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Chapter 1

Distributions and Sobolev spaces

In this chapter we provide preliminaries on distributions, weak derivatives, Sobolev
spaces, and the Fourier transform. We start with a standard procedure for the
approximation of integrable functions by smooth ones.

1.1 Regularization

Let © C RY be open, nonempty, d > 1. Recall that the support of a function
¢ : 2 — C is defined as

supp ¢ := {x € Q: p(r) # 0} C R?

(closure with respect to standard norm in R¢). If not explicitly stated different,
in this lecture all functions are complex-valued. Recall further that the linear
space L?(Q) equipped with the inner product

(U, V) 2(0) = /Qu(m)v(ﬁ)dx, u,v € L*(),

and the corresponding norm || - ||12(q) is a Hilbert space. We use the usual multi-
index notation: For a = (ay,...,aq)" € Nd and z € R? we write
- - oL & d D¢ = . 0%
|C¥’ .—ZO&j, T —H.CIZ'] y an —HW
j=1 j=1 j=1 "7

Example (for d = 5): For a = (2,1,0,3,0)" we have |a| = 6, 2% = 222923 and
D%p = e

- 890%8:02 8:1:2 :



1.1 Regularization 1 Distributions and Sobolev spaces

We write
2(9Q) = {go € C™(R) :suppp C Q,supp ¢ Compact}.

Then 2(Q2) is a linear space. Sometimes we call the functions in Z(Q) test func-
tions.
Define

0, else,

1
Ce =7 |z| <1,
pla) :={ .

where C' > 0 is chosen such that [y, p(2)dz = 1. Then p € Z(R?) (easy to check;
exercises) and supp p = B(0,1). For n € N define

pn(2) == np(nx), = cR% (1.1)

Then p, € 2(2), [z pn(z)dz = 1, and supp p, = B(0, +). The functions p, are
called mollifiers.

Definition 1.1. Let u,v € L*(R?). Then the function

(wro)(e)i= [ ule =)y, = <R

is called convolution of u and v.

Note that u*wv (in contrast to u and v) can be evaluated at each point x € R?,
and a substitution yields u * v = v x u for all u,v € L*(R%). We will see a little
later that u * v is in fact continuous. Note further that by the Cauchy—Schwarz
inequality we have

(w5 0)(@)] < lull o 10l oy, @ € R (1.2)
In the following lemma we write as usual
Ki+Ky={x+y:x€ K,y € Ky}
for two sets Kq, Ky C R%.

Lemma 1.2. Let u,v € L*(R?) and let K1, Ky be compact sets such that u(x) = 0
for almost all x € R*\ Ky and v(z) = 0 for almost all v € R\ Ky. Then

(uxv)(z) =0 forallz € R\ (K, + K>).

2



1 Distributions and Sobolev spaces 1.1 Regularization

Proof. Consider functions u,v, i.e. representatives of the equivalence classes u, v,
such that suppu C K; and suppv C Ky. Let z € R? be arbitrary. If there
exists y € R? such that u(x — y)v(y) # 0 then z — y € K; and y € K, and thus
r=1—y+y € K + K, Hence for any z € R?\ (K, + K3) we have

m*wuazA;ww—ywwmy:o

In the following the space

Co(R?) := {u € C(RY) : lim u(z) = 0}

|| =00

will be used. It is a closed subspace of the set of all bounded, measurable functions
on R? equipped with the supremum norm

[ufloo := sup |u(z)]
z€R4

(see the exercises). In particular, Co(R?Y) with the supremum norm is a Banach
space.

In the proof of the next proposition we will use that the step functions are
dense in L2(IR?). A step function s is the finite linear combination of characteristic
functions for cuboids, i.e.

N
s = Z aplg,,
n=1

where a, € C,n=1,... N, and @), is a cuboid of the form
On = [ 6] x -+ x [ol 8] (13)

with some agn) < bgn), i = 1,...,d. The fact that step functions are dense in

L?(Q) will be verified in the following lemma.
Lemma 1.3. Let Q C R? be open. The step functions are dense in L*((2).

Proof. Let f € L?(R?Y) and fix € > 0. It will be shown that there is a step function
s such that

”f - S||L2(Q) < E.

3



1.1 Regularization 1 Distributions and Sobolev spaces

First, since simple functions are dense in L?((2), there exists

M
S = E a;lx,,
i=1

where a; € C and X; C 2 is measurable, i = 1,..., M, such that
~ €
HS — fHLQ(Q) < g

Without loss of generality, we assume that the sets X; are pairwise disjoint and
a; # 0. Hence, the measure of X is finite as otherwise 5 ¢ L*(Q).

Next, since the Lebesgue measure is regular, there exists for any ¢ € {1,..., M}
an open set O; with X; C O; C Q such that

52

MO; \ X; —_—
(OAXi) < g

where ) is the Lebesgue measure on ). Define s := Zf\il a;1lp,. Then, using the

triangle inequality and X; C O; we find
M 2
1L2(Q) — |CLZ| (/ dl’) < —.
@ ,Zl O\ X; 3

Finally, any open set O; can be written as the at most countable union of
pairwise disjoint cuboids

M
15 = Sllz2) <Y lal - [ 1o, — Lx,
=1

Oi = L_Jl Qi,rw

where each @);,, is like in (1.3). Hence, the step functions

M

N
SN = E;Qi 231 1g..
=1 n=

i
converge pointwise to 5. By dominated convergence we see that sy tends also
to 5 with respect to the L?-norm. Therefore, there exists an Ny € N such that
15— snllz2() < §. Eventually, we set s := sy,. Then, by applying the triangle
inequality we find

I = sl < = sl + 15 = Sllze@) + 15 = sll2@) <,

which is the claimed result. O



1 Distributions and Sobolev spaces 1.1 Regularization

Proposition 1.4. Let u,v € L*(RY). Then ux*v € Cy(R?).

Proof. Let us first consider the case that u = 1g, and v = 1y, for compact
cuboids Q1,Q, C R Let # € R? be arbitrary and (z,), C R? with 2, — x as
n — oo. Then for each y € R? such that z — y ¢ 9Q; we have

]1Q1 (SL‘n - y) — ILQI (I - y)

Since the y for which z — y € 9Q; form a set of Lebesgue measure zero it follows

(Lo *10)(w) = [ | Lav(en = Dlau(wdy — [ Lai(e—1)le,n)dy

= (]lQl * 1@2)(1;)

as n — oo by the dominated convergence theorem. Moreover, by Lemma 1.2
1o, *1¢, vanishes identically outside the compact set Q1+Q2. Thus uxv € Cy(R?)
if u, v are characteristic functions of cuboids. The same argument is true if v and
v are finite linear combinations of characteristic functions of cuboids, i.e. step
functions.

Let now u,v € L*(R?) be arbitrary and let (u,), and (v,), be sequences of
step functions with ||u, — ul| 2y — 0 and ||v, — v||p2(rey — 0 as n — co. Then
for any x € R? we have

|(un o) () = (w  v)(2))]
< [(un * vn)(2) = (un + 0) ()] + [ (un * 0)(2) = (ux0)(z)]

= [(un * (vn — 0))(@)] + |((un = u) *v)(2)|

(1.2)
< a2y |vn — vl 2@ay + |Jtn — ul| L2@a) ||0]| L2(Ra)
— 0

as n — 0o. Thus ||u, * v, —u*v| — 0 as n — oo and hence uxv € Cyp(R?). O
Proposition 1.5. Let u € L*(R?) and p € 2(RY). Then ¢ *u € C°(R?) and
D*(pxu) = (D) xu for all a € Ng.

Proof. 1t suffices to prove that %(g@ xu) exists and equals 687“‘; xuforj=1,...,d;
the assertion of the proposition follows from a repeated application of this fact

and Proposition 1.4. Note first that

%((90 xu)(z + hej) — (g xu)(z)) = /Rd %(so(w + hej —y) — o(z —y))u(y)dy

(1.4)
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holds for any h # 0, x € R and j = 1,...,d, where e; is the j-th unit vector
in R?. Therefore the claim follows if we can show that the dominated convergence
theorem is applicable to the integrand as h — 0. Indeed, for w, z € R? we have

o(w+z) — p(w) = /0 %go(w +tz)dt = /0 (Vo) (w +tz) - zdt

and hence

1 1
o(w + 2) — plw)] < / Vep(w +t2) - 2ldt < / V(w + £2)]|2]dt < [Vplluol],
0 0

which implies
1

7] IVeplloo| | = IVeplloe < 00 (1.5)

‘%(w(ﬁhej —y) —w(x—y))‘ <

for any x € R4, h # 0 and j = 1,...,d. As the integrand in (1.4) has compact
support and the integral of u over this compact support is finite, the claim follows
from (1.4) and (1.5). O

Theorem 1.6. Let u € L?(RY) and p, as in (1.1). Then p,*u € C°(RY)NL*(RY)
and ||py * u — || 2@ray = 0 as n — oo.

Proof. By Proposition 1.5 we have p, xu € C*(R?). Let us first verify the identity

/R pn (@) < / ufa) P, (16)

which implies, in particular, p, * u € L*(R?). Indeed, for any = € R? we have

(pn + u)(@)] < / Pl — )20 — ) ) dy

Rd

< (/Rd pn(x—y)dziyﬂ(/w pn(x—y)|U(y)\2dy> "

-~

=1

by the Cauchy-Schwarz inequality. It follows

/Rd (on + w)(@) Pz < /Rd /Rd pul® = y)lu(y)*dydz
6



1 Distributions and Sobolev spaces 1.1 Regularization

:iéd(AJM@_ny)W@W@L

v~

=1

which leads to (1.6). Let us now show the desired convergence property. Again
we consider first the case that u = 1¢ for some compact cuboid (). Pointwise, for

r € R?\ @ and each sufficiently large n € N we have = ¢ Q + B(0, %) and thus
(pn * 1g)(x) = 0 by Lemma 1.2. On the other hand, for each inner point x of @
and each sufficiently large n € N we have

(pn+ 10)(0) = |

1
lyl<:

ﬂdx—wmwﬂyz/‘ pu(y)dy = 1.

1
lyl<y

Thus (p, * Lg)(x) — Lg(z) as n — oo for each z € R?\ 9Q and the dominated
convergence theorem yields

o5 = ey = [ lipa 10)(a) = Tofa) Pz — 0

as n — oo whenever u is the characteristic function of a cuboid. From this the
assertion follows immediately for each step function wu.

Let now u € L?(R?) be arbitrary, let € > 0, and let v be a step function with
|lv — ul|r2may < €/4. By the above reasoning there exists N(¢) € N such that
|pn * v — || 2may < /2 for each n > N(g). Hence for each n > N(e) we have

[pn % w = ull2@ay < [pn* (u — V)| 2Ra) + [|pn * v — V][ L2Ra) + || — ul| L2 (ra)
(1.6)
< lu = vl p2@ay + llon * v = v 2ey + |V — ull 2 (way

<e/l+e/2+¢e/d=c¢,
which completes the proof. O

We have shown that any u € L?(R?) can be approximated in L?(R%) by smooth
functions. Our final goal of this section is to approximate any u € L*(Q) on any
open set by functions in Z(Q).

Lemma 1.7. Let Q C R? be open and nonempty and let K C € be compact.
Then there exists a function ¢ € P(RY) such that 0 < ¢ < 1, suppy C Q, and
o(x) =1 forallz € K.
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Proof. As dist(K,01) is positive there exists n € N such that % < dist(K, 09).
Define the compact set

K, =K+ B(0,1/n) = {y € R*: 3z € K with [z —y| < 1/n}

and set ¢ := g, * p,. Then ¢ € C*(R?) by Proposition 1.5. Moreover, by
Lemma 1.2 we have

supp ¢ C K, + B(0,1/n) C

by the choice of n, and for z € K we have

o) = [ elo- @i = [ oy =1,
lyl< lyl <
and in the same way 0 < ¢(z) < 1 for all z € R% m
We define a sequence of cut-off functions. For n € N let

Q, = {z € Q:dist(z,00) > 1/n} N B(0,n). (1.7)

Then €, is open and bounded with Q, C Q.1 C Q for all n € N and Q =
U,en Qn- By Lemma 1.7 for each n € N there exists 7, € Z(R?) such that

0<n, <1, suppn, C Quy1, and n,(x)=1for all z € Q,.

In the following for any u € L?*(2) we denote by @ the corresponding function in
L?(R?) defined as

() = {u(:v), x €,

0, else.

Theorem 1.8. Letu € L*(Q). Then n,(p,xu) € 2(R?) with supp(n,(pn*1)) C Q
and |0, (pn * ) — U/ p2(ray — 0 as n — oo.
Proof. We have p, * 1 € C*(R?) by Proposition 1.5. Thus 7,(p, * 1) € 2(R?)
and supp(n,(p, * 1)) C Q follows from the properties of 7,. Moreover,

Hnn(pn * ﬁ) - a||L2(Rd) < ||77n(pn * U — 27>||L2(]Rd) + ||77n5 - a||L2(]Rd)

o ) 1/2
< lpw i =l + ([ Im@ute) = ule)far)

The first term on the right-hand side tends to zero as n — oo by Theorem 1.6.
Moreover, as 1, (x) — 1 as n — oo for any = € (), dominated convergence implies
that also the integral tends to 0. n
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Corollary 1.9. 2(Q) is dense in L*(2).

For completeness we note in this context the following more general result,
which may be proved with a similar strategy; cf. [6, Lemma V.1.10].

Proposition 1.10. 2(Q2) is dense in LP(Q) for all p € [1, 00).

In the following we write U € € if U is bounded and open with U C €.
For p € [1,00) we define the spaces of locally (that is, on each compact subset)
p-integrable functions

Lp

loc

(Q) = {u : @ — C measurable : / lu(z)Pdx < 00 VU & Q} ,
U

and the space of locally bounded functions L2 (€2) is defined accordingly. Mostly
we will be using L% _(2) only. Note however that L{ () C LV (Q) for ¢ > p and
that, in particular, L{ () C L] () for all ¢ € [1, 00].

loc

Example 1.11. z — 1/4/z belongs to L2 _(0,c0) but not to L*(0,0).

loc

Corollary 1.12. Let u € L () such that

loc

/Qu(x)gp(x)dx =0 forallpe 2(9Q).

Then u(xz) =0 for almost all x € .

Proof. We shall verify the result in the special case u € L2 _(2) only. For a proof
of the L .(Q) case, see e.g. |1, Lemma 3.31]. Let u € L () and U € Q. Then
uly € L*(U) and for each ¢ € 2(U) we have

/u(w)w(z)dz = / u(z)p(z)de =0

U Q

since plg € Z(€). Hence Corollory 1.9 yields u|y = 0 in L*(U) and thus u(z) = 0
for almost all x € U. Applying this to U = ,, n € N, with €, defined in (1.7)
we get the claim. ]



1.2 Distributions and weak derivatives 1 Distributions and Sobolev spaces

1.2 Distributions and weak derivatives

In order to establish a satisfactory theory for partial differential equations the
classical notion of differentiable functions is not sufficient. An appropriate gener-
alization can be done by using distributions. This is motivated by the d-calculus
in theoretical physics (Dirac, Heaviside), where a (differentiable) “function” ¢ with
the properties

/5(x)dx: 1 and 0=0onR\{0}
R
is required. The idea is to introduce a class of “generalized functions” (distribu-
tions) such that
e (at least) each continuous function is a distribution;

e cach distribution can be differentiated (arbitrarily often) and for differen-
tiable functions this is compatible with the classical definition of differen-
tiability;

e usual rules for derivatives hold.

