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Introduction MECH /ANIK

Acoustic behaviour is a major concern in product development.

e Noise level influences buying decision,
e legal requirements must be fulfilled,

e acoustic instabilities can cause failure.

— Efficient and reliable numerical simulation tools are required

Boundary Element Method (BEM) is suitable.
e Excellent accuracy,
e easy mesh generation,
e infinite domains pose no difficulties,

— limited by fully populated matrices.

— Reduction of numerical cost by Multipole BEM
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BEM for Acoustics MECH /AANIK
Helmholtz equation Fundamental solution in R?
2 2 L 1 ikr
Vu(x) + k“u(x) =0 U*(x,y):4—e
™o
in exterior domain €2, with boundary conditions
0

u(x) =p(x), xr €'p, gg):q(x),xEFN n
Sommerfeld radiation condition

Ou tku| < c at 9)

— — iku — r — 00 )

or — r2

Representation formula

et ) o (2, )
wt) = [ U@ T as v [ B wm)ds, yeo,
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Calderon Projector MECH /A\NIK

Limit on the smooth boundary, 2, 5y — T’

u(y) = Suly) - / U ) 28 s, / ou aff Y w(z)ds,, yeT

\ . 7 \ 7
~"

(Vou/on) () (Ku)(y)

Normal derivative on the smooth boundary, 2, 5y — T

Ou(y) _ 10u(y) /(9U*<:c,y) Ou(z) 0*U*(z,y)
T s, ds,, yer
on 2 On r  Ony an i r Ongon, u(w) ds v e

(K" D/ o) (v) ~(Du)(w)
Yielding the Calderon projector
U %I + K -V U

du/on -D  iI-K du/on
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Symmetric Galerkin Formulation MECH /\NIK

Hypersingular BIE for Neumann problem du/0n =qon I’

0°U*(x,y)
T 8nxany

@) dss = g a) + [ F5 Y g(a) s,

on,,

Discretization

N
linear shape functions for pressure  up = > @;(x) u;
i=1

M
constant shape functions for flux qgn = Y V() g
k=1

Testing with linear test functions ¢, (y)
N

Z: { /F 1 . 82%:;25) pi(x) dsy dsy} u;

M

= {/Fw(y) (%wk(yﬂ/ram(x’y) Vi () dsx> dsy} g for j=1..N

on
k=1 Y

Matrix formulation — —Dy[j,i]us = (L1n[j, k] + KL, k) a
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Regularization of Hypersingular Operator MECH /AAANIK

Hypersingular operator Dy, |7, ] is not integrable

/Fspj(y) . 828%:(;7;5) pi(z) ds, ds, = /F/Fanx Ny ©i(x)p; (YY) U™ (z,y) ds, ds,,
- [ 6w [ eona (72 x (ny x V0 @) s ds,
Applying Stoke's theorem twice on second integral
Dylj, 1] ///€2naj ny wi(z)e;(y)U" (x,y) ds, ds,

= [ [ (e x Vai@) - (X Vo, ) U @) ds. ds,

CUF|F(QOj)

constant on
linear element

= Hypersingular operator requires evaluation of single layer potential with constant
and linear shape functions.
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Multipole BEM MECH /AANIK

System matrices are fully populated

e high memory requirements, high computational cost

For iterative solution only the matrix-vector product must be evaluated
= Fast multipole method (FMM) [Greengard, Rokhlin 1987]

Evaluation of v = Vjw for the discrete single layer potential using the FMM

v = Z Vill, k) wy + Z wk// y ds, ds,

nearfleld farfield

-— _ smooth functlon
direct evaluation = multipole
expansion
Gy G
~ Z Vh[l,]{?] Wi +Zwl’jAl Z wkak,iAkU*(:ck,i,yl,j)
nearfield j=1 farfield =1 _

-~

qr,iU* (T i,Y1,5)
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Multipole Expansion MECH /AANIK

