Fast iterative or fast direct solution of boundary element systems

Mario Bebendorf

Faculty of Mathematics and Computer Sciences University of Leipzig

29th September 2004

Outline

- lacktriangle Review of \mathcal{H} -matrices
 - H-matrix arithmetic
 - ACA
- H-matrix preconditioners
 - *H*-LU decomposition
- Computational Experiments

Outline

- Review of H-matrices
 - H-matrix arithmetic
 - ACA
- $oldsymbol{2}$ \mathcal{H} -matrix preconditioners
 - H-LU decomposition
- Computational Experiments

Outline

- lacktriangle Review of \mathcal{H} -matrices
 - H-matrix arithmetic
 - ACA
- 2 H-matrix preconditioners
 - H-LU decomposition
- 3 Computational Experiments

Fredholm integral equation

$$\lambda u + \mathcal{K}u = f, \quad \lambda \in \mathbb{R},$$

where

$$(\mathcal{K}u)(x) = \int_{\Gamma} \kappa(x,y)u(y) ds_y, \quad x \in \mathbb{R}^3,$$

is an elliptic pseudo-differential operator, $\Gamma \subset \mathbb{R}^3$.

Finite dimensional ansatz space $V_h := \operatorname{span}\{\varphi_i\}$.

$$K_{ij} := \int_{\Gamma} \int_{\Gamma} \varphi_i(x) \kappa(x, y) \varphi_j(y) \, \mathrm{d} s_x \, \mathrm{d} s_y, \quad i, j = 1, \dots, n.$$

Critical properties of K

- κ usually non-local \implies K is dense
- $\lambda M + K$ may be ill-conditioned

Fredholm integral equation

$$\lambda u + \mathcal{K}u = f, \quad \lambda \in \mathbb{R},$$

where

$$(\mathcal{K}u)(x) = \int_{\Gamma} \kappa(x,y)u(y) ds_y, \quad x \in \mathbb{R}^3,$$

is an elliptic pseudo-differential operator, $\Gamma \subset \mathbb{R}^3$.

Finite dimensional ansatz space $V_h := \operatorname{span}\{\varphi_i\}$.

Stiffness matrix $K \in \mathbb{R}^{n \times n}$ with entries

$$K_{ij} := \int_{\Gamma} \int_{\Gamma} \varphi_i(x) \kappa(x,y) \varphi_j(y) \, \mathrm{d} s_x \, \mathrm{d} s_y, \quad i,j = 1,\ldots,n.$$

Critical properties of K

- ullet κ usually non-local \implies K is dense
- $\lambda M + K$ may be ill-conditioned

Fredholm integral equation

$$\lambda u + \mathcal{K}u = f, \quad \lambda \in \mathbb{R},$$

where

$$(\mathcal{K}u)(x) = \int_{\Gamma} \kappa(x,y)u(y) ds_y, \quad x \in \mathbb{R}^3,$$

is an elliptic pseudo-differential operator, $\Gamma \subset \mathbb{R}^3$.

Finite dimensional ansatz space $V_h := \operatorname{span}\{\varphi_i\}$.

Stiffness matrix $K \in \mathbb{R}^{n \times n}$ with entries

$$K_{ij} := \int_{\Gamma} \int_{\Gamma} \varphi_i(x) \kappa(x,y) \varphi_j(y) \, \mathrm{d} s_x \, \mathrm{d} s_y, \quad i,j = 1,\ldots,n.$$

Critical properties of K

- ullet κ usually non-local \implies K is dense
- $\lambda M + K$ may be ill-conditioned

For simplicity let $\lambda = 0$.

Asymptotic smoothness

 \mathcal{K} elliptic operator $\Longrightarrow \kappa$ has Calderón-Zygmund property

Asymptotic smoothness

There are $c_1, c_2 > 0$ and $g \in \mathbb{R}$ s.t. for all $\alpha \in \mathbb{N}_0^3$ it holds that

$$|\partial_y^{\alpha} \kappa(x,y)| \leq c_1 |\alpha|! (c_2|x-y|)^{g-|\alpha|}, \quad x \neq y.$$

Want degenerate approximation on $D_1 \times D_2$

$$\kappa(x,y) \approx \tilde{\kappa}(x,y) = \sum_{\ell=1}^{k} u_{\ell}(x) v_{\ell}(y)$$

