

Advanced functional analysis 6. Exercise sheet (Relatively bounded operators) Winter term 2020 Markus Holzmann January 12, 2020

Exercise 31

Let \mathcal{H} be a Hilbert space and let $S : \mathcal{H} \supseteq \operatorname{dom} S \to \mathcal{H}, T : \mathcal{H} \supseteq \operatorname{dom} T \to \mathcal{H}$ be linear operators. Assume that dom $T \subseteq \operatorname{dom} S$, that T is closed and that S is closable. Show that S is T-bounded.

Exercise 32

Let T be a self adjoint operator in \mathcal{H} and let $p, q \in \mathbb{R}$ with $0 \leq q < p$. Show that T^q is relatively bounded with respect to T^p with T^p -bound zero.¹

Exercise 33

Define in $L^2(0, 2\pi)$ the operator

Tu := -u'',dom $T := \left\{ u \in L^2(0, 2\pi) : u, u' \text{ are absolutely continuous, } u(0) = u(2\pi) = 0, \text{ and } u'' \in L^2(0, 2\pi) \right\}.$ (1)

Prove that T is essentially self adjoint. For this, proceed as follows:

- (i) Show that T is symmetric.
- (ii) Compute $\sigma_p(T)$ and compute all associated eigenfunctions.
- (iii) Use Exercise 17 to conclude that T is essentially self adjoint.²

Hints: You are allowed to perform integration by parts as for smooth functions. For (iii) show for $f \in L^2(0, 2\pi)$ that the function $g(x) := -\frac{1}{2\pi} \left((2\pi - x) \int_0^x sf(s) ds + x \int_x^{2\pi} (2\pi - s)f(s) ds \right)$ belongs to dom T and solves Tg = f.

Exercise 34

Let T be given by (1) and define V by dom V = dom T and Vu = u'' + iu'.

- (i) Show that V is symmetric and T-bounded with T-bound one.
- (ii) Prove that $e^{\pm x} \in \ker(T + V \mp i)^*$.
- (iii) Conclude that T + V is not essentially self-adjoint.

¹The powers of T are defined via the functional calculus for T. ²One can show that T is even self adjoint.

Exercise 35

Let T be given by (1) and let $V \in L^2(0, 2\pi)$ be real valued. Define the operator T_V by dom $T_V = \text{dom } T$ and $T_V u = -u'' + V u$.

- (i) Show that T is non-negative, i.e. $(Tx, x) \ge 0$ for all $x \in \text{dom } T$.
- (ii) Show that V is symmetric and T-bounded with T-bound less than one.
- (iii) Show that T_V is semibounded from below and give an estimate for a lower bounded.

Hints: You are allowed to perform integration by parts as for smooth functions. Moreover, the main theorem of calculus for absolutely continuous functions may help for (ii).

Exercise 36

Let T be a non-negative self adjoint operator (i.e. $T \ge 0$). Assume that S is symmetric with dom $T \subset \text{dom } S$ and $||Sx|| \le ||Tx||$ for all $x \in \text{dom } T$. Show that

$$|(Sx, x)| \le (Tx, x)$$

holds for all $x \in \text{dom } T$. Hint: Apply Theorem 5.8 to $T + \kappa S$ for $\kappa \in (-1, 1)$.