Yy

Series expansion of fundamental solution

eik|y—a:| eik|D—|—d|

y—z| |[D+d

=ik (2 +1)ji(kd) by (kD) (D - d), |D| > |d]
[=0

Orthonormality on unit sphere S? and plane wave expansion
y P P P

Anitj (kd)Py(D - d) = /S , e Pi(s - D)ds

elk| D+d| ik — 17 (1) ikd-s 2
= Did = 1= Z(Zl + 1)i'h,”’ (kD) /S2 e P(s- D)ds
=0

Truncation of series expansion and definition of translation operators

L
=Y "2+ 1)i'n” (kD)Pi(s - D)
[=0



INSTITUT FUR

Translation Operators MECH/ANIK

Advantages of series expansion
— separation of local distance d and translation D

— diagonal form, simple translation to new expansion center

Task:
For two well-separated sets of points,

{xk}éwzl and {yl}l]\;p
compute potential

P(y;) = 224:1 U™ (2, y1)

Direct evaluation: Numerical cost O(M N)

Evaluation using translation operators

1k
@(yz) 1 /SQQk(yl —Y0)Ss ML S Y0 _5130 Zelk(ﬂﬂo T ) Sq ds .

7

~

= Numerical cost O(M) + O(N) farfield signature F(s)
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Multilevel FMM MECH /A\NIK

Further improvement of efficiency by multilevel scheme
= Hierarchical tree (levels £ = 0, ..., m) of element clusters (diameter dy)

Nearfield N: Distance D < cdy/2 Interaction list I: ¢dy/2 < D < cdp_1/2

Algorithm: — nearfield is evaluated directly by standard BEM
— farfield signature is transformed to the interaction list using
translation operators M}, and shifted to father cluster
— downward pass of entries in the interation lists, recovering of

solution at integration points

/ \ ANVANVANRA
Pl [N Pl P] [N
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Numerical Cost MECH/ANIK

Numerical cost for kh = const = constant error in engineering practice

Required expansion length Ly = kdy 4+ pIn(kdy + )
Integration on unit sphere S?: 2L% quadrature points = 2L? coefficients for F'(s)

e Application of translation operator M7,
e Interpolation scheme for shift of farfield representation F'(s) to father cluster
— Conversion of farfield representation Fy(s) to multipole coefficients

Algorithm based on FFT: L, FFTs of length 2L,
2L, 1D multipole expansions of length L,

— Adding zeros in original multipole expansion
— Conversion of multipole coefficients to farfield representation Fy_1(s)

— Translation of Fjy_1(s) to new center
e Nearfield computation
— Nearfield size ~ log® N for each cluster

= Numerical cost for total cluster tree O(N log® N)
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MECH /M\NIK

Numerical Example: L-Shape

L-Shape domain 1 mx 1 mx1m,

monopole source applied inside,

analytical Neumann data is boundary condition,
exterior acoustic problem,

10 elements per wave length.

Preconditioning with single layer potential.
Distance factor ¢ = 4, expansion factor p = 2.

elements h k tnear | iterations | t / iteration * | Dir error
704 0125m | 5m~t | 16.7s 21 0.4s 0.09
2816 0.063m | 10m~t! | 60.2s 66 2.8s 0.04
11264 0.031m |20 m~! | 2265 163 16 s 0.03
45056 | 0.016 m | 40 m~! | 1012 s 452 90 s 0.08
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9 :
N log® N Complexity MECH /AANIK
102 1) time per iteration

| — NlogzN
10" |
élo Predicted complexity N log® N
10 kh = 0.625 = const

elements



Error of Matrix-Vector
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Product MECH /ANIK

—+— 3
-1 —— 4
10 i —-— 5
5 —=— 6
AN
10
; distance factor ¢
glo_?’;
® i
10_4§ :
107 S
| = —
_67
10 Il Il Il Il
2 4 6 8 10

expansion factor p

12

Hypersingular operator evaluated on
L-shape (k =5m™1)

