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3 Symmetric and self-adjoint operators
In this chapter H is always a Hilbert space over the field K = R or K = C with scalar
product (·, ·) and induced norm ‖ · ‖.
Definition 3.1. Let S be a densely defined operator in H, i.e. domS = H. Then the
adjoint operator S∗ of S is defined by

domS∗ = {g ∈ H : ∃g′ ∈ H : (Sf, g) = (f, g′)∀f ∈ domS},
S∗g = g′.

In the following H×H is endowed with the inner product(
(f, f ′), (g, g′)

)
:= (f, g) + (f ′, g′), (f, f ′), (g, g′) ∈ H ×H,

and we denote by ()⊥ the orthogonal complement in H×H w.r.t. the above inner product.

Lemma 3.2. Define the operator U : H×H → H×H,

U(h, h′) := (h′,−h), (h, h′) ∈ H ×H.

Then for any densely defined operator S in H one has G(S∗) = (UG(S))⊥ = U(G(S))⊥.

Proposition 3.3. Let S be a densely defined operator in H. Then the following holds:

(i) S∗ ∈ C(H).

(ii) S is closable ⇔ domS∗ is dense in H. In this case one has

(S)∗ = S∗ and S = S∗∗.

(iii) S ⊂ T ⇒ T ∗ ⊂ S∗.

Lemma 3.4. Let S be a densely defined operator in H. Then one has for any λ ∈ K

(i)
(

ran(S − λ)
)⊥

= ker(S∗ − λ) and

(ii) ran(S − λ) =
(

ker(S∗ − λ)
)⊥.

Definition 3.5. A densely defined operator S is called

(i) symmetric, if S ⊂ S∗;

(ii) self adjoint, if S = S∗;

(iii) essentially self adjoint, if S is self adjoint, i.e. if S = S∗.

Lemma 3.6. Let S be a densely defined operator in H. Then the following are equivalent:

(i) S is symmetric.

(ii) (Sf, g) = (f, Sg) for all f, g ∈ domS.

If K = C, then (i) and (ii) are equivalent to

(iii) (Sf, f) ∈ R for all f ∈ domS.
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Lemma 3.7. (i) Each symmetric operator S is closable and S is also symmetric.

(ii) Each self adjoint operator is closed.

Proposition 3.8. Let H be a Hilbert space over K = C and let S be symmetric and
closed. Then the following holds:

(i) C \ R ⊂ r(S) and ran(S − λ) is closed for any λ ∈ C \ R.

(ii) σp(S) ∪ σc(S) ⊂ R.

(iii) For all λ ∈ C \ R one has ‖(S − λ)1‖ ≤ 1
|Imλ| .
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Lemma 3.9. Let H be a Hilbert space over K = C and let S ⊂ S∗. If ran(S − λ) = H for
a λ ∈ C \ R, then S ∈ C(H).

Theorem 3.10. Let H be a Hilbert space over K = C, let S be a symmetric operator
in H, and let λ ∈ C \ R. Then the following are equivalent:

(i) S is self adjoint.

(ii) S ∈ C(H) and ker(S∗ − λ) = {0} = ker(S∗ − λ).

(iii) ran(S − λ) = H = ran(S − λ).

(iv) S ∈ C(H) and λ, λ ∈ ρ(S).

Remark: If one of the assertions (ii), (iii) or (iv) from Theorem 3.10 hold for one
λ ∈ C \ R, then due to their equivalence to (i) these assertions hold for all λ ∈ C \ R, see
also the proof.
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Proposition 3.11. Let H be a Hilbert space over K = C and let S be a self adjoint
operator in H. Then the following holds:

(i) σ(S) ⊂ R and σr(S) = ∅.

(ii) λ ∈ σ(S)⇔ there exists a sequence (xn)n ⊂ domS with ‖xn‖ = 1 for all n ∈ N such
that ‖(S − λ)xn‖ → 0 for n→∞.
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Example 3.12. Let f : R → R be continuous and define the operator T : L2(R) ⊃
domT → L2(R) by

(Tg)(x) = f(x)g(x) for x ∈ R, g ∈ domT := {g ∈ L2(R) : fg ∈ L2(R)}.

