Chapter 3

Constitutive Relations

In this chapter we derive and discuss constitutive relations for the Cauchy stress tensor \boldsymbol{T}, for the first Piola transform \boldsymbol{P}, and for the second Piola transform $\boldsymbol{\Sigma}$, respectively. We will consider two different approaches, modelling elastic and hyperelastic materials.

3.1 Elastic Materials

In what follows we assume that the Cauchy stress tensor $\boldsymbol{T}(t, \boldsymbol{y})$ is time independent, i.e.

$$
\boldsymbol{T}(t, \boldsymbol{y})=\boldsymbol{T}(\boldsymbol{y})
$$

and that it is completely determined by the deformation gradient $\boldsymbol{F}=D_{x} \boldsymbol{\varphi}(t, \boldsymbol{x})$. In fact, a material is called elastic, if there exists a response function for the Cauchy stress tensor such that the constitutive equation

$$
\boldsymbol{T}(\boldsymbol{y})=\boldsymbol{R}(\boldsymbol{x}, \boldsymbol{F})
$$

is satisfied. A material is called homogeneous if its response function is independent of the particular material point \boldsymbol{x}, i.e.

$$
\boldsymbol{T}(\boldsymbol{y})=\boldsymbol{R}(\boldsymbol{F})
$$

The constitutive equations must be independent from the observation, i.e. independent of the particular choice of the coordinate system. Hence we formulate the principle of material frame indifference: The constitutive laws governing the internal interactions between the parts of a physical system should not depend on whatever external frame of reference is used to describe them. In particular, if $\boldsymbol{Q} \in \mathbb{R}^{3 \times 3}$ is an orthogonal transformation satisfying

$$
\boldsymbol{Q} \boldsymbol{Q}^{\top}=\boldsymbol{Q}^{\top} \boldsymbol{Q}=\boldsymbol{I}, \quad \operatorname{det} \boldsymbol{Q}=1
$$

for the Cauchy stress vector we then have

$$
\boldsymbol{t}(\boldsymbol{Q y}, \boldsymbol{Q} \boldsymbol{n})=\boldsymbol{Q} \boldsymbol{t}(\boldsymbol{y}, \boldsymbol{n})
$$

For the Cauchy stress tensor we then conclude

$$
T(Q y) Q n=t(Q y, Q n)=Q t(y, n)=Q T(y) n
$$

for all $\boldsymbol{n} \in \mathbb{R}^{3}$, and therefore

$$
\boldsymbol{T}(\boldsymbol{Q y})=\boldsymbol{Q} \boldsymbol{T}(\boldsymbol{y}) \boldsymbol{Q}^{\top}
$$

follows. We finally restrict our considerations to isotropic materials where the material behavior does not depend on the directions, i.e.

$$
\boldsymbol{R}(\boldsymbol{F} \boldsymbol{Q})=\boldsymbol{R}(\boldsymbol{F})
$$

In the case of an elastic, homogeneous and isotropic material we are looking for a response function $\boldsymbol{R}: \mathbb{R}^{3 \times 3} \rightarrow \mathbb{R}^{3 \times 3}$ satisfying

$$
\begin{equation*}
\boldsymbol{R}(\boldsymbol{F})=[\boldsymbol{R}(\boldsymbol{F})]^{\top}, \quad \boldsymbol{R}(\boldsymbol{Q F})=\boldsymbol{Q R}(\boldsymbol{F}) \boldsymbol{Q}^{\top}, \quad \boldsymbol{R}(\boldsymbol{F} \boldsymbol{Q})=\boldsymbol{R}(\boldsymbol{F}) \tag{3.1}
\end{equation*}
$$

for all $\boldsymbol{F} \in \mathbb{R}^{3 \times 3}$, and for all orthogonal transformations $\boldsymbol{Q} \in \mathbb{R}^{3 \times 3}$. When considering an ansatz by means of a power series one easily concludes the symmetric representation

$$
\begin{equation*}
\boldsymbol{R}(\boldsymbol{F})=\sum_{k=0}^{\infty} a_{k}\left[\boldsymbol{F} \boldsymbol{F}^{\top}\right]^{k} . \tag{3.2}
\end{equation*}
$$

Although the ansatz

$$
\boldsymbol{R}(\boldsymbol{F})=\sum_{k=0}^{\infty} a_{k}\left[\boldsymbol{F}^{\top} \boldsymbol{F}\right]^{k}
$$

is symmetric, due to

$$
\boldsymbol{R}(\boldsymbol{Q F})=\sum_{k=0}^{\infty} a_{k}\left[(\boldsymbol{Q} \boldsymbol{F})^{\top} \boldsymbol{Q} \boldsymbol{F}\right]^{k}=\sum_{k=0}^{\infty} a_{k}\left[\boldsymbol{F}^{\top} \boldsymbol{Q}^{\top} \boldsymbol{Q} \boldsymbol{F}\right]^{k}=\sum_{k=0}^{\infty} a_{k}\left[\boldsymbol{F}^{\top} \boldsymbol{F}\right]^{k}=\boldsymbol{R}(\boldsymbol{F}),
$$

we easily conclude, that the second requirement in (3.1) is violated. Hence we have to use the symmetric representation (3.2). Next we will consider a reformulation of the infinite power series (3.2) by means of a second order polynomial in $\boldsymbol{F} \boldsymbol{F}^{\top}$.

The principal invariants of a matrix $\boldsymbol{A} \in \mathbb{R}^{3 \times 3}$ are the coefficients $\iota_{1}(\boldsymbol{A}), \iota_{2}(\boldsymbol{A})$ and $\iota_{3}(\boldsymbol{A})$ of the characteristic polynomial

$$
\operatorname{det}(\boldsymbol{A}-\lambda \boldsymbol{I})=-\lambda^{3}+\iota_{1}(\boldsymbol{A}) \lambda^{2}-\iota_{2}(\boldsymbol{A}) \lambda+\iota_{3}(\boldsymbol{A})
$$

If the eigenvalues of the matrix \boldsymbol{A} are given as λ_{1}, λ_{2}, and λ_{3}, we also have

$$
\begin{aligned}
\operatorname{det}(\boldsymbol{A}-\lambda \boldsymbol{I}) & =\left(\lambda_{1}-\lambda\right)\left(\lambda_{2}-\lambda\right)\left(\lambda_{3}-\lambda\right) \\
& =-\lambda^{3}+\left(\lambda_{1}+\lambda_{2}+\lambda_{3}\right) \lambda^{2}-\left(\lambda_{1} \lambda_{2}+\lambda_{1} \lambda_{3}+\lambda_{2} \lambda_{3}\right) \lambda+\lambda_{1} \lambda_{2} \lambda_{3},
\end{aligned}
$$

and therefore we conclude

$$
\begin{aligned}
& \iota_{1}(\boldsymbol{A})=\lambda_{1}+\lambda_{2}+\lambda_{3} \\
& \iota_{2}(\boldsymbol{A})=\lambda_{1} \lambda_{2}+\lambda_{1} \lambda_{3}+\lambda_{2} \lambda_{3}, \\
& \iota_{3}(\boldsymbol{A})=\lambda_{1} \lambda_{2} \lambda_{3}
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
& \operatorname{det}(\boldsymbol{A}-\lambda \boldsymbol{I})=\left|\begin{array}{ccc}
a_{11}-\lambda & a_{12} & a_{13} \\
a_{21} & a_{22}-\lambda & a_{23} \\
a_{31} & a_{32} & a_{33}-\lambda
\end{array}\right| \\
& =\left(a_{11}-\lambda\right)\left(a_{22}-\lambda\right)\left(a_{33}-\lambda\right)+a_{12} a_{23} a_{31}+a_{13} a_{21} a_{32} \\
& \quad-\left(a_{11}-\lambda\right) a_{23} a_{32}-\left(a_{22}-\lambda\right) a_{13} a_{31}-\left(a_{33}-\lambda\right) a_{12} a_{21} \\
& =-\lambda^{3}+\left(a_{11}+a_{22}+a_{33}\right) \lambda^{2}-\left(a_{11} a_{22}+a_{11} a_{33}+a_{22} a_{33}-a_{23} a_{32}-a_{13} a_{31}-a_{12} a_{21}\right) \lambda \\
& \\
& +a_{11} a_{22} a_{33}+a_{12} a_{23} a_{31}+a_{13} a_{21} a_{32}-a_{11} a_{23} a_{32}-a_{22} a_{13} a_{31}-a_{33} a_{12} a_{21}
\end{aligned}
$$

implies

$$
\begin{aligned}
\iota_{1}(\boldsymbol{A}) & =a_{11}+a_{22}+a_{33} \\
& =\operatorname{tr}(\boldsymbol{A}), \\
\iota_{2}(\boldsymbol{A}) & =a_{11} a_{22}+a_{11} a_{33}+a_{22} a_{33}-a_{23} a_{32}-a_{13} a_{31}-a_{12} a_{21} \\
& =\frac{1}{2}\left[\left(a_{11}+a_{22}+a_{33}\right)^{2}-\left(a_{11}^{2}+a_{22}^{2}+a_{33}^{2}+2 a_{12} a_{21}+2 a_{13} a_{31}+2 a_{23} a_{32}\right)\right] \\
& =\frac{1}{2}\left[(\operatorname{tr} \boldsymbol{A})^{2}-\operatorname{tr}\left(\boldsymbol{A}^{2}\right)\right], \\
\iota_{3}(\boldsymbol{A}) & =a_{11} a_{22} a_{33}+a_{12} a_{23} a_{31}+a_{13} a_{21} a_{32}-a_{11} a_{23} a_{32}-a_{22} a_{13} a_{31}-a_{33} a_{12} a_{21} \\
& =\operatorname{det}(\boldsymbol{A}) .
\end{aligned}
$$

We also recall the Cayley-Hamilton theorem, which states that a matrix satisfies its own characteristic polynomial, i.e.

$$
-\boldsymbol{A}^{3}+\iota_{1}(\boldsymbol{A}) \boldsymbol{A}^{2}-\iota_{2}(\boldsymbol{A}) \boldsymbol{A}+\iota_{3}(\boldsymbol{A}) \boldsymbol{I}=\mathbf{0}
$$

in particular we have

$$
\boldsymbol{A}^{3}=\iota_{1}(\boldsymbol{A}) \boldsymbol{A}^{2}-\iota_{2}(\boldsymbol{A}) \boldsymbol{A}+\iota_{3}(\boldsymbol{A}) \boldsymbol{I}
$$

Then,

$$
\begin{aligned}
\boldsymbol{A}^{4}=\boldsymbol{A} \boldsymbol{A}^{3} & =\boldsymbol{A}\left[\iota_{1}(\boldsymbol{A}) \boldsymbol{A}^{2}-\iota_{2}(\boldsymbol{A}) \boldsymbol{A}+\iota_{3}(\boldsymbol{A}) \boldsymbol{I}\right] \\
& =\iota_{1}(\boldsymbol{A}) \boldsymbol{A}^{3}-\iota_{2}(\boldsymbol{A}) \boldsymbol{A}^{2}+\iota_{3}(\boldsymbol{A}) \boldsymbol{A} \\
& =\iota_{1}(\boldsymbol{A})\left[\iota_{1}(\boldsymbol{A}) \boldsymbol{A}^{2}-\iota_{2}(\boldsymbol{A}) \boldsymbol{A}+\iota_{3}(\boldsymbol{A}) \boldsymbol{I}\right]-\iota_{2}(\boldsymbol{A}) \boldsymbol{A}^{2}+\iota_{3}(\boldsymbol{A}) \boldsymbol{A} \\
& \left.=\left(\iota_{1}(\boldsymbol{A})\right]^{2}-\iota_{2}(\boldsymbol{A})\right) \boldsymbol{A}^{2}+\left(\iota_{3}(\boldsymbol{A})-\iota_{1}(\boldsymbol{A}) \iota_{2}(\boldsymbol{A})\right) \boldsymbol{A}+\left(\iota_{1}(\boldsymbol{A}) \iota_{3}(\boldsymbol{A})\right) \boldsymbol{I},
\end{aligned}
$$

and by induction we find

$$
\boldsymbol{A}^{k}=q_{k, 2}(\iota(\boldsymbol{A})) \boldsymbol{A}^{2}+q_{k, 1}(\iota(\boldsymbol{A})) \boldsymbol{A}+q_{k, 0}(\iota(\boldsymbol{A})) \boldsymbol{I}, \quad k \geq 0 .
$$

