Chapter 2

Conservation and Balance Equations

In this chapter we consider some applications of Reynold's transport theorem, Theorem 1.1. For a balance equation of the general type

$$
\begin{equation*}
\frac{d}{d t} \int_{\omega(t)} u(t, \boldsymbol{y}) d \boldsymbol{y}=\int_{\omega(t)} f(t, \boldsymbol{y}) d \boldsymbol{y} \tag{2.1}
\end{equation*}
$$

we find from (1.12)

$$
\int_{\omega(t)}\left[\frac{\partial}{\partial t} u(t, \boldsymbol{y})+\operatorname{div}_{y}[u(t, \boldsymbol{y}) \boldsymbol{v}(t, \boldsymbol{y})]\right] d \boldsymbol{y}=\int_{\omega(t)} f(t, \boldsymbol{y}) d \boldsymbol{y}
$$

for all control volumina $\omega(t) \subset \Omega(t)$. Hence, for continuous integrands,

$$
\begin{equation*}
\frac{\partial}{\partial t} u(t, \boldsymbol{y})+\operatorname{div}_{y}[u(t, \boldsymbol{y}) \boldsymbol{v}(t, \boldsymbol{y})]=f(t, \boldsymbol{y}) \quad \text { for } \boldsymbol{y} \in \Omega(t) \tag{2.2}
\end{equation*}
$$

follows.

2.1 Conservation of Volume

For an arbitrary domain $\omega(t)$ we define the volumen

$$
V_{\omega(t)}:=\int_{\omega(t)} d \boldsymbol{y}
$$

and the conservation of volume states

$$
V_{\omega(t)}=V_{\omega\left(t_{0}\right)} \quad \text { for all } t>t_{0}
$$

i.e.

$$
\frac{d}{d t} V_{\omega(t)}=\frac{d}{d t} \int_{\omega(t)} d \boldsymbol{y}=0
$$

When comparing this with (2.1), this corresponds to $u(t, \boldsymbol{y})=1$ and $f(t, \boldsymbol{y})=0$, and therefore we obtain from (2.2) the partial differential equation

$$
\begin{equation*}
\operatorname{div}_{y} \boldsymbol{v}(t, \boldsymbol{y})=0 \quad \text { for } \boldsymbol{y} \in \Omega(t) \tag{2.3}
\end{equation*}
$$

which describes incompressible materials or fluids. The conservation of volume also implies

$$
\int_{\omega(t)} d \boldsymbol{y}=\int_{\omega\left(t_{0}\right)} J(t) d \boldsymbol{x}=\int_{\omega\left(t_{0}\right)} d \boldsymbol{x}
$$

for all $t>t_{0}$, and for all controll volumina $\omega\left(t_{0}\right)$, and therefore

$$
\begin{equation*}
J(t)=1 \quad \text { for all } t>t_{0} \tag{2.4}
\end{equation*}
$$

follows.

2.2 Conservation of Mass

The mass of material with mass density $\varrho(t, \boldsymbol{y})$ in an arbitrary domain $\omega(t)$ is given by

$$
M_{\omega(t)}:=\int_{\omega(t)} \varrho(t, \boldsymbol{y}) d \boldsymbol{y}
$$

The conservation of mass states

$$
M_{\omega(t)}=M_{\omega\left(t_{0}\right)} \quad \text { for all } t>t_{0}
$$

i.e.

$$
\frac{d}{d t} M_{\omega(t)}=\frac{d}{d t} \int_{\omega(t)} \varrho(t, \boldsymbol{y}) d \boldsymbol{y}=0
$$

When comparing this with (2.1) this corresponds to $u(t, \boldsymbol{y})=\varrho(t, \boldsymbol{y})$ and $f(t, \boldsymbol{y})=0$, and therefore we obtain from (2.2) the continuity equation

$$
\begin{equation*}
\frac{\partial}{\partial t} \varrho(t, \boldsymbol{y})+\operatorname{div}_{y}[\varrho(t, \boldsymbol{y}) \boldsymbol{v}(t, \boldsymbol{y})]=0 \quad \text { for } \boldsymbol{y} \in \Omega(t) \tag{2.5}
\end{equation*}
$$

By using (1.6) we further obtain

$$
\begin{aligned}
\frac{\partial}{\partial t} \varrho(t, \boldsymbol{y})+\operatorname{div}_{y}[\varrho(t, \boldsymbol{y}) \boldsymbol{v}(t, \boldsymbol{y})] & =\frac{\partial}{\partial t} \varrho(t, \boldsymbol{y})+\nabla_{y} \varrho(t, \boldsymbol{y}) \cdot \boldsymbol{v}(t, \boldsymbol{y})+\varrho(t, \boldsymbol{y}) \operatorname{div}_{y} \boldsymbol{v}(t, \boldsymbol{y}) \\
& =\frac{d}{d t} \varrho(t, \boldsymbol{y})+\varrho(t, \boldsymbol{y}) \operatorname{div}_{y} \boldsymbol{v}(t, \boldsymbol{y})
\end{aligned}
$$

Hence we can write the continuity equation (2.5) as

$$
\begin{equation*}
\frac{d}{d t} \varrho(t, \boldsymbol{y})+\varrho(t, \boldsymbol{y}) \operatorname{div}_{y} \boldsymbol{v}(t, \boldsymbol{y})=0 \quad \text { for } \boldsymbol{y} \in \Omega(t) \tag{2.6}
\end{equation*}
$$

In particular for incompressible materials we have $\operatorname{div}_{y} \boldsymbol{v}(t, \boldsymbol{y})=0$ and therefore

$$
\frac{d}{d t} \varrho(t, \boldsymbol{y})=0 \quad \text { for } \boldsymbol{y}=\boldsymbol{\varphi}(t, \boldsymbol{x}), \quad \boldsymbol{x} \in \Omega
$$

follows.
The conservation of mass also implies

$$
\int_{\omega(t)} \varrho(t, \boldsymbol{y}) d \boldsymbol{y}=\int_{\omega\left(t_{0}\right)} \varrho(t, \boldsymbol{\varphi}(t, \boldsymbol{x})) J(t) d \boldsymbol{x}=\int_{\omega\left(t_{0}\right)} \varrho\left(t_{0}, \boldsymbol{x}\right) d \boldsymbol{x}
$$

for all $\omega\left(t_{0}\right) \subset \Omega$, and therefore

$$
\begin{equation*}
\varrho_{0}(\boldsymbol{x}):=\varrho\left(t_{0}, \boldsymbol{x}\right)=\varrho(t, \boldsymbol{\varphi}(t, \boldsymbol{x})) J(t) \quad \text { for } \boldsymbol{x} \in \Omega \tag{2.7}
\end{equation*}
$$

