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Program

Thursday, September 29, 2011
15.00–16.20 Coffee
16.20–16.30 Opening
16.30–17.00 R. Hiptmair (ETH Zürich)

Multilevel preconditioning for Edge BEM
17.00–17.30 S. Hardesty (Rice University)

Adaptive Cross Approximation of BEM shape derivative tensors
17.30–18.00 C. Hofreither (JKU Linz)

A BEM–based FEM for convection–diffusion equations
18.30 Dinner

Friday, September 30, 2011
9.00–9.30 S. R. Arridge (University College London)

BEM and BEM–FEM in Optical Tomography
9.30–10.00 G. Of (TU Graz)

On the coupling of interior penalty Galerkin and boundary element
methods

10.00–10.30 M. Feischl (TU Wien)
Convergence of adaptive FEM–BEM coupling driven by
residual–based error estimators

10.30–11.00 Coffee
11.00–11.30 A. Kimeswenger (TU Graz)

Symmetric BEM–FEM coupling for fluid–structure interaction
11.30–12.00 G. Unger (TU Graz)

Coupled FE–BE eigenvalue problems for fluid–structure interaction
12.00–12.30 J. Xin (Karlsruhe Institute of Technology)

Boundary element approximation for Maxwell’s eigenvalue problem
12.30 Lunch
15.00–15.30 Coffee
15.30–16.00 M. Bebendorf (U Bonn)

Constructing nested bases approximation from the entries of
non–local operators

16.00–16.30 D. Praetorius (TU Wien)
Quasi–optimal convergence rate for an adaptive boundary element
method

16.30–17.00 P. Urthaler (TU Graz)
A convolution quadrature boundary element method for
poroelastodynamics

17.00–17.30 Break
17.30–18.00 L. Kielhorn (ETH Zürich)

An approach to a unified implementation of boundary element
methods

18.00–18.30 T. Traub (TU Graz)
HYENA–A modular and extensible C++ library for solving
hyperbolic and elliptic PDEs

18.30 Dinner
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Saturday, October 1, 2011
9.00–9.30 E. P. Stephan (Leibniz Universität Hannover)

Large boundary element computation: Molodensky problem and
sound radiation of car tyres

9.30–10.00 X. Claeys (Universite de Toulouse)
Multi–trace boundary integral formulation of the first kind of
acoustic scattering by composite structures

10.00–10.30 T. Betcke (University College London)
Spectral properties of boundary integral operators in acoustic
scattering

10.30–11.00 Coffee
11.00–11.30 L. Banjai (MPI Leipzig)

A modified TDBIE for computation of the first reflection of an
impulse–like wave

11.30–12.00 M. Kachanovska (MPI Leipzig)
A fast Runge–Kutta convolution quadrature for solution of the
3D wave equation in unbounded domains

12.00–12.30 D. Lukas (TU Ostrava)
A parallel Galerkin ACA–BEM for the Helmholtz equation

12.30 Lunch
13.30–18.00 Hiking Tour
18.30 Dinner

Sunday, October 2, 2011
9.00–9.30 Z. Andjelic (ABB Switzerland)

Direct and indirect free–form optimization using BEM
9.30–10.00 M. Aurada (TU Wien)

Mixed conforming elements for the large–body limit in
micromagnetics – A FEM–BEM approach

10.00–10.30 Coffee
10.30–11.00 M. Kolmbauer (JKU Linz)

The multi–harmonic FEM–BEM coupling method for simulation
and control of eddy current problems

11.00–11.30 O. Steinbach (TU Graz)
Boundary integral equations for linear elasticity problems

