))dx+
1

h

∫
Ω

(u(x)− u(x− hei))v(x)dx

=
1

h

∫
Ω

u(x)v(x+ hei)dx−
1

h

∫
Ω

u(x− hei)v(x)dx

=
1

h

∫
Ω+hei

u(x− hei)v(x)dx− 1

h

∫
Ω

u(x− hei)v(x)dx

= 0.
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2 The Poisson equation with Dirichlet boundary conditions

Proposition 2.10. Let D±hi be as in (2.9), i = 1, . . . , d. Then the following
assertions hold.

(i) For u ∈ H1(Ω) and Ω′ ⊂ Ω such that Ω′+ h′ei ⊂ Ω for some h′ > 0 one has

‖D±hi u‖L2(Ω′) ≤ ‖∂iu‖L2(Ω), 0 < h < h′. (2.10)

(ii) Furthermore, for τ ∈ D(Ω) and h > 0 sufficiently small the functions τD±hi u
and D±hi (τu) are defined on Ω and one has

‖τD±hi u‖L2(Ω) ≤ ‖τ‖L∞(Ω)‖∂iu‖L2(Ω),

‖D±hi (τu)‖L2(Ω) ≤ ‖∂i(τu)‖L2(Ω).
(2.11)

Proof. (i) We will show the estimate for D+h
i ; the proof for D−hi is the same.

Assume first that u ∈ C∞(Ω) ∩H1(Ω). For ξ > 0 we have

d

dξ
u(x+ ξei) = lim

k→0

u(x+ (ξ + k)ei)− u(x+ ξei)

k
=

∂

∂xi
u(x+ ξei)

and therefore for 0 < h < h′

D+h
i u(x) =

u(x+ hei)− u(x)

h
=

1

h

∫ h

0

d

dξ
u(x+ ξei) dξ =

1

h

∫ h

0

∂

∂xi
u(x+ ξei) dξ.

For 0 < h < h′ we obtain with the help of the Cauchy-Schwarz inequality

‖D+h
i u‖2

L2(Ω′) =
1

h2

∫
Ω′

∣∣∣∣∫ h

0

∂

∂xi
u(x+ ξei) dξ

∣∣∣∣2 dx
≤ 1

h

∫
Ω′

∫ h

0

∣∣∣∣ ∂∂xiu(x+ ξei)

∣∣∣∣2 dξ dx
=

1

h

∫ h

0

∫
Ω′

∣∣∣∣ ∂∂xiu(x+ ξei)

∣∣∣∣2 dx dξ
≤ 1

h

∫ h

0

∫
Ω

∣∣∣∣ ∂∂xiu(x)

∣∣∣∣2 dx dξ
=

∥∥∥∥ ∂u∂xi
∥∥∥∥2

L2(Ω)

.

Since C∞(Ω) ∩H1(Ω) is dense in H1(Ω) by Theorem 1.39 and un → u in H1(Ω)
yields D+h

i un → D+h
i u in L2(Ω′) the first assertion follows via approximation.
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2 The Poisson equation with Dirichlet boundary conditions

(ii) For the first estimate in (2.11) note that with τ ∈ D(Ω) and h > 0
sufficiently small we can view τD+h

i u as a function defined on Ω which vanishes
a.e. on Ω\U , where U b Ω is suitably chosen. Then one has for h > 0 sufficiently
small

‖τD+h
i u‖2

L2(Ω) =
1

h2

∫
U

|τ(x)|2
∣∣∣∣∫ h

0

∂

∂xi
u(x+ ξei) dξ

∣∣∣∣2 dx
≤ 1

h
‖τ‖2

L∞(Ω)

∫
U

∫ h

0

∣∣∣∣ ∂∂xiu(x+ ξei)

∣∣∣∣2 dξ dx
=

1

h
‖τ‖2

L∞(Ω)

∫ h

0

∫
U

∣∣∣∣ ∂∂xiu(x+ ξei)

∣∣∣∣2 dx dξ
≤ 1

h
‖τ‖2

L∞(Ω)

∫ h

0

∫
Ω

∣∣∣∣ ∂∂xiu(x)

∣∣∣∣2 dx dξ
= ‖τ‖2

L∞(Ω)

∥∥∥∥ ∂u∂xi
∥∥∥∥2

L2(Ω)

.

For the second estimate in (2.11) note that ‖D±hi (τu)‖L2(Ω′) ≤ ‖∂i(τu)‖L2(Ω) holds
for any Ω′ ⊂ Ω such that Ω′+ hei ⊂ Ω according to (2.10). Since τu has compact
support in Ω for h > 0 sufficiently small the support of D±hi (τu) is also contained
in Ω and hence ‖D±hi (τu)‖L2(Ω) ≤ ‖∂i(τu)‖L2(Ω) follows.

In the next proposition we show how a uniform bound in h for a difference
quotient yields the existence of weak derivatives locally in L2.

Proposition 2.11. Let D±hi be as in (2.9), i = 1, . . . , d. If for u ∈ L2(Ω) and
U b Ω there exists C(u) > 0 such that

‖D+h
i u‖L2(U) ≤ C(u)

holds for all h > 0 sufficiently small then the weak derivative ∂iu exists in L2(U)
and satisfies ∥∥∥∥ ∂u∂xi

∥∥∥∥
L2(U)

≤ C(u). (2.12)

Proof. Since ‖D+h
i u‖L2(U) is bounded by C(u) for all h > 0 sufficiently small there

exists a sequence (hk) in (0, h) with hk → 0 for k →∞ such that D+hk
i u converges
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2 The Poisson equation with Dirichlet boundary conditions

weakly to some ui ∈ L2(U) and, in particular, (D+hk
i u, ϕ)L2(U) → (ui, ϕ)L2(U) for

all ϕ ∈ D(U) when k →∞. On the other hand we have

(D+hk
i u, ϕ)L2(U) = −(u,D−hki ϕ)L2(U) = −

∫
U

u(x)D−hki ϕ(x) dx

by Lemma 2.9 (ii) and dominated convergence shows that the last term tends to

−
∫
U

u(x)
∂ϕ

∂xi
(x)dx

when k →∞. Therefore∫
U

ui(x)ϕ(x) dx = −
∫
U

u(x)
∂ϕ

∂xi
(x)dx, ϕ ∈ D(U),

and hence ∂u
∂xi

= ui ∈ L2(U). The bound (2.12) follows from∥∥∥∥ ∂u∂xi
∥∥∥∥2

L2(U)

=

(
ui,

∂u

∂xi

)
L2(U)

= lim
k→∞

(
D+hk
i u,

∂u

∂xi

)
L2(U)

≤ lim sup ‖D+hk
i u‖L2(U)

∥∥∥∥ ∂u∂xi
∥∥∥∥
L2(U)

(2.13)

and the assumption ‖D+h
i u‖L2(U) ≤ C(u).

The next theorem is a local version of the regularity shift Theorem 2.4 for
k = 0; here no additional assumptions on Ω are imposed, but the solution u is
required to be in H1(Ω). Instead of the Laplacian we consider here a more general
second order uniformly elliptic differential expression.

Theorem 2.12. Let Ω ⊂ Rd, d ≥ 1, be open and nonempty, and consider the
differential expression

L = −
d∑

j,k=1

∂

∂xj
αjk

∂

∂xk

on Ω. Assume that αjk ∈ C1(Ω) are real-valued functions that satisfy αjk = αkj,
j, k = 1, . . . , d, and suppose that L is uniformly elliptic, that is,(

(αjk(x))dj,k=1ξ, ξ
)
Cd ≥ E‖ξ‖2, ξ ∈ Cd, x ∈ Ω, (2.14)

for some E > 0. If Lu = f holds for some f ∈ L2(Ω) and u ∈ H1(Ω) then
u ∈ H2

loc(Ω).
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2 The Poisson equation with Dirichlet boundary conditions

Proof. Fix U b Ω and h > 0 such that h < 1
3
dist (U,Ω), and choose τ ∈ D(Ω)

with 0 ≤ τ(x) ≤ 1, x ∈ Ω, and

τ(x) =

{
1, x ∈ U,
0, x 6∈ U + 1

3
dist(U,Ω)

.

In order to show the assertion we have to verify ∂iu ∈ H1(U), i = 1, . . . , d. For
this consider the function

ϕ(x) = (D−hi τ 2D+h
i u)(x), (2.15)

which has the more explicit form

ϕ(x) = D−hi

(
τ 2(·)u(·+ hei)− u(·)

h

)
(x)

=
1

h

(
τ 2(x)

u(x+ hei)− u(x)

h
− τ 2(x− hei)

u(x)− u(x− hei)
h

)
.

Observe that the function ϕ is well defined for all x ∈ Ω if we extend u by zero into
a suitable small neighborhood of Ω. Moreover, for x 6∈ U + 2

3
dist(U,Ω) the choice

of τ shows ϕ(x) = 0. Since u ∈ H1(Ω) this implies ϕ ∈ H1
0 (Ω); cf. Lemma 1.35.

With ϕ ∈ H1
0 (Ω) it follows in the same way as in the proof of Lemma 2.1 that

(f, ϕ) = (Lu, ϕ) = −
d∑

j,k=1

(∂jα
jk∂ku, ϕ) =

d∑
j,k=1

(αjk∂ku, ∂jϕ)

holds. Using the particular form of ϕ in (2.15) and Lemma 2.9 (ii) we compute
(all following inner products and norms are in L2(Ω) or L2(Ω;Cd) if not stated
otherwise)

−
(
f,D−hi τ 2D+h

i u
)

= −
d∑

j,k=1

(
αjk∂ku, ∂j(D

−h
i τ 2D+h

i u)
)

= −
d∑

j,k=1

(
αjk∂ku,D

−h
i

(
∂j(τ

2D+h
i u)

))
=

d∑
j,k=1

(
D+h
i (αjk∂ku), ∂j(τ

2D+h
i u)

)
,
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2 The Poisson equation with Dirichlet boundary conditions

where we have also used ∂jD
±h
i ψ = D±hi ∂jψ for ψ ∈ H1(Ω) and j = 1, . . . , d.

With the help of the product rule in Lemma 2.9 (i) we further conclude

=
d∑

j,k=1

(
αjk(·+ hei)∂kD

+h
i u+ (D+h

i αjk)∂ku, ∂j(τ
2D+h

i u)
)

= 2
d∑

j,k=1

(
αjk(·+ hei)∂kD

+h
i u, τ(∂jτ)D+h

i u)
)

+
d∑

j,k=1

(
αjk(·+ hei)∂kD

+h
i u, τ 2∂jD

+h
i u

)
+

d∑
j,k=1

(
(D+h

i αjk)∂ku, ∂j(τ
2D+h

i u)
)
.

Rearranging the terms leads to the identity

d∑
j,k=1

(
αjk(·+ hei)τ∂kD

+h
i u, τ∂jD

+h
i u

)
= −

(
f,D−hi τ 2D+h

i u
)
− 2

d∑
j,k=1

(
αjk(·+ hei)∂kD

+h
i u, τ(∂jτ)D+h

i u)
)

−
d∑

j,k=1

(
(D+h

i αjk)∂ku, ∂j(τ
2D+h

i u)
)
.