Hence we find the Rivlin-Ericksen representation theorem

$$
\begin{equation*}
\boldsymbol{R}(\boldsymbol{F})=\beta_{0}(\iota(\boldsymbol{B})) \boldsymbol{I}+\beta_{1}(\iota(\boldsymbol{B})) \boldsymbol{B}+\beta_{2}(\iota(\boldsymbol{B})) \boldsymbol{B}^{2} \tag{3.3}
\end{equation*}
$$

where

$$
\begin{equation*}
\boldsymbol{B}=\boldsymbol{F} \boldsymbol{F}^{\top}=\left[D_{x} \boldsymbol{\varphi}(t, \boldsymbol{x})\right]\left[D_{x} \boldsymbol{\varphi}(t, \boldsymbol{x})\right]^{\top} \tag{3.4}
\end{equation*}
$$

is the left Cauchy-Green strain tensor, and the coefficients $\beta_{k}(\iota(\boldsymbol{B}))$ are functions in the invariants of \boldsymbol{B}.

For the second Piola transformation (2.19) we now obtain

$$
\begin{aligned}
\boldsymbol{\Sigma} & =\operatorname{det} \boldsymbol{F} \boldsymbol{F}^{-1} \boldsymbol{T} \boldsymbol{F}^{-\top} \\
& =\operatorname{det} \boldsymbol{F} \boldsymbol{F}^{-1} \boldsymbol{R}(\boldsymbol{F}) \boldsymbol{F}^{-\top} \\
& =\operatorname{det} \boldsymbol{F} \boldsymbol{F}^{-1}\left[\beta_{0}(\iota(\boldsymbol{B})) \boldsymbol{I}+\beta_{1}(\iota(\boldsymbol{B})) \boldsymbol{B}+\beta_{2}(\iota(\boldsymbol{B})) \boldsymbol{B}^{2}\right] \boldsymbol{F}^{-\top} \\
& =\operatorname{det} \boldsymbol{F} \boldsymbol{F}^{-1}\left[\beta_{0}(\iota(\boldsymbol{B})) \boldsymbol{I}+\beta_{1}(\iota(\boldsymbol{B})) \boldsymbol{F} \boldsymbol{F}^{\top}+\beta_{2}(\iota(\boldsymbol{B})) \boldsymbol{F} \boldsymbol{F}^{\top} \boldsymbol{F} \boldsymbol{F}^{\top}\right] \boldsymbol{F}^{-\top} \\
& =\operatorname{det} \boldsymbol{F}\left[\beta_{0}(\iota(\boldsymbol{B})) \boldsymbol{F}^{-1} \boldsymbol{F}^{-\top}+\beta_{1}(\iota(\boldsymbol{B})) \boldsymbol{I}+\beta_{2}(\iota(\boldsymbol{B})) \boldsymbol{F}^{\top} \boldsymbol{F}\right] \\
& =\operatorname{det} \boldsymbol{F}\left[\beta_{0}(\iota(\boldsymbol{B})) \boldsymbol{C}^{-1}+\beta_{1}(\iota(\boldsymbol{B})) \boldsymbol{I}+\beta_{2}(\iota(\boldsymbol{B})) \boldsymbol{C}\right]
\end{aligned}
$$

where

$$
\begin{equation*}
\boldsymbol{C}=\boldsymbol{F}^{\top} \boldsymbol{F}=\left[D_{x} \boldsymbol{\varphi}(t, \boldsymbol{x})\right]^{\top}\left[D_{x} \boldsymbol{\varphi}(t, \boldsymbol{x})\right] \tag{3.5}
\end{equation*}
$$

is the right Cauchy-Green strain tensor. With

$$
\operatorname{det} \boldsymbol{F}=\operatorname{det} \boldsymbol{F}^{\top}, \quad[\operatorname{det} \boldsymbol{F}]^{2}=\operatorname{det} \boldsymbol{F}^{\top} \operatorname{det} \boldsymbol{F}=\operatorname{det} \boldsymbol{F}^{\top} \boldsymbol{F}=\operatorname{det} \boldsymbol{C}=\iota_{3}(\boldsymbol{C})
$$

and

$$
\iota(\boldsymbol{B})=\iota\left(\boldsymbol{F} \boldsymbol{F}^{\top}\right)=\iota\left(\boldsymbol{F}^{\top} \boldsymbol{F}\right)=\iota(\boldsymbol{C})
$$

we find

$$
\boldsymbol{\Sigma}=\sqrt{\iota_{3}(\boldsymbol{C})}\left[\beta_{0}(\iota(\boldsymbol{C})) \boldsymbol{C}^{-1}+\beta_{1}(\iota(\boldsymbol{C})) \boldsymbol{I}+\beta_{2}(\iota(\boldsymbol{C})) \boldsymbol{C}\right] .
$$

On the other hand, by using the Cayley-Hamilton theorem we have

$$
-\boldsymbol{C}^{3}+\iota_{1}(\boldsymbol{C}) \boldsymbol{C}^{2}-\iota_{2}(\boldsymbol{C}) \boldsymbol{C}+\iota_{3}(\boldsymbol{C}) \boldsymbol{I}=\mathbf{0}
$$

and therefore

$$
\boldsymbol{C}^{-1}=\frac{1}{\iota_{3}(\boldsymbol{C})}\left[\boldsymbol{C}^{2}-\iota_{1}(\boldsymbol{C}) \boldsymbol{C}+\iota_{2}(\boldsymbol{C}) \boldsymbol{I}\right]
$$

Hence we obtain

$$
\begin{aligned}
\boldsymbol{\Sigma} & =\sqrt{\iota_{3}(\boldsymbol{C})}\left[\beta_{0}(\iota(\boldsymbol{C})) \boldsymbol{C}^{-1}+\beta_{1}(\iota(\boldsymbol{C})) \boldsymbol{I}+\beta_{2}(\iota(\boldsymbol{C})) \boldsymbol{C}\right] \\
& =\sqrt{\iota_{3}(\boldsymbol{C})}\left[\frac{\beta_{0}(\iota(\boldsymbol{C}))}{\iota_{3}(\boldsymbol{C})}\left(\boldsymbol{C}^{2}-\iota_{1}(\boldsymbol{C}) \boldsymbol{C}+\iota_{2}(\boldsymbol{C}) \boldsymbol{I}\right)+\beta_{1}(\iota(\boldsymbol{C})) \boldsymbol{I}+\beta_{2}(\iota(\boldsymbol{C})) \boldsymbol{C}\right] \\
& =\gamma_{0}(\iota(\boldsymbol{C})) \boldsymbol{I}+\gamma_{1}(\iota(\boldsymbol{C})) \boldsymbol{C}+\gamma_{2}(\iota(\boldsymbol{C})) \boldsymbol{C}^{2} .
\end{aligned}
$$

By using (1.4) we further conclude

$$
\begin{aligned}
\boldsymbol{C} & =\left[D_{x} \boldsymbol{\varphi}(t, \boldsymbol{x})\right]^{\top}\left[D_{x} \boldsymbol{\varphi}(t, \boldsymbol{x})\right] \\
& =\left[\boldsymbol{I}+D_{x} \boldsymbol{u}(t, \boldsymbol{x})\right]^{\top}\left[\boldsymbol{I}+D_{x} \boldsymbol{u}(t, \boldsymbol{x})\right] \\
& =\boldsymbol{I}+\left[D_{x} \boldsymbol{u}(t, \boldsymbol{x})\right]+\left[D_{x} \boldsymbol{u}(t, \boldsymbol{x})\right]^{\top}+\left[D_{x} \boldsymbol{u}(t, \boldsymbol{x})\right]^{\top}\left[D_{x} \boldsymbol{u}(t, \boldsymbol{x})\right] .
\end{aligned}
$$

By using the Green-St. Venant strain tensor

$$
\begin{equation*}
\boldsymbol{E}=\frac{1}{2}[\boldsymbol{C}-\boldsymbol{I}]=\frac{1}{2}\left[\left[D_{x} \boldsymbol{u}(t, \boldsymbol{x})\right]+\left[D_{x} \boldsymbol{u}(t, \boldsymbol{x})\right]^{\top}+\left[D_{x} \boldsymbol{u}(t, \boldsymbol{x})\right]^{\top}\left[D_{x} \boldsymbol{u}(t, \boldsymbol{x})\right]\right] \tag{3.6}
\end{equation*}
$$

we have

$$
\boldsymbol{C}=\boldsymbol{I}+2 \boldsymbol{E}
$$

and therefore

$$
\boldsymbol{\Sigma}=\gamma_{0}(\iota(\boldsymbol{I}+2 \boldsymbol{E})) \boldsymbol{I}+\gamma_{1}(\iota(\boldsymbol{I}+2 \boldsymbol{E}))(\boldsymbol{I}+2 \boldsymbol{E})+\gamma_{2}(\iota(\boldsymbol{I}+2 \boldsymbol{E}))(\boldsymbol{I}+2 \boldsymbol{E})^{2}
$$

follows. The aim is to find, for small deformations, a linear relation between $\boldsymbol{\Sigma}$ and \boldsymbol{E}. In particular we need to consider the principal invariants of $\boldsymbol{C}=\boldsymbol{I}+2 \boldsymbol{E}$. We first have

$$
\iota_{1}(\boldsymbol{C})=\iota_{1}(\boldsymbol{I}+2 \boldsymbol{E})=\operatorname{tr}(\boldsymbol{I}+2 \boldsymbol{E})=3+2 \operatorname{tr}(\boldsymbol{E})
$$

By using

$$
\operatorname{tr}\left(\boldsymbol{C}^{2}\right)=\operatorname{tr}\left((\boldsymbol{I}+2 \boldsymbol{E})^{2}\right)=\operatorname{tr}\left(\boldsymbol{I}+4 \boldsymbol{E}+4 \boldsymbol{E}^{2}\right)=3+4 \operatorname{tr} \boldsymbol{E}+4 \operatorname{tr} \boldsymbol{E}^{2}
$$

we further conclude

$$
\begin{aligned}
\iota_{2}(\boldsymbol{C}) & =\frac{1}{2}\left[(\operatorname{tr} \boldsymbol{C})^{2}-\operatorname{tr} \boldsymbol{C}^{2}\right] \\
& =\frac{1}{2}\left[(3+2 \operatorname{tr} \boldsymbol{E})^{2}-\left(3+4 \operatorname{tr} \boldsymbol{E}+4 \operatorname{tr} \boldsymbol{E}^{2}\right)\right] \\
& =\frac{1}{2}\left[9+12 \operatorname{tr} \boldsymbol{E}+4(\operatorname{tr} \boldsymbol{E})^{2}-\left(3+4 \operatorname{tr} \boldsymbol{E}+4 \operatorname{tr} \boldsymbol{E}^{2}\right)\right] \\
& =3+4 \operatorname{tr} \boldsymbol{E}+2\left[(\operatorname{tr} \boldsymbol{E})^{2}-\operatorname{tr} \boldsymbol{E}^{2}\right] \\
& =3+4 \operatorname{tr} \boldsymbol{E}+o(\|\boldsymbol{E}\|)
\end{aligned}
$$