Far field condition ($0 < \eta < 1$ given)

 $\min\{\operatorname{diam} D_1,\operatorname{diam} D_2\} \leq \eta \operatorname{dist}(D_1,D_2)$

Asymptotic smoothness

 \mathcal{K} elliptic operator $\Longrightarrow \kappa$ has Calderón-Zygmund property

Asymptotic smoothness

There are $c_1, c_2 > 0$ and $g \in \mathbb{R}$ s.t. for all $\alpha \in \mathbb{N}_0^3$ it holds that

$$|\partial_y^{\alpha}\kappa(x,y)| \leq c_1|\alpha|!(c_2|x-y|)^{g-|\alpha|}, \quad x \neq y.$$

Want degenerate approximation on $D_1 \times D_2$

$$\kappa(x,y) \approx \tilde{\kappa}(x,y) = \sum_{\ell=1}^{k} u_{\ell}(x) v_{\ell}(y).$$

Far field condition (0 $<\eta<1$ given)

 $\min\{\operatorname{diam} D_1, \operatorname{diam} D_2\} \leq \eta \operatorname{dist}(D_1, D_2)$

Asymptotic smoothness

 \mathcal{K} elliptic operator $\Longrightarrow \kappa$ has Calderón-Zygmund property

Asymptotic smoothness

There are $c_1, c_2 > 0$ and $g \in \mathbb{R}$ s.t. for all $\alpha \in \mathbb{N}_0^3$ it holds that

$$|\partial_y^{\alpha}\kappa(x,y)| \leq c_1|\alpha|!(c_2|x-y|)^{g-|\alpha|}, \quad x \neq y.$$

Want degenerate approximation on $D_1 \times D_2$

$$\kappa(x,y) \approx \tilde{\kappa}(x,y) = \sum_{\ell=1}^k u_\ell(x) v_\ell(y).$$

Far field condition $(0 < \eta < 1 \text{ given})$

$$\min\{\operatorname{diam} D_1, \operatorname{diam} D_2\} \leq \eta \operatorname{dist}(D_1, D_2).$$

Fast summation methods

E.g. by Taylor expansion:
$$\|\kappa - \tilde{\kappa}\|_{\infty, D_1 \times D_2} \sim \eta^p \|\kappa\|_{\infty, D_1 \times D_2}$$
.

Analytic expansions:

Fast multipole [Rokhlin '85] and panel clustering [Hackbusch/Nowak '89]

Analysis
$$\leftrightarrow$$
 algebra

$$\begin{array}{cccc} \kappa(x,y) & \approx & \sum_{\ell=1}^k u_\ell(x) v_\ell(y) & \textit{degenerate approximation} \\ \longleftrightarrow & K|_b & \approx & UV^T & \text{low-rank approximation}. \end{array}$$

Algebraic methods: (hierarchical matrices)
Pseudo-skeletons [Tyrtyshnikov '97]

Fast summation methods

E.g. by Taylor expansion:
$$\|\kappa - \tilde{\kappa}\|_{\infty, D_1 \times D_2} \sim \eta^p \|\kappa\|_{\infty, D_1 \times D_2}$$
.

Analytic expansions:

Fast multipole [Rokhlin '85] and panel clustering [Hackbusch/Nowak '89]

$Analysis \leftrightarrow algebra$

$$\begin{array}{ccc} \kappa(x,y) & \approx & \sum_{\ell=1}^k u_\ell(x) v_\ell(y) & \textit{degenerate approximation} \\ \longleftrightarrow & K|_b & \approx & \textit{UV}^T & \text{low-rank approximation}. \end{array}$$

Algebraic methods: (hierarchical matrices) Pseudo-skeletons [Tyrtyshnikov '97]

Admissibility condition

Stiffness matrix $K \in \mathbb{R}^{n \times n}$

Basis functions
$$\varphi_i$$
, $i = 1, ..., n$, with supports $X_i := \operatorname{supp} \varphi_i$, $K_{ii} = a(\varphi_i, \varphi_i), \quad i, j = 1, ..., n$.

For entry
$$K_{ij} \longleftrightarrow \kappa$$
 evaluated on $X_i \times X_j$
block $b = s \times t \longleftrightarrow \text{pair } X_s \times X_t$, where $X_t := \bigcup_{i \in t} X_i$.

