Exercise 32: Let X be a separable reflexive Banach space over \mathbb{R} and $A: X \rightarrow X^{\prime}$ a monotone operator. Prove that A is locally bounded. I.e., for every $u \in X$ there exists $\delta, r>0$, such that

$$
\|A(v)\|<r, \quad \forall v \in B_{\delta}(u)
$$

Hint: Do a proof by contradiction and use the numbers $a_{n}=\left(1+\left\|A\left(u_{n}\right)\right\|\left\|u_{n}-u\right\|\right)^{-1}$ and the Theorem of Banach-Steinhaus for the operators $a_{n} A\left(u_{n}\right)$.

Exercise 33: Let X be a separable reflexive Banach space over \mathbb{R} and $A: X \rightarrow X^{\prime}$ a monotone operator which is continuous on finite dimensional subspaces. Moreover, let $u,\left(u_{n}\right)_{n} \subseteq X, b \in X^{\prime}$ with

$$
u=\underset{n \rightarrow \infty}{\mathrm{w}-\lim _{n}} u_{n} \quad \text { and } \quad b=\lim _{n \rightarrow \infty} A\left(u_{n}\right)
$$

Prove that $A u=b$. Hint: Use Lemma 4.7 in the lecture notes.

Exercise 34: Let X be a separable reflexive Banach space over \mathbb{R} and $A: X \rightarrow X^{\prime}$ a monotone and coercive operator which is continuous on finite dimensional subspaces. For any $b \in X^{\prime}$ consider the set of solutions

$$
S_{b}:=\{u \in X \mid A u=b\} .
$$

Verify the following properties:
a) $S_{b} \neq \emptyset$;
b) S_{b} is bounded;
c) S_{b} is closed;
d) S_{b} is convex.

Exercise 35: Let X be a separable reflexive Banach space over \mathbb{R} and $A: X \rightarrow X^{\prime}$ a strict monotone and coercive operator which is continuous on finite dimensional subspaces. Prove that:
a) A is bijective and A^{-1} is strict monotone.

Exercise 36: Let $y \in \mathbb{R}^{3}$. Verify the solvability of the equation

$$
x\left(1+|x|^{2}\right) e^{|x|^{2}}=y, \quad x \in \mathbb{R}^{3}
$$

Exercise 37: Let X be a separable reflexive Banach space over \mathbb{R} and $A: X \rightarrow X^{\prime}$ an operator, which is Lipschitz continuous, i.e., there exists some $L \geq 0$ such that

$$
\|A(u)-A(v)\| \leq L\|u-v\|, \quad u, v \in X
$$

as well as strong monotone, i.e., there exists some $c>0$ such that

$$
\langle A(u)-A(v), u-v\rangle \geq c\|u-v\|^{2}, \quad u, v \in X
$$

Prove that A is bijective and that the inverse operator A^{-1} is Lipschitz continuous and strong monotone as well.

Exercise 38: Let $\Omega \subseteq \mathbb{R}^{2}$ open, bounded and connected. For the space $X=H_{0}^{1}(\Omega, \mathbb{R})$ consider the operator $A: X \rightarrow X^{\prime}$ given by

$$
\langle A(u), v\rangle:=\int_{\Omega} f(|\nabla v(x)|)(\nabla u(x), \nabla v(x)) d x, \quad u, v \in X
$$

where $f:[0, \infty) \rightarrow \mathbb{R}$ is a function which satisfies

$$
\begin{array}{rlr}
f(s) s-f(t) t \geq c(s-t), & s \geq t \geq 0 \\
|f(s) s-f(t) t| \leq L|s-t|, & s, t \geq 0
\end{array}
$$

for some $c>0$ and $L \geq 0$. Prove that the equation $A u=b$ is uniquely solvable for any $b \in X^{\prime}$.

Exercise 39: Let $\rho:[a, b] \times \mathbb{R} \rightarrow \mathbb{R}$ be continuous, $\rho(x, \cdot)$ monotone increasing and there exists some $L \geq 0$ such that

$$
|\rho(x, s)-\rho(x, t)| \leq L|s-t|, \quad x \in[a, b], s, t \in \mathbb{R}
$$

Consider the space $X=H_{0}^{1}((a, b), \mathbb{R})$ and the operator $A: X \rightarrow X^{\prime}$ given by

$$
\langle A(u), v\rangle:=\int_{a}^{b}\left(u^{\prime}(x) v^{\prime}(x)+\rho(x, u(x)) v(x)\right) d x, \quad u, v \in X
$$

Show that the equation $A u=b$ is uniquely solvable for any $b \in X^{\prime}$.