11.30 Closing

2



Direct and Indirect Free-form Optimisation using BEM

Z. Andjelic

ABB Corporate Research, Baden, Switzerland

Here we present several approaches for automatic free-form optimization based on
BEM. We elaborate to different optimization approaches: a direct and an indirect
approach. In the direct approach we try to minimize the maximal electrical field
at the interface between different media by changing the form of the surface in
normal direction. The objective function is typically the Maxwell stress or the total
or tangential field strength.
In the indirect approach we introduce a novel approach for simple sensitivity cal-
culation. The analogy with the sensitivity calculation in signal processing is used.
The typical optimization task is to find a form of the interface that should provide
a required field/stress/force distribution in the separate space of interest. In other
words, by changing the form of the interface we indirectly change the value of the
objective function in the space of interest.
For both approaches we use BEM as a solution engine. We elaborate briefly the
mathematical background of the BEM for non-linear magnetostatics.
Finally, we demonstrate the above procedures on some academic, as well as some
industrial problems.
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BEM and BEM-FEM in Optical Tomography

S. R. Arridge, J. Elisee, A. Zacharopoulos, O. Dorn, M. Bonnet

University College London, UK

Diffuse Optical Tomography (DOT) is a medical imaging modality in which light is
detected after transmission through a highly scattering medium which is described
by a diffusion type forward model. Since the light is detected on the boundary this
methodology is usually formulated as an inverse boundary value problem and is
non-linear and exponetially ill-posed.
In some applications, boundary element methods are useful to deal with multiple
thin layers of tissue, such as in the head. In this talk I will describe recent methods
for the forward model in DOT using BEM and BEM-FEM. Inverse problems using
these models can be developled for shape based reconstruction, for localised recon-
struction in a FEM region surrounded by BEM layers, and for cortical mapping, in
which the image is assumed to be constrained to a surface.
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Mixed Conforming Elements for the Large-Body Limit in

Micromagnetics – A FEM-BEM Approach

M. Aurada, J. M. Melenk, D. Praetorius

TU Wien, Austria

We consider the large-body limit of the stationary Landau-Lifshitz minimization
problem introduced by DeSimone in 1993, [1]: Find a minimizer m : Ω → R

d with
|m| ≤ 1 a.e. of the bulk energy

E(m) =
1

2

∫

Rd

|∇u|2 dx+

∫

Ω

ϕ∗∗(m) dx−

∫

Ω

f ·m dx. (1)

Here, Ω ⊂ R
d, for d = 2, 3, is the spatial domain of the ferromagnetic material,

ϕ∗∗ is the (convexified) anisotropy density, and f : Ω → R
d is an applied exterior

field. The magnetic potential u : Rd → R is related to the magnetization m by the
magnetostatic Maxwell equation, which reads in distributional form

div(−∇u+m) = 0 in D′(Rd). (2)

For the numerical treatment of this minimization problem we have to deal with the
following issues:

a) The side constraint |m| ≤ 1: We enforce this by using a penalization strategy,
which means that we add an appropriate penalization term to (1).

b) The side constraint given by Maxwell’s equation (2): We append (2) to the
energy functional by a Lagrange multiplier. To ensure stability of the discrete
saddle point problem, we add a consistent stabilization term.

c) The full space problems involved in the first integral in (1) and in Maxwell’s
equation (2): The energy contribution

∫

Rd\Ω

|∇u|2 dx

in (1) is realized by a boundary integral term. For the Maxwell equation (2)
we use a similar idea. The numerical realization of the boundary integral terms
then results in a FEM-BEM coupling.

In this talk, we discuss the well-posedness of the discrete problem and present an
a priori error analysis, where we show optimal convergence rates under sufficient
regularity assumptions. We illustrate our analysis with numerical examples.

References

[1] A. DeSimone: Energy minimizers for large ferromagnetic bodies. Arch. Rational
Mech. Anal. 125 (1993) 99–143.
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A modified TDBIE for computation of the first reflection of an

impulse-like wave

L. Banjai

Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany

We consider the numerical computation of time-domain scattering of acoustic waves
by a bounded obstacle in an infinite homogeneous medium. As the incident wavewe
take a highly peaked Gaussian plane wave, which excites a large frequency band-
width. In order to speed up computation, we form a modified time-domain boundary
integral equation which includes the knowledge of the incident wave. Further, we
analyse the numerical solution of this equation by convolution quadrature in time
and Galerkin boundary integral method in space. If only a single reflection is to
be computed, the solution of the integral equation is very cheap. If the scatterer is
convex a single reflection is indeed all that needs to be computed. We will compare
such a method with recently developed asymptotic methods for frequency domain
computations of scaterring by convex obstacles. Numerical results for 2D scatterers
will also be presented.