Then one has:

(i) T = T ∗.

(ii) σ(T ) = {f(x) : x ∈ R} and T is bounded, if and only if f is bounded.

(iii) σp(T ) = {µ ∈ R : |f−1({µ})| > 0}.
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4 Spectral theorem for self adjoint operators
Throughout the following section H is always a Hilbert space over K = C.

4.1 Motivation and preliminaries

Let

A =


λ1

λ2

. . .
λn

 ∈ Cn×n

be a self adjoint matrix with eigenvalues λ1 < λ2 · · · < λn. The orthogonal projections onto
the corresponding eigenspaces are given by

E({λ1}) :=


1

0
. . .

0

 , . . . , E({λn}) :=


0

. . .
0

1

 .

With these projections one can write

A =
n∑
k=1

λkE({λk}) =

∫
R
µdE(µ),

where the integral is with respect to the measure E which has point masses at λ1, . . . , λn.
With the help of this measure one gets for any open interval ∆ ⊂ R

E(∆) =
∑
λk∈∆

E({λk}) = 1∆(A).

Goal: We want to show that for any A = A∗ ∈ L(H) there exists a spectral measure E
(which will be an orthogonal projection for each Borel set) such that

A =

∫
R
µdE(µ) =

∫
σ(A)

µdE(µ).

Idea: Set E(∆) = 1∆(A) for any interval ∆ ⊂ R. But how can 1∆(A) be understood
and introduced? A function of an operator can be defined, if the function is a polynomial:

Definition 4.1. Let A = A∗ ∈ L(H) and p(t) =
∑n

k=0 akt
k be a polynomial on R with

complex coefficients a0, . . . , an. Then p(A) is defined by

p(A) =
n∑
k=0

akA
k.
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Lemma 4.2. Let A = A∗ ∈ L(H) and let p : R→ C be a polynomial. Then one has

σ(p(A)) = p(σ(A)) = {p(λ) : λ ∈ σ(A)}.
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4.2 The continuous functional calculus for self adjoint operators

Throughout this section we assume that A is a bounded and self-adjoint operator, i.e.
A = A∗ ∈ L(H). The goal is to define the operator f(A) for any continuous function f .
Denote by C(σ(A)) the set of all continuous functions f : σ(A) → C equipped with the
norm

‖f‖∞ := sup
x∈σ(A)

|f(x)|, f ∈ C(σ(A)).

By P (σ(A)) we denote the space of all polynomials defined on σ(A). By the Weierstrass
approximation theorem (see e.g. [Werner, Satz VIII.4.7]) we have that P (σ(A)) is dense in
C(σ(A)).

Theorem 4.3. Let A = A∗ ∈ L(H). Then the map

P (σ(A)) 3 p 7→ p(A) ∈ L(H)

is linear and isometric, i.e. ‖p(A)‖ = ‖p‖∞ for all p ∈ P (σ(A)), and hence it has a uni-
que isometric (and thus bounded) linear extension Φ : C(σ(A)) → L(H), which has the
following properties:

(a) Φ is multiplicative, i.e. Φ(fg) = Φ(f)Φ(g) for all f, g ∈ C(σ(A)).

(b) Φ is an involution, i.e. Φ(f) = Φ(f)∗ for all f ∈ C(σ(A)).

Of course, the map Φ depends on the initially given operator A. We write

f(A) := Φ(f), f ∈ C(σ(A)).

Due to the previous theorem we have ‖f(a)‖ = ‖f‖∞ for all f ∈ C(σ(A)). The map Φ is
called continuous functional calculus for A (the word continuous is associated to the fact
that it applies to continuous functions).
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Proposition 4.4. Let A = A∗ ∈ L(H). Then the following holds for all f, g ∈ C(σ(A)).

