Partielle Differentialgleichungen

1. Für $\varepsilon > 0$ bestimme man die Lösung des Randwertproblems

$$-\varepsilon^2 u''(x) + u(x) = 0$$
 für $x \in (0,1)$, $u(0) = 0$, $u(1) = 1$.

2. Man betrachte das System von partiellen Differentialgleichungen der linearen Elastostatik

$$-\mu\Delta\underline{u}(x) - (\lambda + \mu)$$
grad div $\underline{u}(x) = \underline{f}(x)$.

Für den Ansatz

$$\underline{u}(x) = \Delta\underline{v}(x) + \alpha$$
 grad div $\underline{v}(x)$

bestimme man α so, dass \underline{u} Lösung ist und erhalte daraus eine partielle Differentialgleichung in \underline{v} .

3. Man bestimme die Eigenwerte und zugehörigen Eigenfunktionen des Eigenwertproblems

$$-u''(x) = \lambda u(x)$$
 für $x \in (0,1)$, $u(0) = u(1) = 0$.