2.3 An Auxiliary Result

Next we consider the application of Reynolds transport theorem, the conservation of mass (2.5) and (1.6) to compute, for a scalar function $f(t, \boldsymbol{y}): \mathbb{R} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$,

$$
\begin{aligned}
\frac{d}{d t} \int_{\omega(t)} \varrho(t, \boldsymbol{y}) f(t, \boldsymbol{y}) d \boldsymbol{y}= & \int_{\omega(t)}\left[\frac{\partial}{\partial t}(\varrho(t, \boldsymbol{y}) f(t, \boldsymbol{y}))+\operatorname{div}_{y}(\varrho(t, \boldsymbol{y}) f(t, \boldsymbol{y}) \boldsymbol{v}(t, \boldsymbol{y}))\right] d \boldsymbol{y} \\
= & \int_{\omega(t)}\left[f(t, \boldsymbol{y})\left(\frac{\partial}{\partial t} \varrho(t, \boldsymbol{y})+\operatorname{div}_{y}(\varrho(t, \boldsymbol{y}) \boldsymbol{v}(t, \boldsymbol{y}))\right)\right. \\
& \left.+\varrho(t, \boldsymbol{y})\left(\frac{\partial}{\partial t} f(t, \boldsymbol{y})+\boldsymbol{v}(t, \boldsymbol{y}) \cdot \nabla_{y} f(t, \boldsymbol{y})\right)\right] d \boldsymbol{y} \\
= & \int_{\omega(t)} \varrho(t, \boldsymbol{y})\left(\frac{\partial}{\partial t} f(t, \boldsymbol{y})+\boldsymbol{v}(t, \boldsymbol{y}) \cdot \nabla_{y} f(t, \boldsymbol{y})\right) d \boldsymbol{y} \\
= & \int_{\omega(t)} \varrho(t, \boldsymbol{y}) \frac{d}{d t} f(t, \boldsymbol{y}) d \boldsymbol{y} .
\end{aligned}
$$

i.e.,

$$
\begin{equation*}
\frac{d}{d t} \int_{\omega(t)} \varrho(t, \boldsymbol{y}) f(t, \boldsymbol{y}) d \boldsymbol{y}=\int_{\omega(t)} \varrho(t, \boldsymbol{y}) \frac{d}{d t} f(t, \boldsymbol{y}) d \boldsymbol{y} \tag{2.8}
\end{equation*}
$$

2.4 Balance of Linear Momentum

The postulate of balance of linear momentum is the statement that the rate of change of linear momentum of a fixed mass of a body is equal to the sum of the forces acting on the body, i.e. for $i=1, \ldots, n$ we have

$$
\frac{d}{d t} \int_{\omega(t)} \varrho(t, \boldsymbol{y}) v_{i}(t, \boldsymbol{y}) d \boldsymbol{y}=\int_{\omega(t)} \varrho(t, \boldsymbol{y}) f_{i}(t, \boldsymbol{y}) d \boldsymbol{y}+\int_{\partial \omega(t)} t_{i}(t, \boldsymbol{y}, \boldsymbol{n}) d s \boldsymbol{y}
$$

where $\boldsymbol{t}(t, \boldsymbol{y}, \boldsymbol{n})$ is the Cauchy stress vector for $\boldsymbol{y} \in \partial \omega(t)$, and \boldsymbol{n} is the exterior normal vector on the boundary of the test volumen $\omega(t)$. Note that there holds

$$
\begin{equation*}
\boldsymbol{t}(t, \boldsymbol{y},-\boldsymbol{n})=-\boldsymbol{t}(t, \boldsymbol{y}, \boldsymbol{n}) \tag{2.9}
\end{equation*}
$$

The application of Reynold's transport theorem (Theorem 1.1) gives, by using (2.8),

$$
\frac{d}{d t} \int_{\omega(t)} \varrho(t, \boldsymbol{y}) v_{i}(t, \boldsymbol{y}) d \boldsymbol{y}=\int_{\omega(t)} \varrho(t, \boldsymbol{y}) \frac{d}{d t} v_{i}(t, \boldsymbol{y}) d \boldsymbol{y}
$$

and we obtain

$$
\begin{equation*}
\int_{\omega(t)}\left[\varrho(t, \boldsymbol{y}) \frac{d}{d t} v_{i}(t, \boldsymbol{y})-\varrho(t, \boldsymbol{y}) f_{i}(t, \boldsymbol{y})\right] d \boldsymbol{y}=\int_{\partial \omega(t)} t_{i}(t, \boldsymbol{y}, \boldsymbol{n}) d s_{\boldsymbol{y}} . \tag{2.10}
\end{equation*}
$$

In what follows we aim to rewrite the integral balance (2.10) in form of a partial differential equation. For this we have to transform the surface integral into a domain integral, for which we introduce a reformulation of the Cauchy stress vector $\boldsymbol{t}(t, \boldsymbol{y}, \boldsymbol{n})$ first.