(2.16)

The ellipticity condition (2.14) implies for the term on the left hand side

d∑
j,k=1

(
αjk(·+ hei)τ∂kD

+h
i u, τ∂jD

+h
i u

)
=

∫
Ω

(
(αjk(x+ hei))

d
j,k=1τ(x)∇D+h

i u(x), τ(x)∇D+h
i (x)

)
Cd dx

≥
∫

Ω

E
∥∥τ(x)∇D+h

i u(x)
∥∥2

Cd dx = E‖τ∇D+h
i u‖2.

Using Proposition 2.10 (ii) and τ 2 ≤ τ ≤ 1 the first term on the right hand side
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2 The Poisson equation with Dirichlet boundary conditions

of (2.16) can be estimated as follows

−(f,D−hi τ 2D+h
i u) ≤ ‖f‖‖D−hi τ 2D+h

i u‖
≤ ‖f‖‖∂i(τ 2D+h

i u)‖
≤ ‖f‖

(
‖2(∂iτ)τD+h

i u‖+ ‖τ 2∂iD
+h
i u‖

)
≤ ‖f‖

(
C1‖∂iu‖+ ‖τ∂iD+h

i u‖
)

≤ C2

(
‖∇u‖+ ‖τ∇D+h

i u‖
)
,

and for the second term on the right hand side of (2.16) we observe

−2
d∑

j,k=1

(
αjk(·+ hei)τ∂kD

+h
i u, (∂jτ)D+h

i u)
)
≤ C3

d∑
j,k=1

‖τ∂kD+h
i u‖‖(∂jτ)D+h

i u‖

≤ C4

d∑
k=1

‖τ∂kD+h
i u‖‖∂iu‖

≤ C5‖τ∇D+h
i u‖‖∇u‖.

For the third term on the right hand side of (2.16) we compute and estimate

−
d∑

j,k=1

(
(D+h

i αjk)∂ku, ∂j(τ
2D+h

i u)
)

= −2
d∑

j,k=1

(
(D+h

i αjk)∂ku, τ(∂jτ)D+h
i u)

)
−

d∑
j,k=1

(
(D+h

i αjk)∂ku, τ
2∂jD

+h
i u)

)
≤ C6

d∑
j,k=1

‖∂ku‖‖∂iu‖+ C7

d∑
j,k=1

‖∂ku‖‖τ∂jD+h
i u‖

≤ C8‖∇u‖2 + C9‖∇u‖‖τ∇D+h
i u‖.

Summing up we have the following inequality

E‖τ∇D+h
i u‖2 ≤ C ′(u)‖∇u‖+ C ′′(u)‖τ∇D+h

i u‖,

where C ′(u) = C2 + C8‖∇u‖ and C ′′(u) = C2 + (C5 + C9)‖∇u‖. Making use of
the inequality ab ≤ 1

2E
a2 + E

2
b2 for a, b ≥ 0 we find

E‖τ∇D+h
i u‖2 ≤ C ′(u)‖∇u‖+

1

2E
C ′′(u)2 +

E

2
‖τ∇D+h

i u‖2,
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2 The Poisson equation with Dirichlet boundary conditions

and hence
E

2
‖τ∇D+h

i u‖2 ≤ C ′(u)‖∇u‖+
1

2E
C ′′(u)2 =: C̃(u).

As τ = 1 on U it follows that ‖∇D+h
i u‖2

L2(U ;Cd)
≤ 2

E
C̃(u) and this yields for

k = 1, . . . , d

‖D+h
i ∂ku‖L2(U) = ‖∂kD+h

i u‖L2(U) ≤ ‖∇D+h
i u‖L2(U ;Cd) ≤

√
2

E
C̃(u).

Now Proposition 2.11 implies that the weak derivative ∂i∂ku of ∂ku exists in
L2(U). Since this is true for all i = 1, . . . , d and all U b Ω we finally conclude
u ∈ H2

loc(Ω).

Observe that the constant C̃(u) in the proof of Theorem 2.12 depends on the
distance of the subset U b Ω from the boundary ∂Ω (as e.g. ‖∂kτ‖L∞(Ω) enters
in the estimates). Therefore a global regularity result can not be proved along
the same lines without additional assumptions. In the next theorem it is assumed
that Ω is a bounded C2-domain (see Definition 3.2 and the following Remark 3.3)
and the solution satisfies Dirichlet boundary conditions.

Theorem 2.13. Let Ω ⊂ Rd, d ≥ 1, be open, nonempty, bounded and of class
C2, and assume that −∆u = f holds for some f ∈ L2(Ω) and u ∈ H1

0 (Ω). Then
u ∈ H2(Ω).

Proof. Let us choose open bounded sets U1, . . . , Ur ⊂ Rd such that

∂Ω ⊂
r⋃
l=1

Ul

and C2-mappings Φl : Ul → B(0, 1) with inverses Ψl : Φ(Ul) → Ul, l = 1, . . . , r,
such that

Φl(Ul∩Ω) ⊂ B+(0, 1), Φl(Ul∩∂Ω) ⊂ Rd−1×{0}, Φl(Ul∩(Rd \Ω)) ⊂ B−(0, 1),

for all l = 1, . . . , r; here and in the following we use the notation

B±(0, γ) = B(0, γ) ∩ {x ∈ Rd : ±xd > 0} with γ > 0.

In addition, choose ϑ ∈ (0, 1/3) such that B+(0, 3ϑ) ⊂ Φl(Ul ∩ Ω), l = 1, . . . , r,
and it is no restriction to assume that Ul were chosen such that

∂Ω ⊂
r⋃
l=1

Ψl

(
B(0, ϑ)

)
.
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2 The Poisson equation with Dirichlet boundary conditions

Furthermore, let Ω0 b Ω be such that

Ω ⊂

(
Ω0 ∪

r⋃
l=1

Ψl

(
B(0, ϑ)

))
. (2.17)

We note that from Theorem 2.12 and its proof it is clear that

∂i∂ku ∈ L2(Ω0), i, k = 1, . . . , d. (2.18)

For the following considerations fix some s ∈ {1, . . . , r} and consider the dif-
ferential expression

Ls = −
d∑

j,k=1

∂

∂yj
αjks

∂

∂yk

on B+(0, 3ϑ), where

αjks =
(
∇Φj

s ◦Ψs,∇Φk
s ◦Ψs)Cd ∈ C1(B+(0, 3ϑ)

)
.

Note that the component functions Φj
s are real valued so that αjks = αkjs . With

fs(y) := f(Ψs(y)) and us(y) := u(Ψs(y)), y ∈ B+(0, 3ϑ), one has1

(Lsus, ϕ)L2(B+(0,3ϑ)) = (fs, ϕ)L2(B+(0,3ϑ)), ϕ ∈ H1
0 (B+(0, 3ϑ)),

1Note that (∇us)(y) = (∇u)(Ψs(y))(DΨs)(y) and hence

∂us
∂yk

(y) =

d∑
i=1

∂u

∂xi
(Ψs(y))

∂Ψi
s

∂yk
(y).

It follows for ωs ∈ H1
0 (B+(0, 3ϑ)) and ω ∈ H1

0 (Ψs(B+(0, 3ϑ))) with ωs(y) = ω(Ψs(y)) that

(
Lsus, ωs

)
L2(B+(0,3ϑ))

=

∫ d∑
j,k=1

αjk
s (y)

∂us
∂yk

(y)
∂ωs

∂yj
(y) dy

=

∫ d∑
j,k,t=1

∂Φj
s

∂xt
(Ψs(y))

∂Φk
s

∂xt
(Ψs(y))

(
d∑

i=1

∂u

∂xi
(Ψs(y))

∂Ψi
s

∂yk
(y)

)(
d∑

p=1

∂ω

∂xp
(Ψs(y))

∂Ψp
s

∂yj
(y)

)
dy

=

∫ d∑
i,p,t=1

∂u

∂xi
(Ψs(y))

∂ω

∂xp
(Ψs(y))

(
d∑

k=1

∂Ψi
s

∂yk
(y)

∂Φk
s

∂xt
(Ψs(y))

) d∑
j=1

∂Ψp
s

∂yj
(y)

∂Φj
s

∂xt
(Ψs(y))

 dy
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and Ls is uniformly elliptic since(
(αjks (y))dj,k=1ξ, ξ

)
Cd =

d∑
j,k=1

(
∇Φj

s(Ψs(y)),∇Φk
s(Ψs(y))

)
Cd ξkξj

=
d∑

j,k=1

(
ξk∇Φk

s(Ψs(y)), ξj∇Φj
s(Ψs(y))

)
Cd

=

∥∥∥∥ d∑
k=1

ξk∇Φk
s(Ψs(y))

∥∥∥∥2

Cd

=

∥∥∥∥∥∥∥
(
∇Φ1

s(Ψs(y)), . . . ,∇Φd
s(Ψs(y))

)ξ1
...
ξd


∥∥∥∥∥∥∥

2

Cd

=
∥∥(DΦs(Ψs(y))

)>
ξ
∥∥2

Cd

≥ E‖ξ‖2
Cd ,

(2.19)

where we have used in the last estimate that DΦs(Ψs(y)) is an invertible matrix.
Now let τ ∈ D(B(0, 1)) such that 0 ≤ τ(y) ≤ 1 and τ = 1 on B(0, ϑ) and τ = 0
in B(0, 1) \B(0, 2ϑ). Since u ∈ H1

0 (Ω) it follows that us(y1, . . . , yd−1, 0) = 0 and

ϕ = D−hi τ 2D+h
i us ∈ H1

0 (B+(0, 3ϑ)) for i = 1, . . . , d− 1.

As in the proof of Theorem 2.12 it follows that∥∥∥∥D+h
i

∂

∂yk
us

∥∥∥∥
L2(B+(0,ϑ))

≤ Ks, k = 1, . . . , d, i = 1, . . . , d− 1, (2.20)

and therefore
∂2

∂yi∂yk
us ∈ L2(B+(0, ϑ)), k = 1, . . . , d, i = 1, . . . , d− 1, (2.21)

and since (DΨs) · (DΦs) = I we have
∑d

k=1
∂Ψl

s

∂yk
(y)

∂Φk
s

∂xm
(Ψs(y)) = δlm. Therefore

(
Lsus, ωs

)
L2(B+(0,3ϑ))

=

∫ d∑
t=1

∂u

∂xt
(Ψs(y))

∂ω

∂xt
(Ψs(y)) dy

=
(
∇u(Ψs(·)),∇ω(Ψs(·)

)
L2(B+(0,3ϑ))

=
(
f(Ψs(·)), ω(Ψs(·)

)
L2(B+(0,3ϑ))

= (fs, ωs)L2(B+(0,3ϑ)).
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and when viewing ∂2

∂yi∂yk
us as a distribution we have ∂2

∂yi∂yk
us = ∂2

∂yk∂yi
us and hence

∂2

∂yk∂yi
us ∈ L2(B+(0, ϑ)), k = 1, . . . , d, i = 1, . . . , d− 1. (2.22)

Since Lsus = fs we also have

− ∂

∂yd
αdds (y)

∂

∂yd
us(y) = fs(y) +

d∑
j,k=1

(j,k)6=(d,d)

∂

∂yj
αjks (y)

∂

∂yk
us(y)

and since αdds (y) = ((αjks (y))dj,k=1ed, ed
)
Cd ≥ E‖ed‖2

Cd = E > 0 by (2.19) we obtain

∂2us
∂y2

d

(y) =
−1

αdds (y)

fs(y) +
d∑

j,k=1
(j,k) 6=(d,d)

∂

∂yj
αjks (y)

∂

∂yk
us(y) +

(
∂αdds
∂yd

(y)

)
∂

∂yd
us(y)

 .
Now it follows from (2.21) and (2.22) that the right hand side belongs to L2(B+(0, ϑ)),
so that

∂2us
∂y2

d

∈ L2(B+(0, ϑ)). (2.23)

Since Φs is a C2-mapping it follows from (2.21), (2.22), and (2.23) that

∂i∂ku ∈ L2(Ψs(B+(0, ϑ))), i, k = 1, . . . d.