For cluster diameter d

Distance factor ¢
Nearfield: D < ¢4

Expansion factor p
L=kd+pln(kd+ )

e Instability of multipole expansion no concern for engineering accuracies.

e Faster convergence of multipole expansion for larger near-field.

e Choice of distance and expansion factors determines efficiency of algorithm.
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Efficiency of Multipole-BEM MECH /AANIK

Computing time for L-shape, 2816 elements , k = 5m™!
Parameters chosen to yield error < 1072 compared to standard BEM
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Why Preconditioning? MECH /\NIK

Fine meshes and high frequencies in Multipole-BEM simulations yield
ill-conditioned systems of equations and high iteration counts.

High iteration counts are expensive

e Multipole algorithm carried out for each iteration
e Good convergence of GMRES without restart, only, need to store each iterate

— Solve: P~ 1Ax =P~ 1p

Requirements for preconditioner P

e Low condition number xk(P~1A)

optimum: x(P~1A) = const, independent of mesh size and frequency
e Application of P~! with numerical cost of at most O(N log® N)
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Basic idea

Operator splitting A = Ay + A with Ay bounded.
Figenvalues of A;'A =1+ Aj'A cluster at 1.
= improved convergence of iterative solver.

Construction of A for hyper-singular operator

02U (x,y) O*U* (x,y)
r, Ongon, w(z) ds; = i Ongon,

(Du)(y) = — u(x) ds,

Two element layers is a reasonable choice for I'.

= Ag is a sparse matrix, but how to compute Aal?

Approximate inverse preconditioner
Minimize ||[I — AgP7!|| = P71 — Aj!
Column-oriented algorithm,

=1

minimize |le; — Ag(P~"),|| separately
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Preconditioning using Boundary Integral Operators MECH /A\NIK

Based on spectral equivalence inequality
c1(Pu,u) < (Au,u) < co(Pu,u)

which guarantees k(P~'4) < 2 .
From the Calderon projector one finds the relations

1 1
VD:ZI—KQ, DV:ZI—(K’)Q,

suggesting the single layer potential as an efficient preconditioner for the hyper
singular operator.

The preconditioner matrix is found as [Steinbach and Wendland 98|
Pt=M"TVvM".

Preconditioner requires application of the single layer potential V' and, twice, the
inverse of the mass matrix M. = Same complexity as matrix-vector product.



Preconditioning for L-shape
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MECH /M\NIK

80

iterations
B al (@)} ~
o o o o

w
o
T

20

H —*— single layer potential

—6— no preconditioner
—— approximate inverse

* ¥

iterations

8 16

ht/m™?

400

300

100

—6— no preconditioner
—<— approximate inverse
—— single layer potential

kh = 0.625 = const

8 16 32

e high iteration counts for fine meshes and high frequencies

e approximate inverse preconditioner

— reduces iteration count by a third, very cheap numerical cost

e preconditioning using single layer potential

— suppresses influence of mesh size, still strong influence of frequency



Sound Radiation from a Disk Brake
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MECH /M\NIK

P 4422 triangular elements,

9 "//,l

GMRES, residuum 1073

Model of disk brake for FEM modal analysis,
normal velocity of 12th eigenmode at 3720 Hz.

Multipole-BEM simulation of acoustic field,

computational time nearfield matrix 10 min.

preconditioner iterations | time for solution
without 326 29 min
approximate inverse 203 19 min
single layer potential 99 18 min

Structural mode shape provided by Robert Bosch GmbH, Zentralbereich Forschung und Vorausentwicklung, Angewandte Physik.
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Conclusions MECH/ANIK

e Galerkin BEM for acoustic simulation.
e Fast multilevel multipole algorithm.

e Preconditioners for improved efficiency.

Outlook

e Preconditioners that reduce influence of wave number.

- Current Master thesis: Multilevel Preconditioners for the
Multipole BEM in Acoustics.

e Use of fast multipole BEM for acoustic—structure interaction.

- Mortar coupling and efficient solution of the saddle point problem.