Lemma 2.1 The Cauchy stress vector $\boldsymbol{t}(t, \boldsymbol{y}, \boldsymbol{n})$ can be written as

$$
\begin{equation*}
\boldsymbol{t}(t, \boldsymbol{y}, \boldsymbol{n})=\boldsymbol{T}(t, \boldsymbol{y}) \boldsymbol{n} \tag{2.11}
\end{equation*}
$$

where $\boldsymbol{T}(t, \boldsymbol{y})$ is the Cauchy stress tensor.
Proof: We consider the two-dimensional case first. Let $\omega(t)$ be some test volumen with boundary $\partial \omega(t)$. Let $\boldsymbol{y}_{0} \in \partial \omega$ be arbitrary but fixed. We assume, without loss of generality, that we can write the exterior normal vector \boldsymbol{n}_{0} in \boldsymbol{y}_{0} as

$$
\boldsymbol{n}_{0}=n_{1} \boldsymbol{e}_{1}+n_{2} \boldsymbol{e}_{2}, \quad n_{1}>0, n_{2}>0
$$

where the $\boldsymbol{e}_{k}, k=1,2$, are the Euclidean unit vectors in \mathbb{R}^{2}, see Fig. 2.1. We define a triangle $T\left(\boldsymbol{y}_{0}\right)$ via its nodal points

$$
\boldsymbol{P}_{0}=\boldsymbol{y}_{0}, \quad \boldsymbol{P}_{1}=\boldsymbol{y}_{0}-\alpha \boldsymbol{e}_{1}, \quad \alpha>0, \quad \boldsymbol{P}_{2}=\boldsymbol{y}_{0}-\beta \boldsymbol{e}_{2}, \quad \beta>0
$$

such that $-\boldsymbol{n}_{0}$ is the exterior normal vector of the edge $E_{0}\left(\boldsymbol{P}_{1}, \boldsymbol{P}_{2}\right)$, while \boldsymbol{e}_{1} is the exterior normal vector of the edge $E_{1}\left(\boldsymbol{P}_{2}, \boldsymbol{y}_{0}\right)$, and \boldsymbol{e}_{2} is the exterior normal vector of the edge $E_{2}\left(\boldsymbol{y}_{0}, \boldsymbol{P}_{1}\right)$, respectively, see Fig. 2.1.
Note that we have

$$
0=\left(\boldsymbol{P}_{2}-\boldsymbol{P}_{1}, \boldsymbol{n}_{0}\right)=\left(\alpha \boldsymbol{e}_{1}-\beta \boldsymbol{e}_{2}, n_{1} \boldsymbol{e}_{1}+n_{2} \boldsymbol{e}_{2}\right)=\alpha n_{1}-\beta n_{2} .
$$

Due to $n_{2}>0$ we have

$$
\begin{equation*}
\beta=\alpha \frac{n_{1}}{n_{2}} \tag{2.12}
\end{equation*}
$$

Figure 2.1: Local coordinate system in $\boldsymbol{y}_{0} \in \partial \omega(t)$.
For the control volumen $T\left(\boldsymbol{y}_{0}\right)$ the balance of linear momentum (2.10) gives, for $i=1,2$,

$$
\begin{aligned}
& \int_{T\left(\boldsymbol{y}_{0}\right)}\left[\varrho(t, \boldsymbol{y}) \frac{d}{d t} v_{i}(t, \boldsymbol{y})-\varrho(t, \boldsymbol{y}) f_{i}(t, \boldsymbol{y})\right] d \boldsymbol{y}=\int_{\partial T\left(\boldsymbol{y}_{0}\right)} t_{i}(t, \boldsymbol{y}, \boldsymbol{n}) d s_{\boldsymbol{y}} \\
&=\int_{E_{0}} t_{i}\left(t, \boldsymbol{y},-\boldsymbol{n}_{0}\right) d s_{\boldsymbol{y}}+\int_{E_{1}} t_{i}\left(t, \boldsymbol{y}, \boldsymbol{e}_{1}\right) d s_{\boldsymbol{y}}+\int_{E_{2}} t_{i}\left(t, \boldsymbol{y}, \boldsymbol{e}_{2}\right) d s_{\boldsymbol{y}}
\end{aligned}
$$

When applying the mean value theorem to all integrals this gives

$$
\begin{aligned}
& {\left[\varrho(t, \widetilde{\boldsymbol{y}}) \frac{d}{d t} v_{i}(t, \widetilde{\boldsymbol{y}})-\varrho(t, \widetilde{\boldsymbol{y}}) f_{i}(t, \widetilde{\boldsymbol{y}})\right] \operatorname{area}\left(T\left(\boldsymbol{y}_{0}\right)\right)} \\
& \quad=t_{i}\left(t, \widetilde{\boldsymbol{y}}_{0},-\boldsymbol{n}_{0}\right)\left|E_{0}\right|+t_{i}\left(t, \widetilde{\boldsymbol{y}}_{1}, \boldsymbol{e}_{1}\right)\left|E_{1}\right|+t_{i}\left(t, \widetilde{\boldsymbol{y}}_{2}, \boldsymbol{e}_{2}\right)\left|E_{2}\right|,
\end{aligned}
$$

where $\widetilde{\boldsymbol{y}} \in T\left(\boldsymbol{y}_{0}\right)$ and $\widetilde{\boldsymbol{y}}_{k} \in E_{k}, k=0,1,2$, are appropriately chosen. By using

$$
\left|E_{0}\right|=\sqrt{\alpha^{2}+\beta^{2}}, \quad\left|E_{1}\right|=\beta, \quad\left|E_{2}\right|=\alpha, \quad \text { area }\left(T\left(\boldsymbol{y}_{0}\right)\right)=\frac{1}{2} \alpha \beta
$$

we further conclude

$$
\begin{aligned}
& {\left[\varrho(t, \widetilde{\boldsymbol{y}}) \frac{d}{d t} v_{i}(t, \widetilde{\boldsymbol{y}})-\varrho(t, \widetilde{\boldsymbol{y}}) f_{i}(t, \widetilde{\boldsymbol{y}})\right] \frac{1}{2} \alpha \beta} \\
& \quad=t_{i}\left(t, \widetilde{\boldsymbol{y}}_{0},-\boldsymbol{n}_{0}\right) \sqrt{\alpha^{2}+\beta^{2}}+t_{i}\left(t, \widetilde{\boldsymbol{y}}_{1}, \boldsymbol{e}_{1}\right) \beta+t_{i}\left(t, \widetilde{\boldsymbol{y}}_{2}, \boldsymbol{e}_{2}\right) \alpha .
\end{aligned}
$$