Admissibility condition on block b=s imes t

 $\min\{\operatorname{diam} X_s, \operatorname{diam} X_t\} \leq \eta \operatorname{dist}(X_s, X_t) \quad \text{or} \quad \min\{\#s, \#t\} \leq n_{\min}.$

Number of generated blocks is $\mathcal{O}(\eta^{-4} n \log n)$. Note: arbitrary grids (no grid hierarchy required!

Admissibility condition

Stiffness matrix $K \in \mathbb{R}^{n \times n}$

Basis functions
$$\varphi_i$$
, $i = 1, ..., n$, with supports $X_i := \operatorname{supp} \varphi_i$, $K_{ii} = a(\varphi_i, \varphi_i), \quad i, j = 1, ..., n$.

For entry
$$K_{ij} \longleftrightarrow \kappa$$
 evaluated on $X_i \times X_j$
block $b = s \times t \longleftrightarrow \text{pair } X_s \times X_t$, where $X_t := \bigcup_{i \in t} X_i$.

Admissibility condition on block $b = s \times t$

$$\min\{\operatorname{diam} X_s, \operatorname{diam} X_t\} \leq \eta \operatorname{dist}(X_s, X_t) \quad \text{or} \quad \min\{\#s, \#t\} \leq n_{\min}.$$

Number of generated blocks is $\mathcal{O}(\eta^{-4} n \log n)$. *Note:* arbitrary grids (no grid hierarchy required!)

What are \mathcal{H} -matrices ?

Basic principles

- Hierarchical partition of the matrix into blocks
- 2 Restriction to low-rank matrices on each block

$$P = \{b = s \times t, \ s, t \subset I\}, \quad I := \{1, \dots, N\}$$

with pairwise disjoint P and $I \times I = \bigcup b$.

Blockwise low-rank matrices (M has full rank!)

Definition

$$\mathcal{H}(P,k) := \{ M \in \mathbb{R}^{N \times N} : \text{rank } M|_b \le k \text{ for all } b \in P \}$$

What are \mathcal{H} -matrices ?

Basic principles

- Hierarchical partition of the matrix into blocks
- 2 Restriction to low-rank matrices on each block

$$P = \{b = s \times t, \ s, t \subset I\}, \quad I := \{1, \dots, N\}$$

with pairwise disjoint ${\it P}$ and

$$I \times I = \bigcup_{i=1}^{n} b_i$$

 $b \in F$

Blockwise low-rank matrices (M has full rank!

Definition

$$\mathcal{H}(P,k) := \{ M \in \mathbb{R}^{N \times N} : \operatorname{rank} M|_b \le k \text{ for all } b \in P \}$$

What are \mathcal{H} -matrices ?

Basic principles

- Hierarchical partition of the matrix into blocks
- Restriction to low-rank matrices on each block

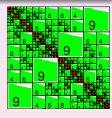
$$P = \{b = s \times t, \ s, t \subset I\}, \quad I := \{1, \dots, N\}$$

with pairwise disjoint ${\it P}$ and

$$I \times I = \bigcup_{i=1}^{n} b_i$$

 $b \in P$

Blockwise low-rank matrices (M has full rank!)



Definition

$$\mathcal{H}(P,k) := \{ M \in \mathbb{R}^{N \times N} : \operatorname{rank} M|_b \le k \text{ for all } b \in P \}$$

Low-rank matrices

Outer product representation

 $A \in \mathbb{R}^{m \times n}$: rank $A \leq k$

 $\iff \exists U \in \mathbb{R}^{m \times k}, \ V \in \mathbb{R}^{n \times k} \text{ s.t. } A = UV^T.$

U

 V^T

Storage

Instead of $m \cdot n$ for Ak(m+n) units of memory for U, V

Cost of MV-multiply

Instead of $\mathcal{O}(m \cdot n)$ for Ax $\mathcal{O}(k(m+n))$ operations for $UV^Tx = U(V^Tx)$

Low-rank matrices

Outer product representation

 $A \in \mathbb{R}^{m \times n}$: rank $A \leq k$

 $\iff \exists U \in \mathbb{R}^{m \times k}, \ V \in \mathbb{R}^{n \times k} \text{ s.t. } A = UV^T.$

U

 V^T

Storage

Instead of $m \cdot n$ for Ak(m+n) units of memory for U, V.