(i) f(A)g(A) = g(A)f(A).

(ii) If f(t) ≥ 0 for all t ∈ σ(A), then f(A) ≥ 0 in the sense of self adjoint operators (i.e.
(f(A)x, x) ≥ 0 for all x ∈ H).

(iii) f(A) is a normal operator and f(A) = f(A)∗ if and only if f is real-valued.

(iv) Ax = λx implies f(A)x = f(λ)x.

Beweis. See exercises.

Theorem 4.5 (Spectral mapping theorem). Let A = A∗ ∈ L(H). Then one has for all
f ∈ C(σ(A))

σ(f(A)) = f(σ(A)).
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4.3 The measurable functional calculus

Again, we assume throughout this section that A = A∗ ∈ L(H). The goal in this section
is to extend the continuous functional calculus from the last section for bounded and
measurable functions, i.e. to define f(A) for any bounded and measurable function f :
σ(A)→ C. We set for any compact set K ⊂ C

B(K) := {f : K → C : f is measurable and bounded},

which is endowed with the norm ‖ · ‖∞ a Banach space. The following elementary lemma,
which can be found e.g. in [Werner, Lemma VII.1.5], will be very useful in our constructions:

Lemma 4.6. Let V ⊂ B(K) such that the following holds:

(i) C(K) ⊂ V .

(ii) For any sequence (fn) ⊂ V the conditions supn∈N ‖fn‖∞ <∞ and f(t) := limn→∞ fn(t)
exist for all t ∈ K imply that f ∈ V .

Then V = B(K).

The previous lemma means, roughly speaking, that B(K) is the smallest set of functi-
ons, which contains all continuous functions and which is closed with respect to pointwise
limits of uniformyl bounded sequences.

In order to formulate the next result, recall that a complex Borel measure over σ(A)
is a map µ : Σ(σ(A)) → C, which is σ-additive (here Σ(σ(A)) is the Borel-σ-algebra over
σ(A)).

Lemma 4.7. Let A = A∗ ∈ L(H) and let x, y ∈ H. Then there exists a complex Borel
measure µx,y such that

(
f(A)x, y

)
=

∫
σ(A)

fdµx,y ∀f ∈ C(σ(A)).

For any f ∈ C(σ(A)) one has∣∣∣∣∫
σ(A)

fdµx,y

∣∣∣∣ ≤ ‖f‖∞‖x‖ · ‖y‖.
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Theorem 4.8. For A = A∗ ∈ L(H) there exists a unique linear and bounded mapping
Φ̂ : B(σ(A))→ L(H) with the following properties:

(a) Φ̂(p) = p(A) for all p ∈ P (σ(A)).

(b) Φ̂ is multiplicative and an involution.

(c) For any sequence (fn) ⊂ B(σ(A)) the conditions supn∈N ‖fn‖∞ < ∞ and f(t) :=
limn→∞ fn(t) exist for all t ∈ σ(A) imply that(

Φ̂(fn)x, y
)
→
(
Φ̂(f)x, y

)
∀x, y ∈ H.

Moreover, for all f ∈ C(σ(A)) one has Φ̂(f) = Φ(f).

As for the continuous functional calculus we set for f ∈ B(σ(A))

f(A) := Φ̂(f).

The map Φ̂ is called measurable functional calculus.
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Remark 4.9. Condition (c) in Theorem 4.8 can be improved in the following way:
(c’) For any sequence (fn) ⊂ B(σ(A)) the conditions supn∈N ‖fn‖∞ < ∞ and f(t) :=

limn→∞ fn(t) exist for all t ∈ σ(A) imply that

Φ̂(fn)x→ Φ̂(f)x ∀x ∈ H.
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Recall: P ∈ L(H) is called orthogonal projection, if P = P ∗ = P 2. This is equivalent
to the fact that ranP is closed and that P is the orthogonal projection in H onto ranP .