This is done in the following way. We equip the space Z(f2) with a notion of
convergence:

Definition 1.13. Let ¢, ¢ € Z2(2). We say that (¢,), converges to ¢ in ()
if

(i) there exists a compact set K C Q such that suppp C K and supp p, C K
for all n € N, and

(i) D%p, — D“p uniformly on Q for all a € N¢.
We write shortly ¢, — ¢ in 2(Q).

Recall that uniform convergence is equivalent to convergence with respect to
the supremum norm.

Definition 1.14. A distribution on € is a linear mapping T : Z(2) — C which
is continuous with respect to convergence in Z((2), i.e.,

on —9in 2(2) = Ty, — Ty in C.

10



1 Distributions and Sobolev spaces 1.2 Distributions and weak derivatives

Sums and multiples of distributions are defined via
(T+T)p:=Te+Tp and (A\T)p:= \Ty), v e D(Q),

for A € C and distributions T, 7. The set of all distributions on € equipped with
these operations is a linear space, which we denote by 2’(€2). It is the dual space
of Z(Q2) with respect to the topology induced by the notion of convergence in
Definition 1.13.

In the first example the so-called J-distribution is discussed.

Example 1.15. For x € (2 define
Top = p(x), ¢ € 2(Q).

This is the mathematical formalization of the “d-function” (see exercises) and is
called ¢-distribution. Usually one writes ¢, instead of T,. Is it a distribution?
Linearity:
Lo(Ap + ) = (Ap + ) (2) = Ap(@) + p () = MTaw) + i(Tet))
for \,p € C and ¢, € 2(2). Continuity: Let ¢, — ¢ in 2(€2). Then, in
particular, ¢, () — ¢(z) in C and, hence,
Topn = pulz) = 0(z) = T

It follows that T, € 2'(Q).

Next it will be shown that any u € L} () gives rise to a distribution. These

loc
distributions are typically refered to as regular distributions; cf. Definition 1.17.

Example 1.16. Let u € Li, () and define

Tup = /Qu(x)w(x)dx, v e P(0). (1.8)

Then T, is a distribution: linearity is an immediate consequence of the linearity
of the integral in (1.8). For the continuity let ¢, — ¢ in Z(2) and let K C 2 be
compact such that supp ¢,,,supp C K. Then

[ w0 nla) = ola))da

< lipw = el [ Ju@)ldz —0
\L,_/

<o

as n — oo. It follows that T, € 2'(Q).

’Tugpn - TUS0| =

< /K (@) o) — ()| de

11



1.2 Distributions and weak derivatives 1 Distributions and Sobolev spaces

Definition 1.17. A distribution on (2 is called regular if there exists u € L. ()
such that "= T, as defined in (1.8).

Note that not every distribution is regular! For instance, the §-distribution
cannot be represented in the form (1.8), see the exercises.

Lemma 1.18. Let T be a reqular distribution. Then there exists a unique u €
L .(Q) such that T =T,.

Proof. Assume there exist u,v € L, (Q) with T, = T =T,. Then

/Q (u(x) - U(ﬁf))@(x)dx =0 forall p € 2(02),

and hence Corollary 1.12 implies u(x) = v(z) for almost all 2 € Q. O
Definition 1.19. Let T' € 2'(Q2). The distributional derivative of T with respect

to the multi-index o € N is defined as
(D°T)p = (-1 (D), ¢ € ().

Remark 1.20. (i) D*T € 2'(Q): Linearity follows from the definition and the
linearity of 7" and D®. For the continuity let ¢, — ¢ in Z(). Then also
D%p,, — D%p in Z(Q2) and, thus,

(DT, = (=) T(D%,) — (=1)T(DY) = (D*T)p as n — oo
since T € 7'(2).

(ii) Each distribution can be differentiated arbitrarily often. In particular,
each u € L} _(Q) can be differentiated arbitrarily often (when identified with the

loc
corresponding regular distribution). However, its derivatives may be non-regular

distributions, see Example 1.21 (iii) below.

(iii) For u € C*(Q) the distributional derivative is in line with the classical
derivative: let, e.g., Q = (a,b) C R and u € C'([a,b]). Then integration by parts
yields

uwwz—ﬂwvz—/u@mumI

b
=/w@wmw=nw, o € D(ab)

(boundary evaluations vanish as ¢(a) = ¢(b) = 0). Accordingly it follows
DT, = Tpa, for all a € Ng

whenever D%*u exists in the classical sense.

12



1 Distributions and Sobolev spaces 1.2 Distributions and weak derivatives

Example 1.21. Q =R, T = dy:
S = —do(¢') = =¢'(0), ¢ € Z(R),
and, analogously,
% = (=1)"0(¢™) = (-1)"¢™(0), ¢ € 2(R).

Example 1.22. Q = (—1,1), T =Ty with f(x) = |z|, x € (—1,1):

1

0 1
Tho= Ty(e) = — [ el (x)dx = / v ()de — / v (2)de
-1 -1 0

= zp(x)

- /0 plz)de — xp(z) ;+ /01 plw)dx

S /_01 o(x)ds + /01 p(x)dx

where we have used integration by parts and the facts that ¢ has compact support
and that f(0) = 0. Hence T} = T, where

1, x>0,

s(w) = {—1, x <0,

is the sign function.

Example 1.23. Q= (-1,1), T =T

0 1
T'o= ~T.(J) = / o (2)d — / o (2)dr = 20(0) = 200, @ € D(—1,1),
0

-1
that is, the derivative of the sign function is twice the d-distribution.

Definition 1.24. Let u € L (Q) and o € N&. If there exists v € L{ _(Q) such
that DT, = T, then v is called weak derivative of u with respect to . In this
case we simply write D% = v. If a = e, we shall also use the notation % or

simply 0y, instead of D<.

In words: If the regular distribution associated with v is the distributional
derivative of the regular distribution associated with u (with respect to «) then
we say that v is the weak derivative (with respect to «) of u.

13



1.2 Distributions and weak derivatives 1 Distributions and Sobolev spaces

Example 1.25. We have seen in Example 1.22 that the sign function s is the
weak derivative of the absolute value function.

Note: An equivalent formulation of the definition of the weak derivative is the
following: v = D%u if and only if

/u(x)Dagp(x)dx = (—1)al/v(x)g0(x)dx Vo € 2(2) (1.9)
Q

Q
holds. Moreover, the weak derivative is determined uniquely by (1.9) as Corol-
lary 1.12 shows.

Lemma 1.26. Let Q be connected and let u € L*(Q) such that the weak derivative

% exists and is zero almost everywhere on Q for each j € {1,...,d}. Then there
J

exists ¢ € C such that u(x) = ¢ for almost all © € Q.

Proof. Let u, := n,(pn* ), cf. Theorem 1.8. Then u,, € Z(R%) with supp u,, C Q
and u, — @ in L2(R%). Moreover, let U & 2. Then for each sufficiently large
neN

0 W) =pa*DIu=0, j=1,....d
a_%(pn*u)_pn* Tu =Y, J=1L...,a,
(exercise; cf. also Proposition 1.5) almost everywhere inside U. Hence for each
sufficiently large n € N there exists ¢, € C such that u,(x) = ¢, for all x € U
(since 1, = 1 identically on U for sufficiently large n). As

U|len — cm|?* = / U () — U (7)]Pdz — 0 as m,n — oo,
U
(¢n)n is a Cauchy sequence in C and thus has a limit ¢. Hence
/ [un(z) — c|*dx = |Ul|c, — ¢|*> =0 asn — oo,
U

which implies u(z) = ¢ for almost all x € U. As in the proof of Corollary 1.12 it
follows u(x) = ¢ for almost all = € Q by applying the above reasoning to U = €Q,,,
n € N, with Q,, defined in (1.7). O

Sometimes it is useful to multiply a distribution by a smooth function.
Definition 1.27. Let w € C*(Q) and T' € 2'(Q2). Then the product wT is
defined as

(wT)p :=T(wp), ¢ 2(Q).

Note that wT is well-defined since wp € Z(Q2) for each ¢ € 2(Q2). Note

further that w7 € 2'(Q2) (easy exercise).

14



1 Distributions and Sobolev spaces 1.3 Sobolev spaces

1.3 Sobolev spaces

Sobolev spaces are linear spaces consisting of (equivalence classes of ) weakly dif-
ferentiable functions.

Definition 1.28. Let k € Ny. The Sobolev space of order k is given by

H*(Q) == {u € L*(Q): D*u exists in L*(Q2) Va € Nj with |a| < k}.

Example 1.29. On Q = (—1,1) we have already seen in Example 1.21 (ii) that
the function f =|-| € L*(—1,1) is weakly differentiable with
-1, <0
"(x) = s(x) = T
() = s() {1’ T

In particular, f’ € L?(—1,1) and therefore f € H*(—1,1).

The standard inner product and norm on H*(Q) is provided in the next propo-
sition. If not something different is specified explicitly, we always equip H*(Q2)
with this norm and inner product.

Proposition 1.30. For each k € Ny the mapping (-, ) grqy - H*(Q) x H*(Q) — C

given by

(,0) ey = »_ (Du, D*v) Z/ (D%u)(z)(Dov)(x)dz, wu,ve H*(Q),
lo| <k || <k

is an inner product on H*(QY). Moreover, H*(Q) equipped with the corresponding
norm

1/2
el ey = 1/ 0o (z L1 Qd:r:) u e HHQ),
la|<k
1s a Hilbert space.

Note that for £ = 1 the inner product can be written as

(o)) = [ w@io@ids + [ Vule) - Foteids
Q Q
= (U, U)LQ(Q) + (VU, V’U)LQ(Q;Cd)
for all u,v € H'().

15



1.3 Sobolev spaces 1 Distributions and Sobolev spaces

Proof of Proposition 1.30. We show only completeness. Let (u,), be a Cauchy
sequence in H*(Q), i.e., for each € > 0 there exists N(¢) € N such that

> D%y = D*up|ja) <& Vm,n > N(e). (1.10)

o] <k

Then (uy), is a Cauchy sequence in L?(2) and there exists u € L?(2) such that
|t — 1| r20) — 0 as n — oco. In the same way it follows from (1.10) that for each
o € N with |a| < k there exists u, € L*(Q) such that |[Du, — ua||z2() — 0 as
n — 0o. Moreover, for any a with |a| < k and any ¢ € Z(2) we have

/Qu(x)Do‘cp(x)dx: lim [ w,(z)D%(x)dx

n—oo 0

= lim(—1)'“'[2(Daun(x))¢(x)dx

n—oo

= (1) / tal(@)p(z)de,

where the continuity of the inner product in L?*(2) was used in order to exchange
limits and integrals. It follows that D“u exists and equals u,. In particular,

uw € H*(Q). Finally,

ltn = ulfin@y = D 1D%un = Dulffaqy = Y 1Dun = tallfagey — 0

lor| <k lo| <k
as n — oo. OJ

The proofs of the following two lemma are left for the exercises.

Lemma 1.31. Let u € H*(Q). Then 89?287;;6 = aaijgx‘
§ J

forj k=1,...,d.
Lemma 1.32. Let u € H*(R?Y). Then the identity

D (pp *u) = pp * D%
holds for alln € N and all o € N3 with |a| < k.

As shown in Proposition 1.30, the space H*(2) is complete. Moreover, H*(()
is dense in L*(Q2) (with respect to the norm || - ||12(q)) since 2(Q) C H*(Q) and

16



1 Distributions and Sobolev spaces 1.3 Sobolev spaces

2(Q) is dense in L*(Q) by Corollary 1.9. On the other hand, in general 2(Q) is
not dense in H*(Q2), as we will see later. We define

HE(Q) = () e,

the closure of Z(2) in H"(Q). Note that H;(Q2) (with the norm || - || gr(o)) is a
Hilbert space as it is a closed subspace of H¥(2). In general HY(2) is a proper
subspace of H¥(Q)). For k = 1 it consists, roughly speaking, of all functions in
H'(Q) which vanish on the boundary of € in a certain sense. Lemma 1.34 and
Lemma 1.35 confirm this intuition.

Proposition 1.33. Let u € HY(Q). Then t € H*(R?) and D*u = Deu holds for
all « € Nd with |of < k.

Proof. By definition of HE(Q) there exists a sequence (u,), C 2(Q) such that
|tn — ul| ) — 0 as n — oo. Note that ||@, — |2y — 0 as n — oco. Then
for all ¢ € Z2(R?) and all a with |a| < k we have

/ u(z)Dp(z)dr = lim U () D%p(x)dx
R4 n—oo Rd

= (—1)")‘| lim (D) (x)p(z)dx

n—oo Rd

= (—1)'0‘| lim [ (D%,)(z)p(x)dx

n—oo Q

- [ (Drwa@pte)ds
- [ D@t

which implies the assertions. O]

Lemma 1.34. Let u € H}(Q) with %‘j = 0 almost everywhere on ) for each
je{l,...,d}. Then u(z) =0 for almost all x € ).

Proof. By Proposition 1.33 we have & € H'(R?) and £ = 0 for j = 1,...,d.
Thus by Lemma 1.26 there exists ¢ € C such that u(x) = ¢ for almost all x € Q.
Now @ € L*(R?) implies ¢ = 0. O

The following lemma is left for the exercise classes.

17



1.3 Sobolev spaces 1 Distributions and Sobolev spaces

Lemma 1.35. Let u € H'(Q) and U € Q. Ifu(x) =0 for a.e. x € Q\ U then
u € HL Q).

Since Q = R? has no boundary it seems intuitive that H}(R?) = H'(R?). In
fact, one has the more general result:

Theorem 1.36. HY(RY) = H*(R?) for all k € N.
Proof. Let u € H*(R?). Then

D% (pp * u) = pp * D

for all n € N and all & € N¢ with |a| < k by Lemma 1.32. In particular,
D*(p, *u) € L*(RY) N C*=(R?) and || D%(p,, * u) — D*u||r2ray — 0 as n — oo by
Theorem 1.6. Hence p, * u — v in H*(RY). Furthermore, by Lemma 1.7 there
exists n € Z(R?) such that 0 < n < 1, n(z) = 1 for all x with |z| < 1 and n(z) =0
for all z with |z| > 2. For m € N let further n,,(z) := n(£) for z € R%. Then

o _
Do+ ) = X () 0" (% < ),
Bl
where § < o means 3; < a;, j =1,...,d, and (g) = Hd (aj). Thus for each

J=1\p;
xr € R?

D* (i ) () = 3 (“) (D0, ) () (D% (0 1) (1) + 1 () D (5 0)(2)

BLla 6

BF#a
= L @ B)(z/m)(D?(p,, * u
_géa: i () O/ m) (D )

+ 1 (2) D (. x ) ()
s D*(p, #u)()

as m — oo. Using D?(p, * u) € L*(R?) for || < k with dominated convergence
we obtain

1D (M (o x w)) — DY(py, * U)HLQ(Rd) —0 as m— oo

for any a with |a| < k, that is, 1,,(pp * u) — pp * u in H¥(RY). As 9, (pn *u) €
P (R?) for all m,n, the claim follows. O

18



1 Distributions and Sobolev spaces 1.3 Sobolev spaces

In the following theorem we say that €2 is bounded with respect to one direction
if there exist j € {1,...,d} and § > 0 such that |z;| < ¢ for all z € Q.

Theorem 1.37 (Poincaré inequality). Let Q be bounded with respect to one di-
rection with 0 > 0 as above. Then

lull () < V20| Vull 2uca) Yu € Hy(€).