By using (2.12) we obtain

$$
\begin{aligned}
& {\left[\varrho(t, \widetilde{\boldsymbol{y}}) \frac{d}{d t} v_{i}(t, \widetilde{\boldsymbol{y}})-\varrho(t, \widetilde{\boldsymbol{y}}) f_{i}(t, \widetilde{\boldsymbol{y}})\right] \frac{1}{2} \alpha n_{1}} \\
& \quad=t_{i}\left(t, \widetilde{\boldsymbol{y}}_{0},-\boldsymbol{n}_{0}\right)+t_{i}\left(t, \widetilde{\boldsymbol{y}}_{1}, \boldsymbol{e}_{1}\right) n_{1}+t_{i}\left(t, \widetilde{\boldsymbol{y}}_{2}, \boldsymbol{e}_{2}\right) n_{2} .
\end{aligned}
$$

In the limiting case $\alpha \rightarrow 0$ we therefore conclude

$$
t_{i}\left(t, \boldsymbol{y}_{0},-\boldsymbol{n}_{0}\right)+t_{i}\left(t, \boldsymbol{y}_{0}, \boldsymbol{e}_{1}\right) n_{1}+t_{i}\left(t, \boldsymbol{y}_{0}, \boldsymbol{e}_{2}\right) n_{2}=0
$$

from which

$$
\begin{aligned}
t_{i}\left(t, \boldsymbol{y}_{0}, \boldsymbol{n}_{0}\right) & =t_{i}\left(t, \boldsymbol{y}_{0}, \boldsymbol{e}_{1}\right) n_{1}+t_{i}\left(t, \boldsymbol{y}_{0}, \boldsymbol{e}_{2}\right) n_{2} \\
& =T_{i 1}\left(t, \boldsymbol{y}_{0}\right) n_{1}+T_{i 2}\left(t, \boldsymbol{y}_{0}\right) n_{2}
\end{aligned}
$$

with

$$
T_{i 1}\left(t, \boldsymbol{y}_{0}\right)=t_{i}\left(t, \boldsymbol{y}_{0}, \boldsymbol{e}_{1}\right), \quad T_{i 2}\left(t, \boldsymbol{y}_{0}\right)=t_{i}\left(t, \boldsymbol{y}_{0}, \boldsymbol{e}_{2}\right)
$$

follows.
In the three-dimensional case we proceed in the same way. For an arbitrary but fixed $\boldsymbol{y}_{0} \in \partial \omega(t)$ we use the Euclidean unit vectors $\boldsymbol{e}_{k}, k=1,2,3$, to write the exterior normal vector \boldsymbol{n}_{0} in \boldsymbol{y}_{0} as

$$
\boldsymbol{n}_{0}=n_{1} \boldsymbol{e}_{1}+n_{2} \boldsymbol{e}_{2}+n_{3} \boldsymbol{e}_{3},
$$

where we assume

$$
n_{k}>0 \quad \text { for } k=1,2,3
$$

Note that such a configuration is always possible due to appropriately chosen coordinate transformations to define $\omega(t)$. We define a tetrahedron $T\left(\boldsymbol{y}_{0}\right)$ via its nodal points
$\boldsymbol{P}_{0}=\boldsymbol{y}_{0}, \quad \boldsymbol{P}_{1}=\boldsymbol{y}_{0}-\alpha \boldsymbol{e}_{1}, \quad \alpha>0, \quad \boldsymbol{P}_{2}=\boldsymbol{y}_{0}-\beta \boldsymbol{e}_{2}, \quad \beta>0, \quad \boldsymbol{P}_{3}=\boldsymbol{y}_{0}-\gamma \boldsymbol{e}_{3}, \quad \gamma>0$, such that $-\boldsymbol{n}_{0}$ is the normal vector of the face $F_{0}\left(\boldsymbol{P}_{1}, \boldsymbol{P}_{2}, \boldsymbol{P}_{3}\right)$, while \boldsymbol{e}_{k} are the normal vectors of the faces $F_{k}\left(\left\{\boldsymbol{P}_{0}, \boldsymbol{P}_{1}, \boldsymbol{P}_{2}, \boldsymbol{P}_{3}\right\} \backslash \boldsymbol{P}_{k}\right)$ for $k=1,2,3$, see also Fig. 2.1.

For the control volumen $\omega(t)=T\left(\boldsymbol{y}_{0}\right)$ we then have (2.10), i.e. for $i=1, \ldots, 3$

$$
\begin{aligned}
\int_{T\left(\boldsymbol{y}_{0}\right)}\left[\varrho(t, \boldsymbol{y}) \frac{d}{d t} v_{i}(t, \boldsymbol{y})-\varrho(t, \boldsymbol{y})\right. & \left.f_{i}(t, \boldsymbol{y})\right] d \boldsymbol{y}=\int_{\partial T\left(\boldsymbol{y}_{0}\right)} t_{i}\left(t, \boldsymbol{y}, \boldsymbol{n}_{y}\right) d s_{\boldsymbol{y}} \\
& =\sum_{k=1}^{3} \int_{F_{k}} t_{i}\left(t, \boldsymbol{y}, \boldsymbol{e}_{k}\right) d s_{\boldsymbol{y}}+\int_{F_{0}} t_{i}\left(t, \boldsymbol{y},-\boldsymbol{n}_{0}\right) d s_{\boldsymbol{y}}
\end{aligned}
$$