Lemma 4.10. Let A = A∗ ∈ L(H). Then the following is true:

(i) 1B(A)(:= Φ̂(1B)) is an orthogonal projection for any Borel set B ⊂ σ(A).

(ii) 1∅(A) = 0 and 1σ(A)(A) = I.

(iii) For any family of pairwise disjoint Borel sets B1, B2, · · · ⊂ σ(A) and all x ∈ H one
has

∞∑
k=1

1Bk
(A)x = 1∪∞k=1Bk

(A)x.

(iv) For any two Borel sets B1, B2 ⊂ σ(A) one has 1B1(A)1B2(A) = 1B1∩B2(A).
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4.4 Spectral measures and integration

Throughout this section Σ is the Borel σ-algebra on R.

Definition 4.11. A map E : Σ→ L(H), B 7→ EB, is called spectral measure, if EB is an
orthogonal projection for all B ∈ Σ and if the following holds:

(i) E∅ = 0 and ER = I.

(ii) For all pairwise disjoint sets B1, B2, · · · ∈ Σ and all x ∈ H one has the following
σ-additivity:

∞∑
k=1

EBk
x = E∪∞k=1Bk

x.

A spectral measure E has compact support, if there exists a compact set K ⊂ R such that
EK = I.

Properties of spectral measures:

(a) Finite additivity: EB1 + EB2 = EB1∪B2 for all disjoint B1, B2 ∈ Σ.

(b) EB1EB2 = EB1∩B2 for all Borel sets B1, B2.
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Corollary 4.12. Let A = A∗ ∈ L(H) and let Φ̂ be the associated measurable calculus.
Then the map

E : Σ→ L(H), B 7→ EB := 1B∩σ(A)(A) = Φ̂(1B∩σ(A))

is a spectral measure with compact support. The above map E is called spectral measure
associated to A.

Integration with respect to spectral measures

In the following let E be a fixed spectral measure.
Step 1: integration of simple functions: Let f =

∑n
k=1 αk1BK

for αk ∈ C and
pairwise disjoint sets Bk ∈ Σ, k ∈ {1, . . . , n}. Then we define∫

R
fdE :=

n∑
k=1

αkEBk
.

One verifes that the above definition of the integral is independent of the representation
of f .

Step 2: bounded and measurable functions

Lemma 4.13. Let E be a spectral measure. Then one has∥∥∥∥∫
R
fdE

∥∥∥∥ ≤ ‖f‖∞
for all simple functions f . Inparticular, the map f 7→

∫
R fdE, defined on the set of all

simple functions, is a bounded, densely defined, and linear operator from B(R) to L(H).

Consequence: There exists a unique continuation of the integral with respect to E
to the space B(R), which is again a bounded linear map. For an arbitrary f ∈ B(R) we
denote this extension applied to f by

∫
R fdE ∈ L(H) (or sometimes

∫
R f(t)dE(t)) and this

operator is defined by ∫
R
fdE := lim

n→∞

∫
R
fndE,

where (fn) is any sequence of simple functions with ‖fn − f‖∞, as n→∞.
If f is defined on σ(A), then we identify this function with its zero continuation.
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4.5 Spectral theorem for bounded self adjoint operators

Theorem 4.14 (Spectral theorem for bounded self-adjoint operators). Let A = A∗ ∈
L(H), let Φ̂ be the measurable functional calculus, and let E : Σ→ L(H) be the spectral
measure associated to A. Then

Φ̂(f) =

∫
R
fdE

holds for all f ∈ B(σ(A)). In particular, one has

A =

∫
R
tdE(t).
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Theorem 4.15 (Inversion of the spectral theorem). Let E : Σ → L(H) be a spectral
measure with compact support. Then

A :=

∫
R
tdE(t)

defines a self adjoint operator in L(H) and the measurable functional calculus Φ̂ associated
to A satisfies

Φ̂(f) =

∫
R
fdE ∀f ∈ B(R).

Without proof.