Proof. In order to simplify notation we assume |z1| < ¢ for all x € Q. Then for
any h € C'([—4,0]) with h(—d) = 0 we have

/_i'h(f>|2dt=/_z /_lh’(s)-lds dté/_i/_;lh’(s)|2ds(t+5)dt

5 5 5
g/_é\h(s)]ds/ (t+9)dt =26 /6|h(3)\ ds

-5 _

2

2
dridxy - - - dxg

by the Cauchy—Schwarz inequality. Thus for any u € Z()) we obtain
du
—(x1,...,24q)

/Q\u(x)\zdxg/R---/R/_2252 o

< 2(52/ |Vu(x)|*dr,
Q

which shows the assertion for u € (). For general u € H}(Q) it follows by
approximation. O

Corollary 1.38. If Q) is bounded with respect to one direction then
lul o) = IVull2cty,  u € Hy(),
defines a norm on Hy(SY), which is equivalent to the norm || - || g1 ) on Hy(S2).

The next theorem is due to Meyers and Serrin; a proof can be found in, e.g.
[1, Theorem 3.17|

Theorem 1.39. Let Q C R? be an open set. Then C>=(2) N H*(Q) is dense in
H*(Q) for all k € Ny.
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1.4 Fourier transforms 1 Distributions and Sobolev spaces

1.4 Sobolev spaces via Fourier transformation

In this section we express the Sobolev space H*(R?) in terms of the Fourier
transformation. Recall that for u € L'(R?) the Fourier transform of u is defined
as

1 .
~ o —ix-y d
u(z) = e /le e "Yu(y)dy, = e R

Moreover, recall that by the Riemann-Lebesgue lemma
i € Co(R?) := {U c C(RY) : ‘l|im v(x) = 0}
T|—0o0
holds for each u € L'(R%). The following theorem is known as Plancherel theorem.

Theorem 1.40. There exists a unique unitary operator F : L*(R?) — L*(RY)
such that Fu = 4 holds for all u € L*(RY) N L2(R%). In particular, the Parseval
identity

(Fu, Fo)ramay = (u,0) p2gay,  u,v € L*(R?),
holds. Moreover, (F'u)(x) = (Fu)(—z), * € R?, holds for all u € L*(R?).
Lemma 1.41. Let k € Ny and u € H*(R?). Then
(F(D%u))(z) = i'™z*(Fu)(z) for almost all z € R
holds for any o € N& with |a| < k.
Proof. Let first u € 2(RY) and o € N? arbitrary. Then integration by parts yields

(F(Du))(x) = ml)d . /R D )y

el [ (e )y = e (Fu) o)

for all z € RY. Now fix u € H*(R?) and pick a sequence (u,) in Z2(R?) such
that u, — u as n — oo in H¥(Q). Since F : L?*(R?) — L*(R?) is continuous
and D%, — D%u for |a| < k it is clear that F(D%u,) — F(D%u) and Fu, —
Fu in L*(R?) as n — oo. Choose a subsequence such that (F(D%u,,))(z) —
(F(D*u))(x) and (Fuy, )(x) — (Fu)(z) for a.e. x € R? as k — oo and, in fact
it can be assumed that (u,) was chosen right away such that (F(D%u,))(z) —
(F(D*u))(z) and (Fuy,)(x) — (Fu)(x) for a.e. z € RY It is clear that also
i1l 2 (Fu,) () — il®z®(Fu)(x) for ae. x € R? as n — oo, and hence the
assertion follows. O

—
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1 Distributions and Sobolev spaces 1.4 Fourier transforms

Note that in the above lemma one has F(D%) € L*R?) and hence also
x — iz (Fu)(z) € L*(RY).

Theorem 1.42. Let k € Ny. Then

H*(RY) = {u € L*(RY) : /Rd(1 + |2 *)¥| (Fu) () dr < oo}.

Moreover, there exist constants ¢, C > 0 such that

cllullf gay < /Rd(l + ) |(Fu) (@) Pde < Cllullfpge  Yu € HYR?).
Proof. Note first that there exist constants ¢, C' > 0 such that

e P <142 <C ) 2P Ve eR? (1.11)

lor| <k la| <k

(exercise). Let u € H¥(RY). Then the Parseval identity yields

||u||?{k(Rd) = Z ||Dau||%2(]R{d) = Z ||f(DaU)||%2(Rd)

la|<k la|<k

Lemma 141 Z |x (Fu)( )|2dx > —/ (1 + |z)*|(Fu)(z)*dz;

la| <k

(1.12)

in particular the last integral is finite. Let now, conversely, u € L?(R?) such that
Joa(1+|2[*)¥|(Fu)(z)|*dz < co. Then due to (1.11) the functions & — 2*(Fu)(z)
belong to L*(RY) for |a| < k. In particular, for each a with 1 < |a| < k there
exists u, € L?(R?) such that

iz (Fu)(z) = (Fuo)(z) for almost all z € RY.

Thus for any ¢ € 2(R?) and any o with |a| < k with the Parseval identity we
have

(1! [ @)D" a)de = (1)) 0. D) e
= (=1l Fu, F(D*9)) 12 (gay
~ (0 [ (F@F e F )
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1.4 Fourier transforms 1 Distributions and Sobolev spaces

= (Fa, FP)r2(rd)

= (Ua, P) 2(r1)
- [ waloyptards,

which implies u € H*(R?). The second statement follows from (1.12) and (1.11).
[

In general functions in Sobolev spaces are not automatically continuous (cf.
exercises). However, this is true if the space dimension is small enough in com-
parison with the Sobolev index.

Theorem 1.43 (Sobolev embedding theorem). Ifk > d/2 then H*(R?) C Co(R?).

Proof. Let u € H*(R?). First we show that Fu € L*(R?). Indeed,

(Fu)(z)|dx =/ (1 + )| (Fu) (@)1 + |2[?) " 2d

R4

= (/Rd(hr!wIQ)k\(Fu)(x)\zdx)UQ(/Rd(l+’x‘z)kdx>1/2

by the Holder inequality. The first integral on the right-hand side is finite by
Theorem 1.42. Moreover, the integrand of the second integral is bounded and

/ (1+ |$|2)*kdac < / |x|f2kd$ — Cd/ p2kpd=1 g, — Cd/ Td72k—1d7,7
jz[=1 | >1 | )

which is finite since d — 2k — 1 < —1 by assumption; here the Cj is the surface
area of the unit sphere in R?. Thus Fu € L*(RY). As u(x) = (F YFu))(x) =
(F(Fu))(—z) for almost all x € R? by the Plancherel theorem, the Riemann—
Lebesgue lemma implies u € Cp(RY). O

|
R4

Corollary 1.44. Let k € N with k > d/2 and m € Ny. Then H*™(R?) C
C™(RY).

Proof. For m = 0 this follows from Theorem 1.43. Now by induction: Assume
H¥m(RY) € C™(RY) for a fixed m and let u € H*¥™+(R?) ¢ H*™(R?). Then
u € C™RY) and 2 € H*™(RY) c C™(R?) for j = 1,...,d by assumption. It
follows u € C™ 1 (RY). O
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1 Distributions and Sobolev spaces 1.4 Fourier transforms

In the following we call the identity map from H{(2) to L*(Q) the embedding
of H}(Q2) into L*(©2). Recall that a linear operator T': U — V between Banach
spaces U and V is called compact if for each bounded sequence (u,), C U there
exists a subsequence (uy, ) such that (T'u,, )r converges in V. Recall further that
a sequence (u,), in a Banach space U converges weakly to some u € U if F(u,)
converges to F'(u) in C for each bounded, linear functional F': U — C, and that in
a Hilbert space each bounded sequence contains a weakly convergent subsequence.

Theorem 1.45 (Rellich embedding theorem). Let 2 be bounded. Then the em-
bedding of HY(QY) into L*(Q2) is compact.

Proof. Let (uy,), C Hj(2) be bounded in HJ (), that is, there exists ¢ > 0 with
|tn|| 1) < ¢ for all n. Then (uy), contains a weakly convergent subsequence;
without loss of generality we assume that (u,), itself converges weakly in H'(Q)
to some v € H'(Q). (Note: ||ullgi(q) < ¢.) Then the sequence (u,), belongs to
H*(R?) (see Proposition 1.33) and converges weakly in H!(R?) to u (for this write
down inner products). Moreover, ||t,| g1 (grey < ¢ for all n and ||| g1gay < c. Our
aim is to show ||, — [/ 2(rey — 0 as n — oo. For this let ¢ > 0 and let R > 0
such that 4c2C(1 + R?)™! < &, where C' > 0 is as in Theorem 1.42. Note that for
any z € R? the linear mapping F, : H*(RY) — C,

1

Falv) = (2m)ir? /Q e Yu(y)dy, ve H'(RY),

is bounded since

(2;)01/2 JAEOIE (Qﬂl)d/z( / mx)m( / |v<y>|2dy)1/2 s

1
(27T)d/2 |Q|1/2”U“H1(Rd)

|Fx(0)]

IN

<

for all v € H'(R?). Thus
(Fuy)(z) = Fp(u,) — Fy(u) = (Fu)(x) asn — o0

for all x € R%. Moreover, by (1.13) we have

|(Fun = Fu)(z)] <
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1.4 Fourier transforms 1 Distributions and Sobolev spaces

for all n. Thus by dominated convergence
/|<R ((Ft,)(x) — (Fu)(x)|*dz — 0 as n — oo. (1.14)
On the other hand, by Theorem 1.42
[ FEE o)

= /||>R(1 + 127 L+ 2l (Fin) () — (Fu) (@) [*de

< _C |, — |3
1+R2" HY(RY)

< ¢ (]l 1 ety + 112 111 e )2 <€
1 R2 n (R%) HI(RY) :

From this and (1.14) we obtain

limsup [ [(Ft,)(z) — (Fu)(z)|*dz < e.

n— o0 Rd

As € > 0 was chosen arbitrarily it follows ||F (u, — )| z2(rey — 0 and thus ||, —
| 2ay — 0 as n — oo. It follows ||u, — ul[z2(q) — 0. 0
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Chapter 2

The Poisson equation with Dirichlet
boundary conditions

Let Q C RY d > 1, be open and nonempty. In this chapter we deal with the
Poisson equation

—Au—Au=f inQ,

2.1
u=0 on 0, (2.1)

where f € L?(Q2) and A < 0 are given. In the setting of Sobolev spaces the
equation (2.1) is only formal since in general S is a set of measure zero and thus
evaluation of some Sobolev function u on 02 is not well-defined. As mentioned
above, for u € H'(Q) the Dirichlet boundary condition u|sq = 0 can be modeled
via the requirement u € H}(Q). Therefore the equation under consideration in
this chapter is

—Au—du=f, wue HyQ), (2.2)

where —Auw has to be understood in the sense of distributional derivatives and the
equality is an equality of distributions. Note that —Au — Au = f with f € L*(Q)
and u € H}(Q) implies —Au € L*().

Lemma 2.1. Let u € H(Q). Then u is a solution of —Au — Mu = f (in the
distributional sense) if and only if

/Q V() - Voolx) dr — A /Q w(@)p(z) da = /Q F@)o(a) da
holds for all p € H} ().
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2 The Poisson equation with Dirichlet boundary conditions

Proof. If u € H'(Q) satisfies —Au — Au = f distributionally then

/Q F(@)p(@)de = (—AT)(p) — A / u(z)p(x)dz

_ —Z%T< )= [ ate)ola) e
_ i ZZ (%) “a /Q w(@)o(z) da

ueH!(Q Z / o ax] ) da — A /Q u(@)o(@)da
_ /Q V() - Vip(a)de — A /Q w(@)o(z) da

for each ¢ € 2(Q). Via approximation this identity extends to all ¢ € H}(Q).
The converse implication follows by going the same steps backwards. O]

Theorem 2.2. Let f € L*(Q) and X\ < 0. Assume in addition that Q2 is bounded
with respect to one direction or that A < 0. Then (2.2) is uniquely solvable.

In the proof we use the Lax—Milgram theorem. Recall that a symmetric
sesquilinear form on a (complex) Hilbert space V is a mapping a : V xV — C
which satisfies

alau + Pw,v] = aalu, v] + Bafw, v], u,v,w e V,a,p €C,
and
alu,v] = alv, ul, u,v € V.
In particular, aju, av] = @afu, v] for all u,v € V, a € C, and afu| := afu, u] is real

for all uw € V. We denote by V* the anti-dual of V', i.e. the space of all bounded,
antilinear functionals F': V — C.

Theorem (Lax—Milgram theorem). Let V' be a Hilbert space and leta: VxV — C
be a symmetric sesquilinear form such that

(a) a is bounded, i.e., there exists M > 0 with |a[u,v]| < M||ullv||v|ly for all
u,v €V
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2 The Poisson equation with Dirichlet boundary conditions

(b) a is coercive, i.e., there exists n > 0 with a[u] > n||ul||? for allu € V.

Then for each F € V* there exists a unique u € V' such that

alu, o] = F(p), peV.

Proof of Theorem 2.2. Define a : H}(Q) x H3(Q) — C,
alu, v] = / Vu(z) - Vo(z)dr — )\/ u(z)v(z)dr, u,v € Hy(S).
Q Q
Then a is sesquilinear and symmetric. Moreover, by the Cauchy—-Schwarz inequal-
ity

|au, ]|

< IVl 2c0) [Vl 2ict) + Allull 2@ llvll 22 ()
< @+ Mullm@llvllme

for all u,v € Hj(f2), that is, a is bounded. Moreover, a is coercive: if A < 0 then
afu] = [|Vull72g,ca) = Mlull7z(q) = min{l, =A}ul|F g u € Hy(Q).

If Q is bounded with respect to one direction and A\ = 0 then the Poincaré in-
equality (Theorem 1.37) yields

1 1 11

1
alu) = 51 VulBaen + 5 Veliacn = 55mllultm + 51 Vuliqen

for all w € H}(Q). Hence in both cases a is coercive. Moreover, the mapping
F:H}Q) — C,

:Kﬁwaﬂm, o€ HY(Q),

is bounded. Thus by the Lax-Milgram theorem there exists a unique u € H}(Q)
such that

alu, 0] = F(p), e Hy(Q),

and Lemma 2.1 yields the desired assertion. ]
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2 The Poisson equation with Dirichlet boundary conditions

Let us next consider the case = R?. We show that solutions are more regular
in this case.

Lemma 2.3. For f € L*(RY) the equation —Au +u = f has a unique solution
u € H*(RY). In particular, if v, f € L*(R?) with —Av +v = f then v € H*(RY).

Proof. Since f € L*(R?) we have

| T Fh@ i < [ (D@ < .

Hence by the Plancherel theorem there exists u € L?(IR%) such that

%W@f)(x) = (Fu)(z) for almost all v € R,

Moreover,

/Rd(l + |x|2)2|(fu)(x)’2dx = /Rd |(]:f)($)|2dx < co.

With the help of Theorem 1.42 it follows u € H?(R?). Furthermore, Lemma 1.41
implies

(F(=Au+u))(z) = (J2f* + 1)(Fu)(z) = (Ff)()

for almost all z € R? and hence —Au +u = f, that is, u is the unique solution of
—Au+u= fin H'(RY).

Let now v € L?(R?) such that —Av +v = f and define w := u — v. Then one
has —Aw + w = 0 and hence

| v = e e = [ (-u() + @)@ de =0, o€ IR

Rd

and thus for any ¢ € H*(R?). By the first part of the lemma we can choose ¢ €
H?(R?) such that ¢ — Ay = w and it follows w = 0 and thus v = u € H?(R?). O

The following theorem is sometimes called a regularity shift theorem.