When applying the mean value theorem to all integrals this gives

$$
\begin{align*}
& {\left[\varrho(t, \widetilde{\boldsymbol{y}}) \frac{d}{d t} v_{i}(t, \widetilde{\boldsymbol{y}})-\varrho(t, \widetilde{\boldsymbol{y}}) f_{i}(t, \widetilde{\boldsymbol{y}})\right] \operatorname{vol}\left(T\left(\boldsymbol{y}_{0}\right)\right)=} \tag{2.13}\\
& \quad=\sum_{k=1}^{3} t_{i}\left(t, \widetilde{\boldsymbol{y}}_{k}, \boldsymbol{e}_{k}\right) \operatorname{area}\left(F_{k}\right)+t_{i}\left(t, \widetilde{\boldsymbol{y}}_{0},-\boldsymbol{n}_{0}\right) \operatorname{area}\left(F_{0}\right)
\end{align*}
$$

where $\widetilde{\boldsymbol{y}}_{k} \in F_{k}$ and $\widetilde{\boldsymbol{y}} \in T\left(\boldsymbol{y}_{0}\right)$ are appropriately chosen. The normal vector $-\boldsymbol{n}_{0}$ of F_{0} can be computed from

$$
-\boldsymbol{n}_{0}=\frac{\boldsymbol{a} \times \boldsymbol{b}}{|\boldsymbol{a} \times \boldsymbol{b}|}
$$

where

$$
\boldsymbol{a}=\boldsymbol{P}_{3}-\boldsymbol{P}_{1}=\left(\begin{array}{c}
\alpha \\
0 \\
-\gamma
\end{array}\right), \quad \boldsymbol{b}=\boldsymbol{P}_{2}-\boldsymbol{P}_{1}=\left(\begin{array}{c}
\alpha \\
-\beta \\
0
\end{array}\right) .
$$

Hence we obtain

$$
n_{k}=\left(\boldsymbol{n}_{0}, \boldsymbol{e}_{k}\right)=-\frac{\left(\boldsymbol{a} \times \boldsymbol{b}, \boldsymbol{e}_{k}\right)}{|\boldsymbol{a} \times \boldsymbol{b}|}
$$

i.e.

$$
n_{k}|\boldsymbol{a} \times \boldsymbol{b}|=\left(\boldsymbol{b} \times \boldsymbol{a}, \boldsymbol{e}_{k}\right)=\left(\left(\begin{array}{c}
\beta \gamma \\
\alpha \gamma \\
\alpha \beta
\end{array}\right), \boldsymbol{e}_{k}\right),
$$

and therefore

$$
n_{1}|\boldsymbol{a} \times \boldsymbol{b}|=\beta \gamma, \quad n_{2}|\boldsymbol{a} \times \boldsymbol{b}|=\alpha \gamma, \quad n_{3}|\boldsymbol{a} \times \boldsymbol{b}|=\alpha \beta
$$

follows. Note that

$$
\operatorname{area}\left(F_{0}\right)=\frac{1}{2}|\boldsymbol{a} \times \boldsymbol{b}|=\frac{1}{2} \sqrt{[\beta \gamma]^{2}+[\alpha \gamma]^{2}+[\alpha \beta]^{2}}
$$

and hence we conclude

$$
\begin{aligned}
& \operatorname{area}\left(F_{1}\right)=\frac{1}{2} \beta \gamma=\frac{1}{2} n_{1}|\boldsymbol{a} \times \boldsymbol{b}|=n_{1} \operatorname{area}\left(F_{0}\right) \\
& \operatorname{area}\left(F_{2}\right)=\frac{1}{2} \alpha \gamma=\frac{1}{2} n_{2}|\boldsymbol{a} \times \boldsymbol{b}|=n_{2} \operatorname{area}\left(F_{0}\right) \\
& \operatorname{area}\left(F_{3}\right)=\frac{1}{2} \alpha \beta=\frac{1}{2} n_{3}|\boldsymbol{a} \times \boldsymbol{b}|=n_{3} \operatorname{area}\left(F_{0}\right)
\end{aligned}
$$

Now we can write (2.13) as

$$
\varrho(t, \widetilde{\boldsymbol{y}})\left[\frac{d}{d t} v_{i}(t, \widetilde{\boldsymbol{y}})-f_{i}(t, \widetilde{\boldsymbol{y}})\right] \frac{\operatorname{vol}\left(T\left(\boldsymbol{y}_{0}\right)\right)}{\operatorname{area}\left(F_{0}\right)}=\sum_{k=1}^{3} t_{i}\left(t, \widetilde{\boldsymbol{y}}_{k}, \boldsymbol{e}_{k}\right) n_{k}+t_{i}\left(t, \widetilde{\boldsymbol{y}}_{0},-\boldsymbol{n}_{0}\right) .
$$

Recall that

$$
\operatorname{vol}\left(T\left(\boldsymbol{y}_{0}\right)\right)=\frac{1}{6} \alpha \beta \gamma
$$

Hence, when considering the scaling

$$
\alpha=h \widehat{\alpha}, \quad \beta=h \widehat{\beta}, \quad \gamma=h \widehat{\gamma},
$$

we find

$$
\frac{\operatorname{vol}\left(T\left(\boldsymbol{y}_{0}\right)\right)}{\operatorname{area}\left(F_{0}\right)}=\frac{1}{3} h \frac{\widehat{\alpha} \widehat{\beta} \widehat{\gamma}}{\sqrt{[\widehat{\beta} \widehat{\gamma}]^{2}+[\widehat{\alpha} \widehat{\gamma}]^{2}+[\widehat{\alpha} \widehat{\beta}]^{2}}} \rightarrow 0 \quad \text { as } h \rightarrow 0
$$

Note that all normal vectors remain the same for $h \rightarrow 0$. In the limit we therefore obtain

$$
\sum_{k=1}^{3} t_{i}\left(t, \boldsymbol{y}, \boldsymbol{e}_{k}\right) n_{k}+t_{i}\left(t, \boldsymbol{y},-\boldsymbol{n}_{0}\right)=0
$$

which is equivalent to, for $i=1,2,3$,

$$
t_{i}\left(t, \boldsymbol{y}, \boldsymbol{n}_{0}\right)=\sum_{k=1}^{3} t_{i}\left(t, \boldsymbol{y}, \boldsymbol{e}_{k}\right) n_{k}=\sum_{k=1}^{3} T_{i k}(t, \boldsymbol{y}) n_{k}
$$

with

$$
T_{i k}(t, \boldsymbol{y})=t_{i}\left(t, \boldsymbol{y}, \boldsymbol{e}_{k}\right) \quad \text { for } i, k=1,2,3
$$

