

Advanced functional analysis **3. Exercise sheet** (Functional calculus for bounded, self adjoint operators) Winter term 2020 Markus Holzmann December 1, 2020

Exercise 19

Let $A = A^*$ be a bounded operator in a Hilbert space \mathcal{H} and $f, g \in C(\sigma(A))$. Prove the following statements.

- 1. $||f(A)|| = ||f||_{\infty}$.
- 2. $f \ge 0$ implies $f(A) \ge 0.^1$
- 3. $Ax = \lambda x$ implies $f(A)x = f(\lambda)x$ for each $\lambda \in \sigma(A)$.
- 4. f(A)g(A) = g(A)f(A), f(A) is a normal operator,² and f(A) is self adjoint if and only if f is real-valued.

Exercise 20

Let $a: \mathcal{H} \times \mathcal{H} \to \mathbb{C}$ be a bounded sesquilinear form, i.e. a map satisfying

 $a[\alpha x + \beta y, z] = \alpha a[x, z] + \beta a[y, z], \quad a[x, \alpha y + \beta z] = \overline{\alpha} a[x, y] + \overline{\beta} a[x, z], \quad \text{and} \quad |a[x, y]| \le M \|x\| \cdot \|y\|$

for all $x, y, z \in \mathcal{H}$, $\alpha, \beta \in \mathbb{C}$ and a constant $M \geq 0$. Prove that there exists a unique operator $A \in \mathcal{L}(\mathcal{H})$ such that

(Ax, y) = a[x, y]

holds for all $x, y \in \mathcal{H}$.

Exercise 21

Let $A = A^*$ be a bounded operator in a Hilbert space \mathcal{H} and let $B \in \mathcal{L}(\mathcal{H})$ satisfy AB = BA. Prove that

f(A)B = Bf(A)

remains valid for each $f \in B(\sigma(A))$.

Exercise 22

Show that the operator

$$A: L^2(0,1) \to L^2(0,1), \quad (Af)(x) = e^x f(x), \quad x \in (0,1), f \in L^2(0,1),$$

is self adjoint and compute g(A) for each $g \in B(\sigma(A))$. (HINT: Make use of the uniqueness of the measurable functional calculus!)

Moreover, prove or disprove that the spectral mapping theorem

$$g(\sigma(A)) = \sigma(g(A)), \quad g \in B(\sigma(A)), \tag{1}$$

is true for each self adjoint operator A^{3}

¹That is, $(f(A)x, x) \ge 0$ holds for all $x \in \mathcal{H}$.

 $^{{}^{2}}B \in \mathcal{L}(\mathcal{H})$ is called *normal*, if $B^{*}B = BB^{*}$ holds.

³Recall that (1) is true for all $g \in C(\sigma(A))$, cf. the lecture.

Exercise 23

Let A be a self adjoint operator in the Hilbert space \mathbb{C}^n having mutually distinct eigenvalues $\lambda_1, \ldots, \lambda_m, m \leq n$, and let P_j denote the orthogonal projection onto the eigenspace corresponding to the eigenvalue $\lambda_j, j = 1, \ldots, m$. For each Borel set $B \subseteq \mathbb{R}$ we define

$$E_B := \sum_{\lambda_j \in B} P_j.$$

Show that the mapping $B \mapsto E_B$ provides a spectral measure and that A can be represented as

$$A = \int_{\mathbb{R}} \lambda dE = \sum_{j=1}^{m} \lambda_j P_j.$$

Moreover, find polynomials p and q such that p(A) = 0 and $q(A) = \arctan(e^A)$ hold.

Exercise 24

Let \mathcal{H} be a Hilbert space and $A = A^* \in \mathcal{L}(\mathcal{H})$. Denote by $\Sigma \ni B \mapsto E_B$ the spectral measure of A. The set

 $\sigma_{\rm ess}(A) = \left\{ \lambda \in \sigma(A) : \lambda \text{ is an accumulation point of } \sigma(A) \text{ or } \dim \ker(A - \lambda) = \infty \right\}$

is called the *essential spectrum* of A. Show that λ belongs to $\sigma_{\text{ess}}(A)$ if and only if dim ran $E_B = \infty$ holds for each open neighborhood B of λ .