Exercise 22: Let X be a Hilbert space and $\left(x_{n}\right)_{n} \in X$ an orthonormal system. Prove that
a) $\left(x_{n}\right)_{n}$ does not converge (and neither does any of its subsequences).
b) $\left(x_{n}\right)_{n}$ weakly converges to zero.

Exercise 23: Let X be a reflexive Banach space and X^{\prime} its dual space. Prove that the weak

$$
f(x)=\lim _{n \rightarrow \infty} f_{n}(x), \quad x \in X
$$

Exercise 24: Let X be a reflexive Banach space. Prove that every closed linear subspace $U \subseteq X$ is reflexive as well.

Hint: Use the following two consequence of the Hahn-Banach theorem:

- For every $x_{0} \in X \backslash U$ there exists some $f \in V^{\prime}$ with $\left.f\right|_{U}=0$ and $f\left(x_{0}\right) \neq 0$.
- For every $g \in U^{\prime}$ there exists some $f \in V^{\prime}$ with $\left.f\right|_{U}=g$.

Exercise 25: Let X, Y be reflexive Banach spaces. Prove that the product space $X \times Y$ equipped with the norm $\|(x, y)\|:=\|x\|+\|y\|$ is reflexive as well.

Exercise 26: Show that for any $p \in(1, \infty)$ the sequence space

$$
l^{p}=\left\{\left.\left(x_{n}\right)_{n} \in \mathbb{C}\left|\sum_{n \in \mathbb{N}}\right| x_{n}\right|^{p}<\infty\right\} \quad \text { with norm } \quad\left\|\left(x_{n}\right)_{n}\right\|_{l^{p}}=\left(\sum_{n \in \mathbb{N}}\left|x_{n}\right|^{p}\right)^{\frac{1}{p}}
$$

is reflexive.
Hint: Show that for $q \in(1, \infty)$ with $\frac{1}{p}+\frac{1}{q}=1$, the mapping $\varphi: l^{p} \rightarrow\left(l^{q}\right)^{\prime}$ defined by

$$
\left(\varphi\left(x_{n}\right)_{n}\right)\left(y_{n}\right)_{n}:=\sum_{n \in \mathbb{N}} x_{n} y_{n}, \quad\left(x_{n}\right)_{n} \in l^{p},\left(y_{n}\right)_{n} \in l^{q}
$$

is bounded and surjective. For the Surjectivity choose $x_{n}:=f\left(\left(\delta_{n k}\right)_{k}\right)$ for every $f \in\left(l^{q}\right)^{\prime}$.

Exercise 27: Let X be a Banach space and $f: X \rightarrow \mathbb{R}$ a mapping. Prove that the following assertions are equivalent.
(i) f is lower semicontiuous.
(ii) For every $x \in X$ and every $\varepsilon>0$ there exists some $\delta>0$, such that

$$
f(y)>f(x)-\varepsilon, \quad y \in B_{\delta}(x)
$$

(iii) For every convergent sequence $x=\lim _{n \rightarrow \infty} x_{n}$ one has

$$
f(x) \leq \liminf _{n \rightarrow \infty} f\left(x_{n}\right)
$$

Exercise 28: Determine all values $\alpha, \beta, \gamma \in \mathbb{R}$ for which the function $F: \mathbb{R} \rightarrow \mathbb{R}$ given by

$$
F(x)= \begin{cases}\alpha, & \text { if } x<0 \\ \beta, & \text { if } x=0 \\ \gamma, & \text { if } x>0\end{cases}
$$

is lower semi continuous.

Exercise 29: Let $\emptyset \neq \Omega \subseteq \mathbb{R}^{n}$ be open. Prove that for every $f \in L^{2}(\Omega)$ the minimization problem

$$
F(u)=\int_{\Omega}\left(|\nabla u|^{2}+f u\right) d x=\min !, \quad u \in \stackrel{\circ}{W}_{1}^{2}(\Omega) \text { with } u \geq 0 \text { almost everywhere }
$$

has a unique solution.
Exercise 30: Let $\emptyset \neq \Omega \subseteq \mathbb{R}^{n}$ be open and bounded, $f, g \in W_{1}^{2}(\Omega)$ and $\alpha \in \mathbb{R}$. Prove that the minimization problem

$$
F(u)=\int_{\Omega}|\nabla(u-f)|^{2} d x=\min !, \quad u-g \in \stackrel{\circ}{W}_{1}^{2}(\Omega) \text { and } \int_{\Omega} u d x=\alpha
$$

has a unique solution.
Exercise 31: Let X be a reflexive Banach space and $A, B \subseteq X$ closed, convex, with $A \cap B=\emptyset$ and either A or B bounded. Show that in this case A and B have positive distance

$$
\operatorname{dist}(A, B):=\inf _{x \in A, y \in B}\|x-y\|>0
$$

