P. Schlosser

Calculus of variations

Exercise sheet 4

Exercise 32: Let X be a separable reflexive Banach space over \mathbb{R} and $A: X \to X'$ a monotone operator. Prove that A is locally bounded. I.e., for every $u \in X$ there exists $\delta, r > 0$, such that

$$||A(v)|| < r, \qquad \forall v \in B_{\delta}(u).$$

Hint: Do a proof by contradiction and use the numbers $a_n = (1 + ||A(u_n)|| ||u_n - u||)^{-1}$ and the Theorem of Banach-Steinhaus for the operators $a_n A(u_n)$.

Exercise 33: Let X be a separable reflexive Banach space over \mathbb{R} and $A: X \to X'$ a monotone operator which is continuous on finite dimensional subspaces. Moreover, let $u, (u_n)_n \subseteq X, b \in X'$ with

$$u = \underset{n \to \infty}{\text{w-lim}} u_n$$
 and $b = \underset{n \to \infty}{\text{lim}} A(u_n).$

Prove that Au = b. *Hint*: Use Lemma 4.7 in the lecture notes.

Exercise 34: Let X be a separable reflexive Banach space over \mathbb{R} and $A: X \to X'$ a monotone and coercive operator which is continuous on finite dimensional subspaces. For any $b \in X'$ consider the set of solutions

$$S_b := \{ u \in X \mid Au = b \}.$$

Verify the following properties:

a) $S_b \neq \emptyset;$

- b) S_b is bounded;
- c) S_b is closed;
- d) S_b is convex.

Exercise 35: Let X be a separable reflexive Banach space over \mathbb{R} and $A : X \to X'$ a strict monotone and coercive operator which is continuous on finite dimensional subspaces. Prove that:

- a) A is bijective and A^{-1} is strict monotone.
- b) For any $b = \lim_{n \to \infty} b_n$ convergent in X', also $A^{-1}(b) = \underset{n \to \infty}{\text{w-lim}} A^{-1}(b_n)$ weakly converges in X.

Exercise 36: Let $y \in \mathbb{R}^3$. Verify the solvability of the equation

$$x(1+|x|^2)e^{|x|^2} = y, \qquad x \in \mathbb{R}^3.$$

Exercise 37: Let X be a separable reflexive Banach space over \mathbb{R} and $A: X \to X'$ an operator, which is *Lipschitz continuous*, i.e., there exists some $L \ge 0$ such that

$$||A(u) - A(v)|| \le L ||u - v||, \quad u, v \in X,$$

as well as strong monotone, i.e., there exists some c > 0 such that

$$\langle A(u) - A(v), u - v \rangle \ge c \|u - v\|^2, \qquad u, v \in X.$$

June 1, 2022

Prove that A is bijective and that the inverse operator A^{-1} is Lipschitz continuous and strong monotone as well.

Exercise 38: Let $\Omega \subseteq \mathbb{R}^2$ open, bounded and connected. For the space $X = H_0^1(\Omega, \mathbb{R})$ consider the operator $A: X \to X'$ given by

$$\langle A(u), v \rangle := \int_{\Omega} f(|\nabla v(x)|) (\nabla u(x), \nabla v(x)) dx, \qquad u, v \in X,$$

where $f:[0,\infty)\to\mathbb{R}$ is a function which satisfies

$$f(s)s - f(t)t \ge c(s - t), s \ge t \ge 0, |f(s)s - f(t)t| \le L|s - t|, s, t \ge 0,$$

for some c > 0 and $L \ge 0$. Prove that the equation Au = b is uniquely solvable for any $b \in X'$.

Exercise 39: Let $\rho : [a, b] \times \mathbb{R} \to \mathbb{R}$ be continuous, $\rho(x, \cdot)$ monotone increasing and there exists some $L \ge 0$ such that

$$|\rho(x,s) - \rho(x,t)| \le L|s-t|, \qquad x \in [a,b], \ s,t \in \mathbb{R}.$$

Consider the space $X = H_0^1((a, b), \mathbb{R})$ and the operator $A: X \to X'$ given by

$$\langle A(u), v \rangle := \int_a^b \left(u'(x)v'(x) + \rho(x, u(x))v(x) \right) dx, \qquad u, v \in X.$$

Show that the equation Au = b is uniquely solvable for any $b \in X'$.