Cost of MV-multiply

Instead of $\mathcal{O}(m \cdot n)$ for Ax $\mathcal{O}(k(m+n))$ operations for $UV^Tx = U(V^Tx)$

Low-rank matrices

Outer product representation

 $A \in \mathbb{R}^{m \times n}$: rank $A \leq k$

 $\iff \exists U \in \mathbb{R}^{m \times k}, \ V \in \mathbb{R}^{n \times k} \text{ s.t. } A = UV^T.$

U

 V^T

Storage

Instead of $m \cdot n$ for Ak(m+n) units of memory for U, V.

Cost of MV-multiply

Instead of $\mathcal{O}(m \cdot n)$ for Ax $\mathcal{O}(k(m+n))$ operations for $UV^Tx = U(V^Tx)$.

\mathcal{H} -matrix arithmetic

\mathcal{H} -MV multiply

can be done without approximation.

Sum of two rank-k matrices exceeds rank $k \Rightarrow \mathcal{H}(P, k)$ is *not* a linear space.

SVD of AB^T , $A \in \mathbb{R}^{m \times k}$, $B \in \mathbb{R}^{n \times k}$

- (i) QR decompositions: $A = Q_A R_A$, $B = Q_B R_B$ $k^2 (m+n)$
- (ii) SVD of $M := R_A R_B^T \in \mathbb{R}^{k \times k}$: $M = U \Sigma V^T$ k³ then $(Q_A U) \Sigma (Q_B V)^T$ is SVD of AB^T .

\mathcal{H} -Addition

Blockwise truncated addition with precision ε

\mathcal{H} -matrix arithmetic

\mathcal{H} -MV multiply

can be done without approximation.

Sum of two rank-k matrices exceeds rank $k \implies \mathcal{H}(P, k)$ is *not* a linear space.

SVD of AB^T , $A \in \mathbb{R}^{m \times k}$, $B \in \mathbb{R}^{n \times k}$

- (i) QR decompositions: $A = Q_A R_A$, $B = Q_B R_B + \frac{k^2(m+n)}{n}$
- (ii) SVD of $M := R_A R_B^T \in \mathbb{R}^{k \times k}$: $M = U \Sigma V^T$ k³ then $(Q_A U) \Sigma (Q_B V)^T$ is SVD of AB^T .

\mathcal{H} -Addition

Blockwise truncated addition with precision &

\mathcal{H} -matrix arithmetic

\mathcal{H} -MV multiply

can be done without approximation.

Sum of two rank-k matrices exceeds rank $k \implies \mathcal{H}(P, k)$ is *not* a linear space.

SVD of AB^T , $A \in \mathbb{R}^{m \times k}$, $B \in \mathbb{R}^{n \times k}$

- (i) QR decompositions: $A = Q_A R_A$, $B = Q_B R_B + \frac{k^2(m+n)}{n}$
- (ii) SVD of $M := R_A R_B^T \in \mathbb{R}^{k \times k}$: $M = U \Sigma V^T$ k³ then $(Q_A U) \Sigma (Q_B V)^T$ is SVD of AB^T .

\mathcal{H} -Addition

Blockwise truncated addition with precision arepsilon

\mathcal{H} -MM-Multiplication

$$\begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix} = \begin{bmatrix} A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\ A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22} \end{bmatrix}$$

\mathcal{H} -Inversion

$$\begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}^{-1} = \begin{bmatrix} A_{11}^{-1} + A_{11}^{-1} A_{12} S^{-1} A_{21} A_{11}^{-1} & -A_{11}^{-1} A_{12} S^{-1} \\ -S^{-1} A_{21} A_{11}^{-1} & S^{-1} \end{bmatrix},$$

where $S := A_{22} - A_{21}A_{11}^{-1}A_{12}$ is the Schur complement.

 \mathcal{H} -operations: $\mathcal{O}(N \log^* N)$ [Grasedyck/Hackbusch '03].

