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e Motivation and brief excurse to the domain decomposition and the H-matrix technique

FEM- and BEM-Galerkin approximations to the Schur complement T'; on substructures

e Numerics for the FEM-Galerkin method

\o Remarks on possible application in the FETI/BETI iterative methods and conclusions
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e H-matrix representation to the interface Schur complement B and its inverse B;l (key point)
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Interface Formulation by Domain Decomposition (Main Concept)
e Natural parallelization
e Reduction of spacial dimension d — d — 1, providing the complexity O(NT)

e FEM and BEM reciprocally complement each other nicely

K Figure 1: Skin problem (left), multiple Fichera cube (right).
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/ Features and Applications of the 7{-Matrices \

My k(Trx1,P), the class of data-sparse H-matrices, introduced by Hackbusch *99.

Further developments and applications: Hackbusch, BNK, Sauter, Grasedyck, Bebendorf *99 - "03.
A direct descendant of panel clustering, fast multipole and mosaic-skeleton approximation,

the H-matrix technique allows, in addition, data-sparse matrix-matrix operations.

Main features:
e matrix arithmetic of O(N log? V) - complexity, NV := |I| - cardinality

® accurate approximation to general class of nonlocal (integral) operators and operator-valued
functions including the elliptic operator inverse L1 and the Poincaré-Steklov operators

® rigorous theoretical analysis

Thm. 1 (complexity of the 7{-matrix arithmetic)
Let k € N denote the block-wise rank and T'r«j be an H-tree with depth L > 1.
Then the arithmetic of matrices belonging to MH,k (TI>< I, 73) has the complexity

N’H,store < 2C(spkL]V'a N’H-v < 4CspkLN7 N’H@’H < C1sp]<32]\7'(c(1L + CQk)a

Nyon < COC’SZkaLN max{k, L}, ij(%) < Nyowu  (Csp—sparsity constant).
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Hierarchical Partitionings: P; /5(/ x I) - standard; Py (I x I) - Weak admissible
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Figure 2: Standard- (left) and Weak-admissible hierarchical partitionings for d = 1.
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Numerics I: {-Matrix Approximation in 2D BEM

Admy /o Admw
n| k % storage CPU/sec | k % storage
256 | 2 2.010-5 0.1 -1 5 9.110-6 0.1
512 | 2 1.519-5 0.3 0.04 | 5 1.110-5 0.3
1024 | 2 1.0190-5 0.7 0.11 5 1.110-5 0.7
2048 | 2 7.410-6 1.7 025 | 5 8.810-6 1.5
4096 | 2 5.310-6 3.8 0.57 | 5 6.710-6 3.3
8192 | 2 3.710-6 8.3 1.27 | 5 5.010-6 7.4
8192 | 2 3.810-6 8.3 -1 5 5.010-6 7.4
16384 | 2 2.810-6 18.2 -1 5 3.710-6 16.1
32768 | 2 2.0190-6 39.5 -1 5 2.710-6 34.8

Table 1: Accuracy and storage size in the strongly and weakly admissible case
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Admy Admwy
n|k |[I-AA3'|, cPu |k |I-AA;'|, cPU
256 | 2 8.010-5 02| 5 1.810-5 0.04
512 | 2 8.110-5 04 | 5 3.410-5 0.1
1024 | 2 81105 1.1 5 46105 0.3
2048 | 2 81105 28| 5 14104 07
409 | 2 8.1190-5 6.7 | 5 1.510-4 1.8
8192 | 2 8.0,0-5 159 | 5 1510-4 4.4
16384 | 2 8.010-5 373 | 5 1.510-4 10.5
32768 | 2 8110-5 86.0 | 5 1510-4 25.2
Admy /2 Admyy
no |k CPU |k CPU | A — Asully /1A,
131072 | 4 1031 | 12 475 110 — 6

Table 2: Error of the inverse and CPU time needed




/ Formulation of the problem
The elliptic operator £ : V' — V' with V = H}(Q) and V' = H~1(Q), and associated with
d d
aq(u,v) = / ( Z a;;0;u0;v + Z b;0juv + apuv)de,
€ 45=1 =1
\J J
is supposed to be V -elliptic, implying the unique solvability of

ueV: aq(u,v) = f(v) Yv eV,

Il
SC
li
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wn

() € R% is composed of M > 1 matching, non-overlapping subdomains,

an(u,v) =3 ag, (ula,, vle;).
The interface (skeleton) of the decomposition of 2: I' = UT"; with I'; := 012;.