Since this is true for all s = 1, . . . , j it follows together with (2.17) and (2.18) that
u ∈ H2(Ω).

For completeness we state (but do not proof) one more result on the global
regularity of solutions up to the boundary. Recall that Ω is called convex if
x, y ∈ Ω implies tx+ (1− t)y ∈ Ω for all t ∈ (0, 1).

Theorem 2.14. Let Ω ⊂ Rd be a bounded, convex open set and let u ∈ H1
0 (Ω)

and f ∈ L2(Ω) with −∆u = f . Then u ∈ H2(Ω).

Remark 2.15. The techniques of this (and the following) chapter apply not only
to the Poisson equation but to more general elliptic differential expressions. Recall
that a differential equation of the form

Lu := −
d∑

i,j=1

∂

∂xi

(
aij

∂u

∂xj

)
+

d∑
j=1

bj
∂u

∂xj
+ cu = f
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2 The Poisson equation with Dirichlet boundary conditions

with bounded, measurable coefficient functions aij, bj, c is called uniformly elliptic
if there exists a constant E > 0 such that

d∑
i,j=1

aij(x)ξiξj ≥ E|ξ|2 ∀x ∈ Ω, ξ ∈ Rd

holds.
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Chapter 3

Neumann and Robin boundary
conditions

In order to treat more general boundary conditions it is necessary to impose a
regularity assumption on the boundary of Ω.

3.1 Lipschitz domains

Recall that a function g : Rm → R is Lipschitz continuous if there exists L > 0
with

|g(x)− g(y)| ≤ L|x− y|, x, y ∈ Rm.

In this case, L is called a Lipschitz constant for g. Lipschitz continuous functions
admit derivatives in L∞ as the following theorem due to Rademacher (see, e.g.
REFERENCE) shows.

Theorem 3.1. Let g : Rm → R be Lipschitz continuous with Lipschitz constant
L > 0. Then g is differentiable almost everywhere and∣∣∣ ∂g

∂xj
(x)
∣∣∣ ≤ L, j = 1, . . . ,m,

holds for almost all x ∈ Rm.

Definition 3.2. Let Ω ⊂ Rd, d ≥ 2, be open and nonempty.
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3.1 Lipschitz domains 3 Neumann and Robin boundary conditions

(i) Ω is called Lipschitz hypograph if there exists a Lipschitz continuous function
g : Rd−1 → R such that

Ω =
{

(x1, . . . , xd)
> ∈ Rd : xd < g(x1, . . . , xd−1)

}
.

(ii) Ω is called Lipschitz domain if the boundary ∂Ω is compact and for each x ∈
∂Ω there exists an open neighborhood Ux ⊂ Rd of x, a Lipschitz hypograph
Ωx, and a rotation Rx (an orthogonal matrix with determinant one) such
that Ux ∩ Ω = Ux ∩Rx(Ωx).

Remark 3.3. (i) Due to compactness the boundary of a Lipschitz domain can
be described by the graphs of finitely many Lipschitz continuous functions.

(ii) A Ck-domain is defined analogously with Lipschitz continuous functions
replaced by Ck-functions, k ∈ N.

Example 3.4. (i) Each circle or ball is a Lipschitz (in fact C∞) boundary.
(ii) Each cube is a Lipschitz domain but not a Ck-domain for any k ≥ 1.

(More details in the exercises.)

Proposition 3.5 (Partition of unity). Let K ⊂ Rd be compact and let U1, . . . , Um
be open sets with K ⊂

⋃m
j=1 Uj. Then there exist η1, . . . , ηm ∈ D(Rd) such that

(a) 0 ≤ ηj ≤ 1, j = 1, . . . ,m,

(b) supp ηj ⊂ Uj, j = 1, . . . ,m,

(c)
∑m

j=1 ηj(x) = 1 for each x ∈ K.

The collection of the functions η1, . . . , ηm is called a partition of unity on K
associated with U1, . . . , Um.

Proof. Each x ∈ K belongs to some Uj and in particular for each x ∈ K there
exists r > 0 with B(x, r) ⊂ Uj. As K is compact, finitely many such balls cover
K; we call these balls B1, . . . , Bk. For j = 1, . . . ,m define Kj :=

⋃
Bl⊂Uj Bl. Then

each Kj is compact and Kj ⊂ Uj, j = 1, . . . ,m. Moreover, K ⊂
⋃m
j=1 Kj. By

Lemma 1.7 for j = 1, . . . ,m there exists ψj ∈ D(Rd) such that 0 ≤ ψj ≤ 1,
suppψj ⊂ Uj and ψj(x) = 1 for all x ∈ Kj. Define

η1 := ψ1,

η2 := (1− ψ1)ψ2,
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3 Neumann and Robin boundary conditions 3.1 Lipschitz domains

η3 := (1− ψ1)(1− ψ2)ψ3,

...
ηm := (1− ψ1) · · · (1− ψm−1)ψm.

Then supp ηj ⊂ suppψj ⊂ Uj for j = 1, . . . ,m. Moreover, by induction
∑n

j=1 ηj +
(1− ψ1) · · · (1− ψn) = 1 for all n ∈ {1, . . . ,m}. In particular,

m∑
j=1

ηj + (1− ψ1) · · · (1− ψm) = 1

and thus 0 ≤
∑m

j=1 ηj ≤ 1. Finally, each x ∈ K belongs to one of the Kj and
hence ψj(x) = 1 or, equivalently, 1−ψj(x) = 0, which implies

∑m
j=1 ηj(x) = 1.

Let Ω be a Lipschitz domain and let x1, . . . , xm ∈ ∂Ω such that the sets
Uj := Uxj , j = 1, . . . ,m, in Definition 3.2 form an open cover of ∂Ω. Moreover, let
g1, . . . , gm be corresponding Lipschitz functions and Rj the corresponding rota-
tions as in Definition 3.2 and let η1, . . . , ηm be a partition of unity on ∂Ω associated
with U1, . . . , Um. For any bounded, measurable function f : ∂Ω→ C we define∫

∂Ω

fdσ :=
m∑
j=1

∫
Rd−1

ηj
(
Rj(x

′, gj(x
′))
)
f
(
Rj(x

′, gj(x
′))
)√

1 + |∇gj(x′)|2dx′.

Due to the Rademacher theorem this integral is finite. By plugging in f = 1B for
any Borel set B ⊂ ∂Ω this defines a surface measure σ on ∂Ω by

σ(B) :=

∫
∂Ω

1Bdσ.

In particular this gives rise to the Hilbert space L2(∂Ω) (with respect to the
measure σ) and its corresponding inner product (·, ·)L2(∂Ω). By Rademacher’s
theorem the outer unit normal vector

ν(x) :=
(∇gj(x′),−1)>√
|∇gj(x′)|2 + 1

exists for almost all x = (x′, gj(x
′))> ∈ ∂Ω, where j is chosen such that x ∈ Uj. It

is orthogonal to the tangential space at x, which is spanned by (e1,
∂gj
∂x1

(x′))>, . . . ,

(ed−1,
∂gj
∂xd−1

(x′))>, where e1, . . . , ed−1 are the unit vectors in Rd−1. Moreover,
|ν(x)| = 1 for almost all x ∈ ∂Ω.

As in the Analysis lecture one proves the divergence theorem (“Satz von
Gauß”).
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3.1 Lipschitz domains 3 Neumann and Robin boundary conditions

Theorem 3.6 (Divergence theorem). Let Ω be a bounded Lipschitz domain. Then∫
Ω

div u(x) dx =

∫
∂Ω

u · ν dσ

holds for all u ∈ C1(Ω,Cd).

As a corollary one obtains Green’s identities. (See exercises.) Here we write
∂u
∂ν

:= ∇u · ν for the normal derivative of some u ∈ C2(Ω) on ∂Ω.

Corollary 3.7 (Green’s identities). For any u ∈ C2(Ω)

(i)
∫

Ω
(∆u)(x)v(x) dx+

∫
Ω
∇u(x) · ∇v(x) dx =

∫
∂Ω

∂u
∂ν
v dσ for all v ∈ C1(Ω);

(ii)
∫

Ω
((∆u)(x)v(x)− u(x)(∆v)(x)) dx =

∫
∂Ω

(∂u
∂ν
v − u∂v

∂ν
) dσ for all v ∈ C2(Ω).

In the following our aim is to extend Green’s identities (and thus the boundary
evaluation of u and the normal derivative ∂u

∂ν
) to u ∈ H1(Ω). This requires some

preparation.

Theorem 3.8 (Extension property). Let Ω be a bounded Lipschitz domain. Then
for each u ∈ H1(Ω) there exists w ∈ H1(Rd) with w|Ω = u.

Sketch of proof. Let u ∈ H1(Ω). Let g be a Lipschitz function whose graph de-
scribes locally the boundary of Ω within an open ball U . Then u(x′, g(x′) + s) is
well-defined for appropriate x′ ∈ Rd−1 and s < 0. For appropriate x′ and |s| small
define

w(x′, g(x′) + s) :=

{
u(x′, g(x′) + s), s < 0,

u(x′, g(x′)− s), s ≥ 0.

Using the definition of a Lipschitz domain and a corresponding partition of unity
construct w on some smooth domain Ω̃ with Ω b Ω̃. Then one can show w ∈
H1(Ω̃). A further extension leads to a function in H1(Rd).

Corollary 3.9. Let Ω be a bounded Lipschitz domain. Then{
ϕ|Ω : ϕ ∈ D(Rd)

}
is dense in H1(Ω).
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3 Neumann and Robin boundary conditions 3.1 Lipschitz domains

Proof. Let E be the extension operator in Theorem 3.10 for Ω̃ = Rd and let
u ∈ H1(Ω). Then Eu ∈ H1

0 (Rd) and by Theorem 1.36 there exists a sequence
(ϕn)n ⊂ D(Rd) such that ϕn → Eu in H1(Rd). Since the restriction operator
v 7→ v|Ω from H1(Rd) to H1(Ω) is bounded the assertion follows.