Adaptive Cross Approximation (ACA)

```
Let k = 1: Z = \emptyset
repeat
         if k > 1 then i_k := \operatorname{argmax}_{i \notin Z} |(u_{k-1})_i|
         else i_k := \min\{1, \ldots, m\} \setminus Z
         \tilde{v}_k := \frac{a_{i_k,1:n}}{a_{i_k,1:n}} - \sum_{\ell=1}^{k-1} (u_\ell)_{i_\ell} v_\ell
         Z := Z \cup \{i_k\}
         if \tilde{v}_k does not vanish then
                 j_k := \operatorname{argmax}_{i=1,\dots,n} |(\tilde{v}_k)_j|; \quad v_k := (\tilde{v}_k)_{i_k}^{-1} \tilde{v}_k
                  u_k := a_{1:m} i_{\ell} - \sum_{\ell=1}^{k-1} (v_{\ell})_{i_{\ell}} u_{\ell}.
                   k := k + 1
         endif
until ||u_k||_2 ||v_k||_2 < \varepsilon ||\sum_{\ell=1}^{k-1} u_\ell v_\ell^T||_F.
```

Theorem

Let (X_s, X_t) satisfy the far field condition and κ be asymptotically smooth. Then for $|Z| \geq n_p$ it holds that

$$|(A - \sum_{\ell=1}^k u_\ell v_\ell^T)_{ij}| \le c \operatorname{dist}^g(X_s, X_t) \|\varphi_i\|_{L^1} \|\varphi_j\|_{L^1} \eta^p, \quad 0 < \eta < \frac{1}{3}.$$

[B. '99, B. & Rjasanow '03]

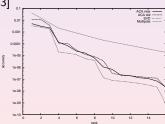
Parallelization of ACA and H-MV-multiplication [B. & Kriemann '04]

Theorem

Let (X_s, X_t) satisfy the far field condition and κ be asymptotically smooth. Then for $|Z| \geq n_p$ it holds that

$$|(A - \sum_{\ell=1}^k u_\ell v_\ell^T)_{ij}| \le c \operatorname{dist}^g(X_s, X_t) \|\varphi_i\|_{L^1} \|\varphi_j\|_{L^1} \eta^p, \quad 0 < \eta < \frac{1}{3}.$$

[B. '99, B. & Rjasanow '03]



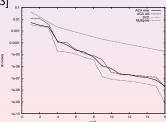
Parallelization of ACA and H-MV-multiplication [B. & Kriemann '04]

Theorem

Let (X_s, X_t) satisfy the far field condition and κ be asymptotically smooth. Then for $|Z| \geq n_p$ it holds that

$$|(A - \sum_{\ell=1}^k u_\ell v_\ell^T)_{ij}| \le c \operatorname{dist}^g(X_s, X_t) \|\varphi_i\|_{L^1} \|\varphi_j\|_{L^1} \eta^p, \quad 0 < \eta < \frac{1}{3}.$$

[B. '99, B. & Rjasanow '03]



Parallelization of ACA and H-MV-multiplication [B. & Kriemann '04]

\mathcal{H} -matrix preconditioners

Iterative solution using $\mathcal{H}\text{-MV}$ multiplication Problem: stiffness matrix K may be ill-conditioned If \mathcal{K} is operator of order m, $\operatorname{cond}_2(K) \sim h^{-|m|}$.

Idea [Steinbach/Wendland '98] based on mapping properties only. Let $\mathcal{A}:V\to V'$ and $\mathcal{B}:V'\to V$ be V-coercive and V'-coercive. Then for all $v\in V$

$$\alpha_1 \|v\|_V^2 \le (\mathcal{A}v, v)_{L^2} \le \alpha_2 \|v\|_V^2$$

$$\beta_1 \|v\|_V^2 \le (\mathcal{B}^{-1}v, v)_{L^2} \le \beta_2 \|v\|_V^2.$$

${\mathcal A}$ and ${\mathcal B}^{-1}$ are spectrally equivalent

$$\frac{\alpha_1}{\beta_2}(\mathcal{B}^{-1}v,v) \le (\mathcal{A}v,v) \le \frac{\alpha_2}{\beta_1}(\mathcal{B}^{-1}v,v) \quad \text{for all } v \in V.$$

\mathcal{H} -matrix preconditioners

Iterative solution using $\mathcal{H}\text{-MV}$ multiplication Problem: stiffness matrix K may be ill-conditioned If \mathcal{K} is operator of order m, $\operatorname{cond}_2(K) \sim h^{-|m|}$.