Distinguish three versions of a direct method:.
(A) Rather general variable coefficients of £ ( Hackbuch *02; Hackbuch, BNK, Kriemann *03 ).
(B) Smooth coefficients in subdomains (boundary concentrated FEM: BNK, Melenk *02-°03).

(C) Piecewise constant coefficients (FFT based compression: BNK, Wittum ’96-98, °03;

\ BEM representation of PSO: Langer, Steinbach, Wendland, ... ).

~

(0.1)




/ Approximate Direct Solver in the General Case (variable coefficients) \
Let Aj, € RIo > pg the FEM-Galerkin stiffness matrix, solve

Arr Apr Ur Fy
Arr Arr Ur Fr

where T is the interface index setand I = I \ T is the complementary (’interior’) one.

1. H-matrix approximation to the local inv. Az._l, 1 =1,..., M, and comp. particular solut. AI_IlFI,
where AI_I1 = blockdiag{AT", ..., A;/Il}, A ;7 is the stiffness matr. of £ subject to u|r = 0.
2. Solve the interface equation for U,

Ur = B;l(Fp — AFIAI_IlFI), Ur, Fr € RIr (0.2)
with the FEM Schur complement matrix
Br .= Apr — AFIAI_IlA[F € RIr > (0.3)

3. Find Uy from Ur = A7 Fr — A7/ ArUr, by fast extension EL97™, = — A ApUr.

Note 1: The “substructure” matrices A,L-_l, 1 =1, ..., M, can be represented in the H-matrix format

Qith cost O(Nq, ). Moreover, the implementation of A7, can be done in parallel. /




/ Compose Br and Compute Its Inverse \

In Step (2), let A; peap, @ =1, ..., M, be the local FEM stiffness matrix

A, A;r,
A, rEM =
Ar,i Arnr;

By the H-matrix arithmetics, compute the local FEM Schur complement matrices
—1
T’i,h = AFiFi _ AFi,'L'Ai A'L',Fp (04)

where A ; is the stiffness matrix for aq, (-, -) with { Dirichlet = 0} on T';.
Note 2: A,L-_1 can be represented in the {-matrix form and then multiplied with simple matrices
Ar, A7 A,

(A
Compute the interface Schur complement in the H-matrix format

M
(BrU, Z)r, = Y (TinUs, Zi)r,,,  Br e RT*I, (0.5)
i=1
Here U;, Z; € RIri 4 =1, ..., M, are the local vector components U; = Rr,U, where the

Qonnectivity matrix Ry, € Rt XIr restricts onto I, /
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Algorithm All (approximate interface inverse)

Approximate Inverse B 1 in the H-matrix format

® Evaluate the local Schur complements T'; j, € RNty XNrg 4 =1, ..., M, in the H.-matrix

format.

e Construct an admissible block partitioning Pr of the product index set It X Ir and fill in the

corresponding blocks of Br by low-rank matrices, using T'; j, as the input data.
e Compute the inverse matrix By 1 by using the H-matrix arithmetics.
Cost estimates to compute T'; 5, (in all cases storage is O(Nt, log? Nr,)):
(i) Rather general variable coefficients of £; FEM = O(Ngq, log? Ng,).
(i) Smooth coefficients in subdomains; boundary concentrated hp-FEM = O(Nr, log? Nr, ).
(i) Piecewise constant coefficients; BEM = O(Nt, log? Nr,).

Cost estimates for By = O(Nt log? Nr).

Final complexity for Br' = O(Nt log? Nr).

\_
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Boundary concentrated hp-FEM (set a;j, ag — analytic) Kh., Melenk "02-°03 :

— Galerkin approximation by p.w. polynomials of degree < p, Vi, = SP(Q,T)
— Compute the local H-matrix inverse A7}, dimV;, = O(h™1)

— Calculate the local Schur complement defined on the “interface” index set I,
— Advantage: O(Np) complexity; handling locally complicated interface (p = 1 - preconditioning)

Figure 3: Refinement to the boundary (left, center) and to the corner (right).
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On 7{-Matrix Approximation to Poincaré-Steklov operators in case (B) (p.w. smooth coefficients)




\ BEM-Galerkin Approximation in case (C) (piecewise constant coefficients)

agq, (u,v) \ VuVudz, p; > 0.

vae) = [ s@upwa. K@= [ 5 S
0

Introduce the modified Calderon projection Cr,

\a) —II—-K;  u'Vi 6;)  \0)’
ou

i o’
n
The key point is that the Schur complement equation corresponding to (0.6) reads as

applied to the L;-harmonic function with 0; = and —Aw = 0in £;.