Theorem 3.10 (Extension operator). Let Ω ⊂ Rd be a bounded Lipschitz domain
and let Ω̃ ⊂ Rd be open such that Ω b Ω̃. Then there exists a bounded linear
operator E : H1(Ω)→ H1

0 (Ω̃) with (Eu)|Ω = u for all u ∈ H1(Ω).

Proof. Let T : H1(Rd)→ H1(Ω) be the restriction operator, i.e., Tu = u|Ω for all
u ∈ H1(Rd). Then T is linear and bounded and by Theorem 3.8 T is surjective.
Thus T |(kerT )⊥ is bounded and bijective and, hence, has a bounded inverse S :
H1(Ω) → (kerT )⊥ ⊂ H1(Rd). For any u ∈ H1(Ω) one has (Su)|Ω = TSu = u.
Let now Ω̃ be as in the theorem. By Lemma 1.7 there exists η ∈ D(Rd) such that
supp η ⊂ Ω̃ and η(x) = 1 for all x ∈ Ω. With Eu := (ηSu)|Ω̃ we get the required
extension operator.

Theorem 3.11. Let Ω be a bounded Lipschitz domain. Then the embedding of
H1(Ω) into L2(Ω) is compact.

Proof. Let Ω̃ be a bounded, open set with Ω b Ω̃. By Theorem 1.45 the embed-
ding ι of H1

0 (Ω̃) into L2(Ω̃) is compact. Let E : H1(Ω) → H1
0 (Ω̃) be a bounded

extension operator as in Theorem 3.10 and let R : L2(Ω̃)→ L2(Ω) be the restric-
tion operator, which is bounded. Then the embedding of H1(Ω) into L2(Ω) equals
RιE and, hence, is compact.

Note that the embedding of H1(Ω) into L2(Ω) may be noncompact for general,
non-Lipschitz domains; see exercises.

In the next theorem the Dirichlet trace operator τD is introduced.

Theorem 3.12 (Trace theorem). Let Ω be a bounded Lipschitz domain. Then
there exists a unique bounded linear operator τD : H1(Ω) → L2(∂Ω) such that
τDu = u|∂Ω holds for all u ∈ C(Ω) ∩H1(Ω).

Proof. We show that there exists C > 0 such that

‖u|∂Ω‖L2(∂Ω) ≤ C‖u‖H1(Ω) (3.1)

holds for all u ∈ C1(Ω). Let first u ∈ C1(Ω) with suppu ⊂ Uj for one j and
assume that Rj = I. Without loss of generality assume that u is real-valued;
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3.1 Lipschitz domains 3 Neumann and Robin boundary conditions

for the general case do the following estimate for the real and imaginary parts
separately. Then with cj := sup

√
1 + |∇gj(x′)|2 for each sufficiently large h > 0

we have∫
Rd−1

∣∣u(x′, gj(x
′))
∣∣2√1 + |∇gj(x′)|2dx′

≤ cj

∫
Rd−1

∣∣u(x′, gj(x
′))
∣∣2dx′

= −cj
∫
Rd−1

∫ h

0

d

ds

[
u
(
x′, gj(x

′)− s
)2
]
dsdx′

= −cj
∫
Rd−1

∫ h

0

2u
(
x′, gj(x

′)− s
) d
ds
u
(
x′, gj(x

′)− s
)
dsdx′

≤ cj

∫
Rd−1

∫ h

0

u
(
x′, gj(x

′)− s
)2

+
(
(∇u)(x′, gj(x

′)− s) · (−ed)
)2
dsdx′

≤ cj

∫
Ω

(u(x))2 + ((∇u)(x))2dx = cj‖u‖2
H1(Ω),

where we have used −2αβ ≤ α2 + β2 for real α, β. From this for arbitrary
u ∈ C1(Ω) it follows

‖u|∂Ω‖2
L2(∂Ω) =

m∑
j=1

∫
Rd−1

(
√
ηju)2

(
Rj(x

′, gj(x
′))
)√

1 + |∇gj(x′)|2dx′

≤
m∑
j=1

cj‖
√
ηju‖2

H1(Ω) ≤
m∑
j=1

c̃j‖u‖2
H1(Ω)

for certain constants c̃j, where we have used that √ηj and its derivatives of first
order are bounded. With C = (

∑m
j=1 c̃j)

1/2 this leads to (3.1). Thus the linear
mapping C1(Ω) 3 u 7→ u|∂Ω is bounded fromH1(Ω) to L2(∂Ω). By Proposition 3.9
C1(Ω) is dense in H1(Ω) and hence there exists a unique bounded, linear operator
τD : H1(Ω) → L2(∂Ω) such that τDu = u|∂Ω holds for all u ∈ C1(Ω). For
u ∈ C(Ω) ∩H1(Ω) the latter property follows via approximation (exercise).

Theorem 3.13. Let Ω be a bounded Lipschitz domain with trace operator τD.
Then

ker τD = H1
0 (Ω).
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3 Neumann and Robin boundary conditions 3.2 Neumann boundary conditions

Proof. For u ∈ H1
0 (Ω) by definition there exist un ∈ D(Ω) such that un → u in

H1(Ω). As un ∈ C(Ω) ∩H1(Ω) it follows

τDu = lim
n→∞

τDun = lim
n→∞

(un|∂Ω) = 0.

The inclusion ker τD ⊂ H1
0 (Ω) is more difficult. . .

3.2 Neumann boundary conditions
The following definition is motivated by the first Green identity.

Definition 3.14. Let Ω be a bounded Lipschitz domain with trace operator τD.
Moreover, let u ∈ H1(Ω) such that ∆u ∈ L2(Ω), where ∆u is formed in the
distributional sense first. If there exists b ∈ L2(∂Ω) such that∫

Ω

∆u(x)v(x) dx+

∫
Ω

∇u(x) · ∇v(x) dx =

∫
∂Ω

b(τDv)dσ

holds for all v ∈ H1(Ω) then we call b normal derivative of u. We shall often use
the notation τNu = ∂u

∂ν
:= b.

Remark 3.15. (i) The normal derivative is unique; this follows from the fact
that the traces τDv for v ∈ H1(Ω) form a dense subspace of L2(∂Ω) (here without
proof).

(ii) For u ∈ C2(Ω) it follows from Corollary 3.7 (i) that b coincides with the
(classical) normal derivative. Therefore we write ∂u

∂ν
or τNu instead of b for any

u ∈ H1(Ω) such that ∆u ∈ L2(Ω).
(iii) Definition 3.14 implies the validity of Green’s first identity for u, v ∈

H1(Ω) with ∆u ∈ L2(Ω). In a similar manner one also obtains Green’s second
identity, that is,∫

Ω

∆u(x)v(x) dx−
∫

Ω

u(x)∆v(x) dx =

∫
∂Ω

(τNu)(τDv)dσ −
∫
∂Ω

(τDu)(τNv)dσ

This section is devoted to the Neumann boundary value problem for the Pois-
son equation: for fixed λ ≤ 0 and f ∈ L2(Ω) we are interested in solutions
u ∈ H1(Ω) of the problem

−∆u− λu = f in Ω,

∂u

∂ν
= 0 on ∂Ω.

(3.2)
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3.2 Neumann boundary conditions 3 Neumann and Robin boundary conditions

Note that the first condition implies ∆u ∈ L2(Ω) so that ∂u
∂ν

is understood in the
sense of Definition 3.14.

Lemma 3.16. A function u ∈ H1(Ω) is a (distributional) solution of (3.2) if and
only if∫

Ω

∇u(x) · ∇v(x) dx− λ
∫

Ω

u(x)v(x) dx =

∫
Ω

f(x)v(x) dx, v ∈ H1(Ω). (3.3)

Proof. Let first u ∈ H1(Ω) be a solution of (3.2). Then for any v ∈ H1(Ω) we
have∫

Ω

f(x)v(x) dx = −
∫

Ω

∆u(x)v(x) dx− λ
∫

Ω

u(x)v(x) dx

=

∫
Ω

∇u(x) · ∇v(x) dx−
∫
∂Ω

∂u

∂ν︸︷︷︸
=0

(τDv)dσ − λ
∫

Ω

u(x)v(x) dx,

where we have used Definition 3.14. If, conversely, u satisfies (3.3) then for any
ϕ ∈ D(Ω) we have

(−∆Tu)ϕ =
d∑
j=1

(∂Tu
∂xj

)( ∂ϕ
∂xj

)
=

∫
Ω

∇u(x) · ∇ϕ(x) dx

=

∫
Ω

(f(x) + λu(x))ϕ(x) dx = T(f+λu)ϕ

distributionally, which implies −∆u = f + λu ∈ L2(Ω). Moreover, for any v ∈
H1(Ω) it follows from (3.3) that

0 =

∫
Ω

∇u(x) · ∇v(x) dx−
∫

Ω

(f(x) + λu(x))v(x) dx

=

∫
Ω

∇u(x) · ∇v(x) dx+

∫
Ω

∆u(x)v(x) dx

=

∫
∂Ω

∂u

∂ν
(τDv)dσ

holds with ∂u
∂ν

= 0. Hence u is a solution of (3.2).

Remark 3.17. Sometimes the Neumann problem (3.2) is considered on very
irregular (non-Lipschitz) domains. Then the problem is directly interpreted in
the sense of Lemma 3.16, which requires no assumptions on Ω.
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3 Neumann and Robin boundary conditions 3.2 Neumann boundary conditions

Theorem 3.18. Let Ω ⊂ Rd be a bounded Lipschitz domain, let λ < 0 and
f ∈ L2(Ω). Then (3.2) has a unique solution u ∈ H1(Ω).

Proof. The mapping F : H1(Ω) → C, F (v) :=
∫

Ω
f(x)v(x) dx is a bounded,

antilinear functional. As in the proof of Theorem 2.2 one shows that the mapping
a : H1(Ω)×H1(Ω)→ C,

a[u, v] :=

∫
Ω

∇u(x) · ∇v(x) dx− λ
∫

Ω

u(x)v(x) dx, u, v ∈ H1(Ω),

is a symmetric sesquilinear form which is bounded and coercive. By the Lax–
Milgram theorem there exists a unique u ∈ H1(Ω) such that

a[u, v] = F (v), v ∈ H1(Ω),

and Lemma 3.16 leads to the assertion.

Remark 3.19. For λ = 0 uniqueness of a solution of (3.2) cannot be guaranteed.
In fact, each constant function u satisfies −∆u = 0 and ∂u

∂ν
= 0. Thus constants

can be added to any solution. Therefore an additional condition is required in
order to obtain uniqueness. Moreover, if u is a solution of (3.2) then plugging the
constant function v = 1 into (3.3) for λ = 0 yields

∫
Ω
f(x)dx = 0. Therefore a

solution can only exist if the integral of f vanishes.

In the proof of Theorem 3.21 we shall use the following result; its proof is
postponed after the proof of Theorem 3.21.