Theorem 2.4. Let u € L*(R?) and let f € H*(R?) for some k € Ny. If —Au = f
then u € H*2(RY).
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2 The Poisson equation with Dirichlet boundary conditions

Proof. We use induction over k. For k = 0 we have —Au +u = f +u € L*(R?)
and Lemma 2.3 yields u € H%(RY). Assume now that the assertion of the theorem
holds for a fixed k and let f € H*'(RY) c H*¥(RY). Then v € H*2(RY) and
hence —Au +u = f +u=: g € H*1(R?). Tt follows

/Rd(l L) (Fu) () [2da = /

= [0+ BB Fg) )P < o

([P ) (Fu) ()| de

as g € H*"(R?). Hence u € H*3(R?). O

For Q # RY the regularity issue is more involved and Au € L?(2) does in
general not imply v € H?(§2). Our main goal will be to show below local regularity
properties making use of the so-called difference quotient method. First we define
the spaces

HE(©) = {u € L2,(Q) - D*u € L, (Q) Ya € Nf with [a] < k}
and note that the following properties hold:

o C*(Q) C HE.(Q).

e uc HE(Q) and U € Q = ul|y € HX(U).

The next lemma is useful to relate the local spaces Hf (€2) with the spaces
Hg ().

Lemma 2.5. The identity
loc

HE(Q) = {u€ L}, (Q) : qu € Hy() for alln € 2()} (2.3)

holds for each k € N. Moreover, for u € HE (Q) and n € 2(Q) we have

D) = 3 (O‘) (D) (D) (2.4)

B<a b
for all o € N& such that |o| < k.
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2 The Poisson equation with Dirichlet boundary conditions

Proof. Let u € HE_(Q). Then for any n € 2(Q) we have nu € L*) and
(D'n)(DPu) € L*(Q) for all 3,7 € Nd with |5| < k. A computation shows that
for each p € 2(Q) and each a with |a| < k we have

5 (5) oo e) = (1) 29

BLa B

and hence

[p>

(5) @@ 0 @ete) s

B() DI [ DA (D" P a)pla)ute) da
= [ (@)D (o).

B<a

Thus nu € H*(Q) and (2.4) holds. As nu vanishes outside a compact subset of €2 it
follows nu € H(Q) (exercise). For the converse inclusion in (2.3) let u € L2 ()
such that nu € HE(Q) holds for each n € 2(Q2). Let U € Q and let n € 2(Q)
such that n(z) = 1 for all z € U; cf. Lemma 1.7. Then for each ¢ € Z(Q2) with
suppp C U

(17! [ u@)D (e do = (1) / (@)D (@) do = [ D () (w)ela) da

/ D () (@) ()

for each o with || < k, i.e., D = D%(nu) on U. Since nu € H*(Q) by
assumption, we obtain (D®u)|y € L*(U). Hence u € Hy; (). O

The following theorem is a local version of the Sobolev embedding theorem.

Theorem 2.6. Let k € N with k > d/2 and m € Ny. Then HFT™(Q) c C™(Q).

loc

Proof. Let v € HFI'™(Q) and U € Q and let n € 2(Q) such that n(z) = 1 for

loc

all € U. Then nu € HY™(Q) by Lemma 2.5 and thus nu € H*™(R?) by
Proposition 1.33, and Theorem 1.43 yields nu € C™(R?). Hence u € C™(U). O

We come to the local regularity result.
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2 The Poisson equation with Dirichlet boundary conditions

Theorem 2.7. Letu € L2 (Q) and let f € HE () for somek € Ny. If —Au = f

loc

then uw € H(Q). In particular, f € C=(2) implies u € C=(£2).

loc

Proof. Step 1. We assume that f € L2 (Q) and show u € HZ (). Let n € 2(Q)
be fixed and define

Fi) = [ )@= 8a@ dr, o€ DR
Then the mapping Z2(R?Y) 3 ¢ — F(ip) is antilinear and satisfies
F(p) = /Q (nu — uA(@n) + upAn + 2uVy - Vi) (z)dz, ¢ € 2(RY), (2.6)

where we have used the product rule A(@n) = nAp + 2V - Vi + $An and, as a
consequence, o
—ulA(@n) + uplAn + 2uVe - Vn = —unAgp.

Note that P|on € Z(Q2) and hence
—/Qu(x)ﬁ@ﬁ)(%) dr = Tu(=A(en)) = —(AT.)(pn) = Ty (@n)
- [ 1@ da

by the definition of the distributional derivative. From this and (2.6) it follows

Flg) = / (u+ i+ ulsn) (@) p(2) da + 2 / Vo) - Vi(z)u(z) dz, € D(RY.

Thus an application of Cauchy-Schwarz shows that ¢ +— F(p) is bounded with
respect to the norm in H!(R%) and, hence, can be extended to a bounded antilinear
functional F : H'(R?) — C. By the Fréchet-Riesz theorem there exists a unique
v € HY(RY) such that

[ vep@ide+ [ Vola) Felwide = Fle) = [ i)le = Apia) da

R4

for all p € Z(R?) and thus

| @e=80w e = [ o= Aaw . pea®), (27
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2 The Poisson equation with Dirichlet boundary conditions

using the definition of the weak derivative. The last identity extends by continuity
to all ¢ € H*(R?). By Lemma 2.3 there exists a unique ¢ € H?(R?) such that
¢ — Ap = v — nu. Plugging this ¢ into (2.7) leads to

v —ijul*(z)dz = 0
R4
and thus v = nu almost everywhere on R?. In particular, nu = v|q € H'(Q) and
nu has compact support. Hence nu € H}(Q) and Lemma 2.5 implies u € HL _(Q).

In order to show u € HZ () observe that the product rule for the Laplacian and
—Au = f imply

A(u) = (uln+2Vn-Vu—nf) (2.8)

on R? in the sense of distributional derivatives (exercise). As u € HL () the
right-hand side belongs to L*(R?) and Theorem 2.4 implies nu € H?(R?). As
above it follows nu € H2(Q2) and hence v € HZ () by Lemma 2.5.

Step 2. We use induction in order to establish the general statement. For

k = 0 the assertion was proven in Step 1. Assume that for a fixed &k the assertion is
true and let f € HEPYH(Q) € HE (Q). Then u € HE(Q) and for each n € 2(9)

loc loc
it follows from (2.8) A(nu) € H*''(R?). Another application of Theorem 2.4
implies 7u € H*3(R9) and hence u € H3(Q).

Finally, if f € C*(Q) then f € HE (Q) for each k € N and thus u € H'*(Q)

for each k. With Theorem 2.6 it follows u € C™(2) for each m and thus u €
C>®(Q). O

Remark 2.8. (i) Theorem 2.7 shows that each distributional solution of —Au = f
with f € L*(Q) is in fact a weak solution, i.e., the derivatives are weak derivatives.

(ii) For each open, nonempty 2 C R d > 2, one can construct functions
u, f € C(2) with compact supports such that —Au = f distributionally but u ¢
C?(Q). Thus there always exist weak solutions which are not classical solutions.

The main objective in the following is to prove a result on the regularity of
solutions up to the boundary of 2. For this the so-called difference quotient
operators will be defined. For a function v : Q@ — C,i=1,...,d, and h > 0 let

he;) — — — he;
_ u(z + he;) — u(x) and D u(x) = w(z) — u(x — he ) (2.9)
h h
The functions DF" in (2.9) are well-defined for all x € Q such that x 4 he; € Q.
These subsets of Q will sometimes be denoted by Q*". Occassionally it is also

D "u(x)
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2 The Poisson equation with Dirichlet boundary conditions

useful to extend u by zero to a neighbourhood of €2 and to regard D;thu as a
function on 2. The following preparatory lemma provides some elemenentary
properties of the difference quotients Dz?th .

Lemma 2.9. Let u,v : Q — C and i = 1,...,d. Then the following assertions
are true.

(i) For h >0 and all z € Q*" the product rules hold:

(D uv)(2) = u(z + he;) D v(z) + (D u(x))v(z),
(D "uv)(z) = u(z)D; "v(z) + (D u(x))v(z — he;).

]

(ii) Ifu,v € L () and at least one of the functions has compact support in

loc

then for h > 0 sufficiently small one has

(U, D;—hU)LZ(Q) = —(Di_hu,l})[;(g).

Proof. (i) Making use of the definition of D;" in (2.9) one has

u(z + he)) Do(z) + (DF Pu(z))o(z)
v(x + he;)) —v(z)  u(x+ he;) —u(x)

= u(z + he;) . + A v(x)
_ (uwv)(x + he;) — (wv)(x)

h
— (D))

for all z € Q™. The product rule for D; " is shown in the same way.
(i) Let u,v € L2 () and assume that supp u is compact. Choose h > 0 such

loc

that also supp u(- — he;) C §2. Then it follows that

(u, D;—hv)L2(Q) + (Di_hu, U)L2(Q)

= %/Qu(x)(v(x + hey) —v(z))dz + %/Q(u(a:) — u(z — he;))o(z)dz
1

= E/Qu(x)v(x + he;)dx — —/QU( — he;)v(z)dx
1 1

=z /Q+hei u(x — he;)v(x)dr — i, u(z — he;)v(z)de

= 0.
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2 The Poisson equation with Dirichlet boundary conditions

Proposition 2.10. Let D" be as in (2.9), i = 1,...,d. Then the following
assertions hold.

(i) Foru e HY(Q) and Q' C Q such that ¥ + h'e; C Q for some h' > 0 one has
HD,ZthU||L2(Q/) < ||(9,;u||L2(Q), 0<h<Hh. (210)

(ii) Furthermore, for € 2(Q) and h > 0 sufficiently small the functions T D"u
and DF"(tu) are defined on Q and one has

17D ull 120) < 17|l 2o (y105uel| 220,

(2.11)
1D (Tu) | 220y < 110:(Tw) | 2(0)-
Proof. (i) We will show the estimate for D;”; the proof for D;” is the same.
Assume first that v € C>(Q) N H(Q2). For £ > 0 we have
u(z + (€ +k)e;) —u(x + Ee;) 0

d )
d—gu(x +&e;) = llcli% k: = a—xzu(x + &e;)

and therefore for 0 < h < A’

h _ulz+he)—u(@) 1 [Md 1o
D'u(z) = h _E/o d_fu(x+§ei)d§_ﬁ/o 8:ciu($+§ei)d€'

For 0 < h < h' we obtain with the help of the Cauchy-Schwarz inequality

2

Dl =5 [ | [ e + e ] s
< %//Oh aiiu(x+§ei) 2d§dx
:%/Oh/, 8iu(m+§ei)2dwd§
< %/Oh/Q aiiu(x) e
ou ||?

il 2y

Since C*(Q) N H'(Q) is dense in H'(Q) by Theorem 1.39 and w,, — u in H'(2)
yields D;""u,, — D™ in L?(Q) the first assertion follows via approximation.
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2 The Poisson equation with Dirichlet boundary conditions

(ii) For the first estimate in (2.11) note that with 7 € Z(Q) and h > 0
sufficiently small we can view 7D;"u as a function defined on  which vanishes
a.e. on Q\ U, where U € (2 is suitably chosen. Then one has for h > 0 sufficiently
small

2

h
||7Di+hu||iz(m=% [l | [ gute+ gen de
5 2
E HLOO // 8:z:iu(x+£ei) d§ dx
2
= Ml [ [ [outa+ e dwae
a 2
< il / / Jula)| do dg

= [I7llZ0)

axi

L2(Q) .

For the second estimate in (2.11) note that || Df"(7u)|| 2o < [|0:(7u) || z2() holds
for any Q' C Q such that Q' + he; C Q according to (2.10). Since Tu has compact
support in €2 for A > 0 sufficiently small the support of Diih (Tu) is also contained
in © and hence || DF"(1u)|| 12y < [|0i(Tu)||12() follows. O

In the next proposition we show how a uniform bound in A for a difference
quotient yields the existence of weak derivatives locally in L?.

Proposition 2.11. Let D" be as in (2.9), i = 1,...,d. If for u € L*(Q) and
U € Q2 there exists C'(u) > 0 such that

1D ull 20y < Clu)

holds for all h > 0 sufficiently small then the weak derivative Oyu exists in L*(U)
and satisfies

Proof. Since || Dj"ul| 21y is bounded by C/(u) for all b > 0 sufficiently small there
exists a sequence (hy) in (0, h) with hy — 0 for k — oo such that D"« converges

ou
8@»

< C(u). (2.12)

L2(U)
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2 The Poisson equation with Dirichlet boundary conditions

weakly to some u; € L(U) and, in particular, (D; ™, ©) 2wy — (Ui, @) 2y for
all o € 2(U) when k — 0o. On the other hand we have

(D™ u, ) 2wy = —(u, D" 0) 120y = —/ u(z) D" () da
U

by Lemma 2.9 (ii) and dominated convergence shows that the last term tends to

dp
_/[]u($)8xi (x)dx

when k — oo. Therefore

| wteie@ar == [ wFE @i e o),

and hence g—; = u; € L*(U). The bound (2.12) follows from

2
’ Ou = (ul,%) = lim (D;rhku, %>
0
< limsup”D;rhkuHLz(U) ‘ Y
il r2w)
and the assumption || D;"u| 2y < C(u). O

The next theorem is a local version of the regularity shift Theorem 2.4 for
k = 0; here no additional assumptions on {2 are imposed, but the solution u is
required to be in H*(£2). Instead of the Laplacian we consider here a more general
second order uniformly elliptic differential expression.