This is a joint work with Fatih Ecevit of Bogazici University, Turkey.
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Constructing nested bases approximation from the entries of

non–local operators

M. Bebendorf

Universität Bonn, Germany

The adaptive cross approximation (ACA) [1, 2] is a method for constructing data–
sparse approximations to large–scale fully populated discretizations of integral ope-
rators with logarithmic linear cost. A characteristic property of this method is that
the approximation is based on few of the original matrix entries. The ease of use of
ACA, however, usually comes with a higher memory consumption compared with
the fast multipole method (FMM) [3, 4]. A new method will be presented which
combines the desired properties of ACA with the improved storage requirement of
FMM.

References

[1] M. Bebendorf. Approximation of boundary element matrices. Numer. Math.,
86(4):565–589, 2000.

[2] M. Bebendorf and S. Rjasanow. Adaptive low-rank approximation of colloca-
tion matrices. Computing, 70(1):1–24, 2003.

[3] L. F. Greengard and V. Rokhlin. A fast algorithm for particle simulations. J.
Comput. Phys., 73(2):325–348, 1987.

[4] L. F. Greengard and V. Rokhlin. A new version of the fast multipole method
for the Laplace equation in three dimensions. In Acta numerica, 1997, volume
6 of Acta Numer., pages 229–269. Cambridge Univ. Press, Cambridge, 1997.
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Spectral properties of boundary integral operators in acoustic scattering

T. Betcke

University College London, UK

Spectral properties of boundary integral operators in acoustic scattering are essen-
tial to understand properties such as coercivity or convergence of iterative methods.
Yet, very little is known apart from the unit disk case, where the Green’s function
has a simple decomposition into Fourier modes. For more general domains it is not
even known whether boundary integral operators are normal.
In this talk we first extend known results about eigenvalues on the circle to the
case of an ellipse, where a decomposition of the acoustic Green’s function in elliptic
coordinates is possible. Based on this it is shown that scaled versions of the standard
boundary integral operators are normal in a modified L2 inner product on the ellipse.
For more general domains we consider pseudospectra to visualise spectral behaviour.
In particular, we are interested in pseudospectra of operators around resonances of
trapping domains.
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Multi–trace boundary integral formulation of the first kind for acoustic

scattering by composite structures

X. Claeys

Université de Toulouse, ISAE, France

We study the scattering of acoustic waves by an object composed of several adja-
cent parts with different material properties. Starting from an already well known
single trace integral formulation of the first kind for this problem, we derive a new
boundary integral formulation of the first kind where all unknowns are doubled on
each interface. This formulation does not suffer from any spurious mode phenome-
non, and it satisfies a stability property that ensures quasi-optimal convergence of
conforming boundary element methods. Besides, for certain cases, this formulation
satisfies a relation very similar to a Calderón formula.
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Convergence of adaptive FEM-BEM coupling driven by residual-based

error estimators

M. Aurada, M. Feischl, T. Führer, M. Karkulik, M. Melenk, D. Praetorius

TU Wien, Austria

Model problem & discretization. For the ease of presentation, we consider a
linear interface problem with the 2D Laplacian which is equivalently reformulated
by means of the Johnson-Nédélec FEM-BEM coupling: Find (u, φ) ∈ H := H1(Ω)×
H−1/2(Γ) such that

