

Advanced functional analysis **1. Exercise sheet** (Closed operators)

Exercise 1

In the Banach space $(C([0,1]), \|\cdot\|_{\infty})$ let an operator $T: C([0,1]) \supseteq \operatorname{dom} T \to C([0,1])$ be given by

$$Tf = f', \quad \text{dom} T = C^1([0, 1]).$$

Show that T is not continuous, but closed.

Exercise 2

Let X be a Banach space and let $T \in \mathcal{L}(X)$ be such that

$$\sum_{n=0}^{\infty} T^n \quad \text{converges in } \mathcal{L}(X) \text{ (w.r.t. the operator norm).}$$
(1)

Prove that I - T is bijective and that

$$(I - T)^{-1} = \sum_{n=0}^{\infty} T^n.$$

Hint: Show that (1) implies that T^n converges to 0 in $\mathcal{L}(X)$.

Exercise 3

Let X and Y be Banach spaces and $T: X \supseteq \operatorname{dom} T \to Y$ be a linear operator. Show that two of the following statements always imply the third one:

- 1. T is closed.
- 2. T is continuous.
- 3. dom T is closed.

Moreover, find an example of a continuous linear operator which is not closed.¹

Exercise 4

Let $T_i: \ell^2 \supseteq \operatorname{dom} T_i \to \ell^2, i = 1, 2$, be given by $T_i(x_n)_{n \in \mathbb{N}} = (nx_n)_{n \in \mathbb{N}}$ on domains

dom
$$T_1 = \{ (x_n)_{n \in \mathbb{N}} : (nx_n)_{n \in \mathbb{N}} \in \ell^2 \}$$

and

dom
$$T_2 = \{(x_n)_{n \in \mathbb{N}} : \exists N \in \mathbb{N} \text{ s.t. } x_n = 0 \forall n \ge N \}.$$

Examine, whether T_i is closed, i = 1, 2.

Exercise 5

Let X be a Banach space and S, T be closed operators in X. Prove or disprove the following statements.

- 1. S + T is closed.
- 2. For $S \in \mathcal{L}(X)$, ST is closed.
- 3. For $T \in \mathcal{L}(X)$, ST is closed.
- 4. If $S \lambda$ is injective, then $(S \lambda)^{-1}$ is closed.
- 5. For each $\lambda \in \mathbb{C}$, λS is closed.

Exercise 6

- 1. Let X and Y be Banach spaces and let $T: X \supseteq \text{dom } T \to Y$ be a closed operator. Are the kernel ker T of T or the range ran T of T closed subspaces of X or Y, respectively?
- 2. Show that in the statement of the Closed Graph Theorem the condition of completeness of the space X cannot be dropped.