Theorem 4.16. Let A = A∗ ∈ L(H) and let E : Σ → L(H) be the spectral measure
associated to A. Then the following holds for any λ ∈ R:

(i) λ ∈ ρ(A)⇔ ∃ an open neighborhood B ⊂ R of λ with EB = 0.

(ii) ranE{λ} = ker(A− λ). In particular, λ ∈ σp(A)⇔ E{λ} 6= 0.

(iii) If λ is an isolated point in σ(A), i.e. there exists an open neighborhood B ⊂ R of λ
with B ∩ σ(A) = {λ}, then λ is an eigenvalue of A.

28



29



Theorem 4.17. Let A = A∗ ∈ L(H) and let E : Σ → L(H) be the spectral measure
associated to A. Moreover, let B ∈ Σ and set HB := ranEB. Then the following holds:

(i) AHB ⊂ HB, H⊥B = ranER\B and AH⊥B ⊂ H⊥B.

(ii) AB := A � HB is bounded and self-adjoint in HB.

(iii) (σ(A) ∩B◦) ⊂ σ(AB) ⊂ (σ(A) ∩B).

In particular, A = AB ⊕ AR\B.
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4.6 Spectral theorem for unbounded self-adjoint operators

First, we discuss, how f(A) can be constructed, if A = A∗ ∈ L(H) and f : R → C is
measurable, but unbounded.

Proposition 4.18. Let A = A∗ ∈ L(H) and let f : R→ C be measurable. Define

fn(λ) := f(λ)1|f |≤n(λ) =

{
f(λ), if |f(λ)| ≤ n,

0, if |f(λ)| > n.

Then f is measurable and bounded for all n ∈ N. Moreover, limn→∞ fn(A)x exists, if and
only if x ∈ Df :=

{
x ∈ H :

∫
R |f(λ)|2d(E(λ)x, x) <∞

}
. In particular,

f(A)x := lim
n→∞

fn(A)x, x ∈ dom f(A) := Df ,

is a well-defined linear operator in H. If f is real-valued, then f(A) is self adjoint.

Notation: We set ∫
R
fdEx := lim

n→∞
fn(A)x = lim

n→∞

∫
R
fndEx,

where the limit is w.r.t. the norm in L(H), so that
∫
R fdEx = f(A)x for all x ∈ Df .
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Theorem 4.19. Spectral theorem for self adjoint operators Let A : H ⊃ domA → H be
self adjoint. Then there exists a spectral measure such that

Ax =

∫
R
tdE(t)x ∀x ∈ domA.

If h : R→ R is measurable, then

h(A)x :=

∫
R
hdEx, domh(A) =

{
x ∈ H :

∫
R
|h|2d(Ex, x) <∞

}
,

defines a self adjoint operator in H.

The integral in the definition of h(A) has to be understood as in Proposition 4.18, so∫
R hdEx = limn→∞

∫
R hndEx.

We remark that versions of Theorem 4.16 and Theorem 4.17 hold for unbounded A as
well.
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5 Perturbation theory for self adjoint operators
Throughout this section H is a complex Hilbert space with inner product (·, ·) and induced
norm ‖ · ‖.

5.1 Relatively bounded perturbations

Definition 5.1. Let A and V be linear operators in H. Then V is called A-bounded (or
relatively bounded with respect to A), if domA ⊂ domV and if there exist a, b ≥ 0 such
that

‖V x‖ ≤ a‖x‖+ b‖Ax‖

holds for all x ∈ domA. The infimum over all b, such that there exists an a so that the
above inequality holds, is called A-bound of V .

Remark:

• If V ∈ L(H), then V is A bounded with A-bound zero.

• If V is a bounded with A-bound b, then there exists for all ε > 0 a number aε ≥ 0
such that

‖V x‖ ≤ aε‖x‖+ (b+ ε)‖Ax‖

holds for all x ∈ domA. For ε = 0 this does not have to be the case!