Moreover, with

$$
\begin{aligned}
\operatorname{tr}\left(\boldsymbol{C}^{3}\right) & =\operatorname{tr}(\boldsymbol{I}+2 \boldsymbol{E})^{3} \\
& =\operatorname{tr}\left(\boldsymbol{I}+6 \boldsymbol{E}+12 \boldsymbol{E}^{2}+8 \boldsymbol{E}^{3}\right) \\
& =3+6 \operatorname{tr} \boldsymbol{E}+12 \operatorname{tr} \boldsymbol{E}^{2}+8 \operatorname{tr} \boldsymbol{E}^{3}
\end{aligned}
$$

we have

$$
\begin{aligned}
& \iota_{3}(\boldsymbol{C})=\operatorname{det} \boldsymbol{C}=\frac{1}{6}\left[(\operatorname{tr} \boldsymbol{C})^{3}-3 \operatorname{tr} \boldsymbol{C} \operatorname{tr} \boldsymbol{C}^{2}+2 \operatorname{tr} \boldsymbol{C}^{3}\right] \\
& =\frac{1}{6}\left[(3+2 \operatorname{tr} \boldsymbol{E})^{3}-3(3+2 \operatorname{tr} \boldsymbol{E})\left(3+4 \operatorname{tr} \boldsymbol{E}+4 \operatorname{tr} \boldsymbol{E}^{2}\right)+2\left(3+6 \operatorname{tr} \boldsymbol{E}+12 \operatorname{tr} \boldsymbol{E}^{2}+8 \operatorname{tr} \boldsymbol{E}^{3}\right)\right] \\
& =\frac{1}{6}\left[27+54 \operatorname{tr} \boldsymbol{E}+36(\operatorname{tr} \boldsymbol{E})^{2}+8(\operatorname{tr} \boldsymbol{E})^{3}+6+12 \operatorname{tr} \boldsymbol{E}+24 \operatorname{tr} \boldsymbol{E}^{2}+16 \operatorname{tr} \boldsymbol{E}^{3}\right. \\
& \left.\quad-\left(27+54 \operatorname{tr} \boldsymbol{E}+36 \operatorname{tr} \boldsymbol{E}^{2}+24(\operatorname{tr} \boldsymbol{E})^{2}+24 \operatorname{tr} \boldsymbol{E} \operatorname{tr} \boldsymbol{E}^{2}\right)\right] \\
& =1+2 \operatorname{tr} \boldsymbol{E}+22(\operatorname{tr} \boldsymbol{E})^{2}-22 \operatorname{tr} \boldsymbol{E}^{2}-4 \operatorname{tr} \boldsymbol{E} \operatorname{tr} \boldsymbol{E}^{2}+\frac{4}{3}(\operatorname{tr} \boldsymbol{E})^{3}+\frac{8}{3} \operatorname{tr} \boldsymbol{E}^{3} \\
& =1+2 \operatorname{tr} \boldsymbol{E}+o(\|\boldsymbol{E}\|) .
\end{aligned}
$$

Hence we have, by a Taylor expansion, for $i=0,1,2$,

$$
\begin{aligned}
\gamma_{i}(\iota(\boldsymbol{C}))= & \gamma_{i}\left(\iota_{1}(\boldsymbol{C}), \iota_{2}(\boldsymbol{C}), \iota_{3}(\boldsymbol{C})\right) \\
= & \gamma_{i}(3+2 \operatorname{tr} \boldsymbol{E}, 3+4 \operatorname{tr} \boldsymbol{E}+o(\|\boldsymbol{E}\|), 1+2 \operatorname{tr} \boldsymbol{E}+o(\|\boldsymbol{E}\|)) \\
= & \gamma_{i}(3,3,1)+\frac{\partial}{\partial \iota_{1}} \gamma_{i}(3,3,1) 2 \operatorname{tr} \boldsymbol{E}+\frac{\partial}{\partial \iota_{2}} \gamma_{i}(3,3,1)(4 \operatorname{tr} \boldsymbol{E}+o(\|\boldsymbol{E}\|)) \\
& \quad+\frac{\partial}{\partial \iota_{3}} \gamma_{i}(3,3,1)(2 \operatorname{tr} \boldsymbol{E}+o(\|\boldsymbol{E}\|)+o(\|\boldsymbol{E}\|) \\
= & \gamma_{i}(3,3,1)+\widetilde{\gamma}_{i}(3,3,1) \operatorname{tr} \boldsymbol{E}+o(\|\boldsymbol{E}\|) .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\boldsymbol{\Sigma}= & \gamma_{0}(\iota(\boldsymbol{C})) \boldsymbol{I}+\gamma_{1}(\iota(\boldsymbol{C}))(\boldsymbol{I}+2 \boldsymbol{E})+\gamma_{2}(\iota(\boldsymbol{C}))\left(\boldsymbol{I}+4 \boldsymbol{E}+4 \boldsymbol{E}^{2}\right) \\
= & {\left[\gamma_{0}(3,3,1)+\widetilde{\gamma}_{0}(3,3,1) \operatorname{tr} \boldsymbol{E}+o(\|\boldsymbol{E}\|)\right] \boldsymbol{I} } \\
& +\left[\gamma_{1}(3,3,1)+\widetilde{\gamma}_{1}(3,3,1) \operatorname{tr} \boldsymbol{E}+o(\|\boldsymbol{E}\|)\right](\boldsymbol{I}+2 \boldsymbol{E}) \\
& +\left[\gamma_{2}(3,3,1)+\widetilde{\gamma}_{2}(3,3,1) \operatorname{tr} \boldsymbol{E}+o(\|\boldsymbol{E}\|)\right]\left(\boldsymbol{I}+4 \boldsymbol{E}+4 \boldsymbol{E}^{2}\right) \\
= & {\left[\gamma_{0}(3,3,1)+\gamma_{1}(3,3,1)+\gamma_{2}(3,3,1)\right] \boldsymbol{I} } \\
& +\left[\widetilde{\gamma}_{0}(3,3,1)+\widetilde{\gamma}_{1}(3,3,1)+\widetilde{\gamma}_{2}(3,3,1)\right] \operatorname{tr}(\boldsymbol{E}) \\
& +\left[2 \gamma_{1}(3,3,1)+4 \gamma_{2}(3,3,1)\right] \boldsymbol{E}+o(\|\boldsymbol{E}\|) .
\end{aligned}
$$

For a homogeneous, isotropic, and elastic material we therefore conclude a representation of the form

$$
\begin{equation*}
\boldsymbol{\Sigma}=-p \boldsymbol{I}+\lambda \operatorname{tr} \boldsymbol{E} \boldsymbol{I}+2 \mu \boldsymbol{E} . \tag{3.7}
\end{equation*}
$$

In the natural state we have no stress when no strain is given, i.e. $\boldsymbol{E}=\mathbf{0}$ implies $\boldsymbol{\Sigma}=\mathbf{0}$. In fact, this implies $p=0$ and therefore

$$
\begin{equation*}
\boldsymbol{\Sigma}=\lambda \operatorname{tr} \boldsymbol{E} \boldsymbol{I}+2 \mu \boldsymbol{E} \tag{3.8}
\end{equation*}
$$

follows. Since the strain tensor \boldsymbol{E} is nonlinear, in the case of small deformations we consider its linear part

$$
\begin{equation*}
\boldsymbol{e}(\boldsymbol{u})=\frac{1}{2}\left[\left[D_{x} \boldsymbol{u}(t, \boldsymbol{x})\right]+\left[D_{x} \boldsymbol{u}(t, \boldsymbol{x})\right]^{\top}\right], \tag{3.9}
\end{equation*}
$$

i.e.

$$
e_{i j}(\boldsymbol{u})=\frac{1}{2}\left[\frac{\partial}{\partial x_{i}} u_{j}(\boldsymbol{x})+\frac{\partial}{\partial x_{j}} u_{i}(\boldsymbol{x})\right] \quad \text { for } i, j=1,2,3 .
$$

When replacing in (3.8) the strain tensor \boldsymbol{E} by the linearized strain tensor \boldsymbol{e}, this gives the linearized stress tensor

$$
\begin{equation*}
\boldsymbol{\sigma}(\boldsymbol{u})=\lambda \operatorname{div} \boldsymbol{u} \boldsymbol{I}+2 \mu \boldsymbol{e}(\boldsymbol{u}) . \tag{3.10}
\end{equation*}
$$

Note that the linear stress-strain relation (3.10) is known as Hooke's law, and λ and μ are the Lamé parameters.

3.2 Conservation of Energy

The conservation of energy for a mechanical system states that the rate of change of the total energy of the system is equal to the power input of the external forces, i.e.

$$
\begin{equation*}
\frac{d}{d t}[\mathcal{K}(t)+\mathcal{U}(t)]=\int_{\omega(t)} \varrho(t, \boldsymbol{y}) \boldsymbol{f}(t, \boldsymbol{y}) \cdot \boldsymbol{v}(t, \boldsymbol{y}) d \boldsymbol{y}+\int_{\partial \omega(t)} \boldsymbol{t}(t, \boldsymbol{y}, \boldsymbol{n}) \cdot \boldsymbol{v}(t, \boldsymbol{y}) d s_{y} . \tag{3.11}
\end{equation*}
$$

Here,

$$
\begin{equation*}
\mathcal{K}(t)=\frac{1}{2} \int_{\omega(t)} \varrho(t, \boldsymbol{y})[\boldsymbol{v}(t, \boldsymbol{y}) \cdot \boldsymbol{v}(t, \boldsymbol{y})] d \boldsymbol{y} \tag{3.12}
\end{equation*}
$$

is the kinetic energy in the material region $\omega(t)$, and the internal energy for the control volumen $\omega(t)$ is given by

$$
\mathcal{U}(t)=\int_{\omega(t)} \varrho(t, \boldsymbol{y}) w(t, \boldsymbol{y}) d \boldsymbol{y}
$$

where $w(t, \boldsymbol{y})$ is the specific internal energy, i.e. the internal energy per unit mass.
The application of Reynold's transport theorem (Theorem 1.1) for $f(t, \boldsymbol{y})=\left[v_{i}(t, \boldsymbol{y})\right]^{2}$ gives

$$
\begin{aligned}
\frac{1}{2} \frac{d}{d t} \int_{\omega(t)} \varrho(t, \boldsymbol{y})\left[v_{i}(t, \boldsymbol{y})\right]^{2} d \boldsymbol{y} & =\frac{1}{2} \int_{\omega(t)} \varrho(t, \boldsymbol{y}) \frac{d}{d t}\left[v_{i}(t, \boldsymbol{y})\right]^{2} d \boldsymbol{y} \\
& =\int_{\omega(t)} \varrho(t, \boldsymbol{y}) v_{i}(t, \boldsymbol{y}) \frac{d}{d t} v_{i}(t, \boldsymbol{y}) d \boldsymbol{y}
\end{aligned}
$$