1 1
Tiwi := pi Aﬁs. + Am.ﬂ._.\mmi\ﬂﬁm.?_'\@vv w; = 03,

1 1
L + KV (2 Lin + Kin)).

= Tin = pi(Din + (5 5

/ 2
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\ Implication of (0.7) and Error Analysis /

M
Use the trace space X1 := Y x Ap with Ap := [[ H~1/2(I;), equipped with the weighted
i=1
norm

M
1PI%, = lul¥s + > b N2,y P = () €Zp, A= (Ats--os Am).
j=1

Define the interface bilinear form ¢cr : X X X — R by

M
Oﬁﬁwu @v = MUQHJA@QL@@V <w — AQ“V/VUQ — A@udv S MUHJ
i=1

with
ey Xv,m) = us(Dy,w) + (B + KA, v)
—((AT+K)u,n) + p7 ' Vi, m) = (6;,v) V(v,n) €Y; x A,

The equation for u will be reduced to the following skew-symmetric variational interface problem (cf.

Hsiao, BNK, Wendland °01):
Given Ut € Y, find P = (u, \) € Xr such that

f cr(P,Q) = (¥p,v)p  foral @ = (v,7) € Xr. a.g




/ BEM-Galerkin Saddle Point System \

Using the FE Galerkin ansatz space of piecewise linear functions >, := Y}, X Ay, with

M

Ay = [] Ain, we arrive at the BEM-Galerkin saddle-point system of equations:
i=1

Given Ut € Y{, find P, = (uh, )\h) € Y, x Ay, such that

cr(Pr, Q) = (Yr,v)r forall Q= (v,n) € Y, X Ap. (0.9)

Thm. 2 (i) The bilinear form cr : Y1 X X — R is continuous and 1 -elliptic.
(i) Let Py, solve (0.9), then

M M
1P — Pl < © ot s, > hillws = willF ey + 3 m N = il | -
’ i=1 =1

(iii) Let T'; p, be the local BEM Schur complement given by (0.7). Then the BEM Schur complement
matrix Bp € RIP*XIr takes the form

M M
(BrZ, V), =Y (TinZi, Vi), = ) (RE, TinR,Z, V)1,
1=1 1=1
M

\Which implies the explicit representation By = Z RRTZ‘, rRr,.

y




/ ‘H-Matrix Representation to B

Given T'; p,, how to calculate a low-rank approximation of blocks in P(Ir X It) ?
sub-matrices in T'; .

Rjasanow) or WACA (cf. Hackbusch, BNK, Kriemann °02) on the target block.

1. SVD recompression of b € P (Ir x Ir) obtained as a sum of a fixed number of blocks extracted as rank-k

2. Compute only few entries of b € RN XNb and use the adaptive cross approximation (ACA) (cf. Bebendorf,

1T
|

Figure 4: Construction of the cluster tree T'(I).
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Numerics Il: FEM-Galerkin Schur complement B
— ;A\, randomly chosen ; > 0 (almost linear cost). ¢(T; pear) — OSTBEM-2D (O. Steinbach)
6 X 6 domains (k = 9)
Ng Nr | #(Tin) | H(TiBem) | tBry) | tMV) | [T — A4 2
16 641 1245 0.6s 0.06 s 10.7s | 1.361p9-2 s 7.710-6
66 049 2525 12.2s 0.26 s 30.3s | 3.9819-2s 8.010-6
263 169 5085 105.1 s 1.4s 942s | 9.4319-2s 4.610-5
1050625 | 10205 696.2 s 9.8s 218.1s | 1.8519-1s 7.110-5
8 X 8 domains (k = 9)
No | No i) | uBeh) | eav) |- a4
16 641 1729 0.1s 13.9s | 2.261p9-2 s 6.910-6
66 049 3521 3.8s 41.2s | 5.3819-2s 2.310-5
263 169 7105 43.3 s 126.8s | 1.2719-1s 3.910-5
1050625 | 14273 180.7 s 326.7s | 2.661p-1s 4.410-5

~




Adaptive Choice of the Local Rank

© n=66049
el & > n=263169
2 n=1050625
1e-1
1e-3 A
1e-5 A
1e-7
1e-9 A
1e-11 A

Figure 5: Preconditioning with low local ranks.