Theorem 2.12. Let Q@ C RY, d > 1, be open and nonempty, and consider the

differential expression
o . 0
L=— — olF —
Z aZL‘j @ al'k
Ji:k=1

on Q. Assume that o’* € CY(Q) are real-valued functions that satisfy o’* = a7,
5, k=1,...,d, and suppose that L is uniformly elliptic, that is,

((0*(@)5hm18.8) o > EllEI?,  €€CY zeQ, (2.14)

for some E > 0. If Lu = [ holds for some f € L*(Q) and u € H*(Q) then
u € HE.(Q).

loc
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2 The Poisson equation with Dirichlet boundary conditions

Proof. Fix U € Q and h > 0 such that h < gdist (U, €2), and choose 7 € 2(Q)
with 0 < 7(z) <1, z € Q, and

1, zeU,
7(z) =
0, z¢U++dist(U,Q)

In order to show the assertion we have to verify du € H'(U), i = 1,...,d. For
this consider the function

p(x) = (D7"7°DfMu)(x), (2.15)

which has the more explicit form

O A O

1 (T2<x)u(x + he;) —u(z) o — hei)u(x) —u(x — hei)) |

h h h

Observe that the function ¢ is well defined for all x € 2 if we extend u by zero into
a suitable small neighborhood of €2. Moreover, for z ¢ U + %dist(U ,2) the choice
of 7 shows ¢(z) = 0. Since v € H'(Q) this implies ¢ € H}(Q); cf. Lemma 1.35.
With ¢ € H}(Q) it follows in the same way as in the proof of Lemma 2.1 that

d d
(f,p) = (Lu,p) = Z (0;07% O, ©) Z(ajkaku,ﬁjgo)
k=1 J.k=1

holds. Using the particular form of ¢ in (2.15) and Lemma 2.9 (ii) we compute
(all following inner products and norms are in L?(Q2) or L?(Q; C?) if not stated
otherwise)

d
~(£, D77 D) = = 3 (7O, 0;(DT "7 D)
7,k=1
d
— (a?*Opu, D7 (9;(T* D "))

J,k=1

d
Z D" (a?*0u), 9;(7* D)),

7,k=1
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2 The Poisson equation with Dirichlet boundary conditions

where we have also used ;D" = DF"0; for ¢y € HY(Q) and j = 1,...,d.
With the help of the product rule in Lemma 2.9 (i) we further conclude

d
— (a?*(- + he;) 0D "u + (D a?*) O, 0;(7° Di ) )
jk=1
d
=2 (a?*(- + he;) 0, D u, 7(0;7) D "u))
jk=1
d d
+ Z (a?*(- + he;) 0, Df "u, 7°0; D "u) + Z (D a?*)Ou, 0;(7* D u)).

g k=1 jk=1

Rearranging the terms leads to the identity

d
Z (a?*(- + he;) 7Ok D" u, 70; D)
j,k=1
d
= —(f, D;y"r*Df ") —2 Z (a?*(- + he;) 0, D} 'u, 7(0;7) D)) (2.16)
7,k=1
d
= > (Do) u, 0;(7* D))
G k=1

The ellipticity condition (2.14) implies for the term on the left hand side

d
(a?*(- + he;) 70D u, 70; D)
k=1

_ /Q (07 (z + hed)) !y 7(@) VD (), 7(2) VDI (1)) o dt

> / B||7(2)VD; " u(x)||;, de = |7V Dl |,
Q

Using Proposition 2.10 (i) and 72 < 7 < 1 the first term on the right hand side
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2 The Poisson equation with Dirichlet boundary conditions

of (2.16) can be estimated as follows

—(f, D77 D) < ||fII| DT 7D
< I£1l0:(r* D" u)|
< [I£11(l12(2:7)r D *ull + [|7*0: D ul])
< IAII(Cl1sull + l|70: D3 ull)
< Co([Vull + I7V D ul)),

and for the second term on the right hand side of (2.16) we observe

d
9 Z (a?* (- + he;)T0x D} "u, (9;7) Df"u)) < Cy Z |78 D "ul| || (9;7) D |
j.k=1 j.k=1

d
< i3 70D ull |l
k=1

< Gs||TV D u [ V.

For the third term on the right hand side of (2.16) we compute and estimate

d
= Y (D)0, 0;(7* D u))
jk=1
d d
-2 Z (D) Opu, 7(0;7) D u) Z ((D;"a?*)Oju, 7°0; D " u))
7,k=1 7,k=1
d
Z Oulll|Orull + Cx Z 10wl l|70; D u|

7,k=1

< CsHVUH2 + Co|Vul [ 7V D u.
Summing up we have the following inequality
E|rV D ul* < C'(w)||Vul| + C"(w) |7V D ull,

where C'(u) = Cy + Cs||Vul| and C"(u) = Cy + (C5 + Cy)||Vu||. Making use of
the inequality ab < %az + %bQ for a,b > 0 we find

1 E
Ellrv D ul? < C'()|[Vul + 55C"(w)* + S 17V D ul %,
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2 The Poisson equation with Dirichlet boundary conditions

and hence g .
SArVDF P < O @) Vull + 5= C" () = Clu).

As 7 = 1 on U it follows that ||VD+hu||L2(U cay < %5(@ and this yields for
kE=1,....d

9
I D" Oul| r21ry = 106D " ul| 2y < |V D ul| p20ricay < EC(U)‘

Now Proposition 2.11 implies that the weak derivative 0;0,u of Oyu exists in
L?(U). Since this is true for all i = 1,...,d and all U € Q we finally conclude
u € HE.(Q). O

Observe that the constant C (u) in the proof of Theorem 2.12 depends on the
distance of the subset U & €2 from the boundary 0} (as e.g. ||0x7T||z(q) enters
in the estimates). Therefore a global regularity result can not be proved along
the same lines without additional assumptions. In the next theorem it is assumed
that  is a bounded C?-domain (see Definition 3.2 and the following Remark 3.3)
and the solution satisfies Dirichlet boundary conditions.

Theorem 2.13. Let @ C R, d > 1, be open, nonempty, bounded and of class
C?, and assume that —Au = f holds for some f € L*(Q) and u € H}(Q). Then
u € H*(Q).

Proof. Let us choose open bounded sets Uy, ..., U, C R? such that

aQCOUl

=1

and C%-mappings ®; : U; — B(0,1) with inverses ¥; : ®(U;) — U, L = 1,...,r,
such that

O (U;NQ) C BL(0,1), &,(U;N00Q) c R x {0}, & (U;NRNQ)) c B_(0,1),
for all [l =1,...,7; here and in the following we use the notation

B:(0,7) = B(0,7) N{x € R*: x4 > 0} with v > 0.
In addition, choose ¥ € (0,1/3) such that B,(0,39) C &,(U;NQ), 1 =1,...,r,

and it is no restriction to assume that U; were chosen such that

anUqu, (0,9)).

=1
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2 The Poisson equation with Dirichlet boundary conditions

Furthermore, let 2y € 2 be such that
Qc (Qo ulJw(B(o, 0))) : (2.17)
=1
We note that from Theorem 2.12 and its proof it is clear that

Di0pu € L*(y), ik=1,...,d. (2.18)

For the following considerations fix some s € {1,...,r} and consider the dif-
ferential expression

oy LD
) 3 ayk
on B, (0,39), where
ol = (VO o Uy, VO 0 U,)ea € C'(B4(0,39)).

Note that the component functions ®J are real valued so that a* = o*. With
fs(y) = f(Us(y)) and us(y) = u(¥s(y)), y € B4(0,3V), one has'

(Lstis, ©)12(B. (0,39)) = (fss ©)2(B,(0,39))5 ¢ € Hy(B4(0,39)),

Note that (Vus)(y) = (Vu)(¥s(y))(D¥)(y) and hence

Bus d 8\1/1
8yk Zl 5yk L)

It follows for ws € H}(B4(0,39)) and w € H} (¥4(B4(0,39))) with ws(y) = w(¥s(y)) that

aus Bws
(Lsus,@s) L2(B.4(0,39)) / Z 5yk 6yj (y) dy
d J k d " i d p
- [ ¥ GG ) (Z gx_<ms<y>>g§;<y>)( i@s(y))%‘if(w) By
Jikt=1 i=1 " p=1 P j
¢ ou dw L ovi opk L our 9di
:/”;1 e ))671)( () (}; By: ) o (y))) ; 9, S () 5, (Ls@) | dy
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and L is uniformly elliptic since

(W) 1218, €) a Z (VOI(Wo(y)), VOL(Wa(Y))) u k€5

:kaw 1)), &VU(T(Y))) ca

— kakV(I)k . (2.19)
a\ |

= [(VOLUT.(y)), ..., VELL(y))) | :
éa) || o

= [[(D2, (%)) "¢l

>EH£H@,

where we have used in the last estimate that D®4(W,(y)) is an invertible matrix.
Now let 7 € 2(B(0,1)) such that 0 < 7(y) < 1and 7 =1 on B(0,9) and 7 = 0
in B(0,1) \ B(0,29). Since u € H} () it follows that us(yi,...,ya_1,0) = 0 and

¢ = D;"r*D'u, € HY(B,(0,39)) for i=1,...,d—1.
As in the proof of Theorem 2.12 it follows that
R

D"~y <K, k=1,....d, i=1,...,d—1, (2.20)

L2(B4(0,0))

and therefore
2

us, € L*(B.(0,9)), k=1,....d, i=1,....,d—1, 2.21
Sy te € (B (0.9)) 2:21)

and since (DW,) - (D®,) = I we have Zk 1 g‘i (y) gfi (Ps(y)) = dim. Therefore

8(.0
(‘C usvw9 LQ(B 0319 /Z 8$t ‘ al‘t (\IJ (y))dy

= (Vu(¥s()), V(¥ s('))L2(B+(07319>>
= (F(Ze()),8(¥s() 125, (050

= (fs,Ws)L2(B, (0,30))-

42



2 The Poisson equation with Dirichlet boundary conditions

and when viewing #{;ykus as a distribution we have 8y?;yk Ug = 81228% us and hence
o € L*(B.(0,9)), k=1 d, i=1 d—1 (2.22)
— 1)), =1,....d, 1=1,...,d—1. .
YOy, "
Since Lus = fs we also have
d

0 w 0 o 0

—o— oY) aus(y) = foy) + oy (y) 5—us(y

Ty 220 ) = )+ 32 Gt ) o)

(4,k)#(d,d)

and since a2(y) = ((ed*(y))?1_1€a, €a) ca > Elleallza = E > 0 by (2.19) we obtain

S S

0%, 1 L9 0 dald N\ 9
T = s | £+ X el ) g+ () )

Now it follows from (2.21) and (2.22) that the right hand side belongs to L*(B, (0, 4)),
so that
D?u

ay{ € L*(B.(0,9)). (2.23)

Since @, is a C*-mapping it follows from (2.21), (2.22), and (2.23) that

d0ku € L*(Wy(B4(0,9))), i, k=1,...d.
Since this is true for all s = 1, ..., j it follows together with (2.17) and (2.18) that
u € H*(Q). O

For completeness we state (but do not proof) one more result on the global
regularity of solutions up to the boundary. Recall that €2 is called convex if
z,y € Q implies tx + (1 —t)y € Q for all ¢t € (0, 1).

Theorem 2.14. Let Q C R? be a bounded, convex open set and let u € Hi(Q)
and f € L*(Q) with —Au = f. Then u € H*(Q).

Remark 2.15. The techniques of this (and the following) chapter apply not only
to the Poisson equation but to more general elliptic differential expressions. Recall
that a differential equation of the form

d

0 0 0
Lu 3:—2 a—%(aija—;) +ija—;j+cu:f

,j=1 Jj=1
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2 The Poisson equation with Dirichlet boundary conditions

with bounded, measurable coefficient functions a;;, b;, ¢ is called uniformly elliptic
if there exists a constant £ > 0 such that

d
3 ai(@)6€; > Bl Vo e Q6 e RY
i,j=1

holds.
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Chapter 3

Neumann and Robin boundary
conditions

In order to treat more general boundary conditions it is necessary to impose a
regularity assumption on the boundary of €.

3.1 Lipschitz domains

Recall that a function g : R™ — R is Lipschitz continuous if there exists L > 0
with

lg(x) — g(y)| < Llz -y, z,y € R™.

In this case, L is called a Lipschitz constant for g. Lipschitz continuous functions
admit derivatives in L* as the following theorem due to Rademacher (see, e.g.
REFERENCE) shows.

Theorem 3.1. Let g : R™ — R be Lipschitz continuous with Lipschitz constant
L > 0. Then g is differentiable almost everywhere and

dg

P <L, j=1,...
G @S L g=1m,

holds for almost all x € R™.

Definition 3.2. Let  C R%, d > 2, be open and nonempty.

45



3.1 Lipschitz domains 3 Neumann and Robin boundary conditions

(i) Qis called Lipschitz hypograph if there exists a Lipschitz continuous function
g : R! — R such that

Q= {(xl,...,a:d)T ERd:xd<g(x1,...,:Ed_1)}.

(i) Qis called Lipschitz domain if the boundary OS2 is compact and for each x €
0f) there exists an open neighborhood U, C R? of z, a Lipschitz hypograph
2, and a rotation R, (an orthogonal matrix with determinant one) such
that U, NQ = U, N R,(£,).

Remark 3.3. (i) Due to compactness the boundary of a Lipschitz domain can
be described by the graphs of finitely many Lipschitz continuous functions.

(ii) A C*-domain is defined analogously with Lipschitz continuous functions
replaced by C*-functions, k € N.

Example 3.4. (i) Each circle or ball is a Lipschitz (in fact C°°) boundary.
(ii) Each cube is a Lipschitz domain but not a C*-domain for any k > 1.

(More details in the exercises.)

Proposition 3.5 (Partition of unity). Let K C R? be compact and let Uy, . .., Uy,
be open sets with K C U], U;. Then there exist n, ..., nm € Z(R?) such that

((l) Ognjé:l;]:]-)vmf
(b) suppn; CU;, j=1,...,m,
(¢) > i mj(x) =1 for each v € K.

The collection of the functions 7, ...,n,, is called a partition of unity on K
associated with Uy, ..., U,,.

Proof. Each x € K belongs to some U; and in particular for each € K there

exists r > 0 with B(z,r) C U;. As K is compact, finitely many such balls cover
K; we call these balls By, ..., By. For j =1,...,m define K; := Ufchj B;. Then
each K is compact and K; C U;, 5 = 1,...,m. Moreover, K C U;nzl K;. By
Lemma 1.7 for j = 1,...,m there exists 1; € Z(R?) such that 0 < ¢; < 1,
supp®; C U; and ¢;(x) = 1 for all x € K. Define

m = Y1,
N2 := (1 — 11)1o,
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3 Neumann and Robin boundary conditions 3.1 Lipschitz domains

N3 = (1 = 1) (1 — a)ts,

M= (L= 41) -+ (1 = Y1),

Then suppn; C suppv; C U; for j =1,...,m. Moreover, by induction 2?21 n; +
(1—=11)---(1—=1,) =1foralne{l,...,m}. In particular,

Zm F (=) (1= thy) =1

and thus 0 < Z;nzl n; < 1. Finally, each x € K belongs to one of the K; and
hence ¥j(x) = 1 or, equivalently, 1—1);(z) = 0, which implies 3 77" | n;(z) = 1. O

Let € be a Lipschitz domain and let z,...,x,, € 0Q such that the sets

Uj :=U,;, j=1,...,m, in Definition 3.2 form an open cover of 9€2. Moreover, let
gi,--.,9m be corresponding Lipschitz functions and R; the corresponding rota-
tions as in Definition 3.2 and let 7y, . . ., n,, be a partition of unity on 0f2 associated

with Uy, ..., U,,. For any bounded, measurable function f : 92 — C we define
| sao= Z [ R (R D)+ V)P

Due to the Rademacher theorem this integral is finite. By plugging in f = 15 for
any Borel set B C 02 this defines a surface measure ¢ on 9€) by

o(B) = /8 do

In particular this gives rise to the Hilbert space L*(99) (with respect to the
measure ¢) and its corresponding inner product (-,-)z2(s0). By Rademacher’s
theorem the outer unit normal vector

I/(:Ij‘) — (v-gj(x,)v _1)T
Vg (@)]? + 1

exists for almost all x = (2, g;(2'))" € 99, where j is chosen such that z € U;. It

is orthogonal to the tangential space at x, which is spanned by (eq, g—ﬁ(:c’ N,

P . : _
(eq_1, azihl(x’))T, where eq,...,eq_1 are the unit vectors in RY~'. Moreover,

lv(z)| = 1 for almost all = € 09.
As in the Analysis lecture one proves the divergence theorem (“Satz von

Gauk”).
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3.1 Lipschitz domains 3 Neumann and Robin boundary conditions

Theorem 3.6 (Divergence theorem). Let 2 be a bounded Lipschitz domain. Then

/divu(m)d:p:/ u-vdo
Q o9

holds for all u € C*(Q,C%).

As a corollary one obtains Green’s identities. (See exercises.) Here we write

Qu .= Vu - v for the normal derivative of some u € C*(Q) on 9.