Theorem 3.20 (Second Poincaré inequality). Let Ω be a bounded, connected,
nonempty Lipschitz domain. Then there exists a constant c > 0 such that

‖u‖L2(Ω) ≤ c‖∇u‖L2(Ω;Cd)

holds for all u ∈ H1(Ω) with the property
∫

Ω
u(x)dx = 0. In particular, on the

closed subspace

H1
m(Ω) :=

{
u ∈ H1(Ω) :

∫
Ω

u(x)dx = 0

}
of H1(Ω) the norm

|u|H1(Ω) := ‖∇u‖L2(Ω;Cd), u ∈ H1
m(Ω),

is equivalent to the norm ‖ · ‖H1(Ω) on H1
m(Ω).
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3.2 Neumann boundary conditions 3 Neumann and Robin boundary conditions

Theorem 3.21. Let Ω be a bounded, nonempty, connected Lipschitz domain and
f ∈ L2(Ω) with

∫
Ω
f(x)dx = 0. Then (3.2) with λ = 0 has a unique solution

u ∈ H1(Ω) such that
∫

Ω
u(x)dx = 0.

Proof. Consider the Hilbert space

H1
m(Ω) =

{
u ∈ H1(Ω) :

∫
Ω

u(x)dx = 0

}
,

equipped with the norm

|u|H1(Ω) = ‖∇u‖L2(Ω;Cd), u ∈ H1
m(Ω)

cf. Theorem 3.20. Next we define the antilinear functional F : H1
m(Ω) → C,

F (v) :=
∫

Ω
f(x)v(x)dx. Then F is bounded since

|F (v)| ≤ ‖f‖L2(Ω)‖v‖L2(Ω) ≤ c‖f‖L2(Ω)|v|H1(Ω), v ∈ H1
m(Ω),

where c is the constant from the second Poincaré inequality Theorem 3.20. By
the Fréchet–Riesz theorem there exists a unique u ∈ H1

m(Ω) such that∫
Ω

∇u(x) · ∇v(x) dx = F (v) =

∫
Ω

f(x)v(x) dx, v ∈ H1
m(Ω). (3.4)

Let now v ∈ H1(Ω) be arbitrary and let w = |Ω|−1/2 identically. Then

v = v − (v, w)L2(Ω)w + (v, w)L2(Ω)w

and since v − (v, w)L2(Ω)w ∈ H1
m(Ω), (3.4) yields∫

Ω

f(x)v(x) dx =

∫
Ω

f(x)
(
v(x)− (v, w)L2(Ω)w(x)

)
dx+ (v, w)L2(Ω) (f, w)L2(Ω)︸ ︷︷ ︸

=0

=

∫
Ω

∇u(x) · ∇
(
v − (v, w)L2(Ω)w

)
(x) dx

=

∫
Ω

∇u(x) · ∇v(x) dx.

Hence by Lemma 3.16 u is a solution of (3.2) with λ = 0. The uniqueness of the
solution follows from the uniqueness of u with the property (3.4).

It remains to prove Theorem 3.20.
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3 Neumann and Robin boundary conditions 3.3 Robin boundary conditions

Proof of Theorem 3.20. Assume the converse. Then there exists a sequence (un)n ⊂
H1(Ω) such that

∫
Ω
un(x)dx = 0 and ‖un‖L2(Ω) = 1 for all n ∈ N, but ‖∇un‖L2(Ω;Cd) →

0 as n→∞. As the embedding of H1(Ω) into L2(Ω) is compact by Theorem 3.11,
there exists a subsequence (without loss of generality again (un)n) which converges
in L2(Ω) to some u ∈ L2(Ω); in particular ‖u‖L2(Ω) = 1. Then for any ϕ ∈ D(Ω)
and j = 1, . . . , d∫

Ω

u(x)
∂ϕ

∂xj
(x) dx = lim

n→∞

∫
Ω

un(x)
∂ϕ

∂xj
(x) dx = − lim

n→∞

∫
Ω

∂un
∂xj

(x)ϕ(x) dx = 0

since ∂un
∂xj
→ 0 in L2(Ω) as n→∞. Hence u ∈ H1(Ω) and ∂u

∂xj
= 0 for j = 1, . . . , d.

Thus by Lemma 1.26 there exists C ∈ C such that u(x) = C for almost all x ∈ Ω
since Ω is connected. Moreover,

|Ω|C =

∫
Ω

u(x)dx = lim
n→∞

∫
Ω

un(x)dx = 0

(for the convergence interpret the integrals as L2-inner products with the constant
function 1), which implies C = 0 and contradicts ‖u‖L2(Ω) = 1.

3.3 Robin boundary conditions
For f ∈ L2(Ω) and measurable, λ ≤ 0, and bounded ϑ : ∂Ω→ [0,∞) we consider
the Robin boundary value problem

−∆u− λu = f in Ω,

τNu+ ϑτDu = 0 on ∂Ω,
(3.5)

where τD denotes the Dirichlet trace operator on the bounded Lipschitz domain
Ω from Theorem 3.12 and τNu is the normal derivative from Definition 3.14.

Lemma 3.22. A function u ∈ H1(Ω) is a (distributional) solution of (3.5) if and
only if∫

Ω

∇u(x) · ∇v(x) dx− λ
∫

Ω

u(x)v(x) dx+

∫
∂Ω

ϑ(τDu)(τDv) dσ =

∫
Ω

f(x)v(x) dx

holds for all v ∈ H1(Ω).

Proof. Exercise.
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3.3 Robin boundary conditions 3 Neumann and Robin boundary conditions

Theorem 3.23. Let Ω be a bounded, connected, nonempty Lipschitz domain and
let ϑ : ∂Ω → [0,∞) be measurable and bounded. In the case λ = 0 assume in
addition that ϑ is positive on a set of positive measure. Then for each f ∈ L2(Ω)
the problem (3.5) has a unique solution u ∈ H1(Ω).

Proof. Define the sesquilinear form a : H1(Ω)×H1(Ω)→ C,

a[u, v] :=

∫
Ω

∇u(x) · ∇v(x) dx− λ
∫

Ω

u(x)v(x) dx+

∫
∂Ω

ϑ(τDu)(τDv)

for u, v ∈ H1(Ω). Then a is a symmetric sesquilinear form and it follows from
the continuity of the trace operator τD that a is bounded. In the case λ < 0
it is clear that a is coercive since ϑ ≥ 0 (see the proof of Theorem 2.2). We
show that a is coercive in the case λ = 0. Assume the converse. Then there exists
(un)n ⊂ H1(Ω) with ‖un‖H1(Ω) = 1 for all n ∈ N such that limn→∞ a[un] = 0. Since
(un)n is bounded we can assume without loss of generality that (un)n converges
weakly in H1(Ω) to some u ∈ H1(Ω). Since the embedding of H1(Ω) into L2(Ω)
is compact by Theorem 3.11, it follows un → u in L2(Ω) as n → ∞; moreover,
the condition a[un]→ 0 implies ‖∇un‖L2(Ω;Cd) → 0 since ϑ ≥ 0. In particular,

‖u‖2
L2(Ω) = lim

n→∞
‖un‖2

L2(Ω) + lim
n→∞

‖∇un‖2
L2(Ω;Cd) = lim

n→∞
‖un‖2

H1(Ω) = 1. (3.6)

Furthermore, for any ϕ ∈ D(Ω)∫
Ω

u(x)
∂ϕ

∂xj
(x) dx = lim

n→∞

∫
Ω

un(x)
∂ϕ

∂xj
(x) dx = − lim

n→∞

∫
Ω

∂un
∂xj

(x)ϕ(x) dx = 0

for j = 1, . . . , d, and it follows ∂u
∂xj

= 0 for j = 1, . . . , d. By Lemma 1.26 there
exists c ∈ C with u(x) = c for almost all x ∈ Ω. As un → u in L2(Ω) and
∂un
∂xj
→ 0 in L2(Ω) for j = 1, . . . , d we conclude un → u in H1(Ω). In particular,

τDun → τDu = c in L2(∂Ω). Thus

|c|2
∫
∂Ω

ϑdσ = lim
n→∞

∫
∂Ω

ϑ|τDun|2dσ = lim
n→∞

a[un] = 0

and since ϑ is positive on a set of positive measure we obtain u(x) = c = 0 for
almost all x ∈ Ω, which contradicts (3.6). This shows coercivity. Applying the
Lax–Milgram theorem (as, e.g., in the proof of Theorem 3.18) and Lemma 3.22
the assertion follows.
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Chapter 4

Laplace operators on bounded
domains

4.1 Symmetric and selfadjoint operators
Let H be a Hilbert space and let S be a linear operator in H defined on the linear
subspace domS ⊂ H. The linear operators that will be considered in this chapter
are typically unbounded in H and are not defined on the whole space H. If the
domain domS of S is dense in H then the adjoint operator S∗ is defined as follows:

S∗g = g′,

domS∗ =
{
g ∈ H : exists g′ ∈ H such that (Sf, g) = (f, g′), f ∈ domS

}
.

Observe first that S∗ is well defined since domS is dense by assumption, that is,
the element g′ ∈ H is unique. It is also easy to check that S∗ is a closed operator
and that the identities

kerS∗ = (ranS)⊥ and ker(S∗ − λ) =
(
ran (S − λ)

)⊥
, λ ∈ C, (4.1)

hold. It is left as an exercise to check that S is closable if and only if domS∗ is
dense inH in which case S∗∗ = S. Furthermore, if S is closable one has S∗ = (S)∗,
and if S ⊂ T then T ∗ ⊂ S∗. Another useful observation is the property

(S−1)∗ = (S∗)−1

whenever the operator S is densely defined and invertible (that is, kerS = {0})
and domS−1 = ranS is dense in H; note that ranS is dense if and only if

57



4.1 Symmetric and selfadjoint operators 4 Laplace operators

kerS∗ = {0} by (4.1), i.e. S∗ is invertible. Furthermore, in the special case
that S is bounded and defined on the space H (we shall use L(H) to denote this
class of operators) the definition of S∗ above reduces to the standard definition
(Sf, g) = (f, S∗g), f, g ∈ H, in the bounded case; clearly one has S∗ ∈ L(H).

In the next definition we consider operators S that are contained in (or even
equal to) their adjoints S∗.

Definition 4.1. Let S be a densely defined operator in H. Then S is said to be

(i) symmetric if S ⊂ S∗ (i.e. domS ⊂ domS∗ and Sf = S∗f for f ∈ domS);

(ii) self-adjoint if S = S∗;

(iii) essentially self-adjoint if S = S∗.

It follows from the definition that a densely defined operator S is symmetric
if and only if one has

(Sf, g) = (f, Sg), f, g ∈ domS.

One can even show the stronger statement that S is symmetric if and only if
(Sf, f) ∈ R for all f ∈ domS. One also verifies that S is symmetric if and only if
S is symmetric. Note in this context that a symmetric operator is always closable
and that its closure satisfies S ⊂ S∗. Finally, observe that for S ∈ L(H) the
concepts of symmetry and self-adjointness coincide.

Lemma 4.2. Let S be a densely defined symmetric operator in H. Then for all
λ ∈ C \ R one has ker(S − λ) = {0} and for all g ∈ ran (S − λ) the estimate

‖(S − λ)−1g‖ ≤ 1

| Imλ|
‖g‖ (4.2)

is valid. In particular, if S is closed then ran (S − λ) is closed for all λ ∈ C \ R.