• V is A-bounded if and only if domA ⊂ domV and there exist α, β ≥ 0 such that

‖V x‖2 ≤ α‖x‖2 + β‖Ax‖2

holds for all x ∈ domA. The infimum over all
√
β, such that there exists an α so that

the above inequality holds, coincides with the A-bound of V (see exercises).

Proposition 5.2. Let A = A∗ in H and let V be a linear operator in H such that
domA ⊂ domV . Set

c± := lim sup
η→±∞

∥∥V (A− iη)−1
∥∥

with c± =∞, if V (A− iη)−1 is unbounded. Then

V is A-bounded ⇔ c+ <∞ ⇔ c− <∞.

In this case one has c+ = c− is the A-bound of V and the limit superior is a limit.
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Lemma 5.3. Let A = A∗ in H and let V be a linear operator in H with domA ⊂ domV
such that A+ V is closed. If ‖V (A− λ)−1‖ < 1 for some λ ∈ ρ(A), then λ ∈ ρ(A+ V ).
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Theorem 5.4 (Kato-Rellich). Let A be a linear operator in H and let V be a symmetric
operator in H that is A-bounded with A-bound less than one. Then, the following is true:

(i) If A = A∗, then (A+ V )∗ = A+ V , i.e. A+ V is self adjoint.

(ii) If A = A∗, then (A+ V )∗ = A+ V , i.e. A+ V is essentially self adjoint.
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Theorem 5.5 (Wüst). Let A = A∗ in H and let V be a symmetric operator in H such
that domA ⊂ domV . If there exists an a ≥ 0 such that ‖V x‖ ≤ a‖x‖+ ‖Ax‖ holds for all
x ∈ domA, then A+ V is essentially self adjoint.

Caution: The condition in Wüst’s theorem is not equivalent to

”V is A-bounded with A-bound 1.”

Under the last condition, the statement of the theorem is not true in general!

Definition 5.6. A self adjoint operator A in H is called semibounded from below, if there
exists a γ ∈ R such that

(Ax, x) ≥ γ‖x‖2

holds for all x ∈ domA. Each such γ is called lower bound of A and we write A ≥ γ in this
case.

Lemma 5.7. Let A be a self adjoint operator in H. Then A ≥ γ if and only if σ(A) ⊂
[γ,∞).
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Theorem 5.8. Let A = A∗ in H be bounded from below, A ≥ γA. Assume that V is a
symmetric operator in H that is A-bounded with A-bound less than one, i.e. there exist
a ≥ 0 and b ∈ (0, 1) such that

‖V x‖ ≤ a‖x‖+ b‖Ax‖

holds for all x ∈ domA. Then A+ V is bounded from below and

γ := γA −max

{
a

1− b
, a+ b|γA|

}
is a lower bound for A+ V .
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5.2 Compact and finite dimensional perturbations

Definition 5.9. Let A = A∗ in H. The discrete spectrum of A is defined by

σd(A) :=
{
λ ∈ σp(A) : dim ker(A− λ) <∞ and ∃ε > 0 : (λ− ε, λ+ ε) ∩ σ(A) = {λ}

}
.

The essential spectrum of A is

σess(A) = σ(A) \ σd(A).

The discrete spectrum of A consists of all isolated eigenvalues with finite multiplicity
and the essential spectrum of all eigenvalues with infinite multiplicity and all accumulation
points of σ(A). In particular, we have σc(A) ⊂ σess(A).

In the following we characterize points in the essential spectrum. For that we repeat
two facts from basic functional analysis:

(i) A sequence (xn) ⊂ H is called weakly convergent to x ∈ H (notation: xn ⇀ x), if for
all y ∈ H the relation (xn, y)→ (x, y) holds for n→∞. E.g. by the Bessel inequality
each infinite orthonormal system converges weakly to zero.