Now, using the representation (2.11) we can write the integral balance of linear momentum (2.10) as, for $i=1,2,3$,

$$
\begin{aligned}
\int_{\omega(t)}\left[\varrho(t, \boldsymbol{y}) \frac{d}{d t} v_{i}(t, \boldsymbol{y})-\varrho(t, \boldsymbol{y}) f_{i}(t, \boldsymbol{y})\right] d \boldsymbol{y} & =\int_{\partial \omega(t)} t_{i}(t, \boldsymbol{y}, \boldsymbol{n}) d s \boldsymbol{y} \\
& =\int_{\partial \omega(t)} \sum_{j=1}^{n} T_{i j}(t, \boldsymbol{y}) n_{j} d s \boldsymbol{y} \\
& =\int_{\omega(t)} \sum_{j=1}^{n} \frac{\partial}{\partial y_{j}} T_{i j}(t, \boldsymbol{y}) d \boldsymbol{y} .
\end{aligned}
$$

Since this holds for all test volumina $\omega(t)$, we conclude, for continuous functions, the Cauchy equilibrium equations

$$
\begin{equation*}
\varrho(t, \boldsymbol{y}) \frac{d}{d t} v_{i}(t, \boldsymbol{y})=\varrho(t, \boldsymbol{y}) f_{i}(t, \boldsymbol{y})+\sum_{j=1}^{n} \frac{\partial}{\partial y_{j}} T_{i j}(t, \boldsymbol{y}) \quad \text { for } i=1, \ldots, n, \tag{2.14}
\end{equation*}
$$

i.e.

$$
\begin{equation*}
\varrho(t, \boldsymbol{y}) \frac{d}{d t} \boldsymbol{v}(t, \boldsymbol{y})=\varrho(t, \boldsymbol{y}) \boldsymbol{f}(t, \boldsymbol{y})+\operatorname{div} \boldsymbol{T}(t, \boldsymbol{y}) \tag{2.15}
\end{equation*}
$$

2.5 Balance of Angular Momentum

To derive symmetry relations of the Cauchy stress tensor $\boldsymbol{T}(t, \boldsymbol{y})$ as defined in (2.11) we will consider the balance of angular momentum which is the statement that the rate of change of angular momentum of a fixed material region arises from the combined torques on the body. In the absence of body couples, the integral form of the balance of angular momentum can be written as

$$
\begin{equation*}
\frac{d}{d t} \int_{\omega(t)} \boldsymbol{y} \times \varrho(t, \boldsymbol{y}) \boldsymbol{v}(t, \boldsymbol{y}) d \boldsymbol{y}=\int_{\omega(t)} \boldsymbol{y} \times \varrho(t, \boldsymbol{y}) \boldsymbol{f}(t, \boldsymbol{y}) d \boldsymbol{y}+\int_{\partial \omega(t)} \boldsymbol{y} \times \boldsymbol{t}(t, \boldsymbol{y}, \boldsymbol{n}) d s_{\boldsymbol{y}} . \tag{2.16}
\end{equation*}
$$

The integral on the left-hand side is the angular momentum of the material body at time t. The integrals on the right-hand side are the resultant torques due to body and surfaces forces, respectively.

Lemma 2.2 For the Cauchy stress tensor as defined in (2.11) there hold the symmetry relations

$$
T_{32}(t, \boldsymbol{y})=T_{23}(t, \boldsymbol{y}), \quad T_{13}(t, \boldsymbol{y})=T_{31}(t, \boldsymbol{y}), \quad T_{21}(t, \boldsymbol{y})=T_{12}(t, \boldsymbol{y}) .
$$

Proof: We first note that

$$
\boldsymbol{y} \times[\varrho(t, \boldsymbol{y}) \boldsymbol{v}(t, \boldsymbol{y})]=\varrho(t, \boldsymbol{y})[\boldsymbol{y} \times \boldsymbol{v}(t, \boldsymbol{y})],
$$

hence we obtain, by using (2.8),

$$
\begin{aligned}
\frac{d}{d t} \int_{\omega(t)}[\boldsymbol{y} \times \varrho(t, \boldsymbol{y}) \boldsymbol{v}(t, \boldsymbol{y})] d \boldsymbol{y} & =\frac{d}{d t} \int_{\omega(t)} \varrho(t, \boldsymbol{y})[\boldsymbol{y} \times \boldsymbol{v}(t, \boldsymbol{y})] d \boldsymbol{y} \\
& =\int_{\omega(t)} \varrho(t, \boldsymbol{y}) \frac{d}{d t}[\boldsymbol{y} \times \boldsymbol{v}(t, \boldsymbol{y})] d \boldsymbol{y} .
\end{aligned}
$$

With the product rule

$$
\frac{d}{d t}[\boldsymbol{y} \times \boldsymbol{v}(t, \boldsymbol{y})]=\boldsymbol{v}(t, \boldsymbol{y}) \times \boldsymbol{v}(t, \boldsymbol{y})+\boldsymbol{y} \times \frac{d}{d t} \boldsymbol{v}(t, \boldsymbol{y})=\boldsymbol{y} \times \frac{d}{d t} \boldsymbol{v}(t, \boldsymbol{y})
$$

we further conclude

$$
\frac{d}{d t} \int_{\omega(t)} \boldsymbol{y} \times \varrho(t, \boldsymbol{y}) \boldsymbol{v}(t, \boldsymbol{y}) d \boldsymbol{y}=\int_{\omega(t)} \boldsymbol{y} \times \varrho(t, \boldsymbol{y}) \frac{d}{d t} \boldsymbol{v}(t, \boldsymbol{y}) d \boldsymbol{y}
$$

Then the balance of angular momentum reads

$$
\int_{\omega(t)} \boldsymbol{y} \times \varrho(t, \boldsymbol{y})\left(\frac{d}{d t} \boldsymbol{v}(t, \boldsymbol{y})-\boldsymbol{f}(t, \boldsymbol{y})\right) d \boldsymbol{y}=\int_{\partial \omega(t)} \boldsymbol{y} \times \boldsymbol{t}(t, \boldsymbol{y}, \boldsymbol{n}) d s_{\boldsymbol{y}} .
$$