By inserting the Cauchy equations of motion, see (2.14), this gives

$$
\frac{1}{2} \frac{d}{d t} \int_{\omega(t)} \varrho(t, \boldsymbol{y})\left[v_{i}(t, \boldsymbol{y})\right]^{2} d \boldsymbol{y}=\int_{\omega(t)} v_{i}(t, \boldsymbol{y})\left[\varrho(t, \boldsymbol{y}) f_{i}(t, \boldsymbol{y})+\sum_{j=1}^{3} \frac{\partial}{\partial y_{j}} T_{i j}(t, \boldsymbol{y})\right] d \boldsymbol{y}
$$

Hence we conclude, by summing up, by applying integration by parts, and by using the symmetry of the Cauchy stress tensor,

$$
\begin{aligned}
\frac{d}{d t} \mathcal{K}(t)= & \int_{\omega(t)} \varrho(t, \boldsymbol{y}) \boldsymbol{f}(t, \boldsymbol{y}) \cdot \boldsymbol{v}(t, \boldsymbol{y}) d \boldsymbol{y}+\int_{\omega(t)} \sum_{i=1}^{3} \sum_{j=1}^{3} v_{i}(t, \boldsymbol{y}) \frac{\partial}{\partial y_{j}} T_{i j}(t, \boldsymbol{y}) d \boldsymbol{y} \\
= & \int_{\omega(t)} \varrho(t, \boldsymbol{y}) \boldsymbol{f}(t, \boldsymbol{y}) \cdot \boldsymbol{v}(t, \boldsymbol{y}) d \boldsymbol{y} \\
& +\int_{\omega(t)} \sum_{i=1}^{3} \sum_{j=1}^{3}\left\{\frac{\partial}{\partial y_{j}}\left[v_{i}(t, \boldsymbol{y}) T_{i j}(t, \boldsymbol{y})\right]-T_{i j}(t, \boldsymbol{y}) \frac{\partial}{\partial y_{j}} v_{i}(t, \boldsymbol{y})\right\} d \boldsymbol{y} \\
= & \int_{\omega(t)} \varrho(t, \boldsymbol{y}) \boldsymbol{f}(t, \boldsymbol{y}) \cdot \boldsymbol{v}(t, \boldsymbol{y}) d \boldsymbol{y}+\int_{\partial \omega(t)} \sum_{i=1}^{3} \sum_{j=1}^{3} v_{i}(t, \boldsymbol{y}) T_{i j}(t, \boldsymbol{y}) n_{j} d s_{y} \\
& -\int_{\omega(t)} \sum_{i=1}^{3} \sum_{j=1}^{3} \frac{1}{2}\left[T_{i j}(t, \boldsymbol{y})+T_{j i}(t, \boldsymbol{y})\right] \frac{\partial}{\partial y_{j}} v_{i}(t, \boldsymbol{y}) d \boldsymbol{y} \\
= & \int_{\omega(t)} \varrho(t, \boldsymbol{y}) \boldsymbol{f}(t, \boldsymbol{y}) \cdot \boldsymbol{v}(t, \boldsymbol{y}) d \boldsymbol{y}+\int_{\partial \omega(t)} \boldsymbol{t}(t, \boldsymbol{y}, \boldsymbol{n}) \cdot \boldsymbol{v}(t, \boldsymbol{y}) d s_{y} \\
& -\int_{\omega(t)} \sum_{i=1}^{3} \sum_{j=1}^{3} T_{i j}(t, \boldsymbol{y}) \frac{1}{2}\left[\frac{\partial}{\partial y_{j}} v_{i}(t, \boldsymbol{y})+\frac{\partial}{\partial y_{i}} v_{j}(t, \boldsymbol{y})\right] d \boldsymbol{y} \\
= & \int_{\omega(t)} \varrho(t, \boldsymbol{y}) \boldsymbol{f}(t, \boldsymbol{y}) \cdot \boldsymbol{v}(t, \boldsymbol{y}) d \boldsymbol{y}+\int_{\partial \omega(t)} \boldsymbol{t}(t, \boldsymbol{y}, \boldsymbol{n}) \cdot \boldsymbol{v}(t, \boldsymbol{y}) d s_{y} \\
& -\int_{\omega(t)} \boldsymbol{T}(t, \boldsymbol{y}): \boldsymbol{e}(\boldsymbol{v}) d \boldsymbol{y}
\end{aligned}
$$

where

$$
\boldsymbol{T}(t, \boldsymbol{y}): \boldsymbol{e}(\boldsymbol{v})=\sum_{i=1}^{3} \sum_{j=1}^{3} T_{i j}(t, \boldsymbol{y}) e_{i j}(\boldsymbol{v})
$$

is the associated tensor product, and

$$
\begin{equation*}
e_{i j}(\boldsymbol{v})=\frac{1}{2}\left[\frac{\partial}{\partial y_{i}} v_{j}(\boldsymbol{y})+\frac{\partial}{\partial y_{j}} v_{i}(\boldsymbol{y})\right] \tag{3.13}
\end{equation*}
$$

is the linearized Green strain tensor. From the conservation of energy we therefore find

$$
\frac{d}{d t} \mathcal{U}(t)=\int_{\omega(t)} \boldsymbol{T}(t, \boldsymbol{y}): \boldsymbol{e}(\boldsymbol{v}) d \boldsymbol{y}
$$

On the other hand, the application of (2.8) gives

$$
\frac{d}{d t} \mathcal{U}(t)=\frac{d}{d t} \int_{\omega(t)} \varrho(t, \boldsymbol{y}) w(t, \boldsymbol{y}) d \boldsymbol{y}=\int_{\omega(t)} \varrho(t, \boldsymbol{y}) \frac{d}{d t} w(t, \boldsymbol{y}) d \boldsymbol{y}
$$

and hence we conclude

$$
\int_{\omega(t)} \varrho(t, \boldsymbol{y}) \frac{d}{d t} w(t, \boldsymbol{y}) d \boldsymbol{y}=\int_{\omega(t)} \boldsymbol{T}(t, \boldsymbol{y}): \boldsymbol{e}(\boldsymbol{v}) d \boldsymbol{y}
$$

for all test volumina $\omega(t)$. In the case of continuous functions we finally obtain the energy equation

$$
\begin{equation*}
\varrho(t, \boldsymbol{y}) \frac{d}{d t} w(t, \boldsymbol{y})=\boldsymbol{T}(t, \boldsymbol{y}): \boldsymbol{e}(\boldsymbol{v})=\sum_{i=1}^{3} \sum_{j=1}^{3} T_{i j}(t, \boldsymbol{y}) \frac{\partial}{\partial y_{j}} v_{i}(t, \boldsymbol{y}) \tag{3.14}
\end{equation*}
$$

3.3 Hyperelastic Materials

By using the ansatz

$$
\begin{equation*}
w(t, \boldsymbol{y})=W(\boldsymbol{F}) \tag{3.15}
\end{equation*}
$$

we obtain, by applying the chain rule,

$$
\frac{d}{d t} w(t, \boldsymbol{y})=\frac{d}{d t} W(\boldsymbol{F})=\sum_{i=1}^{3} \sum_{j=1}^{3} \frac{\partial}{\partial F_{i j}} W(\boldsymbol{F}) \frac{d}{d t} F_{i j} .
$$

From $\boldsymbol{F}=D_{x} \boldsymbol{\varphi}(t, \boldsymbol{x})$ we further find

$$
\begin{aligned}
\frac{d}{d t} F_{i j} & =\frac{d}{d t} \frac{\partial}{\partial x_{j}} \varphi_{i}(t, \boldsymbol{x})=\frac{\partial}{\partial x_{j}} \frac{d}{d t} y_{i}(t)=\frac{\partial}{\partial x_{j}} v_{i}(t, \boldsymbol{y}) \\
& =\frac{\partial}{\partial x_{j}} v_{i}(t, \boldsymbol{\varphi}(t, \boldsymbol{x}))=\sum_{k=1}^{3} \frac{\partial}{\partial y_{k}} v_{i}(t, \boldsymbol{y}) \frac{\partial}{\partial x_{j}} \varphi_{k}(t, \boldsymbol{x})=\sum_{k=1}^{3} \frac{\partial}{\partial y_{k}} v_{i}(t, \boldsymbol{y}) F_{k j} .
\end{aligned}
$$

Hence we obtain

$$
\begin{aligned}
\varrho(t, \boldsymbol{y}) \frac{d}{d t} w(t, \boldsymbol{y}) & =\varrho(t, \boldsymbol{y}) \sum_{i=1}^{3} \sum_{j=1}^{3} \frac{\partial}{\partial F_{i j}} W(\boldsymbol{F}) \sum_{k=1}^{3} \frac{\partial}{\partial y_{k}} v_{i}(t, \boldsymbol{y}) F_{k j} \\
& =\varrho(t, \boldsymbol{y}) \sum_{i=1}^{3} \sum_{k=1}^{3}\left(\sum_{j=1}^{3} \frac{\partial}{\partial F_{i j}} W(\boldsymbol{F}) F_{k j}\right) \frac{\partial}{\partial y_{k}} v_{i}(t, \boldsymbol{y}) \\
& =\varrho(t, \boldsymbol{y}) \sum_{i=1}^{3} \sum_{k=1}^{3} T_{i k}(t, \boldsymbol{y}) \frac{\partial}{\partial y_{k}} v_{i}(t, \boldsymbol{y}),
\end{aligned}
$$

and therefore

$$
T_{i k}(t, \boldsymbol{y})=\varrho(t, \boldsymbol{y}) \sum_{j=1}^{3} \frac{\partial}{\partial F_{i j}} W(\boldsymbol{F}) F_{k j}
$$

i.e.

$$
\begin{equation*}
\boldsymbol{T}(t, \boldsymbol{y})=\varrho(t, \boldsymbol{y}) \frac{\partial}{\partial \boldsymbol{F}} W(\boldsymbol{F}) \boldsymbol{F}^{\top}=\frac{\varrho_{0}(\boldsymbol{x})}{J(t)} \frac{\partial}{\partial \boldsymbol{F}} W(\boldsymbol{F}) \boldsymbol{F}^{\top} \tag{3.16}
\end{equation*}
$$

where we have used

$$
\frac{\partial}{\partial \boldsymbol{F}} W(\boldsymbol{F})=\left(\begin{array}{ccc}
\frac{\partial}{\partial F_{11}} W(\boldsymbol{F}) & \frac{\partial}{\partial F_{12}} W(\boldsymbol{F}) & \frac{\partial}{\partial F_{13}} W(\boldsymbol{F}) \\
\frac{\partial}{\partial F_{21}} W(\boldsymbol{F}) & \frac{\partial}{\partial F_{22}} W(\boldsymbol{F}) & \frac{\partial}{\partial F_{23}} W(\boldsymbol{F}) \\
\frac{\partial}{\partial F_{31}} W(\boldsymbol{F}) & \frac{\partial}{\partial F_{32}} W(\boldsymbol{F}) & \frac{\partial}{\partial F_{33}} W(\boldsymbol{F})
\end{array}\right)
$$

From this we also find a representation for the first Piola transformation

$$
\begin{equation*}
\varrho_{0}(\boldsymbol{x}) \frac{\partial}{\partial \boldsymbol{F}} W(\boldsymbol{F})=J(t) \boldsymbol{T}(t, \boldsymbol{\varphi}(t, \boldsymbol{x})) \boldsymbol{F}^{-\top}=\boldsymbol{P}(t, \boldsymbol{x}) \tag{3.17}
\end{equation*}
$$

and for the second Piola transformation (2.19)

$$
\begin{equation*}
\boldsymbol{\Sigma}(t, \boldsymbol{x})=\varrho_{0}(\boldsymbol{x}) \boldsymbol{F}^{-1} \frac{\partial}{\partial \boldsymbol{F}} W(\boldsymbol{F}) \tag{3.18}
\end{equation*}
$$