(ii) An operator K ∈ L(H) is called compact (notation K ∈ S∞), if it maps bounded
sets onto relativly compact sets. This is equivalent to the fact that for any bounded
sequence (xn) ⊂ H there exists a subsequence (xnk

) such that (Kxnk
) is convergent

in H. Another equivalent condition is that xn ⇀ x implies Kxn → Kx in H.
Recall that any operator with dim ranK <∞ is compact. Moreover, if K ∈ S∞ and
A ∈ L(H), then AK ∈ S∞ and KA ∈ S∞.

Proposition 5.10. Let A = A∗ in H and let λ ∈ R. Then the following is equivalent:

(i) λ ∈ σess(A);

(ii) ∃(xn) ⊂ domA with ‖xn‖ = 1, xn ⇀ 0 and (A− λ)xn → 0 (such a sequence (xn) is
called singular sequence);

(iii) dim ranE(λ−ε,λ+ε) =∞ for all ε > 0.
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Lemma 5.11. Let A = A∗ in H and µ ∈ ρ(A). Then one has for λ 6= µ that λ ∈ σess(A)
if and only if there exists a sequence (xn) ⊂ H with ‖xn‖ = 1, xn ⇀ 0 and(

(A− µ)−1 − (λ− µ)−1
)
xn → 0.
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Theorem 5.12 (Stability of the essential spectrum under compact perturbations). Let
A = A∗ and B = B∗ in H. If

(A− µ)−1 − (B − µ)−1 ∈ S∞

holds for one (and hence for all) µ ∈ ρ(A) ∩ ρ(B), then σess(A) = σess(B).

Remark 5.13. In the above theorem B is the perturbed operator (in Section 5.1 B =
H+V ). Under our assumptions, one can not find an answer to the question, if V := B−A
is compact (or the restriction of a compact operator), as dom(B − A) = domA ∩ domB
can be an arbitrarily small set for unbounded operators A and B. Hence, one investigates
the bounded operators (B − µ)−1 and (A− µ)−1 instead.
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Theorem 5.14 (without proof). Let A = A∗ and B = B∗ in H, denote the corresponding
spectral measures by EA and EB, respectively, and assume

dim ran
(
(A− µ)−1 − (B − µ)−1

)
= n <∞

for one (and hence for all) µ ∈ ρ(A)∩ρ(B). Let (α, β) be an interval such that dim ranEA
(α,β) <

∞. Then ∣∣dim ranEA
(α,β) − dim ranEB

(α,β)

∣∣ ≤ n.

If (α, β) ⊂ ρ(A), then (α, β) ∩ σ(B) consists of at most n eigenvalues counted with multi-
plicities.
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6 Schrödinger operators in 1D
In this section we apply the theory developped in Section 5 to Schrödinger operators
− d2

dx2
+ V in L2(R).

We say that a function f : R → C is absolutely continuous, if f |[a,b] is absolutely
continuous for all [a, b] ⊂ R (cf. Example 1.7) and set

H2(R) :=
{
f ∈ L2(R) : f, f ′ are absolutely continuous, f ′′ ∈ L2(R)

}
.

The space H2(R) is called Sobolev space of second order. This space can also be defined
via weak derivatives.

Recall: each absolutely continuous function f : [a, b] → R is differentiable almost
everywhere and the main theorem of calculus holds true. Moreover, for any interval (α, β) ⊂
[a, b] integration by parts in the form∫ β

α

g(x)f ′(x)dx = g(β)f(β)− g(α)f(α)−
∫ β

α

g′(x)f(x)dx

holds. Eventually, if f is absolutely continuous and f ′ is continuous, then f is continuously
differentiable. Hence, H2(R) ⊂ C1(R).

Lemma 6.1. For any ε > 0 there exists Cε > 0 such that∫
R
|f ′(t)|2dt ≤ ε

∫
R
|f ′′(t)|2dt+ Cε

∫
R
|f(t)|2dt

holds for all f ∈ H2(R). In particular, one has f ′ ∈ L2(R) for all f ∈ H2(R).
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Lemma 6.2. For each f ∈ H2(R) one has

lim
x→−∞

f(x) = 0 = lim
x→∞

f(x) and lim
x→−∞

f ′(x) = 0 = lim
x→∞

f ′(x).
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In the following we consider − d2

dx2
as differential operator in L2(R).

