Exercise 10: Let $\mathcal{C}([0,1])$ be the space of continuous functions with norm $\|u\|_{\infty}=\sup _{x \in[0,1]}|u(x)|$. Furthermore, let $F: \mathcal{C}([0,1]) \rightarrow \mathbb{C}$ be the mapping

$$
F(u)=\int_{0}^{1}(u(x)-1)^{2} d x, \quad u \in \mathcal{C}([0,1])
$$

a) Calculate for every $u_{0} \in \mathcal{C}([0,1])$ the Gâteaux derivative $F^{\prime}\left(u_{0}\right)$.
b) Is F Fréchet differentiable?

Exercise 11: Let X be a normed space, $U \subseteq X$ open and $F: U \rightarrow \mathbb{R}$ Gâteaux differentiable in $u_{0} \in U$. Prove that
F is Fréchet differentiable in u_{0}

$$
\left(F^{\prime}\left(u_{0}\right)\right)(h)=\lim _{t \rightarrow 0} \frac{F\left(u_{0}+t h\right)-F\left(u_{0}\right)}{t} \text { is uniform for all }\|h\| \leq 1
$$

Exercise 12: Let X be a normed space. Prove, that every linear functional $F: X \rightarrow \mathbb{C}$ is Fréchet differentiable.

Exercise 13: Let $a<b \in \mathbb{R}$ and $L:[a, b] \times \mathbb{R}^{n+1} \rightarrow \mathbb{R}$ sufficiently often continuously differentiable. Consider the functional $F: \mathcal{C}^{n}([a, b]) \rightarrow \mathbb{R}$ defined as

$$
\begin{equation*}
F(u)=\int_{a}^{b} L\left(x, u(x), \ldots, u^{(n)}(x)\right) d x, \quad u \in \mathcal{C}^{n}([a, b]) \tag{1}
\end{equation*}
$$

Calculate $\delta F(u ; h)$ and $\delta^{2} F(u ; h)$ for every $u, h \in \mathcal{C}^{n}([a, b])$.
Exercise 14: Let F be the functional in (1) and $u \in \mathcal{C}^{n}([a, b])$ fixed. Prove that if $\delta F(u ; h)=0$ for every $h \in \mathcal{C}^{n}([a, b])$, then

$$
\begin{equation*}
\sum_{k=0}^{n}(-1)^{k} \frac{d^{k}}{d x^{k}} L_{u_{k}}\left(x, u(x), \ldots, u^{(n)}(x)\right)=0, \quad x \in[a, b] \tag{2}
\end{equation*}
$$

where we used the notation $L_{u_{k}}$ for the partial derivative $L_{u_{k}}\left(x, u_{0}, \ldots, u_{n}\right)=\frac{\partial}{\partial u_{k}} L\left(x, u_{0}, \ldots, u_{n}\right)$.
Exercise 15: Consider the minimization problem

$$
F(u)=\int_{0}^{1}\left(u^{\prime}(x)^{2}+u(x)\right) d x=\min !, \quad u \in \mathcal{C}^{2}([0,1]), u(0)=u(1)=0
$$

a) Derive a differential equation for the solution u using the Euler Lagrange equation (2).
b) Find the solution u.
c) Use the second variation $\delta^{2} F(u ; h)$ to show that this solution is indeed a local minimum. Hint: Use the Poincaré inequality.

Exercise 16: For $x_{0}, y_{0}>0$ consider the problem of the Brachiostochrone

$$
F(u)=\int_{0}^{x_{0}} \sqrt{\frac{1+u^{\prime}(x)^{2}}{-u(x)}} d x=\min !, \quad u \in \mathcal{C}^{2}\left(\left[0, x_{0}\right]\right), u(0)=0, u\left(x_{0}\right)=-y_{0}
$$

a) Derive a differential equation for the solution u using the Euler Lagrange equation (2).
b) Show that the solution (in parameter form) is $\binom{x(t)}{y(t)}=c\binom{t-\sin (t)}{\cos (t)-1}, t \in\left[0, t_{0}\right]$.
c) How do the free parameters c and t_{0} depend on the coefficients x_{0} and y_{0}.

Exercise 17: Let $G \subseteq \mathbb{R}^{n}$ be open and bounded and $L: \bar{G} \times \mathbb{R} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ sufficiently often continuously differentiable. Consider the functional $F: \mathcal{C}^{1}(\bar{G}) \rightarrow \mathbb{R}$ defined as

$$
\begin{equation*}
F(u)=\int_{G} L(x, u(x), \nabla u(x)) d x, \quad u \in \mathcal{C}^{1}(\bar{G}) \tag{3}
\end{equation*}
$$

Calculate $\delta F(u ; h)$ and $\delta^{2} F(u ; h)$ for every $u, h \in \mathcal{C}^{1}(\bar{G})$.
Exercise 18: Let F be the functional in (3) and $u \in \mathcal{C}^{1}(\bar{G})$ fixed. Prove that if $\delta F(u ; h)=0$ for every $h \in \mathcal{C}^{1}(\bar{G})$, then

$$
\begin{equation*}
\sum_{k=1}^{n} \frac{d}{d x_{k}} L_{y_{k}}(x, u(x), \nabla u(x))=L_{u}(x, u(x), \nabla u(x)), \quad x \in \bar{G} \tag{4}
\end{equation*}
$$

where we used the notation $L_{u}(x, u, y)=\frac{\partial}{\partial u} L(x, u, y)$ and $L_{y_{k}}=\frac{\partial}{\partial y_{k}} L\left(x, u, y_{1}, \ldots, y_{n}\right)$.
Exercise 19: Let $G \subseteq \mathbb{R}^{2}$ be open and bounded, $f \in \mathcal{C}^{1}(\bar{G}), F \in \mathcal{C}^{2}(\mathbb{R})$. Derive the Euler-Lagrange equation (4) for the functional

$$
F(u)=\int_{G}\left(F\left(|\nabla u(x)|^{2}\right)-2 f(x) u(x)\right) d x
$$

Exercise 20: Let X be a real Banach space, $\alpha \in \mathbb{R} \backslash\{0\}, F: X \rightarrow \mathbb{R}$ be Gâteaux differentiable and $G: X \rightarrow \mathbb{R}$ be a linear functional. If u_{0} is a solution of the minimization problem

$$
F(u)=\min !, \quad u \in X \text { with } G(u)=\alpha
$$

then there exists some $\lambda \in \mathbb{R}$, such that

$$
F^{\prime}\left(u_{0}\right)+\lambda G^{\prime}\left(u_{0}\right)=0
$$

Exercise 21: For some fixed $c \in\left(0, \frac{\pi}{2}\right)$ consider the minimization problem

$$
\int_{0}^{2} \sqrt{1+u^{\prime}(x)^{2}} d x=\min !, \quad u \in \mathcal{C}_{0}^{1}([0,2]) \text { with } \int_{0}^{2} u(x) d x=c
$$

a) Give a geometric interpretation.
b) Find the solution.
c) What is the interpretation of the upper bound $\frac{\pi}{2}$ of the constant c.