From the symmetry of the Cauchy stress tensor \boldsymbol{T} we have to ensure

$$
\begin{equation*}
\frac{\partial}{\partial \boldsymbol{F}} W(\boldsymbol{F}) \boldsymbol{F}^{\top}=\boldsymbol{F}\left(\frac{\partial}{\partial \boldsymbol{F}} W(\boldsymbol{F})\right)^{\top} \tag{3.19}
\end{equation*}
$$

which implies restrictions on the choice of the energy function $W(\boldsymbol{F})$. In fact, we write

$$
\begin{equation*}
\varrho_{0}(\boldsymbol{x}) W(\boldsymbol{F})=\Psi(\boldsymbol{E}), \tag{3.20}
\end{equation*}
$$

where

$$
\boldsymbol{E}=\frac{1}{2}\left[\boldsymbol{F}^{\top} \boldsymbol{F}-\boldsymbol{I}\right]
$$

is the Green-St. Venant strain tensor.
Lemma 3.1 Assume

$$
\begin{equation*}
\frac{\partial}{\partial \boldsymbol{E}} \Psi(\boldsymbol{E})=\left(\frac{\partial}{\partial \boldsymbol{E}} \Psi(\boldsymbol{E})\right)^{\top} \tag{3.21}
\end{equation*}
$$

Then,

$$
\varrho_{0}(\boldsymbol{x}) \frac{\partial}{\partial \boldsymbol{F}} W(\boldsymbol{F})=\boldsymbol{F} \frac{\partial}{\partial \boldsymbol{E}} \Psi(\boldsymbol{E})
$$

Proof: Let us consider the two-dimensional case $n=2$ first, where we have

$$
\begin{aligned}
\boldsymbol{E} & =\frac{1}{2}\left[\boldsymbol{F}^{\top} \boldsymbol{F}-\boldsymbol{I}\right] \\
& =\frac{1}{2}\left(\left(\begin{array}{ll}
F_{11} & F_{21} \\
F_{12} & F_{22}
\end{array}\right)\left(\begin{array}{ll}
F_{11} & F_{12} \\
F_{21} & F_{22}
\end{array}\right)-\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right)\right) \\
& =\frac{1}{2}\left(\begin{array}{cc}
F_{11}^{2}+F_{21}^{2}-1 & F_{11} F_{12}+F_{21} F_{22} \\
F_{11} F_{12}+F_{21} F_{22} & F_{12}^{2}+F_{22}^{2}-1
\end{array}\right) .
\end{aligned}
$$

With the chain rule we then conclude

$$
\begin{aligned}
\varrho_{0}(\boldsymbol{x}) & \frac{\partial}{\partial F_{11}} W(\boldsymbol{F})=\frac{\partial}{\partial F_{11}} \Psi(\boldsymbol{E}(\boldsymbol{F})) \\
& =\frac{\partial}{\partial E_{11}} \Psi(\boldsymbol{E}) \frac{\partial E_{11}}{\partial F_{11}}+\frac{\partial}{\partial E_{12}} \Psi(\boldsymbol{E}) \frac{\partial E_{12}}{\partial F_{11}}+\frac{\partial}{\partial E_{21}} \Psi(\boldsymbol{E}) \frac{\partial E_{21}}{\partial F_{11}}+\frac{\partial}{\partial E_{22}} \Psi(\boldsymbol{E}) \frac{\partial E_{22}}{\partial F_{11}} \\
& =\frac{\partial}{\partial E_{11}} \Psi(\boldsymbol{E}) F_{11}+\frac{1}{2} \frac{\partial}{\partial E_{12}} \Psi(\boldsymbol{E}) F_{12}+\frac{1}{2} \frac{\partial}{\partial E_{21}} \Psi(\boldsymbol{E}) F_{12} \\
& =\frac{\partial}{\partial E_{11}} \Psi(\boldsymbol{E}) F_{11}+\frac{\partial}{\partial E_{21}} \Psi(\boldsymbol{E}) F_{12}, \\
\varrho_{0}(\boldsymbol{x}) & \frac{\partial}{\partial F_{12}} W(\boldsymbol{F})=\frac{\partial}{\partial F_{12}} \Psi(\boldsymbol{E}(\boldsymbol{F})) \\
& =\frac{\partial}{\partial E_{11}} \Psi(\boldsymbol{E}) \frac{\partial E_{11}}{\partial F_{12}}+\frac{\partial}{\partial E_{12}} \Psi(\boldsymbol{E}) \frac{\partial E_{12}}{\partial F_{12}}+\frac{\partial}{\partial E_{21}} \Psi(\boldsymbol{E}) \frac{\partial E_{21}}{\partial F_{12}}+\frac{\partial}{\partial E_{22}} \Psi(\boldsymbol{E}) \frac{\partial E_{22}}{\partial F_{12}} \\
& =\frac{1}{2} \frac{\partial}{\partial E_{12}} \Psi(\boldsymbol{E}) F_{11}+\frac{1}{2} \frac{\partial}{\partial E_{21}} \Psi(\boldsymbol{E}) F_{11}+\frac{\partial}{\partial E_{22}} \Psi(\boldsymbol{E}) F_{12} \\
& =\frac{\partial}{\partial E_{12}} \Psi(\boldsymbol{E}) F_{11}+\frac{\partial}{\partial E_{22}} \Psi(\boldsymbol{E}) F_{12}, \\
\varrho_{0}(\boldsymbol{x}) & \frac{\partial}{\partial F_{21}} W(\boldsymbol{F})=\frac{\partial}{\partial F_{21}} \Psi(\boldsymbol{E}(\boldsymbol{F})) \\
& =\frac{\partial}{\partial E_{11}} \Psi(\boldsymbol{E}) \frac{\partial E_{11}}{\partial F_{21}}+\frac{\partial}{\partial E_{12}} \Psi(\boldsymbol{E}) \frac{\partial E_{12}}{\partial F_{21}}+\frac{\partial}{\partial E_{21}} \Psi(\boldsymbol{E}) \frac{\partial E_{21}}{\partial F_{21}}+\frac{\partial}{\partial E_{22}} \Psi(\boldsymbol{E}) \frac{\partial E_{22}}{\partial F_{21}} \\
& =\frac{\partial}{\partial E_{11}} \Psi(\boldsymbol{E}) F_{21}+\frac{1}{2} \frac{\partial}{\partial E_{12}} \Psi(\boldsymbol{E}) F_{22}+\frac{1}{2} \frac{\partial}{\partial E_{21}} \Psi(\boldsymbol{E}) F_{22} \\
& =\frac{\partial}{\partial E_{11}} \Psi(\boldsymbol{E}) F_{21}+\frac{\partial}{\partial E_{21}} \Psi(\boldsymbol{E}) F_{22}, \\
\varrho_{0}(\boldsymbol{x}) & \frac{\partial}{\partial F_{22}} W(\boldsymbol{F})=\frac{\partial}{\partial F_{22}} \Psi(\boldsymbol{E}(\boldsymbol{F})) \\
& =\frac{\partial}{\partial E_{11}} \Psi(\boldsymbol{E}) \frac{\partial E_{11}}{\partial F_{22}}+\frac{\partial}{\partial E_{12}} \Psi(\boldsymbol{E}) \frac{\partial E_{12}}{\partial F_{22}}+\frac{\partial}{\partial E_{21}} \Psi(\boldsymbol{E}) \frac{\partial E_{21}}{\partial F_{22}}+\frac{\partial}{\partial E_{22}} \Psi(\boldsymbol{E}) \frac{\partial E_{22}}{\partial F_{22}} \\
& =\frac{1}{2} \frac{\partial}{\partial E_{12}} \Psi(\boldsymbol{E}) F_{21}+\frac{1}{2} \frac{\partial}{\partial E_{21}} \Psi(\boldsymbol{E}) F_{21}+\frac{\partial}{\partial E_{22}} \Psi(\boldsymbol{E}) F_{22} \\
& =\frac{\partial}{\partial E_{12}} \Psi(\boldsymbol{E}) F_{21}+\frac{\partial}{\partial E_{22}} \Psi(\boldsymbol{E}) F_{22},
\end{aligned}
$$

i.e. we have

$$
\varrho_{0}(\boldsymbol{x})\left(\begin{array}{cc}
\frac{\partial}{\partial F_{11}} W(\boldsymbol{F}) & \frac{\partial}{\partial F_{12}} W(\boldsymbol{F}) \\
\frac{\partial}{\partial F_{21}} W(\boldsymbol{F}) & \frac{\partial}{\partial F_{22}} W(\boldsymbol{F})
\end{array}\right)=\left(\begin{array}{cc}
F_{11} & F_{12} \\
F_{21} & F_{22}
\end{array}\right)\left(\begin{array}{cc}
\frac{\partial}{\partial E_{11}} \Psi(\boldsymbol{E}) & \frac{\partial}{\partial E_{12}} \Psi(\boldsymbol{E}) \\
\frac{\partial}{\partial E_{21}} \Psi(\boldsymbol{E}) & \frac{\partial}{\partial E_{22}} \Psi(\boldsymbol{E})
\end{array}\right) .
$$

For the Cauchy stress tensor we therefore find

$$
\boldsymbol{T}(t, \boldsymbol{y})=\frac{\varrho_{0}(\boldsymbol{x})}{J(t)} \frac{\partial}{\partial \boldsymbol{F}} W(\boldsymbol{F}) \boldsymbol{F}^{\top}=\frac{1}{J(t)} \boldsymbol{F} \frac{\partial}{\partial \boldsymbol{E}} \Psi(\boldsymbol{E}) \boldsymbol{F}^{\top}
$$

which is symmetric if (3.21) is satisfied. For the first Piola transformation we then conclude

$$
\boldsymbol{P}(t, \boldsymbol{x})=J(t) \boldsymbol{T}(t, \boldsymbol{y}) \boldsymbol{F}^{-\top}=\boldsymbol{F} \frac{\partial}{\partial \boldsymbol{E}} \Psi(\boldsymbol{E}),
$$

while for the second Piola transformation we finally obtain

$$
\begin{equation*}
\boldsymbol{\Sigma}(t, \boldsymbol{x})=\frac{\partial}{\partial \boldsymbol{E}} \Psi(\boldsymbol{E}) \tag{3.22}
\end{equation*}
$$

The constitutive law (3.22) obviously depends on the particular definition of the potential function $\Psi(\boldsymbol{E})$. For a general linear material law we may consider a second order Taylor expansion of $\Psi(\boldsymbol{E})$.

