Exercise sheet 1
March 30, 2022
Exercise 1: Let X be a Banach space and $\emptyset \neq U \subseteq X$ be a closed linear subspace with $U \neq X$. Prove that there exists some $x \in X$ with $\|x\|=1$ and

$$
\|x-u\| \geq \frac{1}{2}, \quad u \in U
$$

Hint: Choose $x_{0} \in X \backslash U$ arbitrary and prove in the first step that $d:=\inf _{u \in U}\left\|x_{0}-u\right\|>0$. As a consequence there exists some $u_{0} \in U$ with $\left\|x_{0}-u_{0}\right\| \leq 2 d$.

Exercise 2: Let X be an infinite dimensional Banach space. Prove that the closed unit ball

$$
\overline{B_{1}(0)}:=\{x \in X \mid\|x\| \leq 1\} \text { is not compact. }
$$

Hint: Use Exercise 1 to construct a sequence $\left(x_{n}\right)_{n \in \mathbb{N}} \in \overline{B_{1}(0)}$ with $\left\|x_{n}-x_{m}\right\| \geq \frac{1}{2}$ for all $n \neq m$.

Exercise 3: Prove that the minimization problem

$$
F(u)=\int_{-1}^{1}\left(x u^{\prime}(x)\right)^{2} d x=\min , \quad u \in C^{1}([-1,1]), u(-1)=-1, u(1)=1
$$

has no solution.
Hint: The sequence of functions $u_{n}(x)=\frac{\arctan (n x)}{\arctan (n)}$ may be helpful.

Exercise 4: Prove that the minimization problem

$$
F(u):=\int_{0}^{1} u(x)^{2} d x, \quad u \in C([-1,1]), u(0)=0, u(1)=1
$$

has no solution.

Exercise 5: Consider the infinite dimensional Banach space

$$
C_{0}([0,1])=\{u:[0,1] \rightarrow \mathbb{R} \text { continuous } \mid u(0)=u(1)=0\}
$$

equipped with the norm $\|u\|:=\sup _{x \in[0,1]}|u(x)|$. Prove that the function $F: C_{0}([0,1]) \rightarrow \mathbb{R}$,

$$
F(u):=\int_{0}^{1}|u(x)-1| d x, \quad u \in C_{0}([0,1])
$$

is continuous but does not admit a minimum on the closed unit ball $\overline{B_{1}(0)}$.

Exercise 6: Prove the following version of the Fundamental lemma of calculus: Let $I \subseteq \mathbb{R}$ be an open interval. If $u \in L_{\mathrm{loc}}^{1}(I)$ satisfies

$$
\int_{I} u(x) \varphi^{\prime}(x) d x=0, \quad \varphi \in \mathcal{C}_{0}^{\infty}(I)
$$

then u is constant almost everywhere on I.
Hint: For $\eta, \psi \in \mathcal{C}_{0}^{\infty}(I)$ with $\int_{I} \eta(x) d x=1$ construct $\varphi \in \mathcal{C}_{0}^{\infty}(I)$ with $\varphi^{\prime}(x)=\psi(x)-\eta(x) \int_{I} \psi(y) d y$.

Exercise 7: Let $a, b \in \mathbb{R}$. A function $f:(a, b) \rightarrow \mathbb{C}$ is called absolute continuous if there exists $c \in \mathbb{C}$ and $g \in L^{1}(a, b)$ with

$$
\begin{equation*}
f(x)=c+\int_{a}^{x} g(y) d y, \quad x \in[a, b] \tag{1}
\end{equation*}
$$

Prove the following statements:
a) Every absolute continuous function is continuius.
b) $W_{1}^{2}(a, b)=\left\{f \in L^{2}(a, b) \mid f\right.$ is absolute continuous, with (1) satisfied by $\left.c \in \mathbb{C}, g \in L^{2}(a, b)\right\}$

Hints: Use Exercise 6.

Exercise 8: For some open and bounded $G \subseteq \mathbb{R}^{n}$, the Poincaré inequality

$$
\sum_{j=1}^{n} \int_{G}\left(\partial_{j} u\right)^{2} d x \geq C \int_{G} u^{2} d x, \quad u \in \dot{W}_{1}^{2}(G)
$$

was proven in the lecture. Show, that this inequality does not hold true for
a) $G=\mathbb{R}^{n}$.
b) $\stackrel{\circ}{W}_{2}^{1}(G)$ replaced by $W_{2}^{1}(G)$.

Exercise 9: Let X be a real Banach space, $\mathfrak{a}: X \times X \rightarrow \mathbb{R}$ bilinear, $b: X \rightarrow \mathbb{R}$ linear with

$$
c_{1}\|u\|^{2} \leq \mathfrak{a}(u, u) \leq c_{2}\|u\|^{2}, \quad \mathfrak{a}(u, v)=\mathfrak{a}(v, u) \quad \text { and } \quad|b(u)| \leq d\|u\|, \quad u, v \in X
$$

for some $c_{1}, c_{2}, d \geq 0$. Prove, that the minimization problem

$$
\frac{1}{2} \mathfrak{a}(u, u)-b(u)=\min !, \quad u \in X
$$

admits a unique solution. With the notation $F(u):=\frac{1}{2} \mathfrak{a}(u, u)-b(u)$ use the following steps
i) Show that there exists some $C>0$ such that $\gamma:=\inf _{u \in X} F(u)>-\infty$.
ii) Prove that

$$
\frac{1}{4} \mathfrak{a}(u-v, u-v)=F(u)+F(v)-2 F\left(\frac{u}{2}+\frac{v}{2}\right), \quad u, v \in X
$$

iii) Let $\left(u_{n}\right)_{n} \in X$ with $F\left(u_{n}\right) \rightarrow \gamma$. Then $u_{0}:=\lim _{n \rightarrow \infty} u_{n}$ exists and $F\left(u_{0}\right)=\gamma$.