Idea [Steinbach/Wendland '98] based on mapping properties only. Let $\mathcal{A}:V\to V'$ and $\mathcal{B}:V'\to V$ be V-coercive and V'-coercive. Then for all $v\in V$

$$\alpha_1 \|v\|_V^2 \le (\mathcal{A}v, v)_{L^2} \le \alpha_2 \|v\|_V^2$$

$$\beta_1 \|v\|_V^2 \le (\mathcal{B}^{-1}v, v)_{L^2} \le \beta_2 \|v\|_V^2.$$

${\cal A}$ and ${\cal B}^{-1}$ are spectrally equivalent

$$\frac{\alpha_1}{\beta_2}(\mathcal{B}^{-1}v,v) \leq (\mathcal{A}v,v) \leq \frac{\alpha_2}{\beta_1}(\mathcal{B}^{-1}v,v) \quad \text{for all } v \in V.$$

Use hypersingular operator to precondition single layer operator. $(\rightarrow ACA)$.

Even for small $n: \operatorname{cond}_2(K)$ large due to geometry/discretisation.

Aim: compute preconditioner $C_{\mathcal{H}} \in \mathcal{H}(P, k)$ such that

$$||K - C_{\mathcal{H}}||_2 \le \delta ||K||_2$$
, $\delta \operatorname{cond}_2(K) \le \delta' < 1$

then

$$\operatorname{\mathsf{cond}}_2(\mathit{C}_{\mathcal{H}}^{-1}\mathit{K}) \leq \frac{1+\delta'}{1-\delta'}.$$

A low-precision approximation is sufficient for a small condition

Use hypersingular operator to precondition single layer operator. $(\rightarrow ACA)$.

Even for small $n: \operatorname{cond}_2(K)$ large due to geometry/discretisation.

Aim: compute preconditioner $C_{\mathcal{H}} \in \mathcal{H}(P, k)$ such that

$$\|K - C_{\mathcal{H}}\|_2 \le \delta \|K\|_2$$
, $\delta \text{cond}_2(K) \le \delta' < 1$

then

$$\operatorname{\mathsf{cond}}_2(\mathsf{C}^{-1}_{\mathcal{H}}\mathsf{K}) \leq \frac{1+\delta'}{1-\delta'}.$$

A low-precision approximation is sufficient for a small condition number.

Another idea:

- Inverse \mathcal{K}^{-1} of elliptic $\Psi DO \mathcal{K}$ also ΨDO with order -m.
- ullet kernel function of \mathcal{K}^{-1} has Calderón-Zygmund property
- Could use low-precision \mathcal{H} -inverse.

More efficient: $\mathcal{H}\text{-}LU$ decomposition $C_{\mathcal{H}}=LU$. Apply $C_{\mathcal{H}}^{-1}$ to b using forward/backward substitution: Ly=b Ux=y, where

$$\begin{bmatrix} L_{11} \\ L_{21} & L_{22} \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$$

is solved by

$$L_{11}y_1 = b_1$$
 and $L_{22}y_2 = b_2 - L_{21}y_1$.

Another idea:

- Inverse \mathcal{K}^{-1} of elliptic $\Psi DO \mathcal{K}$ also ΨDO with order -m.
- ullet kernel function of \mathcal{K}^{-1} has Calderón-Zygmund property
- Could use low-precision \mathcal{H} -inverse.

More efficient: \mathcal{H} -LU decomposition $C_{\mathcal{H}} = LU$.

Apply $C_{\mathcal{H}}^{-1}$ to b using forward/backward substitution: Ly = b, Ux = v, where

$$\begin{bmatrix} L_{11} \\ L_{21} & L_{22} \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$$

is solved by

$$L_{11}y_1 = b_1$$
 and $L_{22}y_2 = b_2 - L_{21}y_1$.

\mathcal{H} -LU Decomposition

Idea: Block-LU decomposition

$$\begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} = \begin{bmatrix} L_{11} \\ L_{21} & L_{22} \end{bmatrix} \begin{bmatrix} U_{11} & U_{12} \\ & U_{22} \end{bmatrix}$$

is recursively computed by:

$$L_{11}U_{11} = A_{11}$$

$$L_{11}U_{12} = A_{12}$$

$$L_{21}U_{11} = A_{21}$$

$$L_{22}U_{22} = A_{22} - L_{21}U_{12}$$

First and last: *LU* decompositions of half the size.