Example 3.1 A second order Taylor expansion of the potential function $\Psi(\boldsymbol{E})$ gives
$\Psi(\boldsymbol{E}) \simeq \Psi(\mathbf{0})+\sum_{i=1}^{3} \sum_{j=1}^{3} E_{i j} \frac{\partial}{\partial E_{i j}} \Psi(\boldsymbol{E})_{\mid \boldsymbol{E}=\mathbf{0}}+\frac{1}{2} \sum_{i=1}^{3} \sum_{j=1}^{3} \sum_{k=1}^{3} \sum_{\ell=1}^{3} E_{i j} E_{k \ell} \frac{\partial^{2}}{\partial E_{i j} \partial E_{k \ell}} \Psi(\boldsymbol{E})_{\mid \boldsymbol{E}=\mathbf{0}}$.
For simplicity we assume

$$
\Psi(\mathbf{0})=0
$$

and in the natural state we have

$$
\Sigma_{i j}=\frac{\partial}{\partial E_{i j}} \Psi(\boldsymbol{E})_{\mid \boldsymbol{E}=\mathbf{0}}=0 .
$$

Hence we have

$$
\Psi(\boldsymbol{E}) \simeq \frac{1}{2} \sum_{i=1}^{3} \sum_{j=1}^{3} \sum_{k=1}^{3} \sum_{\ell=1}^{3} E_{i j} E_{k \ell} \frac{\partial^{2}}{\partial E_{i j} \partial E_{k \ell}} \Psi(\boldsymbol{E})_{\mid \boldsymbol{E}=\mathbf{0}}
$$

and therefore

$$
\Sigma_{i j}=\frac{\partial}{\partial E_{i j}} \Psi(\boldsymbol{E})=\sum_{k=1}^{3} \sum_{\ell=1}^{3} E_{k \ell} \frac{\partial^{2}}{\partial E_{i j} \partial E_{k \ell}} \Psi(\boldsymbol{E})_{\mid \boldsymbol{E}=\mathbf{0}}=\sum_{k=1}^{3} \sum_{\ell=1}^{3} C_{i j k \ell} E_{k \ell}
$$

with

$$
C_{i j k \ell}=\frac{\partial^{2}}{\partial E_{i j} \partial E_{k \ell}} \Psi(\boldsymbol{E})_{\mid \boldsymbol{E}=\mathbf{0}}
$$

follows. The material law

$$
\Sigma_{i j}=\sum_{k=1}^{3} \sum_{\ell=1}^{3} C_{i j k \ell} E_{k \ell}
$$

includes $3^{4}=81$ material parameters $C_{i j k \ell}$, but due to

$$
C_{i j k \ell}=\frac{\partial^{2}}{\partial E_{i j} \partial E_{k \ell}} \Psi(\boldsymbol{E})_{\mid \boldsymbol{E}=\mathbf{0}}=\frac{\partial^{2}}{\partial E_{k \ell} \partial E_{i j}} \Psi(\boldsymbol{E})_{\mid \boldsymbol{E}=\mathbf{0}}=C_{k \ell i j}
$$

we have some symmetry relations. Moreover, due to the symmetry relations $\Sigma_{i j}=\Sigma_{j i}$ and $E_{k \ell}=E_{\ell k}$ we can use the Voigt notation

$$
\left(\begin{array}{l}
\Sigma_{11} \\
\Sigma_{22} \\
\Sigma_{33} \\
\Sigma_{12} \\
\Sigma_{13} \\
\Sigma_{23}
\end{array}\right)=\left(\begin{array}{llllll}
C_{1111} & C_{1122} & C_{1133} & C_{1112} & C_{1113} & C_{1123} \\
C_{1122} & C_{2222} & C_{2233} & C_{2212} & C_{2213} & C_{2223} \\
C_{1133} & C_{2233} & C_{3333} & C_{3312} & C_{3313} & C_{3323} \\
C_{1112} & C_{2212} & C_{3312} & C_{1212} & C_{1213} & C_{1223} \\
C_{1113} & C_{2213} & C_{3313} & C_{1213} & C_{1313} & C_{1323} \\
C_{1123} & C_{2223} & C_{3323} & C_{1223} & C_{1323} & C_{2323}
\end{array}\right)\left(\begin{array}{c}
E_{11} \\
E_{22} \\
E_{33} \\
E_{12} \\
E_{13} \\
E_{23}
\end{array}\right)
$$

with 21 parameters to be chosen. In the most simple case we have

$$
\left(\begin{array}{c}
\Sigma_{11} \\
\Sigma_{22} \\
\Sigma_{33} \\
\Sigma_{12} \\
\Sigma_{13} \\
\Sigma_{23}
\end{array}\right)=\left(\begin{array}{cccccc}
\lambda+2 \mu & \lambda & \lambda & 0 & 0 & 0 \\
\lambda & \lambda+2 \mu & \lambda & 0 & 0 & 0 \\
\lambda & \lambda & \lambda+2 \mu & 0 & 0 & 0 \\
0 & 0 & 0 & 2 \mu & 0 & 0 \\
0 & 0 & 0 & 0 & 2 \mu & 0 \\
0 & 0 & 0 & 0 & 0 & 2 \mu
\end{array}\right)\left(\begin{array}{c}
E_{11} \\
E_{22} \\
E_{33} \\
E_{12} \\
E_{13} \\
E_{23}
\end{array}\right)
$$

and a linearization again gives Hooke's law (3.10).

For the potential $\Psi(\boldsymbol{E})$ we may use a function in the invariants of \boldsymbol{E}, i.e.

$$
\psi(\boldsymbol{E})=\widetilde{\Psi}(\iota(\boldsymbol{E}))=\widetilde{\Psi}\left(\iota_{1}(\boldsymbol{E}), \iota_{2}(\boldsymbol{E}), \iota_{3}(\boldsymbol{E})\right) .
$$

For the components of the second Piola stress tensor we then obtain from (3.22)

$$
\Sigma_{i j}=\frac{\partial}{\partial E_{i j}} \widetilde{\Psi}(\iota(\boldsymbol{E}))=\sum_{k=1}^{3} \frac{\partial}{\partial \iota_{k}} \widetilde{\Psi}(\iota) \frac{\partial}{\partial E_{i j}} \iota_{k}(\boldsymbol{E}) .
$$

Hence we need to compute the partial derivatives of the invariants $\iota_{k}(\boldsymbol{E}), k=1,2,3$.

Lemma 3.2 The partial derivatives of the invariants $\iota_{k}(\boldsymbol{E}), k=1,2,3$, are given as

$$
\begin{align*}
\frac{\partial}{\partial \boldsymbol{E}} \iota_{1}(\boldsymbol{E}) & =\boldsymbol{I}, \tag{3.23}\\
\frac{\partial}{\partial \boldsymbol{E}} \iota_{2}(\boldsymbol{E}) & =\operatorname{tr}(\boldsymbol{E}) \boldsymbol{I}-\boldsymbol{E} \tag{3.24}\\
\frac{\partial}{\partial \boldsymbol{E}} \iota_{3}(\boldsymbol{E}) & =\operatorname{det} \boldsymbol{E} \boldsymbol{E}^{-1} \tag{3.25}
\end{align*}
$$

Proof: For the first invariant

$$
\iota_{1}(\boldsymbol{E})=\operatorname{tr} \boldsymbol{E}=E_{11}+E_{22}+E_{33}
$$

we obtain

$$
\frac{\partial}{\partial E_{i j}} \iota_{1}(\boldsymbol{E})=\frac{\partial}{\partial E_{i j}}\left[E_{11}+E_{22}+E_{33}\right]= \begin{cases}1 & \text { for } i=j, \\ 0 & \text { for } i \neq j\end{cases}
$$

i.e. (3.23). For the second invariant

$$
\iota_{2}(\boldsymbol{E})=E_{11} E_{22}+E_{11} E_{33}+E_{22} E_{33}-E_{23} E_{32}-E_{13} E_{31}-E_{12} E_{21}
$$

we compute

$$
\begin{aligned}
\frac{\partial}{\partial \boldsymbol{E}} \iota_{2}(\boldsymbol{E}) & =\frac{\partial}{\partial \boldsymbol{E}}\left[E_{11} E_{22}+E_{11} E_{33}+E_{22} E_{33}-E_{23} E_{32}-E_{13} E_{31}-E_{12} E_{21}\right] \\
& =\left(\begin{array}{ccc}
E_{22}+E_{33} & -E_{21} & -E_{31} \\
-E_{12} & E_{11}+E_{33} & -E_{32} \\
-E_{13} & -E_{23} & E_{11}+E_{22}
\end{array}\right)=\operatorname{tr}(\boldsymbol{E}) \boldsymbol{I}-\boldsymbol{E}
\end{aligned}
$$

i.e. (3.24). To prove (3.25), we first consider the case $n=2$ where we have

$$
\boldsymbol{E}=\left(\begin{array}{ll}
E_{11} & E_{12} \\
E_{21} & E_{22}
\end{array}\right), \quad \iota_{3}(\boldsymbol{E})=\operatorname{det} \boldsymbol{E}=E_{11} E_{22}-E_{12} E_{21}
$$

and therefore

$$
\frac{\partial}{\partial \boldsymbol{E}} \operatorname{det} \boldsymbol{E}=\left(\begin{array}{cc}
E_{22} & -E_{21} \\
-E_{12} & E_{11}
\end{array}\right)
$$

follows. On the other hand we have

$$
\boldsymbol{E}^{-1}=\frac{1}{\operatorname{det} \boldsymbol{E}}\left(\begin{array}{cc}
E_{22} & -E_{12} \\
-E_{21} & E_{11}
\end{array}\right) .
$$

Since \boldsymbol{E} is symmetric, we finally conclude

$$
\frac{\partial}{\partial \boldsymbol{E}} \operatorname{det} \boldsymbol{E}=\operatorname{det} \boldsymbol{E} \boldsymbol{E}^{-1}
$$

Similarly, for $n=3$ we have

$$
\begin{aligned}
& \frac{\partial}{\partial \boldsymbol{E}} \iota_{3}(\boldsymbol{E}) \\
& \quad=\frac{\partial}{\partial \boldsymbol{E}}\left[E_{11} E_{22} E_{33}+E_{12} E_{23} E_{31}+E_{13} E_{32} E_{21}-E_{11} E_{23} E_{32}-E_{22} E_{13} E_{31}-E_{33} E_{12} E_{21}\right] \\
& \quad=\left(\begin{array}{lll}
E_{22} E_{33}-E_{23} E_{32} & E_{23} E_{31}-E_{33} E_{21} & E_{32} E_{21}-E_{22} E_{31} \\
E_{13} E_{32}-E_{33} E_{12} & E_{11} E_{33}-E_{13} E_{31} & E_{12} E_{31}-E_{11} E_{32} \\
E_{12} E_{23}-E_{22} E_{13} & E_{13} E_{21}-E_{11} E_{23} & E_{11} E_{22}-E_{12} E_{21}
\end{array}\right) \\
& \quad=\operatorname{det} \boldsymbol{E} \boldsymbol{E}^{-1},
\end{aligned}
$$

due to

$$
\boldsymbol{E}^{-1}=\frac{1}{\operatorname{det} \boldsymbol{E}}\left(\begin{array}{lll}
E_{22} E_{33}-E_{23} E_{32} & E_{32} E_{13}-E_{33} E_{12} & E_{12} E_{23}-E_{22} E_{13} \\
E_{31} E_{23}-E_{33} E_{21} & E_{11} E_{33}-E_{13} E_{31} & E_{21} E_{13}-E_{11} E_{23} \\
E_{21} E_{32}-E_{22} E_{31} & E_{31} E_{12}-E_{11} E_{32} & E_{11} E_{22}-E_{12} E_{21}
\end{array}\right)
$$