By using (2.11) we can write the surface integral as

$$
\begin{aligned}
& \int_{\partial \omega(t)} \boldsymbol{y} \times \boldsymbol{t}(t, \boldsymbol{y}, \boldsymbol{n}) d s \boldsymbol{y}=\int_{\partial \omega(t)} \boldsymbol{y} \times[\boldsymbol{T}(t, \boldsymbol{y}) \boldsymbol{n}] d s \boldsymbol{y} \\
&=\int_{\partial \omega(t)}\left(\begin{array}{c}
\sum_{k=1}^{3}\left[y_{2} T_{3 k}(t, \boldsymbol{y})-y_{3} T_{2 k}(t, \boldsymbol{y})\right] n_{k} \\
\sum_{k=1}^{3}\left[y_{3} T_{1 k}(t, \boldsymbol{y})-y_{1} T_{3 k}(t, \boldsymbol{y})\right] n_{k} \\
\sum_{k=1}^{3}\left[y_{1} T_{2 k}(t, \boldsymbol{y})-y_{2} T_{1 k}(t, \boldsymbol{y})\right] n_{k}
\end{array}\right) d s_{\boldsymbol{y}} \\
&=\int_{\omega(t)}\left(\begin{array}{c}
\sum_{k=1}^{3} \frac{\partial}{\partial y_{k}}\left[y_{2} T_{3 k}(t, \boldsymbol{y})-y_{3} T_{2 k}(t, \boldsymbol{y})\right] \\
\sum_{k=1}^{3} \frac{\partial}{\partial y_{k}}\left[y_{3} T_{1 k}(t, \boldsymbol{y})-y_{1} T_{3 k}(t, \boldsymbol{y})\right] \\
\sum_{k=1}^{3} \frac{\partial}{\partial y_{k}}\left[y_{1} T_{2 k}(t, \boldsymbol{y})-y_{2} T_{1 k}(t, \boldsymbol{y})\right]
\end{array}\right) d \boldsymbol{y}
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{\omega(t)}\left(\begin{array}{l}
T_{32}(t, \boldsymbol{y})-T_{23}(t, \boldsymbol{y})+y_{2} \sum_{k=1}^{3} \frac{\partial}{\partial y_{k}} T_{3 k}(t, \boldsymbol{y})-y_{3} \sum_{k=1}^{3} \frac{\partial}{\partial y_{k}} T_{2 k}(t, \boldsymbol{y}) \\
T_{13}(t, \boldsymbol{y})-T_{31}(t, \boldsymbol{y})+y_{3} \sum_{k=1}^{3} \frac{\partial}{\partial y_{k}} T_{1 k}(t, \boldsymbol{y})-y_{1} \sum_{k=1}^{3} \frac{\partial}{\partial y_{k}} T_{3 k}(t, \boldsymbol{y}) \\
T_{21}(t, \boldsymbol{y})-T_{12}(t, \boldsymbol{y})+y_{1} \sum_{k=1}^{3} \frac{\partial}{\partial y_{k}} T_{2 k}(t, \boldsymbol{y})-y_{2} \sum_{k=1}^{3} \frac{\partial}{\partial y_{k}} T_{1 k}(t, \boldsymbol{y})
\end{array}\right) d \boldsymbol{y} \\
& =\int_{\omega(t)}\left(\begin{array}{l}
T_{32}(t, \boldsymbol{y})-T_{23}(t, \boldsymbol{y}) \\
T_{13}(t, \boldsymbol{y})-T_{31}(t, \boldsymbol{y}) \\
T_{21}(t, \boldsymbol{y})-T_{12}(t, \boldsymbol{y})
\end{array}\right) d \boldsymbol{y}+\int_{\omega(t)} \boldsymbol{y} \times\left(\sum_{k=1}^{3} \frac{\partial}{\partial y_{k}} T_{i k}(t, \boldsymbol{y})\right)_{i=1,2,3} d \boldsymbol{y}
\end{aligned}
$$

Hence we have

$$
\begin{aligned}
\int_{\omega(t)} \boldsymbol{y} \times \varrho(t, \boldsymbol{y}) & \left(\frac{d}{d t} \boldsymbol{v}(t, \boldsymbol{y})-\boldsymbol{f}(t, \boldsymbol{y})\right) d \boldsymbol{y}= \\
= & \int_{\omega(t)}\left(\begin{array}{l}
T_{32}(t, \boldsymbol{y})-T_{23}(t, \boldsymbol{y}) \\
T_{13}(t, \boldsymbol{y})-T_{31}(t, \boldsymbol{y}) \\
T_{21}(t, \boldsymbol{y})-T_{12}(t, \boldsymbol{y})
\end{array}\right) d \boldsymbol{y}+\int_{\omega(t)} \boldsymbol{y} \times\left(\sum_{k=1}^{3} \frac{\partial}{\partial y_{k}} T_{i k}(t, \boldsymbol{y})\right)_{i=1,2,3} d \boldsymbol{y}
\end{aligned}
$$

from which we conclude, by using (2.14),

$$
\int_{\omega(t)}\left(\begin{array}{l}
T_{32}(t, \boldsymbol{y})-T_{23}(t, \boldsymbol{y}) \\
T_{13}(t, \boldsymbol{y})-T_{31}(t, \boldsymbol{y}) \\
T_{21}(t, \boldsymbol{y})-T_{12}(t, \boldsymbol{y})
\end{array}\right) d \boldsymbol{y}=\mathbf{0}
$$

for all control volumina $\omega(t)$, i.e. there hold the symmetry relations

$$
T_{32}(t, \boldsymbol{y})=T_{23}(t, \boldsymbol{y}), \quad T_{13}(t, \boldsymbol{y})=T_{31}(t, \boldsymbol{y}), \quad T_{21}(t, \boldsymbol{y})=T_{12}(t, \boldsymbol{y})
$$

2.6 Equilibrium Equations in Reference Coordinates

Next we will rewrite the Cauchy equilibrium equations (2.14) in terms of the reference coordinates $\boldsymbol{x} \in \Omega$. By introducing vectors $\boldsymbol{p}_{i} \in \mathbb{R}^{n}, i=1, \ldots, n$, by

$$
p_{i j}(t, \boldsymbol{y})=T_{i j}(t, \boldsymbol{y}) \quad \text { for } j=1, \ldots, n,
$$

we can rewrite the equilibrium equations (2.14) as

$$
\varrho(t, \boldsymbol{y}) \frac{d}{d t} v_{i}(t, \boldsymbol{y})=\varrho(t, \boldsymbol{y}) f_{i}(t, \boldsymbol{y})+\operatorname{div}_{y} \boldsymbol{p}_{i}(t, \boldsymbol{y}) \quad \text { for } i=1, \ldots, n .
$$