〈∇u,∇v〉Ω − 〈φ, v〉Γ = 〈f, v〉Ω + 〈φ0, v〉Γ,
〈ψ, (1/2−K)u+ V φ〉Γ = 〈ψ, (1/2−K)u0〉Γ,

(1)

for all (v, ψ) ∈ H. Here, Ω ⊂ R
2 is a bounded Lipschitz domain with polygonal

boundary, and f ∈ L2(Ω), u0 ∈ H1/2(Γ), and φ0 ∈ H−1/2(Γ) are given data,
which satisfy the compatibility condition 〈φ0, 1〉Γ + 〈f, 1〉Ω = 0. With a regular
triangulation Tℓ of Ω, we consider the lowest-order Galerkin discretization, where
u ≈ uℓ ∈ S1(Tℓ) is approximated by piecewise affine and globally continuous func-
tions and φ ≈ φℓ ∈ P0(EΓ

ℓ ) by piecewise constants on the boundary. The set EΓ
ℓ

denotes the set of boundary edges of Tℓ. It is well-known that the continuous and
discrete formulations admit unique solutions.
Residual error estimator. The Galerkin error is controlled by some residual error
estimator from [2]

‖u− uℓ‖
2
H1(Ω) + ‖φ− φ0‖

2
H−1/2(Γ) . ̺2ℓ :=

∑

E∈EΩ

ℓ

̺ℓ(E)
2 +

∑

E∈EΓ

ℓ

̺ℓ(E)
2 (2)

with EΩ
ℓ being the set of edges of Tℓ inside Ω. For these E ∈ EΩ

ℓ , the local contribu-
tions read

̺ℓ(E)
2 = |ωℓ,E| ‖f − fℓ,E‖

2
L2(ωℓ,E) + diam(E) ‖[∂nuℓ]‖

2
L2(E),

while for boundary edges E ∈ EΓ
ℓ

̺ℓ(E)
2 = diam(E)

(
‖φ0 + φℓ − ∂nuℓ‖

2
L2(E) + ‖

(
(1/2−K)(u0 − uℓ)− V φℓ)

)′
‖2L2(E)

)
.

Here, ωℓ,E = T+ ∪ T− with T± ∈ Tℓ is the edge patch of an interior edge E =
T+ ∩ T− ∈ EΩ

ℓ , and fℓ,E is the corresponding integral mean of f . Moreover, (·)′

denotes the arclength derivative.
Convergence of adaptive algorithm. We follow the concept of estimator re-
duction from [3] which is applied for (h − h/2)-based adaptivity in [1]: If Dörfler
marking is used to mark edges for refinement,

̺2ℓ+1 ≤ κ ̺2ℓ + C
(
‖uℓ+1 − uℓ‖

2
H1(Ω) + ‖φℓ+1 − φℓ‖

2
H−1/2(Γ)

)
(3)

with ℓ-independent constants 0 < κ < 1 and C > 0. From the best-approximation
property of Galerkin schemes (Céa lemma) and nestedness of discrete spaces, one
obtains a priori convergence uℓ → u∞ in H1(Ω) and φℓ → φ∞ in H−1/2(Γ) with
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certain (unknown) limits. Elementary calculus and (3) then predict ̺ℓ → 0 as
ℓ→ ∞. Therefore, (2) guarantees convergence of the adaptive algorithm.
The main ingredient to prove (3) for residual error estimators are novel inverse-type
estimates for the integral operators involved. We stress that the proposed approach
also works for other coupling strategies in 2D and 3D and even certain nonlinearities
inside of Ω.

References

[1] M. Aurada, M. Feischl, D. Praetorius: Convergence of some adaptive FEM-
BEM coupling for elliptic but possibly nonlinear interface problems. submitted
to M2AN Math. Model. Numer. Anal.

[2] M. Aurada, M. Feischl, M. Karkulik, D. Praetorius: A posteriori error estimates
for the Johnson-Nédélec FEM-BEM coupling. Eng. Anal. Bound. Elem., in
press (2011).