Hence we obtain

$$
\boldsymbol{\Sigma}=\frac{\partial}{\partial \iota_{1}} \widetilde{\Psi}(\iota(\boldsymbol{E})) \boldsymbol{I}+\frac{\partial}{\partial \iota_{2}} \widetilde{\Psi}(\iota(\boldsymbol{E}))[(\operatorname{tr} \boldsymbol{E}) \boldsymbol{I}-\boldsymbol{E}]+\frac{\partial}{\partial \iota_{3}} \widetilde{\Psi}(\iota(\boldsymbol{E})) \operatorname{det} \boldsymbol{E} \boldsymbol{E}^{-1}
$$

Example 3.2 For the St. Venant-Kirchhoff material model we define

$$
\widetilde{\Psi}(\iota(\boldsymbol{E}))=\frac{1}{2}(\lambda+2 \mu)\left[\iota_{1}(\boldsymbol{E})\right]^{2}-2 \mu \iota_{2}(\boldsymbol{E})
$$

for which we compute

$$
\frac{\partial}{\partial \iota_{1}} \widetilde{\Psi}(\iota(\boldsymbol{E}))=(\lambda+2 \mu) \iota_{1}(\boldsymbol{E}), \quad \frac{\partial}{\partial \iota_{2}} \widetilde{\Psi}(\iota(\boldsymbol{E}))=-2 \mu, \quad \frac{\partial}{\partial \iota_{3}} \widetilde{\Psi}(\iota(\boldsymbol{E}))=0
$$

Hence we obtain

$$
\begin{aligned}
\boldsymbol{\Sigma} & =\frac{\partial}{\partial \iota_{1}} \widetilde{\Psi}(\iota(\boldsymbol{E})) \boldsymbol{I}+\frac{\partial}{\partial \iota_{2}} \widetilde{\Psi}(\iota(\boldsymbol{E}))[(\operatorname{tr} \boldsymbol{E}) \boldsymbol{I}-\boldsymbol{E}] \\
& =(\lambda+2 \mu) \iota_{1}(\boldsymbol{E}) \boldsymbol{I}-2 \mu[(\operatorname{tr} \boldsymbol{E}) \boldsymbol{I}-\boldsymbol{E}] \\
& =(\lambda+2 \mu) \operatorname{tr} \boldsymbol{E} \boldsymbol{I}-2 \mu[(\operatorname{tr} \boldsymbol{E}) \boldsymbol{I}-\boldsymbol{E}] \\
& =\lambda \operatorname{tr} \boldsymbol{E} \boldsymbol{I}+2 \mu \boldsymbol{E} .
\end{aligned}
$$

On the other hand, by using

$$
\iota_{1}(\boldsymbol{E})=\operatorname{tr} \boldsymbol{E}, \quad \iota_{2}(\boldsymbol{E})=\frac{1}{2}\left[(\operatorname{tr} \boldsymbol{E})^{2}-\operatorname{tr} \boldsymbol{E}^{2}\right]
$$

we also find the alternative representation

$$
\begin{aligned}
\widetilde{\Psi}(\iota(\boldsymbol{E})) & =\frac{1}{2}(\lambda+2 \mu)\left[\iota_{1}(\boldsymbol{E})\right]^{2}-2 \mu \iota_{2}(\boldsymbol{E}) \\
& =\frac{1}{2}(\lambda+2 \mu)[\operatorname{tr} \boldsymbol{E}]^{2}-\mu\left[(\operatorname{tr} \boldsymbol{E})^{2}-\operatorname{tr} \boldsymbol{E}^{2}\right] \\
& =\frac{\lambda}{2}[\operatorname{tr} \boldsymbol{E}]^{2}+\mu \operatorname{tr} \boldsymbol{E}^{2}=\Psi(\boldsymbol{E}) .
\end{aligned}
$$

By using

$$
\boldsymbol{C}=\boldsymbol{I}+2 \boldsymbol{E}, \quad \boldsymbol{E}=\frac{1}{2}[\boldsymbol{C}-\boldsymbol{I}]
$$

and

$$
\iota_{1}(\boldsymbol{E})=\operatorname{tr} \boldsymbol{E}=\operatorname{tr}\left(\frac{1}{2}[\boldsymbol{C}-\boldsymbol{I}]\right)=\frac{1}{2}(\operatorname{tr} \boldsymbol{C}-3)=\frac{1}{2}\left(\iota_{1}(\boldsymbol{C})-3\right)
$$

as well as

$$
\begin{aligned}
\iota_{2}(\boldsymbol{E})= & E_{11} E_{22}+E_{11} E_{33}+E_{22} E_{33}-E_{23} E_{32}-E_{13} E_{31}-E_{12} E_{21} \\
= & \frac{1}{4}\left(C_{11}-1\right)\left(C_{22}-1\right)+\frac{1}{4}\left(C_{11}-1\right)\left(C_{33}-1\right)+\frac{1}{4}\left(C_{22}-1\right)\left(C_{33}-1\right) \\
& -\frac{1}{4} C_{23} C_{32}-\frac{1}{4} C_{13} C_{31}-\frac{1}{4} C_{12} C_{21} \\
= & \frac{1}{4}\left[\left(C_{11} C_{22}-C_{11}-C_{22}+1\right)+\left(C_{11} C_{33}-C_{11}-C_{33}+1\right)\right. \\
& \left.+\left(C_{22} C_{33}-C_{22}-C_{33}+1\right)\right]-\frac{1}{4}\left[C_{23} C_{32}+C_{13} C_{31}+C_{12} C_{21}\right] \\
= & \frac{1}{4}\left[C_{11} C_{22}+C_{11} C_{33}+C_{22} C_{33}-C_{23} C_{32}-C_{13} C_{31}-C_{12} C_{21}\right] \\
& +\frac{1}{4}\left[3-2\left(C_{11}+C_{22}+C_{33}\right)\right] \\
= & \frac{1}{4}\left[\iota_{2}(\boldsymbol{C})-2 \iota_{1}(\boldsymbol{C})+3\right]
\end{aligned}
$$

we also have

$$
\begin{aligned}
\widetilde{\Psi}(\iota(\boldsymbol{E})) & =\frac{1}{2}(\lambda+2 \mu)\left[\iota_{1}(\boldsymbol{E})\right]^{2}-2 \mu \iota_{2}(\boldsymbol{E}) \\
& =\frac{1}{8}(\lambda+2 \mu)\left[\iota_{1}(\boldsymbol{C})-3\right]^{2}-\frac{1}{2} \mu\left[\iota_{2}(\boldsymbol{C})-2 \iota_{1}(\boldsymbol{C})+3\right] \\
& =\frac{1}{8}(\lambda+2 \mu)\left[\iota_{1}(\boldsymbol{C})-3\right]^{2}+\mu\left[\iota_{1}(\boldsymbol{C})-3\right]-\frac{1}{2} \mu\left[\iota_{2}(\boldsymbol{C})-3\right] .
\end{aligned}
$$

The previous considerations motivate to write the potential function $\widetilde{\Psi}(\iota(\boldsymbol{E}))$ in its general form

$$
\widetilde{\Psi}(\iota(\boldsymbol{E}))=\widehat{\Psi}(\iota(\boldsymbol{C}))=\sum_{p=0}^{\infty} \sum_{q=0}^{\infty} c_{p q}\left(\iota_{1}(\boldsymbol{C})-3\right)^{p}\left(\iota_{2}(\boldsymbol{C})-3\right)^{q},
$$

with the Mooney-Rivlin material model

$$
\widehat{\Psi}(\iota(\boldsymbol{C}))=c_{10}\left[\iota_{1}(\boldsymbol{C})-3\right]+c_{01}\left[\iota_{2}(\boldsymbol{C})-3\right]
$$

as simple example.
In general we may include the third invariant $\iota_{3}(\boldsymbol{C})$ as well, i.e. we can write

$$
\widehat{\Psi}(\iota(\boldsymbol{C}))=\sum_{p=0}^{\infty} \sum_{q=0}^{\infty} \sum_{r=0}^{\infty} c_{p q r}\left(\iota_{1}(\boldsymbol{C})-3\right)^{p}\left(\iota_{2}(\boldsymbol{C})-3\right)^{q}\left(\iota_{3}(\boldsymbol{C})-1\right)^{r} .
$$

Then, by using

$$
\Psi(\boldsymbol{E})=\Psi\left(\frac{1}{2}\left(\boldsymbol{F}^{\top} \boldsymbol{F}-\boldsymbol{I}\right)\right)=\Psi\left(\frac{1}{2}(\boldsymbol{C}-\boldsymbol{I})\right)=: \widehat{\Psi}(\boldsymbol{C}),
$$

and by applying the chain rule,

$$
\frac{\partial}{\partial \boldsymbol{C}} \widehat{\Psi}(\boldsymbol{C})=\frac{\partial}{\partial \boldsymbol{C}} \Psi\left(\frac{1}{2}(\boldsymbol{C}-\boldsymbol{I})\right)=\frac{\partial}{\partial \boldsymbol{E}} \Psi(\boldsymbol{E})_{\left\lvert\, E=\frac{1}{2}(C-I)\right.} \frac{\partial}{\partial \boldsymbol{C}} \boldsymbol{E}=\frac{1}{2} \frac{\partial}{\partial \boldsymbol{E}} \Psi(\boldsymbol{E})
$$

we finally conclude

$$
\boldsymbol{\Sigma}=\frac{\partial}{\partial \boldsymbol{E}} \Psi(\boldsymbol{E})=2 \frac{\partial}{\partial \boldsymbol{C}} \widehat{\Psi}(\boldsymbol{C}) .
$$

3.4 Incompressible Materials

In what follows our main interest is in the modelling of (almost) incompressible materials with

$$
J=\operatorname{det} \boldsymbol{F} \approx 1
$$

In fact, we consider a decoupling of the deformation gradient \boldsymbol{F} into an isochoric, volume preserving part $\overline{\boldsymbol{F}}$, and a volumetric, volume changing part. From the requirement $\operatorname{det} \overline{\boldsymbol{F}}=$ 1 we conclude

$$
\boldsymbol{F}=\left(J^{1 / 3} \boldsymbol{I}\right) \overline{\boldsymbol{F}} .
$$

For the right Cauchy-Green strain tensor we then obtain

$$
\boldsymbol{C}=\boldsymbol{F}^{\top} \boldsymbol{F}=J^{2 / 3} \overline{\boldsymbol{F}}^{\top} \overline{\boldsymbol{F}}=J^{2 / 3} \overline{\boldsymbol{C}}, \quad \overline{\boldsymbol{C}}=\overline{\boldsymbol{F}}^{\top} \overline{\boldsymbol{F}} .
$$

With this we define the potential

$$
\widehat{\Psi}(\boldsymbol{C})=U(J)+\bar{\Psi}(\overline{\boldsymbol{C}})
$$

with the volumetric elastic response $U(J)$, and the isochoric elastic response $\bar{\Psi}(\overline{\boldsymbol{C}})$. Then we need to compute

$$
\boldsymbol{\Sigma}=2 \frac{\partial}{\partial \boldsymbol{C}}[U(J)+\bar{\Psi}(\overline{\boldsymbol{C}})]=2 U^{\prime}(J) \frac{\partial}{\partial \boldsymbol{C}} J+2 \frac{\partial}{\partial \boldsymbol{C}} \bar{\Psi}\left(J^{2 / 3} \boldsymbol{C}\right) .
$$