Now, by using $\boldsymbol{y}=\boldsymbol{\varphi}(t, \boldsymbol{x}), J(t)=\operatorname{det} \boldsymbol{F},(1.9)$ and (1.10) we obtain, for $i=1, \ldots, n$,

$$
\varrho(t, \boldsymbol{\varphi}(t, \boldsymbol{x})) \frac{d}{d t} v_{i}(t, \boldsymbol{\varphi}(t, \boldsymbol{x}))=\varrho(t, \boldsymbol{\varphi}(t, \boldsymbol{x})) f_{i}(t, \boldsymbol{\varphi}(t, \boldsymbol{x}))+\frac{1}{J(t)} \operatorname{div}_{x} \widetilde{\boldsymbol{p}}_{i}(t, \boldsymbol{x})
$$

where

$$
\widetilde{\boldsymbol{p}}_{i}(t, \boldsymbol{x})=J(t) \boldsymbol{F}^{-1} \boldsymbol{p}_{i}(t, \boldsymbol{\varphi}(t, \boldsymbol{x}))
$$

Hence we have

$$
J(t) \varrho(t, \boldsymbol{\varphi}(t, \boldsymbol{x})) \frac{d}{d t} v_{i}(t, \boldsymbol{\varphi}(t, \boldsymbol{x}))=J(t) \varrho(t, \boldsymbol{\varphi}(t, \boldsymbol{x})) f_{i}(t, \boldsymbol{\varphi}(t, \boldsymbol{x}))+\operatorname{div}_{x} \widetilde{\boldsymbol{p}}_{i}(t, \boldsymbol{x}),
$$

and with (2.7) this gives

$$
\varrho_{0}(\boldsymbol{x}) \frac{d}{d t} v_{i}(t, \boldsymbol{\varphi}(t, \boldsymbol{x}))=\varrho_{0}(\boldsymbol{x}) f_{i}(t, \boldsymbol{\varphi}(t, \boldsymbol{x}))+\operatorname{div}_{x} \widetilde{\boldsymbol{p}}_{i}(t, \boldsymbol{x}), \quad i=1, \ldots, n .
$$

When using the displacement (1.3) we further compute

$$
\frac{d}{d t} \boldsymbol{v}(t, \boldsymbol{y})=\frac{d^{2}}{d t^{2}} \boldsymbol{y}(t)=\frac{d^{2}}{d t^{2}} \boldsymbol{\varphi}(t, \boldsymbol{x})=\frac{d^{2}}{d t^{2}}[\boldsymbol{x}+\boldsymbol{u}(t, \boldsymbol{x})]=\frac{d^{2}}{d t^{2}} \boldsymbol{u}(t, \boldsymbol{x}),
$$

and with

$$
\tilde{f}_{i}(t, x):=f_{i}(t, \boldsymbol{\varphi}(t, \boldsymbol{x}))
$$

we conclude

$$
\varrho_{0}(\boldsymbol{x}) \frac{d^{2}}{d t^{2}} u_{i}(t, \boldsymbol{x})=\varrho_{0}(\boldsymbol{x}) \widetilde{f}_{i}(t, \boldsymbol{x})+\operatorname{div}_{x} \widetilde{\boldsymbol{p}}_{i}(t, \boldsymbol{x}), \quad i=1, \ldots, n .
$$

A simple computation shows, recall the definition of \boldsymbol{p}_{i},

$$
\left(\begin{array}{ccc}
\widetilde{p}_{11} & \widetilde{p}_{12} & \widetilde{p}_{13} \\
\widetilde{p}_{21} & \widetilde{p}_{22} & \widetilde{p}_{23} \\
\widetilde{p}_{31} & \widetilde{p}_{32} & \widetilde{p}_{33}
\end{array}\right)=J(t)\left(\begin{array}{ccc}
T_{11} & T_{12} & T_{13} \\
T_{21} & T_{22} & T_{23} \\
T_{31} & T_{32} & T_{33}
\end{array}\right) \boldsymbol{F}^{-1}
$$

i.e.

$$
\begin{equation*}
\boldsymbol{P}(t, x):=J(t) \boldsymbol{T}(t, \boldsymbol{\varphi}(t, \boldsymbol{x})) \boldsymbol{F}^{-\top} \tag{2.17}
\end{equation*}
$$

defines the first Piola transformation. Therefore we can rewrite the equilibrium equations (2.15) in Lagrange coordinates as

$$
\begin{equation*}
\varrho_{0}(\boldsymbol{x}) \frac{d^{2}}{d t^{2}} \boldsymbol{u}(t, \boldsymbol{x})=\varrho_{0}(\boldsymbol{x}) \widetilde{\boldsymbol{f}}(t, \boldsymbol{x})+\operatorname{div}_{x} \boldsymbol{P}(t, \boldsymbol{x}) \tag{2.18}
\end{equation*}
$$

Although the Cauchy stress tensor $\boldsymbol{T}(t, \boldsymbol{y})$ is symmetric, see Lemma 2.2, the first Piola transformation $\boldsymbol{P}(t, \boldsymbol{x})$ as defined in (2.17) is in general not symmetric. Hence we introduce the second Piola transformation

$$
\begin{equation*}
\boldsymbol{\Sigma}(t, \boldsymbol{x}):=\boldsymbol{F}^{-1} \boldsymbol{P}=J(t) \boldsymbol{F}^{-1} \boldsymbol{T}(t, \boldsymbol{\varphi}(t, \boldsymbol{x})) \boldsymbol{F}^{-\top} . \tag{2.19}
\end{equation*}
$$

It remains to find suitable representations of the Cauchy stress tensor \boldsymbol{T}, the first Piola transform \boldsymbol{P}, and the second Piola transform $\boldsymbol{\Sigma}$, respectively.