Proof. For λ ∈ C \ R and f ∈ domS one has

0 ≤ | Imλ|(f, f) = | Im((S − λ)f, f)| ≤ ‖(S − λ)f‖‖f‖

and hence for f 6= 0 it follows that | Imλ|‖f‖ ≤ ‖(S − λ)f‖. This implies (4.2).
In order to see that ran (S − λ) is closed consider a sequence gn = (S − λ)fn that
converges to g ∈ H. By (4.2) one has

‖fn‖ ≤
1

| Imλ|
‖(S − λ)fn‖
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4 Laplace operators 4.1 Symmetric and selfadjoint operators

and thus (fn) is a Cauchy sequence in H which converges to some f ∈ H. As S−λ
is closed we conclude f ∈ domS and (S − λ)f = g. This shows that ran (S − λ)
is closed for all λ ∈ C \ R.

Next we recall the notion of spectrum and resolvent set of a closed linear
operator and the subdivision of the spectral points in eigenvalues, continuous
spectrum, and residual spectrum.

Definition 4.3. Let T be a closed linear operator in a Hilbert (or Banach space)
H and let λ ∈ C. Then we say that

(i) λ ∈ ρ(T ) if (T − λ)−1 ∈ L(H) (resolvent set);

(ii) λ ∈ σ(T ) if λ ∈ C \ ρ(T ) (spectrum);

(iii) λ ∈ σp(T ) if ker(T − λ) 6= {0} (eigenvalue);

(iv) λ ∈ σc(T ) if ker(T−λ) = {0}, ran (T−λ) 6= H dense (continuous spectrum);

(v) λ ∈ σr(T ) if ker(T − λ) = {0}, ran (T − λ) not dense (residual spectrum).

It is clear that for a closed operator T one has

C = σ(T ) ∪̇ ρ(T ) and σ(T ) = σp(T ) ∪̇σc(T ) ∪̇σr(T ).

Furthermore, if λ ∈ σc(T ) then (T−λ)−1 is necessarily unbounded (since (T−λ)−1

is closed it would have a closed domain if it would be bounded).
In the context of closed symmetric operators the following observation on the

spectral points follow from Lemma 4.2.

Corollary 4.4. Let S be a densely defined closed symmetric operator in H. Then(
σp(S) ∪ σc(S)

)
⊂ R and C \ R ⊂

(
σr(S) ∪ ρ(S)

)
.

In the next theorem we provide a useful criterion to check that a given sym-
metric operator is self-adjoint. For pratical purposes it is an essential advantage
that the symmetric operator is not assumed to be closed here.

Theorem 4.5. Let S be a densely defined symmetric operator in H and assume
that

ran (S − µ) = H = ran (S − µ) for some µ ∈ C \ R. (4.3)

Then S is self-adjoint in H and ran (S − λ) = H for all λ ∈ C \R. Furthermore,

σ(S) =
(
σp(S) ∪ σc(S)

)
⊂ R and C \ R ⊂ ρ(S). (4.4)
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4.1 Symmetric and selfadjoint operators 4 Laplace operators

Proof. In order to see that S is self-adjoint we have to check that S∗ ⊂ S. For
this consider g ∈ domS∗ and choose f ∈ domS such that

(S∗ − µ)g = (S − µ)f,

which is possible due to (4.3). Since S ⊂ S∗ we conclude that (S∗−µ)(f−g) = 0,
that is,

f − g ∈ ker(S∗ − µ) =
(
ran (S − µ)

)⊥
= {0},

where we have again used (4.3). Hence f = g ∈ domS and from S ⊂ S∗ it is clear
that Sg = S∗g. This shows the inclusion S∗ ⊂ S and therefore S is self-adjoint in
H. In particular, S is a closed operator in H.

Next we check that ran (S − λ) = H for all λ ∈ C \R. Since S − µ is bijective
by Lemma 4.2 and (4.3), and S is closed it follows that (S − µ)−1 ∈ L(H) and
µ ∈ ρ(S). Now assume that λ ∈ C is in the same complex half-plane as µ and
that |µ− λ| < | Imµ|. From

S − λ = (S − µ)
[
I + (µ− λ)(S − µ)−1

]
and |µ− λ|‖(S − µ)−1‖ ≤ |µ− λ|

| Imµ|
< 1

we conclude

(S − λ)−1 =
[
I + (µ− λ)(S − µ)−1

]−1
(S − µ)−1 ∈ L(H),

that is, all λ in the same half-plane as µ such that |µ − λ| ≤ | Imµ| belong
to ρ(S). Now the same argument repeatedly applied to points in the complex
plane with larger imaginary parts finally yields C \ R ⊂ ρ(S) and, in particular,
ran (S − λ) = H for all λ ∈ C \ R.

It remains to show that σr(S) = ∅. From the above it is clear that σr(S) ⊂ R.
Suppose that λ ∈ σr(S) ∩ R. Then one obtains

{0} 6=
(
ran (S − λ)

)⊥
= ker(S∗ − λ) = ker(S − λ), (4.5)

which implies that λ ∈ σp(S); a contradiction.

We remark that the asumption (4.3) can be replaced by the weaker assumption

ran (S − λ+) = H = ran (S − λ−) for some λ± ∈ C±.

In some cases it is also useful to have a variant of the above theorem for real
points. We formulate this next and leave the simple modifications of the proof as
an exercise.
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4 Laplace operators 4.1 Symmetric and selfadjoint operators

Theorem 4.6. Let S be a densely defined symmetric operator in H and assume
that

ran (S − µ) = H for some µ ∈ R. (4.6)
Then S is self-adjoint in H and µ ∈ ρ(S). Furthermore, (4.4) holds.

Later we shall often make use of the following lemma, which is formulated in
a slightly more general context.

Lemma 4.7. Let A and T be operators in H such that A ⊂ T and ρ(A) 6= ∅.
Then the direct sum decomposition

domT = domA +̇ ker(T − λ), λ ∈ ρ(A), (4.7)

is valid.

Proof. Consider g ∈ domT and choose f ∈ domA such that (T −λ)g = (A−λ)f ,
which is possible whenever λ ∈ ρ(A). As A ⊂ T this implies (T − λ)(g − f) = 0
and hence g − f ∈ ker(T − λ). As g = f + (g − f) with f ∈ domA we conclude
(4.7). The fact that the decomposition of domT in (4.7) is direct is a consequence
of the assumption λ ∈ ρ(A).

The aim in the following is on a description of self-adjoint extensions of sym-
metric operators. More precisely, assume that S is a densely defined closed sym-
metric operator in H. The goal is to find self-adjoint extensions A of S in H, that
is, S ⊂ A = A∗ ⊂ S∗. There is a well known necessary and sufficient criterion
on the existence of self-adjoint extensions and the parametrization of these exten-
sions. The next theorem is known as von Neumanns first and second formula; for
a proof we refer to ???

Theorem 4.8. Let S be a densely defined closed symmetric operator in H. Then
the direct sum decomposition (von Neumanns first formula)

domS∗ = domS +̇ ker(S∗ − i) +̇ ker(S∗ + i)

holds. The operator S admits selfadjoint extensions in H if and only if

dim
(
ker(S∗ − i)

)
= dim

(
ker(S∗ + i)

)
. (4.8)

In this case an operator A in H is a selfadjoint extension of S if and only if there
exists a unitary operator U : ker(S∗ − i)→ ker(S∗ + i) such that (von Neumanns
second formula)

Af = SfS + ifi − iUfi,
domA =

{
f = fS + fi + f−i ∈ domS∗ : f−i = Ufi

}
.
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4.2 Quasi boundary triples and Weyl functions 4 Laplace operators

The quantities in (4.8) are typically called defect numbers or deficiency in-
dices of S; roughly speaking these numbers from N ∪ {∞} (all Hilbert spaces are
separable here for simplicity) indicate how many dimensions are missing for the
symmetric operator S to be self-adjoint. Note that

ker(S∗ ∓ i) =
(
ran (S ± i)

)⊥
and that for a self-adjoint operator the latter orthogonal complements are {0}
according to Theorem 4.5.

4.2 Quasi boundary triples and their Weyl func-
tions

Throughout this section we assume that S is a densely defined, closed, symmetric
operator in a Hilbert space H. We start by recalling the notion of quasi boundary
triples.

In the following we denote all appearing inner products by (· , ·); the respective
Hilbert space will be clear from the context.

Definition 4.9. Let T ⊂ S∗ be a linear operator in H such that T = S∗. A triple
{G,Γ0,Γ1} is called a quasi boundary triple for T ⊂ S∗ if G is a Hilbert space and
Γ0,Γ1 : domT → G are linear mappings such that

(i) the abstract Green identity

(Tf, g)− (f, Tg) = (Γ1f,Γ0g)− (Γ0f,Γ1g) (4.9)

holds for all f, g ∈ domT ;

(ii) the map Γ := (Γ0,Γ1)> : domT → G × G has dense range;

(iii) A0 := T � ker Γ0 is a self-adjoint operator in H.

Before we list some properties of quasi boundary triples let us consider two
standard examples first.

Example 4.10. Let Ω be a bounded C2-domain and consider the operators

Sf = −∆f, domS = H2
0 (Ω),

T f = −∆f, domT = H2(Ω).
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4 Laplace operators 4.2 Quasi boundary triples and Weyl functions

Then it can be shown that {L2(∂Ω),Γ0,Γ1}, where

Γ0f = τDf and Γ1f = −τNf,

is a quasi boundary triple for T ⊂ S∗ such that

A0f = −∆f, domA0 = H2(Ω) ∩H1
0 (Ω). (4.10)

In fact, we shall sketch some of the essential arguments for this observation.
First of all it follows from Green’s second identity in Corollary 3.7 using Re-
mark 3.15 (iii) that

(Tf, g)− (f, Tg) = (−∆f, g)− (f,−∆g) = (τDf, τNg)− (τNf, τDg)

holds for all f, g ∈ domT = H2(Ω). The density condition (ii) in Definition 4.9
is well known and will not be proved here. It is also clear that the restriction
A0 = T � ker Γ0 is given by the Dirichlet operator in (4.10). Now observe first
that

(A0f, g)− (f, A0g) = (−∆f, g)− (f,−∆g) = (τNf, τDg)− (τDf, τNg) = 0

for f, g ∈ domA0 as τDf = τDg = 0. Hence A0 is a symmetric operator in L2(Ω)
and it remains to check that A0 is indeed self-adjoint in L2(Ω). Recall that the
Dirichlet problem (2.2) for λ = 0 admits a unique solution in H1

0 (Ω) for any right
hand side f ∈ L2(Ω) by Theorem 2.2 and that in fact this solution is in H2(Ω)
due to Theorem 2.13, that is, the solution belongs to domA0. Hence we can apply
Theorem 4.6 with µ = 0 and conclude that A0 = A∗0. It still remains to show that
T = S∗; which will not be done here. However, we at least remark that

S∗f = −∆f, domS∗ =
{
f ∈ L2(Ω) : −∆f ∈ L2(Ω)

}
,

where −∆f is understood in the sense of distributions.