Lemma 3.3 For the deformation gradient \boldsymbol{F} we define $J=\operatorname{det} \boldsymbol{F}$ and $\boldsymbol{C}=\boldsymbol{F}^{\top} \boldsymbol{F}$. Then,

$$
\frac{\partial}{\partial C} J=\frac{1}{2} J \boldsymbol{C}^{-1} .
$$

Proof: From

$$
\operatorname{det} \boldsymbol{C}=\operatorname{det} \boldsymbol{F}^{\top} \boldsymbol{F}=\operatorname{det} \boldsymbol{F}^{\top} \operatorname{det} \boldsymbol{F}=(\operatorname{det} \boldsymbol{F})^{2}=J^{2} .
$$

we first conclude

$$
J=\operatorname{det} \boldsymbol{F}=\sqrt{\operatorname{det} \boldsymbol{C}}
$$

and by the chain rule we have

$$
\frac{\partial}{\partial \boldsymbol{C}} J=\frac{1}{2} \frac{1}{\sqrt{\operatorname{det} \boldsymbol{C}}} \frac{\partial}{\partial \boldsymbol{C}} \operatorname{det} \boldsymbol{C}=\frac{1}{2} \frac{1}{J} \frac{\partial}{\partial \boldsymbol{C}} \operatorname{det} \boldsymbol{C} .
$$

In the particular case $n=2$ we have

$$
\boldsymbol{C}=\left(\begin{array}{ll}
C_{11} & C_{12} \\
C_{21} & C_{22}
\end{array}\right), \quad \operatorname{det} \boldsymbol{C}=C_{11} C_{22}-C_{12} C_{21},
$$

and therefore

$$
\frac{\partial}{\partial \boldsymbol{C}} \operatorname{det} \boldsymbol{C}=\left(\begin{array}{cc}
C_{22} & -C_{21} \\
-C_{12} & C_{11}
\end{array}\right)
$$

follows. On the other hand,

$$
\boldsymbol{C}^{-1}=\frac{1}{\operatorname{det} \boldsymbol{C}}\left(\begin{array}{cc}
C_{22} & -C_{12} \\
-C_{21} & C_{11}
\end{array}\right) .
$$

Since $\boldsymbol{C}=\boldsymbol{F}^{\top} \boldsymbol{F}$ is symmetric, we finally conclude

$$
\frac{\partial}{\partial \boldsymbol{C}} \operatorname{det} \boldsymbol{C}=\operatorname{det} \boldsymbol{C} \boldsymbol{C}^{-1}=J^{2} \boldsymbol{C}^{-1}
$$

i.e.

$$
\frac{\partial}{\partial \boldsymbol{C}} J=\frac{1}{2} J \boldsymbol{C}^{-1} .
$$

Similarly, for $n=3$ we have

$$
\boldsymbol{C}=\left(\begin{array}{lll}
C_{11} & C_{12} & C_{13} \\
C_{21} & C_{22} & C_{23} \\
C_{31} & C_{32} & C_{33}
\end{array}\right)
$$

and

$$
\operatorname{det} \boldsymbol{C}=C_{11} C_{22} C_{33}+C_{12} C_{23} C_{31}+C_{13} C_{21} C_{32}-C_{11} C_{23} C_{32}-C_{22} C_{13} C_{31}-C_{33} C_{12} C_{21}
$$

Hence,

$$
\frac{\partial}{\partial \boldsymbol{C}} \operatorname{det} \boldsymbol{C}=\left(\begin{array}{lll}
C_{22} C_{33}-C_{23} C_{32} & C_{23} C_{31}-C_{33} C_{21} & C_{21} C_{32}-C_{22} C_{31} \\
C_{13} C_{32}-C_{33} C_{12} & C_{11} C_{33}-C_{13} C_{31} & C_{12} C_{31}-C_{11} C_{32} \\
C_{12} C_{23}-C_{22} C_{13} & C_{13} C_{21}-C_{11} C_{23} & C_{11} C_{22}-C_{12} C_{21}
\end{array}\right)
$$

Again, by using

$$
\boldsymbol{C}^{-1}=\frac{1}{\operatorname{det} \boldsymbol{C}}\left(\begin{array}{lll}
C_{22} C_{33}-C_{23} C_{32} & C_{32} C_{13}-C_{33} C_{12} & C_{12} C_{23}-C_{22} C_{13} \\
C_{31} C_{23}-C_{33} C_{21} & C_{11} C_{33}-C_{13} C_{31} & C_{21} C_{13}-C_{11} C_{23} \\
C_{21} C_{32}-C_{22} C_{31} & C_{31} C_{12}-C_{11} C_{32} & C_{11} C_{22}-C_{12} C_{21}
\end{array}\right)
$$

and the symmetry of \boldsymbol{C} we conclude the assertion.
Recall that

$$
\frac{\partial}{\partial \boldsymbol{C}} \bar{\Psi}(\overline{\boldsymbol{C}})=\left(\begin{array}{ccc}
\frac{\partial}{\partial C_{11}} \bar{\Psi}(\overline{\boldsymbol{C}}) & \frac{\partial}{\partial C_{12}} \bar{\Psi}(\overline{\boldsymbol{C}}) & \frac{\partial}{\partial C_{13}} \bar{\Psi}(\overline{\boldsymbol{C}}) \\
\frac{\partial}{\partial C_{21}} \bar{\Psi}(\overline{\boldsymbol{C}}) & \frac{\partial}{\partial C_{22}} \bar{\Psi}(\overline{\boldsymbol{C}}) & \frac{\partial}{\partial C_{23}} \bar{\Psi}(\overline{\boldsymbol{C}}) \\
\frac{\partial}{\partial C_{31}} \bar{\Psi}(\overline{\boldsymbol{C}}) & \frac{\partial}{\partial C_{32}} \bar{\Psi}(\overline{\boldsymbol{C}}) & \frac{\partial}{\partial C_{33}} \bar{\Psi}(\overline{\boldsymbol{C}})
\end{array}\right) .
$$

By the chain rule we then have

$$
\begin{aligned}
\frac{\partial}{\partial C_{i j}} \bar{\Psi}(\overline{\boldsymbol{C}}) & =\sum_{k=1}^{3} \sum_{\ell=1}^{3} \frac{\partial}{\partial \bar{C}_{k \ell}} \bar{\Psi}(\overline{\boldsymbol{C}}) \frac{\partial}{\partial C_{i j}} \bar{C}_{k \ell} \\
& =\sum_{k=1}^{3} \sum_{\ell=1}^{3} \frac{\partial}{\partial \bar{C}_{k \ell}} \bar{\Psi}(\overline{\boldsymbol{C}}) \frac{\partial}{\partial C_{i j}}\left[J^{-2 / 3} C_{k \ell}\right] \\
& =\sum_{k=1}^{3} \sum_{\ell=1}^{3} \frac{\partial}{\partial \bar{C}_{k \ell}} \bar{\Psi}(\overline{\boldsymbol{C}})\left[J^{-2 / 3} \frac{\partial}{\partial C_{i j}} C_{k \ell}-\frac{2}{3} J^{-5 / 3} \frac{\partial}{\partial C_{i j}} J C_{k \ell}\right] \\
& =J^{-2 / 3} \frac{\partial}{\partial \bar{C}_{i j}} \bar{\Psi}(\overline{\boldsymbol{C}})-\frac{2}{3} J^{-5 / 3} \frac{\partial}{\partial C_{i j}} J \sum_{k=1}^{3} \sum_{\ell=1}^{3} \frac{\partial}{\partial \bar{C}_{k \ell}} \bar{\Psi}(\overline{\boldsymbol{C}}) C_{k \ell} .
\end{aligned}
$$

Hence we conclude

$$
\begin{aligned}
\frac{\partial}{\partial \boldsymbol{C}} \bar{\Psi}(\overline{\boldsymbol{C}}) & =J^{-2 / 3} \frac{\partial}{\partial \overline{\boldsymbol{C}}} \bar{\Psi}(\overline{\boldsymbol{C}})-\frac{2}{3} J^{-5 / 3} \frac{\partial}{\partial \boldsymbol{C}} J \frac{\partial}{\partial \overline{\boldsymbol{C}}} \bar{\Psi}(\overline{\boldsymbol{C}}): \boldsymbol{C} \\
& =J^{-2 / 3} \frac{\partial}{\partial \overline{\boldsymbol{C}}} \bar{\Psi}(\overline{\boldsymbol{C}})-\frac{2}{3} J^{-5 / 3} \frac{1}{2} J \boldsymbol{C}^{-1} \frac{\partial}{\partial \overline{\boldsymbol{C}}} \bar{\Psi}(\overline{\boldsymbol{C}}): \boldsymbol{C} \\
& =J^{-2 / 3}\left[\frac{\partial}{\partial \overline{\boldsymbol{C}}} \bar{\Psi}(\overline{\boldsymbol{C}})-\frac{1}{3}\left(\frac{\partial}{\partial \overline{\boldsymbol{C}}} \bar{\Psi}(\overline{\boldsymbol{C}}): \boldsymbol{C}\right) \boldsymbol{C}^{-1}\right]
\end{aligned}
$$

We then conclude the constitutive relation

$$
\begin{aligned}
\boldsymbol{\Sigma} & =2 U^{\prime}(J) \frac{\partial}{\partial \boldsymbol{C}} J+2 \frac{\partial}{\partial \boldsymbol{C}} \bar{\Psi}\left(J^{2 / 3} \boldsymbol{C}\right) \\
& =U^{\prime}(J) J \boldsymbol{C}^{-1}+2 J^{-2 / 3}\left[\frac{\partial}{\partial \overline{\boldsymbol{C}}} \bar{\Psi}(\overline{\boldsymbol{C}})-\frac{1}{3}\left(\frac{\partial}{\partial \overline{\boldsymbol{C}}} \bar{\Psi}(\overline{\boldsymbol{C}}): \boldsymbol{C}\right) \boldsymbol{C}^{-1}\right]
\end{aligned}
$$

When introducing the hydrostatic pressure

$$
p=U^{\prime}(J)
$$

we finally obtain
$\boldsymbol{\Sigma}=\boldsymbol{\Sigma}_{v o l}+\boldsymbol{\Sigma}_{i s c}, \quad \boldsymbol{\Sigma}_{v o l}=J p \boldsymbol{C}^{-1}, \quad \boldsymbol{\Sigma}_{i s c}=2 J^{-2 / 3}\left[\frac{\partial}{\partial \overline{\boldsymbol{C}}} \bar{\Psi}(\overline{\boldsymbol{C}})-\frac{1}{3}\left(\frac{\partial}{\partial \overline{\boldsymbol{C}}} \bar{\Psi}(\overline{\boldsymbol{C}}): \boldsymbol{C}\right) \boldsymbol{C}^{-1}\right]$.
Example 3.3 For the volumetric elastic response we may consider one of the following two choices:
i.

$$
U(J)=\kappa \frac{1}{2}(J-1)^{2}, \quad U^{\prime}(J)=\kappa(J-1), \quad p=\kappa(J-1)
$$

$i i$.

$$
U(J)=\kappa \frac{1}{2}(\ln J)^{2}, \quad U^{\prime}(J)=\kappa \frac{\ln J}{J}, \quad p=\kappa \frac{\ln J}{J}
$$

As example for the isochoric elastic response we consider the Neo-Hooke model

$$
\left.\bar{\Psi}(\overline{\boldsymbol{C}})=\frac{c}{2}\left(\iota_{1}(\overline{\boldsymbol{C}})-3\right)=\frac{c}{2}\left(\bar{C}_{11}+\bar{C}_{22}+\bar{C}_{33}-3\right)\right)
$$

for which we compute

$$
\frac{\partial}{\partial \overline{\boldsymbol{C}}} \bar{\Psi}(\overline{\boldsymbol{C}})=\frac{c}{2} \boldsymbol{I}
$$

