Advanced functional analysis
7. Exercise sheet
(Essential spectrum, Schrödinger operators)

Winter term 2020
Markus Holzmann
January 26, 2021

Exercise 37

Let A, B be self adjoint operators in \mathcal{H} and let $\lambda, \mu \in \rho(A) \cap \rho(B)$. Show that
$(B-\mu)^{-1}-(A-\mu)^{-1}=\left(1+(\mu-\lambda)(A-\mu)^{-1}\right)\left((B-\lambda)^{-1}-(A-\lambda)^{-1}\right)\left(1+(\mu-\lambda)(B-\mu)^{-1}\right)$
holds.
Hint: Use the resolvent formula from Exercise 7.
In the following 2 examples we assume that T is a self adjoint operator in the Hilbert space \mathcal{H} and that V is symmetric. The operator V is called T-compact, if $\operatorname{dom} T \subset \operatorname{dom} V$ and V : (dom $\left.T,\|\cdot\|_{T}\right) \rightarrow \mathcal{H}$ is compact (here $\|\cdot\|_{T}$ denotes the graph norm associated to T).

Exercise 38

Assume that V is T-compact. Show that V is T-bounded with T-bound zero. Hint: each symmetric operator is closable!

Exercise 39

Assume that V is T-compact. Show the following statements:
(i) $T+V$ is self adjoint.
(ii) The graph norms for T and $T+V$ are equivalent to each other and $-V$ is $(T+V)$-compact.
(iii) $\sigma_{\text {ess }}(T)=\sigma_{\text {ess }}(T+V)$ and T and $T+V$ have the same singular sequences.

Exercise 40

Let $a, b \in \mathbb{R}$. A function $u \in L^{2}(a, b)$ is called weakly differentiable, if there exists $v \in L^{2}(a, b)$ such that

$$
\int_{a}^{b} u(x) \varphi^{\prime}(x) d x=-\int_{a}^{b} v(x) \varphi(x) d x
$$

holds for all $\varphi \in C_{0}^{\infty}(a, b)$. In this case we write $u^{\prime}=v$. Show that u is weakly differentiable if and only if u is absolutely continuous on $[a, b]$ and $u^{\prime} \in L^{2}(a, b)$. For this, proceed as follows:
(i) Define for $v \in L^{2}(a, b)$ and $c \in \mathbb{R}$

$$
u(x):=c+\int_{a}^{x} v(y) \mathrm{d} y, \quad x \in(a, b) .
$$

Then u is weakly differentiable and its weak derivative is given by $u^{\prime}=v$.
(ii) Conversely, let u be weakly differentiable and denote by u^{\prime} its weak derivative. Then there exists a constant $c \in \mathbb{R}$ such that

$$
\begin{equation*}
u(x)=c+\int_{a}^{x} u^{\prime}(y) \mathrm{d} y \tag{1}
\end{equation*}
$$

for almost all $x \in(a, b)$.

Hints: For $\varphi \in C_{0}^{\infty}(a, b)$ and $x \in(a, b)$ the relation $\varphi(x)=-\int_{x}^{b} \varphi^{\prime}(y) \mathrm{d} y$ holds. Moreover, exchanging the order of integration might help.
Finally, it is allowed to use (without proof) the following statement: If

$$
\int_{a}^{b} u \varphi^{\prime} \mathrm{d} x=0 \quad \forall \varphi \in C_{0}^{\infty}(a, b)
$$

then there exists a constant c such that $u(x)=c$ for almost all $x \in(a, b)$.

Exercise 41

Let $k \in L^{2}\left(\mathbb{R}^{2}\right)$ and define in $L^{2}(\mathbb{R})$ the operator

$$
K: L^{2}(\mathbb{R}) \rightarrow L^{2}(\mathbb{R}), \quad(K f)(x):=\int_{\mathbb{R}} k(x, y) f(y) d y
$$

prove that K is compact.
Hint: You can use (without proof) that functions $\sum_{j=1}^{N} c_{j} \mathbb{1}_{Q_{j}}$ with $Q_{j}=\left[a_{j}, b_{j}\right] \times\left[c_{j}, d_{j}\right]$ and $c_{j} \in \mathbb{C}$ are dense in $L^{2}\left(\mathbb{R}^{2}\right)$.

Exercise 42

Let $T: L^{2}(\mathbb{R}) \supset H^{2}(\mathbb{R}), T f=-f^{\prime \prime}$. Show that

$$
(T-\lambda)^{-1} f(x)=\int_{\mathbb{R}} \frac{1}{2 \sqrt{-\lambda}} e^{-\sqrt{-\lambda}|x-y|} f(y) d y
$$

holds for any $\lambda<0$.