It is already clear from Example 4.10 that a quasi boundary triple (if it exists
and is nontrivial) is not unique. Namely, one can argue as above to show the
following.

Example 4.11. Let S and T be as in Example 4.10 above. Then the triple
{L2(∂Ω),Γ0,Γ1}, where

Γ0f = τNf and Γ1f = τDf,

is a quasi boundary triple for T ⊂ S∗ such that

A0f = −∆f, domA0 =
{
f ∈ H2(Ω) : τNf = 0

}
. (4.11)
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4.2 Quasi boundary triples and Weyl functions 4 Laplace operators

We note that a quasi boundary triple exists if and only if S admits self-adjoint
extensions in H, that is, the deficiency indices of S are equal; cf. Theorem 4.8.
Moreover, if {G,Γ0,Γ1} is a quasi boundary triple for T ⊂ S∗, then one has T = S∗

if and only if ranΓ = G×G, in which case Γ = (Γ0,Γ1)> : domS∗ → G×G is onto
and continuous with respect to the graph norm of S∗, the abstract Green identity
holds for all f, g ∈ domS∗, and the restriction A0 = S∗ � ker Γ0 is automatically
self-adjoint. In this situation the notion of quasi boundary triples coincides with
the notion of so-called ordinary boundary triples. In particular, this is the case
when the deficiency indices of S are finite (and equal). For later use let us also
introduce the notation A1 := T � ker Γ1. This operator is always symmetric,
which follows from the abstract Green identity.

With each quasi boundary triple {G,Γ0,Γ1} one associates a so-called γ-field
and a Weyl function. Before we recall their definitions, note that for each λ ∈
ρ(A0) one has the direct sum decomposition

domT = domA0 +̇ ker(T − λ) = ker Γ0 +̇ ker(T − λ)

by Lemma 4.7. Thus the restriction of the boundary map Γ0 to ker(T − λ) is
injective, and its range coincides with ranΓ0. The definitions of the γ-field and
the Weyl function are providde next.

Definition 4.12. The γ-field γ and the Weyl function M corresponding to the
quasi boundary triple {G,Γ0,Γ1} are defined by

λ 7→ γ(λ) :=
(
Γ0 � ker(T − λ)

)−1
, λ ∈ ρ(A0),

and
λ 7→M(λ) := Γ1γ(λ), λ ∈ ρ(A0),

respectively.

Observe that γ(λ) is a mapping from ranΓ0 ⊂ G onto ker(T − λ) ⊂ H and
that the values M(λ) of the Weyl function are operators in G mapping ranΓ0

into ranΓ1. Note that ranΓ0 and ranΓ1 are both dense subspaces of G; this is
a consequence of the density of the range of Γ = (Γ0,Γ1)>. Various useful and
important properties of the γ-field and the Weyl function can be found in [3,
Proposition 2.6] or [4, Propositions 6.13 and 6.14]. For later purposes we recall
that the adjoint γ(λ)∗ is a bounded, everywhere defined operator from H to G,
which satisfies

γ(λ)∗ = Γ1(A0 − λ)−1, λ ∈ ρ(A0). (4.12)
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4 Laplace operators 4.2 Quasi boundary triples and Weyl functions

In fact, let ϕ ∈ ranΓ0, h ∈ H and choose k ∈ domA0 such that (A0 − λ)k = h.
The one computes

(γ(λ)ϕ, h) =
(
γ(λ)ϕ, (A0 − λ)k

)
= (γ(λ)ϕ,A0k)− (λγ(λ)ϕ, k)

= (γ(λ)ϕ, Tk)− (Tγ(λ)ϕ, k)

= (Γ0γ(λ)ϕ,Γ1k)− (Γ1γ(λ)ϕ,Γ0k)

=
(
ϕ,Γ1(A0 − λ)−1h

)
;

this implies (4.12) and it also follows that γ(λ)∗ ∈ L(H,G). Hence also γ(λ) ⊂
γ(λ) = γ(λ)∗∗ ∈ L(G,H) for λ ∈ ρ(A0).

The Weyl function can be equivalently defined by

M(λ)Γ0fλ = Γ1fλ, fλ ∈ ker(T − λ), λ ∈ ρ(A0). (4.13)

The values of the Weyl function have the propertyM(λ) ⊂M(λ)∗, λ ∈ ρ(A0), and,
in particular, the operators M(λ) are closable. We point out that the operators
M(λ) and their closures M(λ) are in general not bounded. However, if M(λ0)
is bounded for one λ0 ∈ ρ(A0), then M(λ) is bounded for all λ ∈ ρ(A0); see [5,
Proposition 3.3 (viii)].

Example 4.13. Let us consider the quasi boundary triple {L2(∂Ω),Γ0,Γ1} with
Γ0f = τDf and Γ1f = −τNf from Example 4.10. The selfadjoint operator A0 =
T � ker Γ0 is the Dirichlet realization AD of −∆ in L2(Ω). In this situation one
has ranΓ0 = H3/2(∂Ω) and for λ ∈ ρ(AD)

γ(λ) : L2(∂Ω)→ L2(Ω), dom γ(λ) = H3/2(∂Ω),

maps ϕ ∈ H3/2(∂Ω) onto γ(λ)ϕ = fλ(ϕ) ∈ H2(Ω), where fλ(ϕ) is the unique
solution of the Dirichlet boundary value problem

(−∆− λ)fλ(ϕ) = 0, τDfλ(ϕ) = ϕ. (4.14)

Furthermore, in this situation one has for λ ∈ ρ(A0)

M(λ) : L2(∂Ω)→ L2(∂Ω), domM(λ) = H3/2(∂Ω), ranM(λ) ⊂ H1/2(∂Ω).

If fλ(ϕ) is the unique solution of the Dirichlet boundary value problem (4.14) then
M(λ)ϕ = −τNfλ(ϕ) is the (minus) Dirichlet-to-Neumann map.
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In the next example we provide the γ-field and Weyl function corresponding
to the quasi boundary triple in Example 4.11. In the next section we shall make
use of the particular quasi boundary triple.

Example 4.14. Let us consider the quasi boundary triple {L2(∂Ω),Γ0,Γ1} with
Γ0f = τNf and Γ1f = τDf from Example 4.11. Here A0 = T � ker Γ0 is the
Neumann realization AN of −∆ in L2(Ω). One has ranΓ0 = H1/2(∂Ω) and for
λ ∈ ρ(AN)

γ(λ) : L2(∂Ω)→ L2(Ω), dom γ(λ) = H1/2(∂Ω),

maps ϕ ∈ H1/2(∂Ω) onto γ(λ)ϕ = fλ(ϕ) ∈ H2(Ω), where fλ(ϕ) is the unique
solution of the Neumann boundary value problem

(−∆− λ)fλ(ϕ) = 0, τNfλ(ϕ) = ϕ. (4.15)

Furthermore, in this situation one has for λ ∈ ρ(AN)

M(λ) : L2(∂Ω)→ L2(∂Ω), domM(λ) = H1/2(∂Ω), ranM(λ) ⊂ H3/2(∂Ω).

If fλ(ϕ) is the unique solution of the Neumann boundary value problem (4.14)
then M(λ)ϕ = τDfλ(ϕ) is the Neumann-to-Dirichlet map.

In the following we are interested in operators of the form

A[B] = S∗ � ker(Γ0 −BΓ1),

where B is some operator in G that determines an abstract boundary condition
for the functions in domS∗. Typically, the aim is to derive properties of A[B] from
the properties of B. It turns out below (and is easy to see making use of the
abstract Greens identity) that a symmetric operator B in G leads to a symmetric
extension A[B] of S in H. However, a selfadjoint B does not automatically lead
to a selfadjoint A[B]. In the next theorem some more additional conditions are
imposed that lead to the desired conclusion.

Theorem 4.15. Let {G,Γ0,Γ1} be a quasi boundary triple for T ⊂ S∗ with cor-
responding γ-field γ and Weyl function M . Let B = B∗ ∈ L(G) and assume that
there exist λ± ∈ C± such that the following conditions are satisfied:

(i) 1 ∈ ρ(BM(λ±));

(ii) B
(
ranM(λ±)

)
⊂ ranΓ0;
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(iii) B(ranΓ1) ⊂ ranΓ0 or A1 is self-adjoint.

Then the operator

A[B]f = Tf, domA[B] =
{
f ∈ domT : Γ0f = BΓ1f

}
, (4.16)

is a self-adjoint extension of S, and

(A[B] − λ)−1 = (A0 − λ)−1 + γ(λ)
(
I −BM(λ)

)−1
Bγ(λ)∗ (4.17)

holds for all λ ∈ ρ(A[B]) ∩ ρ(A0).

In the case ranΓ0 = G conditions (ii) and (iii) are automatically satisfied.

Proof of Theorem 4.15. The proof of Theorem 4.15 consists of several steps. In
the first four steps we assume that the first condition in (iii) is satisfied.

Step 1. First we show that A[B] is symmetric, which is essentially a simple
consequence of the abstract Green identity (4.9) and B = B∗. In fact, for
f, g ∈ domA[B] we have

BΓ1f = Γ0f, and BΓ1g = Γ0g,

which implies that

(A[B]f, g)− (f, A[B]g) = (Tf, g)− (f, Tg) = (Γ1f,Γ0g)− (Γ0f,Γ1g)

= (Γ1f,BΓ1g)− (BΓ1f,Γ1g) = 0,

where B = B∗ was used in the last step. This shows that A[B] is a symmetric
operator in H.

Step 2. In this step we show the inclusions

ran
(
Bγ(λ±)∗

)
⊂ ran

(
I −BM(λ±)

)
. (4.18)

We consider only λ+ ∈ C+; the proof for λ− ∈ C− is the same. Note first
that domB = G and hence the product Bγ(λ±)∗ is everywhere defined. Let
g ∈ ran (Bγ(λ+)∗). Then there exists an f ∈ H such that g = Bγ(λ+)∗f . By
(4.12) we have γ(λ+)∗f = Γ1(A0 − λ+)−1f ∈ ranΓ1, and hence assumption (iii)
implies that

Bγ(λ+)∗f ∈ ranΓ0. (4.19)
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We set
ϕ :=

(
I −BM(λ+)

)−1
Bγ(λ+)∗f, (4.20)

which is well defined by assumption (i). We can rewrite (4.20) in the form

ϕ = BM(λ+)ϕ+Bγ(λ+)∗f. (4.21)

By assumption (ii) we have BM(λ+)ϕ ∈ ranΓ0 and hence relations (4.19) and
(4.21) imply ϕ ∈ ranΓ0 = domM(λ+). Together with (4.21) this yields(

I −BM(λ+)
)
ϕ = Bγ(λ+)∗f = g,

and hence g ∈ ran (I −BM(λ+)), i.e. the inclusion (4.18) is shown for λ+ ∈ C+.