Corollary 3.7 (Green’s identities). For any u € C’Q(ﬁ)
i) [o(Auw)(z)v(z)ds + [, Vu(z) - Vo(z)de = [, vdo for allv e CH(Q);
(i) [,((Au)(z)v(z) — u(z)(Av)(2)) dz = [, (540 — ulY) do for all v € C*(Q).

In the following our aim is to extend Green s identities (and thus the boundary
evaluation of u and the normal derivative 2 S4) to w € H'(Q). This requires some
preparation.

Theorem 3.8 (Extension property). Let 2 be a bounded Lipschitz domain. Then
for each uw € H(Q) there exists w € H'(R?) with w|q = u.

Sketch of proof. Let u € HY(Q). Let g be a Lipschitz function whose graph de-
scribes locally the boundary of € within an open ball U. Then u(2’, g(z') + s) is
well-defined for appropriate 2/ € R4~ and s < 0. For appropriate 2’ and |s| small

define

u(z',g(x") +s), s<0,
u(2’, g(z') —s), s>0.

w(z', g(z") +s) = {

Using the definition of a Lipschitz domain and a corresponding partition of unity
construct w on some smooth domain Q with € Q. Then one can show w €
HY(Q). A further extension leads to a function in H*(R?). O

Corollary 3.9. Let Q2 be a bounded Lipschitz domain. Then

{¢la: ¢ € 2(RY}

is dense in H'(2).
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3 Neumann and Robin boundary conditions 3.1 Lipschitz domains

Proof. Let E be the extension operator in Theorem 3.10 for Q = R? and let
u € HY(Q). Then Eu € H}(R?) and by Theorem 1.36 there exists a sequence
(Vn)n C 2(RY) such that ¢, — Eu in H'(R?). Since the restriction operator
v+ v|g from HY(R?) to H*(Q) is bounded the assertion follows. O

Theorem 3.10 (Extension operator). Let Q C R? be a bounded Lipschitz domain
and let @ C R? be open such that Q) € Q. Then there exists a bounded linear
operator E : HY () — H}(Q) with (Eu)|q = u for allu € H'(Q).

Proof. Let T : HY(RY) — H'(Q) be the restriction operator, i.e., Tu = u|q for all
u € H'(R?). Then T is linear and bounded and by Theorem 3.8 T' is surjective.
Thus T'| ey is bounded and bijective and, hence, has a bounded inverse S :
HY(Q) — (ker T)* c HY(RY). For any u € HY(Q) one has (Su)|q = T'Su = w.
Let now  be as in the theorem. By Lemma 1.7 there exists n € 2(RY) such that
suppn C Q and n(z) = 1 for all z € Q. With Fu := (nSu)|g we get the required
extension operator. O]

Theorem 3.11. Let €2 be a bounded Lipschitz domain. Then the embedding of
H'(Q) into L*(Q) is compact.

Proof. Let Q be a bounded, open set with () & Q. By Theorem 1.45 the embed-

ding ¢ of H}(Q) into L*(Q) is compact. Let E : H(Q) — H}(Q) be a bounded

extension operator as in Theorem 3.10 and let R : L*(Q2) — L?(2) be the restric-
tion operator, which is bounded. Then the embedding of H'(€2) into L*(€2) equals
R.E and, hence, is compact. ]

Note that the embedding of H*(€2) into L?(£2) may be noncompact for general,
non-Lipschitz domains; see exercises.

In the next theorem the Dirichlet trace operator tp is introduced.

Theorem 3.12 (Trace theorem). Let 2 be a bounded Lipschitz domain. Then
there exists a unique bounded linear operator Tp : H'(Q) — L*(09) such that
Tpu = u|gq holds for allu € C(Q) N H' ().

Proof. We show that there exists C' > 0 such that
luloallr200) < Cllull o o) (3.1)

holds for all u € C1(Q). Let first u € CY(Q) with suppu C U; for one j and
assume that R; = I. Without loss of generality assume that u is real-valued;
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3.1 Lipschitz domains 3 Neumann and Robin boundary conditions

for the general case do the following estimate for the real and imaginary parts
separately. Then with ¢; := sup \/1 + |Vg;(2')|? for each sufficiently large h > 0

we have
| e a1+ Vg
Rd—1

SC]‘/ | (I gj ’ dCL’
Rd-1
h
d ’ / /
= —¢j /Rd %[u(z ’gﬂ'(gj)_sﬂ dsdr
-1 Jo
h
/ d / / !
- / / 2u(a’, gj(x )—3)5“(%%@)—3)‘13“
Rd—1

/Rd / 2, gi(a') — 5)" + (Vu)(a', g;(2') — 5) - (—eq)) dsda’
S%[;< )+ (Vu)(@)’de = ¢llulf g,

where we have used —2af < a? + 3% for real o, 3. From this for arbitrary
u € CY(Q) it follows

lulonllZ o = Z/ )2 (R, (o gy (@) /1 + [V gy () P’

m

= chu\/n_juui,l Z Gillullin o)
j=1

for certain constants ¢;, where we have used that ,/7; and its derivatives of first
order are bounded. With C' = (377", &)"/? this leads to (3.1). Thus the linear
mapping C1 () > u — usq is bounded from H'() to L?(952). By Proposition 3.9
C'(Q) is dense in H'(£2) and hence there exists a unique bounded, linear operator
o HY(Q) — L?(09Q) such that Tpu = ulsq holds for all u € C*(Q). For
u € C(Q) N HY(Q) the latter property follows via approximation (exercise). [

Theorem 3.13. Let 2 be a bounded Lipschitz domain with trace operator Tp.
Then

ker 7p = Hy (Q).
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3 Neumann and Robin boundary conditions 3.2 Neumann boundary conditions

Proof. For u € Hy(Q) by definition there exist u, € Z(Q) such that u, — u in
HY(Q). As u, € C(Q) N HY(Q) it follows

Tpu = lim Tpu, = lim (u,|oq) = 0.
n—oo n—oo

The inclusion ker 7p C H} () is more difficult. . . O

3.2 Neumann boundary conditions

The following definition is motivated by the first Green identity.

Definition 3.14. Let 2 be a bounded Lipschitz domain with trace operator 7p.
Moreover, let u € H'(Q) such that Au € L?(Q), where Au is formed in the
distributional sense first. If there exists b € L?(9f2) such that

/Q Au(z)o(z) dz + /Q V() - Volz) dr = /8 brpu)do

holds for all v € H'(Q2) then we call b normal derivative of u. We shall often use

the notation Tyu = % = b.

Remark 3.15. (i) The normal derivative is unique; this follows from the fact
that the traces Tpv for v € H'(Q2) form a dense subspace of L?(99) (here without
proof).

(ii) For u € C?(Q) it follows from Corollary 3.7 (i) that b coincides with the

(classical) normal derivative. Therefore we write 2% or 7yu instead of b for any

u € H*(Q) such that Au € L*(Q). 8V

(ili) Definition 3.14 implies the validity of Green’s first identity for u,v €
H'(Q) with Au € L*(Q2). In a similar manner one also obtains Green’s second
identity, that is,

/ Au(z)v(z) dx — / uw(z)Av(z) dx = / (Tnvu)(Tpv)do — / (tpu)(Tnv)do
Q Q o9 o9

This section is devoted to the Neumann boundary value problem for the Pois-
son equation: for fixed A < 0 and f € L?(Q2) we are interested in solutions
u € H'(Q) of the problem

—Au—Au=f inQQ,
ou (3.2)

520 on 0f).
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3.2 Neumann boundary conditions 3 Neumann and Robin boundary conditions

Note that the first condition implies Au € L*(Q) so that 5 is understood in the
sense of Definition 3.14.

Lemma 3.16. A function u € H'(Q) is a (distributional) solution of (3.2) if and
only if

/QVu(x) -Vou(z)dr — /\/Qu(x)v(x) dx = /Qf(x)v(x) dr, ve HY(Q). (3.3)

Proof. Let first u € H'() be a solution of (3.2). Then for any v € H'(Q) we
have

/Q Fa)(a / Au(z)o(z) dz — A /Q w(@)o(z) dz

= /QVu(x) -Vou(x)de — Ou (tpv)do — )\/ u(z)v(z) dz,

8(2\8,7/_/ Q

=0

where we have used Definition 3.14. If, conversely, u satisfies (3.3) then for any
v € 2(1) we have

AT)e =Y (5) (52) = [ vuta)- Vit e

j=1

_ / (F(@) + Mu(@))p(x) dz = Ty

distributionally, which implies —Au = f + Au € L*(Q2). Moreover, for any v €
H(Q) it follows from (3.3) that

O—/Vu -Vo(z )d:c—/(f( )+ Au(z))v(z) de

/Vu -Vou(z da:+/Au

= o aV (TDU>d

holds with 9% = 0. Hence u is a solution of (3.2). O

Remark 3.17. Sometimes the Neumann problem (3.2) is considered on very
irregular (non-Lipschitz) domains. Then the problem is directly interpreted in
the sense of Lemma 3.16, which requires no assumptions on §2.
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3 Neumann and Robin boundary conditions 3.2 Neumann boundary conditions

Theorem 3.18. Let Q C RY be a bounded Lipschitz domain, let A\ < 0 and
f € L*Q). Then (3.2) has a unique solution u € H ().

Proof. The mapping F' : H'(Q) — C, F(v) = [, f(z)v(x)dz is a bounded,
antilinear functional. As in the proof of Theorem 2.2 one shows that the mapping
a: H(Q) x HY(Q) — C,

alu,v] := /QVu(x) -Vou(x)de — )\/Qu(m)v(m) dr, wu,ve€ HY (),

is a symmetric sesquilinear form which is bounded and coercive. By the Lax—
Milgram theorem there exists a unique v € H*(§2) such that

alu,v] = F(v), ve H'(Q),
and Lemma 3.16 leads to the assertion. O]

Remark 3.19. For A = 0 uniqueness of a solution of (3.2) cannot be guaranteed.
In fact, each constant function u satisfies —Au = 0 and % = 0. Thus constants
can be added to any solution. Therefore an additional condition is required in
order to obtain uniqueness. Moreover, if u is a solution of (3.2) then plugging the
constant function v = 1 into (3.3) for A = 0 yields [, f(z)dz = 0. Therefore a
solution can only exist if the integral of f vanishes.

In the proof of Theorem 3.21 we shall use the following result; its proof is
postponed after the proof of Theorem 3.21.

Theorem 3.20 (Second Poincaré inequality). Let Q2 be a bounded, connected,
nonempty Lipschitz domain. Then there exists a constant ¢ > 0 such that

||u||L2(Q) < CHVU”LQ(Q;Cd)

holds for all w € H'(Q) with the property [,u(z)dx = 0. In particular, on the
closed subspace

H!(Q) = {u € H'Y(Q): / u(z)dr = O}
Q
of HY(Q) the norm
|u|H1(Q) = ||Vu||L2(Q;(C‘i)7 u € H&(Q%
is equivalent to the norm || - || 1) on H}(Q).
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3.2 Neumann boundary conditions 3 Neumann and Robin boundary conditions

Theorem 3.21. Let Q) be a bounded, nonempty, connected Lipschitz domain and
f e L*(Q) with [, f(x)de = 0. Then (3.2) with A = 0 has a unique solution
u € HY(Q) such that fQ z)dx = 0.

Proof. Consider the Hilbert space

HI(Q) = {u c H'(Q): / u(z)dr = O} :
Q
equipped with the norm
[ulmo) = VUl zioes, v € Hy()

cf Theorem 3. 20 Next we define the antilinear functional F : H] (Q) — C,
= [, f(z)v(z)dz. Then F is bounded since

IF)| < Iflz2@llvllz2) < el fllzolvlme), v e Hu(Q),

where ¢ is the constant from the second Poincaré inequality Theorem 3.20. By
the Fréchet—Riesz theorem there exists a unique u € H! () such that

/ Vu(z) - Vo(z)dr = F(v) = / f(x)v(x)dz, ve HL(Q). (3.4)
Q Q
Let now v € H'(Q) be arbitrary and let w = |2|~'/2 identically. Then

v=v— (v,w) 2w + (v,w) @)W

and since v — (v, w) 2w € HL (), (3.4) yields

L2(
/ f(@)v(z)dx = / flx (v, w) 2 w(x)) dz + (v, w) 20 (f, W) 120
——_———

=0

= [ Vu@)- T = (0 w)sza) ) da
/Vu - Vo(z) d.

Hence by Lemma 3.16 u is a solution of (3.2) with A = 0. The uniqueness of the
solution follows from the uniqueness of u with the property (3.4). m

It remains to prove Theorem 3.20.
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3 Neumann and Robin boundary conditions 3.3 Robin boundary conditions

Proof of Theorem 3.20. Assume the converse. Then there exists a sequence (u,,), C
H'(Q) such that [, u,(z)dz = 0 and |luy| 12y = 1for alln € N, but ||V, || 2q.ca) —
0 as n — oo. As the embedding of H'(f2) into L?(Q) is compact by Theorem 3.11,
there exists a subsequence (without loss of generality again (u,,),) which converges

in L*(Q) to some u € L*(Q); in particular |u||;2() = 1. Then for any ¢ € 2(Q)
and j=1,...,d

/S)u(x)a—@(x) dr = lim g un(x)a—@(q;) dr = — lim Our (x)p(z)dx =0

axj n—o0 afpj n—oo Jq 81;]»

since % — 0in L*(Q) as n — co. Hence u € H'(Q2) and % =0forj=1,...,d
Thus by Lemma 1.26 there exists C' € C such that u(z) = C for almost all = € )
since (2 is connected. Moreover,

(for the convergence interpret the integrals as L?-inner products with the constant
function 1), which implies C' = 0 and contradicts ||u||r2@) = 1. O

3.3 Robin boundary conditions

For f € L*(Q) and measurable, A < 0, and bounded 9 : 92 — [0, 00) we consider
the Robin boundary value problem

—Au—Au=f in(Q,

3.5
~u + Utpu =0 on 0f, (3:5)

where 7p denotes the Dirichlet trace operator on the bounded Lipschitz domain
Q) from Theorem 3.12 and 7yu is the normal derivative from Definition 3.14.
Lemma 3.22. A function u € H*(Q) is a (distributional) solution of (3.5) if and
only if

/Q Vu() - Vo) dz — A /Q w@yo(@)de+ [ 9(rpw) (o) do = /Q F@)o(a) da

o0

holds for all v € H'(Q).

Proof. Exercise. ]
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3.3 Robin boundary conditions 3 Neumann and Robin boundary conditions

Theorem 3.23. Let Q) be a bounded, connected, nonempty Lipschitz domain and
let 9 : 0 — [0,00) be measurable and bounded. In the case A = 0 assume in
addition that 9 is positive on a set of positive measure. Then for each f € L*(Q)
the problem (3.5) has a unique solution u € H' ().

