

Advanced functional analysis **3. Exercise sheet** (Symmetric and self adjoint operators)

Exercise 13

In the Hilbert space ℓ^2 consider the multiplication operator

 $T(x_n)_{n \in \mathbb{N}} = (nx_n)_{n \in \mathbb{N}}, \quad \operatorname{dom} T = \{(x_n)_{n \in \mathbb{N}} : \exists N \in \mathbb{N} \text{ s.t. } x_n = 0 \,\forall n \ge N \}.$

Investigate whether T is symmetric, essentially selfadjoint, or selfadjoint, respectively. If it is not selfadjoint, compute its adjoint T^* .

Exercise 14

Let \mathcal{H} be a Hilbert space and R, S densely defined linear operators in \mathcal{H} . Show the following statements.

- 1. If R + S is densely defined, then $R^* + S^* \subseteq (R + S)^*$,¹ but in general the converse inclusion does not hold.
- 2. If $S \in \mathcal{L}(\mathcal{H})$, then equality holds in (i).
- 3. If RS is densely defined, then $S^*R^* \subseteq (RS)^*$, but in general the converse inclusion does not hold.
- 4. If $R \in \mathcal{L}(\mathcal{H})$, then equality holds in (iii).

HINT: Remember carefully the definitions of R + S and RS, especially of its domains! One sets $\operatorname{dom}(R+S) = \operatorname{dom} R \cap \operatorname{dom} S$ and $\operatorname{dom}(RS) = \{f \in \operatorname{dom} S : Sf \in \operatorname{dom} R\}$.

Exercise 15

Prove that the domain of the adjoint operator of

 $Tu = u', \quad \text{dom} T = \left\{ u \in L^2(0,1) : u' \text{ exists almost everywhere, } u' \in L^2(0,1) \right\}$

in $L^2(0,1)$ is trivial, i.e., dom $T^* = \{0\}$.

IDEA: Prove first that each $u \in \text{dom } T^*$ is absolutely continuous and satisfies $T^*u = -u'$. For this use that $C_0^{\infty}(0,1)$ is dense in $L^2(0,1)$.

Exercise 16

For a continuous function $f : \mathbb{R} \to \mathbb{R}$ consider the *multiplication operator*

$$T: L^2(\mathbb{R}) \supseteq \operatorname{dom} T \to L^2(\mathbb{R}), \quad (Tg)(x) = (fg)(x), \quad x \in \mathbb{R},$$

on dom $T = \{g \in L^2(\mathbb{R}) : fg \in L^2(\mathbb{R})\}$; cf. an example from the lecture.² Prove the following statements.

- 1. λ is an eigenvalue of T, if and only if the set $\{x \in \mathbb{R} : f(x) = \lambda\}$ has positive Lebesgue measure.
- 2. λ is contained in the continuous spectrum of T, if and only if $\lambda \in \overline{\{f(x) : x \in \mathbb{R}\}}$ and the Lebesgue measure of $\{x \in \mathbb{R} : f(x) = \lambda\}$ is zero.
- 3. If f ist bounded and strictly monotonous, then $\sup_{x \in \mathbb{R}} f(x)$ belongs to $\sigma_c(T)$.

¹The inclusion $A \subseteq B$ of two operators A and B means that dom $A \subseteq \text{dom } B$ holds and both operators coincide on the smaller set.

²There it was shown that T is selfadjoint and satisfies $\sigma(T) = \overline{\{f(x) : x \in \mathbb{R}\}}$.

Exercise 17

Let \mathcal{H} be a Hilbert space and S a symmetric operator in \mathcal{H} . Prove the following criteria for (essential) selfadjointness.

- 1. S is essentially selfadjoint, if and only if there exists $\lambda \in \mathbb{C} \setminus \mathbb{R}$ such that $\operatorname{ran}(S \overline{\lambda})$ and $\operatorname{ran}(S \lambda)$ are dense in \mathcal{H} .
- 2. If there exists a **real** λ such that $\operatorname{ran}(S \lambda) = \mathcal{H}$ holds, then S is selfadjoint.

Exercise 18

Let \mathcal{H} be a Hilbert space and S a symmetric operator in \mathcal{H} . Further, let A be an extension of S with $S \subseteq A \subseteq S^*$. Show that the direct sum decomposition

$$\operatorname{dom} S^* = \operatorname{dom} A \dotplus \ker(S^* - \lambda)$$

holds for each $\lambda \in \rho(A)$.³ Conclude from this the following statement: If S is a symmetric operator and there exists $\lambda \in \mathbb{C} \setminus \mathbb{R}$ with $\operatorname{ran}(\overline{S} - \overline{\lambda}) \neq \mathcal{H}$ and $\operatorname{ran}(\overline{S} - \lambda) = \mathcal{H}$, then S does not posses any selfadjoint extension.

³Of course the formula only makes sense, if such a λ exists – which in general might be wrong.