Step 3. We claim that ran (A[B] − λ±) = H holds. Again we show the assertion
only for λ+ ∈ C+; the arguments for λ− ∈ C− are the same. Let f ∈ H and
consider the element

h := (A0 − λ+)−1f + γ(λ+)
(
I −BM(λ+)

)−1
Bγ(λ+)∗f. (4.22)

Note that by assumption (i) the inverse (I − BM(λ+))−1 exists. It maps into
domM(λ+) = ranΓ0, so the product with γ(λ+) is well defined. Observe also
that the product of (I − BM(λ+))−1 and Bγ(λ+)∗ is well defined by (4.18). We
now show that h ∈ domA[B]. Clearly, h ∈ domT since

(A0 − λ+)−1f ∈ domA0 ⊂ domT

and
ran γ(λ+) = ker(T − λ+) ⊂ domT.

Furthermore, using (4.12) and the definition of M(λ+) we have

BΓ1h = BΓ1(A0 − λ+)−1f +BΓ1γ(λ+)
(
I −BM(λ+)

)−1
Bγ(λ+)∗f

= Bγ(λ+)∗f +BM(λ+)
(
I −BM(λ+)

)−1
Bγ(λ+)∗f

=
[
(I −BM(λ+)) +BM(λ+)

](
I −BM(λ+)

)−1
Bγ(λ+)∗f

=
(
I −BM(λ+)

)−1
Bγ(λ+)∗f ;

the relation domA0 = ker Γ0 and the definition of γ(λ+) yield

Γ0h = Γ0(A0 − λ+)−1f + Γ0γ(λ+)
(
I −BM(λ+)

)−1
Bγ(λ+)∗f
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=
(
I −BM(λ+)

)−1
Bγ(λ+)∗f.

Hence the element h in (4.22) satisfies the boundary condition Γ0h = BΓ1h. This
shows that h ∈ domA[B]. Finally, we obtain from (4.22) that

(A[B] − λ+)h = (T − λ+)h = (T − λ+)(A0 − λ+)−1f = f, (4.23)

where again ran γ(λ+) = ker(T −λ+) was used. Hence ran (A[B]−λ+) = H holds.

Step 4. It follows from the symmetry of A[B] shown in Step 1, the range con-
dition in Step 3, and Theorem 4.5 that the operator A[B] is self-adjoint in H.
The resolvent formula follows for λ = λ± immediately from the identities (4.22)
and (4.23) in Step 3. Assume now that λ ∈ ρ(A[B])∩ρ(A0) is arbitrary. We claim
that the operator I − BM(λ) is injective. Indeed, if ϕ ∈ ker(I − BM(λ)) then
ϕ ∈ domM(λ) = ranΓ0 and hence f := γ(λ)ϕ ∈ ker(T − λ), so that Γ0f = ϕ.
From

BΓ1f = BM(λ)Γ0f = BM(λ)ϕ = ϕ = Γ0f

we conclude that f ∈ domA[B] and hence f ∈ ker(A[B] − λ). Since λ ∈ ρ(A[B]),
we obtain f = 0 and ϕ = Γ0f = 0. Thus I −BM(λ) is injective.

Next we show the inclusion

ran
(
Bγ(λ)∗

)
⊂ ran

(
I −BM(λ)

)
. (4.24)

To this end, let ψ ∈ ran (Bγ(λ)∗). Then there exists an f ∈ H such that ψ =
Bγ(λ)∗f . Set

g :=(A[B] − λ)−1f − (A0 − λ)−1f ∈ ker(T − λ),

k :=(A[B] − λ)−1f ∈ domA[B].

From

Γ0g = Γ0k,

Γ1g = Γ1k − Γ1(A0 − λ)−1f = Γ1k − γ(λ)∗f

we conclude that(
I −BM(λ)

)
Γ0k = Γ0k −BM(λ)Γ0g = BΓ1k −BΓ1g = Bγ(λ)∗f = ψ.

This shows the inclusion in (4.24). Now it follows in exactly the same way as
in Step 3 that for λ ∈ ρ(A[B]) ∩ ρ(A0) the resolvent (A[B] − λ)−1 is given by the
right-hand side of (4.17).
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Step 5. Finally, assume that the second condition in (iii) is satisfied, i.e. that A1

is self-adjoint. Then ranM(λ±) = ranΓ1 by [3, Proposition 2.6 (iii)]. Hence, if
g ∈ ranΓ1 then (ii) implies Bg ∈ ranΓ0. This shows that the first condition in
(iii) is satisfied, and we can apply Steps 1–4 of the proof.

For the case when the spectrum of the self-adjoint operator A0 does not cover
the whole real line a useful variant of Theorem 4.15 is formulated below. Its proof
is almost the same as the proof of Theorem 4.15; here the range condition in
Step 3 of the proof needs only to be verified for some real point in ρ(A0), which
then automatically belongs to ρ(A[B]).

Theorem 4.16. Let {G,Γ0,Γ1} be a quasi boundary triple for T ⊂ S∗ with cor-
responding γ-field γ and Weyl function M . Let B = B∗ ∈ L(G) and assume that
there exists a λ0 ∈ ρ(A0) ∩ R such that the following conditions are satisfied:

(i) 1 ∈ ρ(BM(λ0));

(ii) B
(
ranM(λ0)

)
⊂ ranΓ0;

(iii) B(ranΓ1) ⊂ ranΓ0 or λ0 ∈ ρ(A1).

Then the operator

A[B]f = Tf, domA[B] =
{
f ∈ domT : Γ0f = BΓ1f

}
, (4.25)

is a self-adjoint extension of S such that λ0 ∈ ρ(A[B]), and

(A[B] − λ)−1 = (A0 − λ)−1 + γ(λ)
(
I −BM(λ)

)−1
Bγ(λ)∗ (4.26)

holds for all λ ∈ ρ(A[B]) ∩ ρ(A0).

4.3 Laplace operators with Robin boundary con-
ditions

In this section we apply the technique of quasi boundary triples and their Weyl
functions to boundary value problems involving the Laplacian and the correspond-
ing selfadjoint Laplace operators with Robin boundary conditions; cf. Section 3.3.
Let us again assume that Ω is a bounded C2-domain and consider the operators

Sf = −∆f, domS = H2
0 (Ω),

T f = −∆f, domT = H2(Ω);
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cf. Examples 4.10 and 4.11. In the following we shall use the quasi boundary
triple {L2(∂Ω), τN , τD} from Example 4.11 with the corresponding γ-field and
Weyl function M discussed in Example 4.14. In this situation the selfadjoint
reference extension A0 = T � ker Γ0 is given by the Neumann operator

ANf = −∆f, domAN =
{
f ∈ H2(Ω) : τNf = 0

}
, (4.27)

and the Weyl function is a Neumann-to-Dirichlet map. As a consequence of the
main theorems in the previous section we obtain the result below. We mention
that the conditions (ii) and (iii) in Theorem 4.15 can now be interpreted as regu-
larity assumptions on the parameter in the boundary condition; here we assume
for simplicity C2-smoothness of the multiplication operator on ∂Ω.

Theorem 4.17. Consider the quasi boundary triple {L2(∂Ω), τN , τD} for T ⊂ S∗

with corresponding γ-field γ and Weyl function M . Let β ∈ C2(∂Ω) be a real
function. Then the Robin realization of the Laplacian,

Aβf = −∆f, domAβ =
{
f ∈ H2(Ω) : τNf = βτDf

}
, (4.28)

is a self-adjoint extension of S and the resolvent formula

(Aβ − λ)−1 = (AN − λ)−1 + γ(λ)
(
I − βM(λ)

)−1
βγ(λ)∗ (4.29)

is valid for all λ ∈ ρ(Aβ) ∩ ρ(AN). Furthermore, the following variant of the
Birman-Schwinger principle holds: λ ∈ ρ(AN) is an eigenvalue of Aβ if and only
if ker(I − βM(λ)) 6= {0}.

Proof. Recall from Example 4.14 that the Weyl function M corresponding to the
quasi boundary triple {L2(∂Ω), τN , τD} has the mapping property

M(λ) : L2(∂Ω) ⊃ H1/2(∂Ω)→ H3/2(∂Ω) ⊂ L2(∂Ω)

for λ ∈ ρ(AN). One can show that M(λ) admits a bounded continuation in
L2(∂Ω), which coincides with the closure in L2(∂Ω) and maps

M(λ) : L2(∂Ω)→ H1(∂Ω) ⊂ L2(∂Ω).

This is also implies that M(λ) is closed as an operator from L2(∂Ω) to H1(∂Ω),
and hence bounded. As ∂Ω is compact a version of the Rellich embedding theorem
(cf. Theorem 3.11) on ∂Ω implies thatM(λ) is a compact operator in L2(∂Ω). The
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same remains true for the operator βM(λ), λ ∈ ρ(AN), since β as a multiplication
in L2(∂Ω) is bounded.

We claim that

ker
(
I − βM(λ)

)
= {0}, λ ∈ C \ R. (4.30)

In fact, since the closure M(λ) is an extension of the Dirichlet-to-Neumann map
(this has to be verified) for ϕ = βM(λ)ϕ and ϕ = τNfλ(ϕ) for some solution fλ(ϕ)
(with H3/2(Ω)-regularity) of (−∆− λ)u = 0 one obtains

τNfλ(ϕ) = ϕ = βM(λ)ϕ = βM(λ)τNfλ(ϕ) = βτDfλ(ϕ). (4.31)

Since β ∈ C2(∂Ω) it follows that τNfλ(ϕ) ∈ H1(∂Ω) ⊂ H1/2(∂Ω) and elliptic
regularity then implies fλ(ϕ) ∈ H2(Ω). Together with the boudnayr condition
(4.31) this shows fλ(ϕ) ∈ ker(Aβ − λ), but as β is real it is clear that Aβ is a
symmetric operator in L2(Ω). Hence σp(Aβ) ∩ C \ R = ∅ by Corollary 4.4 and
therefore fλ(ϕ) = 0 and ϕ = τNfλ(ϕ) = 0. This proves (4.30) and as βM(λ) is
compact now the Fredholm alternative implies that(

I − βM(λ)
)−1 ∈ L(L2(∂Ω)).

In other words, 1 ∈ ρ(βM(λ)) for all λ ∈ C \ R and hence condition (i) in
Theorem 4.15 is satisfied. Conditions (ii) and (iii) in Theorem 4.15 in the present
setting translate into

βϕ ∈ H1/2(∂Ω)

for all ϕ ∈ H1(∂Ω) and
βψ ∈ H1/2(∂Ω)

for all ψ ∈ H3/2(∂Ω), which are both valid by our assumption β ∈ C2(∂Ω). Now
Theorem 4.15 implies the assertions.

The simple proof of the Birman-Schwinger principle is left to the reader.

Remark 4.18. For λ ∈ ρ(Aβ) and f ∈ L2(Ω) the function u = (Aβ − λ)−1f is a
H2(Ω)- solution of the Robin boundary value problem

−∆u− λu = f and τNu = βτDf ;

cf. Section 3.3. For β = 0 one arrives at the Neumann problem discussed in
Section 3.2; the formal case 1

β
= 0 – which corresponds to Dirichlet boundary

conditions – was excluded above, but can be treated with the quasi boundary
triple {L2(∂Ω), τD,−τN} in Example 4.10.
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