2 1_ general: NO self adjou 23 ALV **d v** Aa assumptions say about whilet 0 COm 0 00 one Perturbation theory for self adjoint operators 5

Throughout this section \mathcal{H} is a complex Hilbert space with inner product (\cdot, \cdot) and induced norm $\|\cdot\|$.

5.1 Relatively bounded perturbations

Definition 5.1. Let A and V be linear operators in \mathcal{H} . Then V is called A-bounded (or relatively bounded with respect to A), if dom $A \subset \text{dom } V$ and if there exist $a, b \ge 0$ such that

 $\|Vx\| \le a\|x\| + b\|Ax\|$

holds for all $x \in \text{dom } A$. The infimum over all b, such that there exists an a so that the above inequality holds, is called A-bound of V.

Remark:

- If $V \in \mathcal{L}(\mathcal{H})$, then V is A bounded with A-bound zero.
- If V is a bounded with A-bound b, then there exists for all $\varepsilon > 0$ a number $a_{\varepsilon} \ge 0$ such that

$$||Vx|| \le a_{\varepsilon}||x|| + (b + \varepsilon)||Ax||$$

holds for all $x \in \text{dom } A$. For $\varepsilon = 0$ this does not have to be the case!

• V is A-bounded if and only if dom $A \subset \operatorname{dom} V$ and there exist $\alpha, \beta \geq 0$ such that

 $\|Vx\|^{2} \leq \alpha \|x\|^{2} + \beta \|Ax\|^{2}$

holds for all $x \in \text{dom } A$. The infimum over all $\sqrt{\beta}$, such that there exists an α so that the above inequality holds, coincides with the A-bound of V (see exercises).

Proposition 5.2. Let $A = A^*$ in \mathcal{H} and let V be a linear operator in \mathcal{H} such that dom $A \subset \operatorname{dom} V$. Set $c_{\pm} := \limsup_{\eta \to \pm \infty} \|V(A - i\eta)^{-1}\|$ with $c_{\pm} = \infty$, if $V(A - i\eta)^{-1}$ is unbounded. Then

 $V \text{ is } A \text{-bounded} \quad \Leftrightarrow \quad c_+ < \infty \quad \Leftrightarrow \quad c_- < \infty.$

In this case one has $c_{+} = c_{-}$ is the A-bound of V and the limit superior is a limit.

Next, we show that the himsup in the def. ofc. is a limit. For this, choose be limit [[V(A-iy]]] -> = x > 0 : ||V(A-id)-4 | (b (D) V is A-bounded with A-bound & b =) C+= A-bound of V = b ≤ limine || V(A-iy) 1 ≤ limsup || V(A-iy) 1 = C. C+ =) <+ = liminf (V(A-iy)) =) [V(A-iy]-1] is converging for y ->00 Will similar orgunants one gets the statements for C_

Lemma 5.3. Let $A = A^*$ in \mathcal{H} and let V be a linear operator in \mathcal{H} with dom $A \subset \text{dom } V$ such that A + V is closed. If $||V(A - \lambda)^{-1}|| < 1$ for some $\lambda \in \rho(A)$, then $\lambda \in \rho(A + V)$.

$$\frac{\operatorname{Proof}_{i}}{\operatorname{We}} \operatorname{Proof}_{i} \operatorname{Het}_{i} A + V - \lambda \quad \text{is bijechie.}}$$

$$\frac{\operatorname{Succelivith}_{i}}{\operatorname{Buc}} = \sum_{n=0}^{V} (-n)^{n} (A - \lambda)^{-n} (V(A - \lambda)^{-1})^{n} \in \mathcal{L}(Ae|$$

$$\frac{\operatorname{Be}_{i}}{\operatorname{Be}_{i}} = \left\| \sum_{n=0}^{C} (-n)^{n} (A - \lambda)^{-n} (V(A - \lambda)^{-1})^{n} \right\|$$

$$\leq \sum_{n=k+n}^{C} \left\| (-n)^{n} (A - \lambda)^{-n} (V(A - \lambda)^{-1})^{n} \right\|$$

$$\leq \sum_{n=k+n}^{C} \left\| (A - \lambda)^{-n} \| \cdot \| V(A - \lambda)^{-1} \| \right\|$$

$$\leq \left\| (A - \lambda)^{-n} \| \cdot \| V(A - \lambda)^{-n} \| \right\|$$

$$\leq \left\| (A - \lambda)^{-n} \| \cdot \| V(A - \lambda)^{-n} \| \right\|$$

$$\leq \left\| (A - \lambda)^{-n} \| \cdot \| V(A - \lambda)^{-n} \| \right\|$$

$$\leq \left\| (A - \lambda)^{-n} \| \cdot \| V(A - \lambda)^{-n} \| \right\|$$

$$\leq C \| (A - \lambda)^{-n} \| \cdot \| V(A - \lambda)^{-n} \| \right\|$$

$$\leq C \| (A - \lambda)^{-n} \| \cdot \| V(A - \lambda)^{-n} \| \right\|$$

$$\leq C \| (A - \lambda)^{-n} \| \cdot \| V(A - \lambda)^{-n} \| \right\|$$

$$\leq C \| (A - \lambda)^{-n} \| \cdot \| V(A - \lambda)^{-n} \| \right\|$$

$$\leq C \| (A - \lambda)^{-n} \| \cdot \| V(A - \lambda)^{-n} \| \right\|$$

$$\leq C \| (A - \lambda)^{-n} \| \cdot \| V(A - \lambda)^{-n} \| \right\|$$

$$\leq C \| (A - \lambda)^{-n} \| \cdot \| V(A - \lambda)^{-n} \| \right\|$$

$$\leq C \| (A - \lambda)^{-n} \| \cdot \| V(A - \lambda)^{-n} \| \right\|$$

$$\leq C \| (A - \lambda)^{-n} \| \cdot \| V(A - \lambda)^{-n} \| \right\|$$

$$\leq C \| (A - \lambda)^{-n} \| \cdot \| V(A - \lambda)^{-n} \| \right\|$$

$$\leq C \| (A - \lambda)^{-n} \| \cdot \| V(A - \lambda)^{-n} \| \right\|$$

$$\leq C \| (A - \lambda)^{-n} \| \cdot \| V(A - \lambda)^{-n} \| \right\|$$

$$(A+V-L) B_{Y} = \sum_{n=0}^{\infty} (A+V-L) \qquad (-1)^{n} (A-L)^{-1} (V(A-A)^{-1})^{n}$$