[3] M. Aurada, S. Ferraz-Leite, D. Praetorius: Estimator reduction and conver-
gence of adaptive BEM. Appl. Numer. Math, in press (2011).
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Adaptive Cross Approximation of BEM Shape Derivative Tensors

S. Hardesty

Rice University, Houston, USA

This work presents a new algorithm based on Heirarchical Matrices and the Adapti-
ve Cross Algorithm for the fast approximation of shape derivative tensors appearing
in the context of shape optimization problems constrained by the solution of a sy-
stem of boundary integral equations. The approach is natural for problems with
multiphysics coupling, and is contrasted with that of extraction techniques, which
use commutators of derivatives with the boundary integral operators, and require
the solution of additional linear systems.
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Multilevel Preconditioning for Edge BEM

R. Hiptmair

ETH Zürich, Switzerland

We establish the stability of nodal multilevel decompositions of lowest-order confor-
ming boundary element subspaces of the trace space H−1/2(divΓ,Γ) of H(curl,Ω)
on boundaries of triangulated Lipschitz polyhedra. The decompositions are based
on nested triangular meshes created by regular refinement and the stability bounds
are uniform in the number of refinement levels.
The main tool is the general theory of [P. Oswald, Interface preconditioners and mul-
tilevel extension operators, in Proc. 11th Intern. Conf. on Domain Decomposition
Methods, London 1998, pp. 96–103] that teaches, when stability of decompositi-
ons of boundary element spaces with respect to trace norms can be inferred from
corresponding stability results for finite element spaces. H(curl,Ω)-stable discrete
extension operators are instrumental in this.
Stable multilevel decompositions immediately spawn subspace correction precondi-
tioners whose performance will not degrade on very fine surface meshes. Thus, the
results of this article demonstrate how to construct optimal iterative solvers for the
linear systems of equations arising from the Galerkin edge element discretization of
boundary integral equations for eddy current problems.

References

[1] R. Hiptmair and S.-P. Mao: Stable multilevel splittings of boundary edge ele-
ment spaces, Research Report 2011-28, SAM, ETH Zürich, Zürich Switzerland,
2011. submitted to BIT.

13



A BEM-based FEM for convection-diffusion equations

C. Hofreither, U. Langer, C. Pechstein

Johannes Kepler Universität Linz, Austria

We present a nonstandard finite element method for elliptic partial differential equa-
tions with piecewise constant coefficients which is based on element-local boundary
integral operators. The method is able to treat general polyhedral meshes and em-
ploys locally PDE-harmonic trial functions.
In this talk, we apply the method to convection-diffusion-reaction problems. We
compare the performance of the method for convection-dominated problems in three
dimensions to a standard Finite Element Method and observe very promising sta-
bility properties.
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A Fast Runge-Kutta Convolution Quadrature for Solution of the 3D

Wave Equation in Unbounded Domains

L. Banjai, M. Kachanovska

Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany

We consider a Dirichlet problem for the three-dimensional wave equation in an
unbounded domain with zero initial conditions. To solve the problem we use time-
domain boundary element formulation and employ Runge-Kutta convolution qua-
drature approach for time discretization and Galerkin method for space discretizati-
on. We improve the method of the solution of the discretized system presented in [1]
exploiting Huygens’ principle, which allows for truncation of the series representing
the discretized kernel of the wave equation at a finite number of terms.
The sparse matrices constructed for the approximation of the convolution weights
are reused during different stages of the recursive matrix-vector multiplication. The
algorithm presented allows reduction of the time and storage costs for both matrix
construction and matrix-vector multiplication, retaining the original linear order of
complexity.

References

[1] L. Banjai: Multistep and multistage convolution quadrature for the wave equa-
tion: Algorithms and experiments. SIAM J. Sci. Comput., 32(5): 2964-2994,
2010.
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An approach to a unified implementation of Boundary Element

Methods

L. Kielhorn

ETH Zürich, Switzerland

In the past decade there has been an explosion of available Open Source libraries
dealing with Finite Element Methods. But unfortunately, there exist only very few
approaches to develop Open Source libraries which are well-suited to tackle the
discretization of Boundary Integral operators.
It is inherent to the method itself, that the development of Boundary Element codes
is more challenging than it might be for Finite Element codes. Contrary, even today
there are ongoing discussions on what might be the best Boundary Element formu-
lation for some particular problem. From this point of view a Boundary Element
library being well-suited for the discretization of Boundary Integral operators would
lead to considerable shorter development times of new Boundary Element codes.
This talk is about some ideas and thoughts about a unified approach on the im-
plementation of discrete Boundary Integral operators. In addition, a specific im-
plementation with applications to electrostatic, magnetostatic, eddy-current, and
optimization problems will be presented.
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Symmetric BEM-FEM-coupling for Fluid-Structure-Interaction