Second: solve LB = A for B.

$$\begin{bmatrix} L_{11} & \\ L_{21} & L_{22} \end{bmatrix} \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}$$

B can be found from

$$L_{11}B_{11} = A_{11}$$

$$L_{11}B_{12} = A_{12}$$

$$L_{22}B_{21} = A_{21} - L_{21}B_{11}$$

$$L_{22}B_{22} = A_{22} - L_{21}B_{12},$$

- ullet replace usual operations +, * by ${\mathcal H}$ -versions with accuracy δ
- on the leaves of the tree use usual matrix operations
- Cholesky decomposition

Accuracy of storing and of each arithmetical operation is δ . Product LU is backward stable, i.e.,

$$||A - LU||_2 < c\rho\delta ||A||_2,$$

where the growth factor

$$\rho := \frac{\max_{ij} |u_{ij}|}{\max_{ij} |a_{ij}|}$$

is bounded in practice.

Complexity of \mathcal{H} -LU: $n|\log \delta|^4 \log^2 n$. Preconditioner $C_{\mathcal{H}}$, $\operatorname{cond}_2(C_{\mathcal{H}}^{-1}K) \leq 10$, with complexity $\mathcal{O}(n\log^6 n)$.

Inner Dirichlet Problem Laplace

Boundary integral equation

$$\mathcal{V}v=(\frac{1}{2}\mathcal{I}+\mathcal{K})g.$$

Building the $\mathcal{H}\text{-matrix}$ approximants single layer 28288×28288 and 113152×113152 double layer 28288×14146 and 113152×56578

		n = 28288				n = 113152			
		single layer		doub	le layer	single layer		double layer	
r_{i}	7	MB	time	MB	time	MB	time	MB	time
0.	6	76	132 s	154	772 s	378	698 s	756	3972 s
0.	8	78	99 s	156	596 s	391	497 s	765	2971 s
1.	0	83	79 s	164	491 s	422	397 s	807	2408 s
1.	2	88	71 s	172	448 s	458	353 s	860	2195 s

Computing \mathcal{H} -LU decomposition and solving

Recompress a copy to prescribed accuracy δ and compute hierarchical Cholesky decomposition with precision δ .

	n :	= 2828	38	n = 113152		
δ	recompr.	MB	decomp.	recompr.	MB	decomp.
1e – 1	3.6 s	11	3.4 s	20.4 s	54	13.7 s
1e - 2	8.1 s	40	5.7 s	40.1 s	224	53.0 s
1e-3	6.0 s	73	21.4 s	11.3 s	366	135.1 s

Solve $A_{\mathcal{H}}x = b$, $b = (\frac{1}{2}M + B_{\mathcal{H}})g$

	n=2	28288	n=1	n = 113152		
δ	steps	time	steps	time		
1e - 1	39	3.6 s	40	20.1 s		
1e - 2	21	2.6 s	21	14.1 s		
1e - 3	6	1.0 s	6_	52s		

Computing \mathcal{H} -LU decomposition and solving

Recompress a copy to prescribed accuracy δ and compute hierarchical Cholesky decomposition with precision δ .

	n :	= 2828	38	n = 113152		
δ	recompr.	MB	decomp.	recompr.	MB	decomp.
1e – 1	3.6 s	11	3.4 s	20.4 s	54	13.7 s
1e - 2	8.1 s	40	5.7 s	40.1 s	224	53.0 s
1e - 3	6.0 s	73	21.4 s	11.3 s	366	135.1 s

Solve
$$A_H x = b$$
, $b = (\frac{1}{2}M + B_H)g$.

	n=2	28288	n=1	= 113152		
δ	steps	time	steps	time		
1e – 1	39	3.6 s	40	20.1 s		
1e - 2	21	2.6 s	21	14.1 s		
1e-3	6	1.0 s	6_	5.2 s		

Summary

We have presented a preconditioning technique that is

- building matrix using original matrix entries
- spectrally equivalent preconditioning (also for small n)
- fast: $\mathcal{O}(n \log^* n)$ complexity
- expensive parts parallelized
- black-box: can equally be applied to any elliptic operator

Software library for \mathcal{H} -matrices: http://www.math.uni-leipzig.de/~bebendorf/AHMED.html