For preconditioning needs the local rank k£ can be chosen adaptively to achieve the required

tolerance €.
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Multilevel (recursive) Computation of Local Schur Complements

B;r B,

1
then T;j = Br,r, — BFiIBII BT,
Br,r Brr,

Figure 6: Multilevel 2 X 2 (left) and 4 X 4 decompositions.
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The complexity bound satisfies a recursion

W(A; ) =16W(A;, )+ W(Bp,_,).

4 X 4 domains (kK = 9)

nQ nr t(Q) | t(nw) | t(MV) | ||I - AALY2
16 641 753 3.8s 3.7s | 3.2019-3 s 4.210-6
66049 | 1521 43.2 s 16.9s | 9.1019-3 s 7.710-6
263169 | 3057 317.4 s 48.3s | 4.1819-2s 1.310-5
1050625 | 6129 | 2020.1s | 118.8s | 8.9219-1s 2.110-5

\_

WML(A7}) =16(16 x 0.1+ 0.8) 4 16.9 ~ 1min
shows that we gain a factor about 33 compared with 2020 sec depicted in the last line.




Q level 0 Q
Qy, Q01 77777777777777777777777777777777777777777777777
Q,
m= Qs level 1 Q, Q, Q, Q,
QOZ
Q032 Q033 77777777777777777777777777777777777777777777777

Figure 7: Multilevel parallel algorithm based on 2 X 2 decomposition.




/ Application to FETI/BETI lterative Methods \
FETI: Farhat, ..., Widlund, Brenner; BETI: Langer, Steinbach ’03

FETI/BETI applies to a system that is algebraically equivalent to the Schur complement eg.

M
BFU:F;:ZREFi, U F cRIr, (0.10)
1=1

where F; = {(¥;, ¢;) }jerr, , and the matrix Br = % R{.T; »Rr, can be derived by
any of the above described approaches. =
Now (0.10) is equvalent to the solution of a contraint minimization problem
o(U) = min o(V), (0.11)
Vi, Vi .Zl B;V;=0

1=

M
1
O(V):=> [§<Tz~,hv;,vi>fri ~(F,Vidre, |
1=1

where each row of matching matrices B; € R'T *T; is related with a pair of matching nodes in Ir.

\Each row has the entries 1, —1 for the indices corresponding to the matching nodes and 0 otherwise./
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Preconditioned lteration for Dual Problem

Introducing the Lagrange multiplier A, (0.11) is reduced to a saddle point system

B

= . (0.12)
Ty B

0 Unm Fyr
\ B, .. Byu o0 /J\ A /) \ o)
With Tp = blockdz’ag{Tl,h, ---aTM,h}, B := {Bl, ,BM} and F' := {Fl, ...,FM},
we obtain the dual formulation

—1pT A _ —1
BT, B A =BT p F
which can be solved by the iterative PCG method using spectrally close preconditioner C of the form

C~! = GTT,G. Different proposals for G can be found in the literature on the FETI methods.

The key point. both T p and Tl_)1 can be computed and stored in the H-matrix format with almost
linear cost. Hence, the same is true for the corresponding matrix-by-vector multiplication with
BTBIBT and GTT p G provided that G can be implemented with the linear expense.

\_ /




/ Conclusions \

1. Our geometric direct solver (H-matrix based Schur complement/DD) is preferable vs.

its algebraic version (global 7{-matrix inverse):
(a) Sequential computation: Memg = O(Nq/M) + Nr < Mem g = O(Nq); Tg < 0.5T4.

(b) Parallel computation: T = O(Nq/p + Nr) < Ta = O(Nq + CNgqlog? Nqo/p);
Memg = Memy4.

2. Depending on the input data (variable, p.w. smooth or p.w. constant coefficients),

one can apply three versions of the direct Schur complement/DD method.

3. In the FEM-version, the computation of Ti,h in subdomains dominates vs. the interface solver
resulting in O(Ngq log? Nq )-complexity.
In the BEM- and hp-FEM versions, we achieve O (Nt ) complexity (with f = 0in Q \ I

4. Further developments:
— implement the BEM-version
(promising 2D numerics based on the H-matrix arithmetics + OST code) ;

— couple with boundary concentrated Ap-FEM,;

(realise the recursive FEM-version (multilevel, well parallelisable direct method). /