Proof. Define the sesquilinear form a: H'(Q) x H'(Q) — C,

afu, ] = /Q V() - Vola) dr — A /Q u(ayo(@)de+ | o))

for u,v € H'(2). Then a is a symmetric sesquilinear form and it follows from
the continuity of the trace operator 7p that a is bounded. In the case A < 0
it is clear that a is coercive since ¥ > 0 (see the proof of Theorem 2.2). We
show that a is coercive in the case A = 0. Assume the converse. Then there exists
(un)n € H'(Q) with ||uy || g1 o) = 1for all n € N such that lim,_, afu,] = 0. Since
(up)n is bounded we can assume without loss of generality that (u,), converges
weakly in H(€) to some u € H'(Q). Since the embedding of H'(Q) into L*(Q)
is compact by Theorem 3.11, it follows u,, — w in L?(2) as n — oo; moreover,
the condition afu,] — 0 implies ||V, ||r2q,ca) — 0 since ¥ > 0. In particular,

ull720) = Jim [n |20 + dm [Vl 720,00 = lim unllipy =1.  (3.6)
Furthermore, for any ¢ € 2(Q)

/Qu(x)a—gp(ﬂﬁ) dr = lim un(x)ai(x) dr = — lim U,

(x)p(x)der =0

for y = 1,...,d, and it follows % =0for j =1,...,d. By Lemma 1.26 there
exists ¢ € C with u(z) = ¢ for almost all z € Q. As u, — u in L*(Q) and
9un 5 0 in L*(Q) for j = 1,...,d we conclude u, — u in H'(Q2). In particular,

TpU, — Tpu = ¢ in L?(0N). Thus
|c|2/ Ydo = lim I|pu,Pdo = lim afu,] =0

and since 9 is positive on a set of positive measure we obtain u(x) = ¢ = 0 for
almost all z € Q, which contradicts (3.6). This shows coercivity. Applying the
Lax-Milgram theorem (as, e.g., in the proof of Theorem 3.18) and Lemma 3.22
the assertion follows. O
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Chapter 4

Laplace operators on bounded
domains

4.1 Symmetric and selfadjoint operators

Let H be a Hilbert space and let S be a linear operator in H defined on the linear
subspace dom S C ‘H. The linear operators that will be considered in this chapter
are typically unbounded in H and are not defined on the whole space H. If the
domain dom S of S is dense in H then the adjoint operator S* is defined as follows:

S'g=4¢,
dom S* = {g € H : exists g’ € H such that (Sf,g) = (f,d), f € dom S}.

Observe first that S* is well defined since dom S is dense by assumption, that is,
the element ¢’ € H is unique. It is also easy to check that S* is a closed operator
and that the identities

ker S* = (ran S)* and ker(S* — \) = (ran (S — X))L, A eC, (4.1)

hold. It is left as an exercise to check that S is closable if and only if dom 5™ is
dense in H in which case S** = S. Furthermore, if S is closable one has S* = (5)*,
and if S C T then T* C S*. Another useful observation is the property

(S—l)* — (S*)fl

whenever the operator S is densely defined and invertible (that is, ker S = {0})
and dom S™' = ran S is dense in H; note that ranS is dense if and only if
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4.1 Symmetric and selfadjoint operators 4 Laplace operators

ker S* = {0} by (4.1), i.e. S* is invertible. Furthermore, in the special case
that S is bounded and defined on the space H (we shall use L(H) to denote this
class of operators) the definition of S* above reduces to the standard definition
(Sf,9) = (f,S*qg), f,g € H, in the bounded case; clearly one has S* € L(H).

In the next definition we consider operators S that are contained in (or even
equal to) their adjoints S*.

Definition 4.1. Let S be a densely defined operator in H. Then S is said to be
(i) symmetric if S C S* (i.e. dom S C dom S* and Sf = S*f for f € dom S);
(i) self-adjoint if S = S*;

(iii) essentially self-adjoint if S = S*.

It follows from the definition that a densely defined operator S is symmetric
if and only if one has

(Sf,9) = (f,S9), f,g € domS.

One can even show the stronger statement that S is symmetric if and only if
(Sf,f) € Rforall f € domS. One also verifies that S is symmetric if and only if
S is symmetric. Note in this context that a symmetric operator is always closable
and that its closure satisfies S C S*. Finally, observe that for S € L(H) the

concepts of symmetry and self-adjointness coincide.

Lemma 4.2. Let S be a densely defined symmetric operator in H. Then for all
A € C\ R one has ker(S — ) = {0} and for all g € ran (S — \) the estimate

IS = X)~gll < g1l (4.2)

T
is valid. In particular, if S is closed then ran (S — \) is closed for all A € C\ R.
Proof. For A € C\ R and f € dom S one has

0 < [Tm A[(f, f) = [Tm((S = A)f, A < 1S = A FIII]

and hence for f # 0 it follows that | Im A||| f|| < ||(S — A)f]|. This implies (4.2).
In order to see that ran (S — A) is closed consider a sequence g, = (S — A) f,, that
converges to g € H. By (4.2) one has

Ifull < g8 = Dl

58



4 Laplace operators 4.1 Symmetric and selfadjoint operators

and thus (f,,) is a Cauchy sequence in ‘H which converges to some f € H. As S—\
is closed we conclude f € dom S and (S — A)f = g. This shows that ran (S — \)
is closed for all A € C\ R. O

Next we recall the notion of spectrum and resolvent set of a closed linear
operator and the subdivision of the spectral points in eigenvalues, continuous
spectrum, and residual spectrum.

Definition 4.3. Let T be a closed linear operator in a Hilbert (or Banach space)
‘H and let A € C. Then we say that

(i) A€ p(T) if (T —N)~' € L(H) (resolvent set);

(i) A € o(T) if A € C\ p(T) (spectrum);
(iii) A € o,(T) if ker(T — \) # {0} (cigenvalue);
)
)

(iv) A € 0.(T) if ker(T'—\) = {0}, ran (T'— \) # H dense (continuous spectrum);

(v) A€o, (T) if ker(T' — X) = {0}, ran (T"— \) not dense (residual spectrum).
It is clear that for a closed operator T' one has
C=0o(T)Up(T) and o(T)=0,(T)Uo(T)Uo.(T).

Furthermore, if A\ € 0.(T') then (T'—\)~! is necessarily unbounded (since (T'—\)~!
is closed it would have a closed domain if it would be bounded).

In the context of closed symmetric operators the following observation on the
spectral points follow from Lemma 4.2.

Corollary 4.4. Let S be a densely defined closed symmetric operator in H. Then
(ap(S) U O'C(S)) CR and C\RC (O'T(S) U p(S)).

In the next theorem we provide a useful criterion to check that a given sym-
metric operator is self-adjoint. For pratical purposes it is an essential advantage
that the symmetric operator is not assumed to be closed here.

Theorem 4.5. Let S be a densely defined symmetric operator in ‘H and assume

that
ran (S —p) =H =ran (S —nu) for some p € C\R. (4.3)
Then S is self-adjoint in H and ran (S — X\) = H for all A € C\ R. Furthermore,
o(S) = (0,(S)Uc.(S)) CR and C\RC p(S). (4.4)
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Proof. In order to see that S is self-adjoint we have to check that S* C S. For
this consider g € dom S* and choose f € dom S such that

(8" —wg=(S—uf,

which is possible due to (4.3). Since S C S* we conclude that (S*—pu)(f—g) =0,
that is,
* 0L
f—g€ker(S* —p) = (ran (S — )~ = {0},
where we have again used (4.3). Hence f = g € dom S and from S C S* it is clear
that Sg = S*¢. This shows the inclusion S* C S and therefore S is self-adjoint in
‘H. In particular, S is a closed operator in H.

Next we check that ran (S —\) = H for all A € C\ R. Since S — pu is bijective
by Lemma 4.2 and (4.3), and S is closed it follows that (S — p)™' € L(H) and
€ p(S). Now assume that A € C is in the same complex half-plane as p and
that | — Al < |Impul|. From

= A

S—A=(S =+ =N -] and |up—=N[[(S—pm < Tinp] <!

we conclude
(S=NT'=[T+ =N —m ] (S—m™ e L),

that is, all A in the same half-plane as p such that |g — A < |Imp| belong
to p(S). Now the same argument repeatedly applied to points in the complex
plane with larger imaginary parts finally yields C \ R C p(S) and, in particular,
ran (S —A) = H for all A\ € C\ R.

It remains to show that 0,.(S) = (). From the above it is clear that o,.(S) C R.
Suppose that A € 0,.(S) NR. Then one obtains

{0} # (ran (S — \)) " = ker(S* — X) = ker(S — \), (4.5)

which implies that A € 0,(5); a contradiction. O

We remark that the asumption (4.3) can be replaced by the weaker assumption
ran (S — A,) =H =ran(S — A_) for some \x € C*.

In some cases it is also useful to have a variant of the above theorem for real
points. We formulate this next and leave the simple modifications of the proof as
an exercise.
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Theorem 4.6. Let S be a densely defined symmetric operator in ‘H and assume
that
ran (S —p) =H for some p € R. (4.6)

Then S is self-adjoint in H and p € p(S). Furthermore, (4.4) holds.

Later we shall often make use of the following lemma, which is formulated in
a slightly more general context.

Lemma 4.7. Let A and T be operators in H such that A C T and p(A) # 0.
Then the direct sum decomposition

domT = dom A + ker(T — \), A€ p(A), (4.7)
is valid.

Proof. Consider g € dom T and choose f € dom A such that (T'—\)g = (A—\)f,
which is possible whenever A € p(A). As A C T this implies (T'— \)(g — f) =0
and hence g — f € ker(T'— \). As g = f+ (9 — f) with f € dom A we conclude
(4.7). The fact that the decomposition of dom 7" in (4.7) is direct is a consequence
of the assumption A\ € p(A). O

The aim in the following is on a description of self-adjoint extensions of sym-
metric operators. More precisely, assume that S is a densely defined closed sym-
metric operator in H. The goal is to find self-adjoint extensions A of S in H, that
is, S C A= A" C §*. There is a well known necessary and sufficient criterion
on the existence of self-adjoint extensions and the parametrization of these exten-
sions. The next theorem is known as von Neumanns first and second formula; for
a proof we refer to 777

Theorem 4.8. Let S be a densely defined closed symmetric operator in H. Then
the direct sum decomposition (von Neumanns first formula)

dom S* = dom S + ker(S* — i) + ker(S* + 1)
holds. The operator S admits selfadjoint extensions in H if and only if
dim (ker(S* — 7)) = dim (ker(S* +17)). (4.8)

In this case an operator A in H is a selfadjoint extension of S if and only if there
exists a unitary operator U : ker(S* — i) — ker(S* +14) such that (von Neumanns
second formula)

Af =Sfs+ifi —iUf;,
dom A = {f:f5+fi+f_i € dom S™: f_i:Ufi}.
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The quantities in (4.8) are typically called defect numbers or deficiency in-
dices of S; roughly speaking these numbers from N U {oo} (all Hilbert spaces are
separable here for simplicity) indicate how many dimensions are missing for the
symmetric operator S to be self-adjoint. Note that

ker(S* F i) = (ran (S + z))L

and that for a self-adjoint operator the latter orthogonal complements are {0}
according to Theorem 4.5.

4.2 Quasi boundary triples and their Weyl func-
tions

Throughout this section we assume that .S is a densely defined, closed, symmetric
operator in a Hilbert space H. We start by recalling the notion of quasi boundary
triples.

In the following we denote all appearing inner products by (-, -); the respective
Hilbert space will be clear from the context.

Definition 4.9. Let 7' C S* be a linear operator in # such that 7 = S*. A triple
{G,Ty,T'1} is called a quasi boundary triple for T C S* if G is a Hilbert space and
['g, 'y : domT — G are linear mappings such that

(i) the abstract Green identity
(Tf,9) = (f,Tg) = (T1f,Tog) = (Tof, T'1g) (4.9)
holds for all f,g € domT;
(i) the map I':= (T'y,T;)" : domT — G x G has dense range;
(iii) Ag:=T | kerTy is a self-adjoint operator in H.

Before we list some properties of quasi boundary triples let us consider two
standard examples first.

Example 4.10. Let Q be a bounded C*-domain and consider the operators
Sf=-Af, dom S = H}(Q),
Tf=-Af, dom T = H?*(Q).

62
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Then it can be shown that {L?(9), Ty, "1}, where

Lof =7pf and I'if =-7n/f,
is a quasi boundary triple for T" C S* such that

Aof = =Af, dom Ay = H?*(Q) N Hy(Q). (4.10)

In fact, we shall sketch some of the essential arguments for this observation.
First of all it follows from Green’s second identity in Corollary 3.7 using Re-
mark 3.15 (iii) that

(Tf,g9)—(f,Tg) = (=Af,9) = (f,—Ag) = (7pf,7ng) — (75 f, DY)

holds for all f,g € domT = H?(2). The density condition (ii) in Definition 4.9
is well known and will not be proved here. It is also clear that the restriction
Ayg =T | kerT is given by the Dirichlet operator in (4.10). Now observe first
that

(Aof,g9) — (f, Aog) = (=Af,9) — (f, —Ag) = (= f,7pg) — (Tpf, Tnvg) =0

for f,g € dom Ay as 7pf = 7pg = 0. Hence Ay is a symmetric operator in L?(Q2)
and it remains to check that Ay is indeed self-adjoint in L?*(2). Recall that the
Dirichlet problem (2.2) for A = 0 admits a unique solution in H](f2) for any right
hand side f € L*(Q2) by Theorem 2.2 and that in fact this solution is in H?(Q)
due to Theorem 2.13, that is, the solution belongs to dom Ay. Hence we can apply
Theorem 4.6 with ;o = 0 and conclude that Ay = Aj. It still remains to show that
T = S*; which will not be done here. However, we at least remark that

S*f=-Af, dom S* = {f € L*(Q) : —Af € L*(Q)},
where —A f is understood in the sense of distributions.

It is already clear from Example 4.10 that a quasi boundary triple (if it exists
and is nontrivial) is not unique. Namely, one can argue as above to show the
following.

Example 4.11. Let S and T be as in Example 4.10 above. Then the triple
{L*(09),Ty, T}, where

Lof =7nf and Tif =7pf,
is a quasi boundary triple for T" C S* such that

Aof = —=Af, dom Ay = {f € H*(Q) : 7n f = 0}. (4.11)
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We note that a quasi boundary triple exists if and only if S admits self-adjoint
extensions in H, that is, the deficiency indices of S are equal; c¢f. Theorem 4.8.
Moreover, if {G, T, "1 } is a quasi boundary triple for " C S*, then one has T' = S*
if and only if ranI’ = G x G, in which case I' = (I'p,I';)" : dom S* — G x G is onto
and continuous with respect to the graph norm of 5%, the abstract Green identity
holds for all f,g € dom S*, and the restriction Ay = S* | ker [y is automatically
self-adjoint. In this situation the notion of quasi boundary triples coincides with
the notion of so-called ordinary boundary triples. In particular, this is the case
when the deficiency indices of S are finite (and equal). For later use let us also
introduce the notation A; := T | kerI'y. This operator is always symmetric,
which follows from the abstract Green identity.

With each quasi boundary triple {G,T'y,I'1} one associates a so-called v-field
and a Weyl function. Before we recall their definitions, note that for each A\ €
p(Ap) one has the direct sum decomposition

dom T = dom Ay + ker(T — \) = ker T'g + ker(T — \)

by Lemma 4.7. Thus the restriction of the boundary map I'y to ker(T' — \) is
injective, and its range coincides with ranI'y. The definitions of the ~-field and
the Weyl function are providde next.

Definition 4.12. The v-field v and the Weyl function M corresponding to the
quasi boundary triple {G,T'g,T";} are defined by

A= y(0) = (o Tker(T = A) ™, A€ p(Ay),

and
A= M()\) = Fl’}/()\), A E p(A()),

respectively.