$$= \sum_{n=0}^{\infty} (-1)^{n} (V(A-L)^{-1})^{n} + \sum_{n=0}^{\infty} (-1)^{n} (V(A-L)^{-1})^{n+A} \qquad (V(A-L)^{-1})^{n+A}$$

$$= \sum_{n=0}^{\infty} (-1)^{n} (V(A-L)^{-1})^{n} + \sum_{n=0}^{\infty} (-1)^{n} (V(A-L)^{-1})^{n} \qquad (V(A-L)^{-1})^{n}$$

$$= \sum_{n=0}^{\infty} (-1)^{n} (V(A-L)^{-1})^{n} + \sum_{n=0}^{\infty} (-1)^{n} (V(A-L)^{-1})^{n} \qquad (A+V-L)^{n}$$

$$T A = \sum_{n=0}^{\infty} (A+V-L) \qquad B + E dom (A+V-L) \qquad B + E dom (A+V-L)$$

$$T = \sum_{n=0}^{\infty} (A+V-L) \qquad B + E dom (A+V-L) \qquad B + E dom (A+V-L) \qquad (A+V-L) B + E \times (A+V-L) B + (A+V-L) A + E \times (A+V-L) A + (A+V-L) + (A+V-L) A + (A+V-L) A + (A+V-L) + (A+V-L) A + (A+V-L) A + (A+V-L) + (A+V-L) + (A+V-L) A + (A+V-L) + (A$$

=D A+V-1 is injecture -D A+V-1 is bijecture =D 1 Ep(A+V) D **Theorem 5.4** (Kato-Rellich). Let A be a linear operator in \mathcal{H} and let V be a symmetric operator in \mathcal{H} that is A-bounded with A-bound less than one. Then, the following is true:

- (i) If $A = A^*$, then $(A + V)^* = A + V$, i.e. A + V is self adjoint.
- (ii) If $\overline{A} = A^*$, then $(A + V)^* = \overline{A + V}$, i.e. A + V is essentially self adjoint.

Clearly,
$$A+V$$
 is symmetric, as for $x \in \text{dom} A \subset \text{dom} V$:
 $((A+V|x_ix) - (A+ix) + (V+ix) \in \mathbb{R}$
 $\in \mathbb{R}$ $\in \mathbb{R}$

In order to show that A+V is self adjoint, ve use Theorem 3.10 and show that there are $l_{\pm} \in C_{\pm} \cap \mathcal{A}_{\pm}$ Sudeed, by Prop. 5.2. Here exist y>0 s.t. $\|V(A \neq iy)^{-1}\| \leqslant b < \Lambda$. Then by Lemma 5.3 $\pm iy \in g(A + V)$ - 0 A+V is self adjoint (ii) V is symmetric by assumption. Ve show that V is A-bounded with the same bound (i.e. the A-bound of V Let x E dom A. Then B (+1) C dom A, s.t. + + +, An > Ax. = $||V(x_n - x_m)| \le a ||x_n - a_m| + b || A(a_n - x_m) || \xrightarrow{m_n - 200} 0 (D)$ =1 (Vxn) is a Canchy sequence =) x e dom V => dom Ā c dom V. As above in (I) one geb $\|\nabla x\| \leq a\|x\| + b\|\overline{A}x\|$ =) I is A-bounded with A-bound 21 By (i) we get that A+V is self adjoint. At remains to show that $\overline{A+V} = \overline{A+V}$. Atv a Atv clear conversely, for x E dom (A+V) = dom A, Here enslo a sequence (r.) cdom A 40 s.t. (A+V) + ~ (A+V) + (consequence of (D)) = > x e dom (A+V) and (A+V) + stander = dom(A+V) C dom (A+V) and (A+V) x= (A+V) x V x E dom A

Theorem 5.5 (Wüst). Let $\overline{A} = A^*$ in \mathcal{H} and let V be a symmetric operator in \mathcal{H} such that dom $A \subset \text{dom } V$. If there exists an $a \ge 0$ such that $||Vx|| \le a||x|| + ||Ax||$ holds for all $x \in \text{dom } A$, then A + V is essentially self adjoint.

 $\overline{A} + \overline{V} = \overline{A} + \overline{V}$

Caution: The condition in Wüst's theorem is not equivalent to

C (AtV)

A+V

"V is A-bounded with A-bound 1."

Under the last condition, the statement of the theorem is not true in general!

Definition 5.6. A self adjoint operator A in \mathcal{H} is called *semibounded from below*, if there exists a $\gamma \in \mathbb{R}$ such that

$$(Ax, x) \ge \gamma \|x\|^2$$

holds for all $x \in \text{dom } A$. Each such γ is called *lower bound of* A and we write $A \ge \gamma$ in this case.

Lemma 5.7. Let A be a self adjoint operator in \mathcal{H} . Then $A \geq \gamma$ if and only if $\sigma(A) \subset [\gamma, \infty)$.