Definition 6.3. The operator T0 : L2(R) ⊃ domT0 → L2(R) defined by

T0f = −f ′′, domT0 = C∞0 (R),

is called minimal operator associated to − d2

dx2
. Moreover, the operator T : L2(R) ⊃

domT → L2(R) defined by

Tf = −f ′′, domT = H2(R),

is called maximal operator associated to − d2

dx2
.

First goal: show that T0 is essentially self adjoint and that T0 = T is self adjoint.

Proposition 6.4. The operator T0 is symmetric and

ranT0 =

{
g ∈ C∞0 (R) :

∫
R
g(x)dx =

∫
R
xg(x)dx = 0

}
.
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Lemma 6.5. Let X be a complex vector space and let F, F0, F1 : X → C be linear (or
anti-linear) functionals such that kerF0 ∩ kerF1 ⊂ kerF . Then there exist c0, c1 ∈ C such
that

Fx = c0F0x+ c1F1x

holds for all x ∈ X.
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Theorem 6.6. T0 = T = T ∗ and T is semibounded from below with lower bound zero.
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In the following we add to − d2

dx2
a real valued function (a potential) V ∈ L2(R) and

consider in L2(R) the differential operator − d2

dx2
+ V .

Second goal: Show that − d2

dx2
+V defined on H2(R) is a self adjoint operator in L2(R).

Definition 6.7. Let V ∈ L2(R) be real valued. The operator

T0,V f = −f ′′ + V f, domT0,V = C∞0 (R),

in L2(R) is called minimal Schrödinger operator with potential V . Moreover, the operator

TV f = −f ′′ + V f, domTV = H2(R),

in L2(R) is called maximal Schrödinger operator with potential V

Theorem 6.8. T0,V = TV = T ∗V and TV is semibounded from below.
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Third Goal: Find information about the spectra of T and TV .

Theorem 6.9. σ(T ) = σc(T ) = σess(T ) = [0,∞) and σp(T ) = ∅.
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Theorem 6.10. Let V ∈ L2(R) be real valued. Then σess(TV ) = [0,∞).
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6.1 Estimates for the discrte spectrum of − d2

dx2 + V

In the following T is a self adjoint operator which is bounded from below. The discrete
eigenvalues of T which are below its essential spectrum are denoted by

µ1 ≤ µ2 ≤ µ3 ≤ . . . .

Moreover, for vectors x1, . . . , xn ∈ H we define

U(x1, . . . , xn) :=
{
x ∈ domT : x ∈ span{x1, . . . , xn}⊥, ‖x‖ = 1

}
.

Theorem 6.11 (Min-max-principle). Define the numbers

λn := sup
x1,...,xn−1∈H

inf
x∈U(x1,...,xn−1)

{(Tx, x)}.

Then, the following is true:

(i) (λn) is a non-decreasing sequence and λn → λ∞ ≤ ∞, as n→∞.

(ii) λn = µn, if λn < inf σess(T ).

(iii) λ∞ = inf σess(T ) or λ∞ =∞, if σess(T ) = ∅.
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Example 6.12 (Existence of eigenvalues of TV ). Let TV be defined as in Definition 6.7
such that V ≤ 0, V 6= 0. Then, if V is sufficiently negative, then σd(TV ) 6= ∅.
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Theorem 6.13 (Birman-Schwinger principle). Let V ∈ C∞0 (R, let T and TV be defined
as in Definitions 6.3 and 6.7, respectively. Then

λ ∈ σd(TV ) ⇔ 1 ∈ σd
(√
|V |(T − λ)−1

√
|V |
)
.
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Theorem 6.14. Let V ∈ C∞0 (R) such that V ≤ 0, V 6= 0. Then σd(TV ) is non-empty and
finite.
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