Observe that y(\) is a mapping from ranT'y C G onto ker(T' — \) C H and
that the values M(A) of the Weyl function are operators in G mapping ran [,
into ranI';. Note that ranI'y and ranI'y are both dense subspaces of G; this is
a consequence of the density of the range of I' = (I'p,I';)". Various useful and
important properties of the 7-field and the Weyl function can be found in [3,
Proposition 2.6] or [4, Propositions 6.13 and 6.14]. For later purposes we recall
that the adjoint (\)* is a bounded, everywhere defined operator from H to G,
which satisfies

YA =Ti(Ao =2, A€ p(A). (4.12)
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In fact, let ¢ € ranTy, h € H and choose k € dom Ay such that (Ag — N\)k = h.
The one computes

= (cp, [ (Ag — X)*lh);

this implies (4.12) and it also follows that v(A\)* € L(H,G). Hence also v(\) C
Y(A) =y (A)™ € L(G,H) for X € p(Ay).
The Weyl function can be equivalently defined by

M(/\)Fof)\ = F1f>\, f)\ S ker(T — /\), AE p(Ao) (413)

The values of the Weyl function have the property M(\) C M (A)*, XA € p(Ap), and,
in particular, the operators M () are closable. We point out that the operators
M () and their closures M () are in general not bounded. However, if M()\)
is bounded for one Ay € p(Ayp), then M(A) is bounded for all A € p(Ay); see |5,
Proposition 3.3 (viii)].

Example 4.13. Let us consider the quasi boundary triple {L?(92), Ty, T';} with
Iof =71pf and I'y f = —7n f from Example 4.10. The selfadjoint operator Ay =
T | ker Ty is the Dirichlet realization Ap of —A in L?*(€2). In this situation one
has ran [y = H*2(052) and for \ € p(Ap)

Y(A) s L2(0Q) — L*(Q),  dom~y()\) = H¥?(09Q),

maps ¢ € H*2(9Q) onto Y(\)p = fr(p) € H*(Q), where fy(¢) is the unique
solution of the Dirichlet boundary value problem

(A= NAip) =0, Tofr(p) = . (4.14)
Furthermore, in this situation one has for A € p(Ay)
M) : L2(0Q) — L*(0), dom M(X\) = H¥*(0Q), ran M()\) C HY?(0Q).

If f1(¢) is the unique solution of the Dirichlet boundary value problem (4.14) then
M(N)p = =7y fa(p) is the (minus) Dirichlet-to-Neumann map.
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In the next example we provide the 7-field and Weyl function corresponding
to the quasi boundary triple in Example 4.11. In the next section we shall make
use of the particular quasi boundary triple.

Example 4.14. Let us consider the quasi boundary triple {L?(99),To,T'1} with
I'of = 7vf and I'yf = 7pf from Example 4.11. Here Ay = T | kerI'y is the
Neumann realization Ay of —A in L?(2). One has ranTy = H'/2(9Q) and for
A€ p(An)

y(A) : L2(09) — L*(Q),  dom~y()\) = HY?(9Q),

maps ¢ € HY2(0Q) onto y(N)¢p = falp) € H?*(Q), where fy(p) is the unique
solution of the Neumann boundary value problem

(A =N falp) =0, 7afale) = . (4.15)

Furthermore, in this situation one has for A € p(Ay)
M()\) : L*(09) — L*(99Q), dom M(X\) = HY?(9Q), ran M(\) C H*?(09).

If fi(p) is the unique solution of the Neumann boundary value problem (4.14)
then M (X)¢ = 7p fa(p) is the Neumann-to-Dirichlet map.

In the following we are interested in operators of the form
A[B] =5 [ keI‘(Fo - BFl),

where B is some operator in G that determines an abstract boundary condition
for the functions in dom S*. Typically, the aim is to derive properties of A(p) from
the properties of B. It turns out below (and is easy to see making use of the
abstract Greens identity) that a symmetric operator B in G leads to a symmetric
extension Ajp of S in H. However, a selfadjoint B does not automatically lead
to a selfadjoint Ajp). In the next theorem some more additional conditions are
imposed that lead to the desired conclusion.

Theorem 4.15. Let {G,Ty,T'1} be a quasi boundary triple for T C S* with cor-
responding y-field v and Weyl function M. Let B = B* € L(G) and assume that
there exist A € CT such that the following conditions are satisfied:

(i) 1€ p(BM(A1));
(ii) B(ran M (Ay)) C ranDy;
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(iii) B(ranTy) Cranly or A; is self-adjoint.
Then the operator
Apf=Tf, dom Ap) = {f € domT : Tyf = BTy}, (4.16)
1s a self-adjoint extension of S, and
(Ap = N7 = (Ao = N W) (T = BM(N) ' By(2)* (417
holds for all X € p(Aip) N p(Ao).
In the case ranT'y = G conditions (ii) and (iii) are automatically satisfied.

Proof of Theorem 4.15. The proof of Theorem 4.15 consists of several steps. In
the first four steps we assume that the first condition in (iii) is satisfied.

Step 1. First we show that A is symmetric, which is essentially a simple
consequence of the abstract Green identity (4.9) and B = B*. In fact, for
f,g € dom A we have

BFlf = Fof, and BFlg = F()g,
which implies that

(A[B]fa g) - (faA[B]g) = (Tf7 g) - (f7 Tg) - <F1f7 F()g) - (FOfv Flg)
= (' f, BI'g) — (BT f,T'1g) = 0,

where B = B* was used in the last step. This shows that Ajg is a symmetric
operator in H.

Step 2. In this step we show the inclusions
ran (By(Ay)*) Cran (I — BM(\y)). (4.18)

We consider only A, € C*; the proof for \_. € C~ is the same. Note first
that dom B = G and hence the product By(A.)* is everywhere defined. Let
g € ran (By(A;)*). Then there exists an f € H such that g = By(\,)*f. By
(4.12) we have y(A,.)*f = T'1(Ag — A;)"'f € ranT';, and hence assumption (iii)
implies that

By(A\y)*f € ranTy. (4.19)

67



4.2 Quasi boundary triples and Weyl functions 4 Laplace operators

We set

= (I - BM(Z)) ' By(A)'f, (4.20)

which is well defined by assumption (i

. We can rewrite (4.20) in the form

= BM(\y )+ By(AL)" [ (4.21)

By assumption (ii) we have BM (A
(4.21) imply ¢ € ranT'y = dom M (A

ran 'y and hence relations (4.19) and
Together with (4.21) this yields

+)e
+).
(I =BM(\y))p=By(Ay)'f =y,

and hence g € ran (I — BM(\y)), i.e. the inclusion (4.18) is shown for A, € C*.

Step 3. We claim that ran (Ajp — A\+) = H holds. Again we show the assertion
only for A, € C*; the arguments for A\_ € C~ are the same. Let f € H and
consider the element

hi=(Ag = A\p) M f + ’Y()\+)(I - BM()\Q)_IB’Y(XH*JC- (4.22)

Note that by assumption (i) the inverse (I — BM(\,))™! exists. It maps into
dom M (A;) = ranly, so the product with v(A;) is well defined. Observe also
that the product of (I — BM(A;))~! and By(\,)* is well defined by (4.18). We
now show that i € dom Ap. Clearly, h € dom T since

(Ag—Ay) ' f € dom Ay C dom T

and
rany(A,) = ker(T — A\y) C domT.

Furthermore, using (4.12) and the definition of M (A, ) we have

BTyh = BTy (Ag — Ay) ™' f 4+ BUyy(A ) (I — BM(AL)) ™' By(hL )" f
= By(A)"f + BM(\)(I = BM(A\y)) By(A.)*f
= [(1 = BM(\)) + BM(AL)] (I = BM(A,)) ™ By(A,)*f
= (I-BM(\)) ' By(A ) f;
the relation dom Ay = ker I'y and the definition of (A, ) yield

Poh = To(Ag = Ap) ™ f + Toy(Ay) (1 - BM(AQ)AB’Y(XH*J[
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— (I—BM(\y)) 'By(Ny)*f.

Hence the element h in (4.22) satisfies the boundary condition I'oh = BI'1h. This
shows that h € dom Ap). Finally, we obtain from (4.22) that

(Aip = A)h = (T =X )h = (T = A )(Ao = M) f = f, (4.23)

where again rany(A; ) = ker(7' — A} ) was used. Hence ran (A;z — A;) = H holds.

Step 4. It follows from the symmetry of Ajp shown in Step 1, the range con-
dition in Step 3, and Theorem 4.5 that the operator App is self-adjoint in H.
The resolvent formula follows for A\ = AL immediately from the identities (4.22)
and (4.23) in Step 3. Assume now that X\ € p(Ap) N p(Ap) is arbitrary. We claim
that the operator I — BM()) is injective. Indeed, if ¢ € ker(I — BM(A)) then
¢ € dom M(\) = ranT'y and hence f := () € ker(T — \), so that I'f = ¢.
From
BTy f = BM(NDof = BU(A)g = ¢ = Tof
we conclude that f € dom Ay and hence f € ker(Apz — A). Since A € p(Ap),
we obtain f =0 and ¢ =I'yf = 0. Thus I — BM(\) is injective.
Next we show the inclusion

ran (By(A)*) C ran (I — BM(X)). (4.24)

To this end, let ¢ € ran (Bvy(A)*). Then there exists an f € H such that ¢ =
By(A)*f. Set

g :=(Ap — N7 —(Ag— N7 € ker(T — ),
k ::(A[B] — )\)_lf € dOIIlA[B}.

From

FO.g = F0k7
Iig=Tik—T1(4 —A)'f =Tk —y(A)*f

we conclude that
(I — BM()\))FOk: =Tok— BM(\Nl'yg = Bl'1k — BT'1g = Bv(X)*f = 1.

This shows the inclusion in (4.24). Now it follows in exactly the same way as
in Step 3 that for A € p(A;p) N p(Ay) the resolvent (Ajp) — A)~! is given by the
right-hand side of (4.17).
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Step 5. Finally, assume that the second condition in (iii) is satisfied, i.e. that A;
is self-adjoint. Then ran M (Ay) = ranl'; by [3, Proposition 2.6 (iii)]. Hence, if
g € ranT'; then (ii) implies Bg € ranT'y. This shows that the first condition in
(iii) is satisfied, and we can apply Steps 14 of the proof. ]

For the case when the spectrum of the self-adjoint operator Ay does not cover
the whole real line a useful variant of Theorem 4.15 is formulated below. Its proof
is almost the same as the proof of Theorem 4.15; here the range condition in
Step 3 of the proof needs only to be verified for some real point in p(Ag), which
then automatically belongs to p(Ajg)).

Theorem 4.16. Let {G,Ty,T'1} be a quasi boundary triple for T C S* with cor-
responding y-field v and Weyl function M. Let B = B* € L(G) and assume that
there exists a Ao € p(Ag) NR such that the following conditions are satisfied:

(i) 1€ p(BM(N));
(ii) B(ranm) Cranly;
(iii) B(ranly) CranTy or Ao € p(4y).
Then the operator
Apf=Tf,  domAp ={fedomT:Tof =BT f}, (4.25)
is a self-adjoint extension of S such that g € p(Ap)), and
(A — N7 = (Ao — N (W) (I = BM(N) ™ By(OVY)* (4.26)

holds for all X € p(Aip)) N p(Ao).

4.3 Laplace operators with Robin boundary con-
ditions

In this section we apply the technique of quasi boundary triples and their Weyl

functions to boundary value problems involving the Laplacian and the correspond-

ing selfadjoint Laplace operators with Robin boundary conditions; cf. Section 3.3.
Let us again assume that € is a bounded C?-domain and consider the operators

Sf=-Af, dom S = H(Q),
Tf=—-Af, domT = H?*(Q);
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cf. Examples 4.10 and 4.11. In the following we shall use the quasi boundary
triple {L2(09), 7n,7p} from Example 4.11 with the corresponding v-field and
Weyl function M discussed in Example 4.14. In this situation the selfadjoint
reference extension Ay =T | kerI'y is given by the Neumann operator

Axnf = —Af, domAN:{fGHQ(Q):TNfzo}, (4.27)

and the Weyl function is a Neumann-to-Dirichlet map. As a consequence of the
main theorems in the previous section we obtain the result below. We mention
that the conditions (ii) and (iii) in Theorem 4.15 can now be interpreted as regu-
larity assumptions on the parameter in the boundary condition; here we assume
for simplicity C?-smoothness of the multiplication operator on 0f.

Theorem 4.17. Consider the quasi boundary triple {L?(09Q),7x,Tp} for T C S*
with corresponding y-field v and Weyl function M. Let 8 € C?(09) be a real
function. Then the Robin realization of the Laplacian,

Agf = —Af,  domAy={feH Q) :mnf=prpf}, (4.28)

is a self-adjoint extension of S and the resolvent formula
(A5 =N = Ay =N V(I = BMN) B (4.29)

is valid for all A € p(Ag) N p(An). Furthermore, the following variant of the
Birman-Schwinger principle holds: X\ € p(An) is an eigenvalue of Ag if and only

if ker(I — fM (X)) # {0}

Proof. Recall from Example 4.14 that the Weyl function M corresponding to the
quasi boundary triple {L?(992), 7y, 7p} has the mapping property

M()\) : L*(09) D HY2(0Q) — H3*(0Q) c L*(69)

for A € p(Ay). One can show that M ()) admits a bounded continuation in
L*(092), which coincides with the closure in L*(92) and maps

M(N) : L*(09Q) — H'(02) C L*(99).
This is also implies that M()) is closed as an operator from L?(99Q) to H'(99),
and hence bounded. As 0f) is compact a version of the Rellich embedding theorem
(cf. Theorem 3.11) on 92 implies that M ()) is a compact operator in L?(9). The
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same remains true for the operator SM(\), A € p(Ay), since § as a multiplication

in L?(99) is bounded.
We claim that

ker(I — BM (X)) = {0}, A€ C\R. (4.30)

In fact, since the closure M ()) is an extension of the Dirichlet-to-Neumann map

(this has to be verified) for ¢ = M (A\)p and ¢ = 7y fr(¢) for some solution fy(p)
(with H3?2(Q)-regularity) of (—A — A)u = 0 one obtains

™alp) = ¢ = BM(N)p = BM (M) 7y fr(p) = BTp fa(p). (4.31)

Since 8 € C2(99) it follows that 7xfr(p) € HY(9Q) C HY?(0Q) and elliptic
regularity then implies f\(¢) € H?*(2). Together with the boudnayr condition
(4.31) this shows fy\(p) € ker(Ag — A), but as 3 is real it is clear that Az is a
symmetric operator in L*(2). Hence 0,(Ag) N C\ R = @ by Corollary 4.4 and

therefore fy(¢) = 0 and ¢ = 7nfr(¢) = 0. This proves (4.30) and as M (A) is
compact now the Fredholm alternative implies that

(I - M) € L(L*(89)).

In other words, 1 € p(BM(N)) for all A € C\ R and hence condition (i) in
Theorem 4.15 is satisfied. Conditions (ii) and (iii) in Theorem 4.15 in the present
setting translate into

By € H'*(09)
for all ¢ € H'(0S2) and
By € H'?(09)

for all ¢y € H??(082), which are both valid by our assumption 8 € C?(952). Now
Theorem 4.15 implies the assertions.
The simple proof of the Birman-Schwinger principle is left to the reader. [

Remark 4.18. For \ € p(Ap) and f € L*(Q) the function u = (Ag — \)"'f is a
H?(2)- solution of the Robin boundary value problem

—Au—Xu=f and 7yu=pB7pf;

cf. Section 3.3. For § = 0 one arrives at the Neumann problem discussed in
Section 3.2; the formal case % = 0 — which corresponds to Dirichlet boundary

conditions — was excluded above, but can be treated with the quasi boundary
triple {L*(09Q), 7p, —7n} in Example 4.10.
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