A. Kimeswenger, O. Steinbach

TU Graz, Austria

In this talk the focus is on the acoustic-structure-interaction, where for a time
harmonic ansatz the partial differential equations of linear elasticity and the wave
equation are considered in the domain of the structure and in the fluid domain,
respectively. In addition, two transmission conditions are used.
The standard variational formulation is used to handle the equations of linear ela-
sticity. Due to the fact that the fluid domain is unbounded, the Helmholtz boundary
integral equations are used. Because one cannot neglect the effect of acoustic pres-
sure onto the structure, a strong coupling will be used. By using both boundary
integral equations we obtain a (symmetric) coupled system with the unknown dis-
placement and the unknown pressure. This system will be analyzed and afterwards
a coupled finite-element boundary-element method is used to discretize the system.
Eventually, numerical examples will be considered.
The advantage of the proposed symmetric coupled system is the stability for all
wave numbers, independent of the regularity of the domain under consideration.
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The multi–harmonic FEM–BEM coupling method for simulation and

control of eddy current problems

M. Kolmbauer, U. Langer

Johannes Kepler Universitä Linz, Austria

This talk is devoted to the simulation and control of time-dependent eddy cur-
rent problems. In order to discretize in time, we apply a multiharmonic approach.
The resulting system of frequency domain equations is discretized in terms of a
symmetrically coupled FEM-BEM method. For the resulting large system of linear
equations, we construct block-diagonal preconditioners, used in a MinRes setting,
that are robust with respect to the space and time discretization parameters and all
additionally involved parameters (i.e. conductivity, reluctivity, regularization para-
meters).
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A Parallel Galerkin ACA-BEM for the Helmholtz Equation

D. Lukas

VSV TU Ostrava, Czech Republic

We deal with a parallel implementation of a Galerkin BEM accelerated by the Adap-
tive Cross Approximation (ACA) technique. In particular, the method is employed
to the Neumann problem of the Helmholtz equation with an application to acoustic
noise analysis of a railway wheel. Our improvement relies on approximation of a part
of the hypersingular operator by piecewise constant basis functions instead of the
linear ones. Numerical results document a significant reduction of computational
time.
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On the coupling of interior penalty Galerkin and

boundary element methods

G. Of1, G. Rodin2, O. Steinbach1, M. Taus2

1TU Graz, Austria, 2The University of Texas at Austin, USA

In this talk we provide three new formulations for the coupling of discontinuous
Galerkin finite element and boundary element methods. The proposed approaches
are different in the use of boundary integral equations, which also allow the use of
either collocation or Galerkin discretizations. The different formulations are presen-
ted in a unified framework, which allows the application of standard stability and
error estimates. Numerical results confirm the theoretical statements.
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Quasi-optimal convergence rate for an adaptive

boundary element method

M. Feischl, M. Karkulik, M. Melenk, D. Praetorius

TU Wien, Austria

Our prior works on convergence of adaptive BEM considered (h− h/2)-based error
estimators. Reliability of these type of estimators is, however, equivalent to the so-
called saturation assumption. Although this is widely believed to hold in practice,
it still remains mathematically open. For this reason, these convergence results are
not fully satisfactory.
In this year’s talk, based on the recent work [3], we consider the weakly singular
integral equation

V φ = f on Γ

and a weighted residual error estimator

µℓ = ‖h
1/2
ℓ ∇(f − V Φℓ)‖L2(Γ)

from [1,2]. Here, V ∈ L(H̃−1/2(Γ), H1/2(Γ)) is the simple-layer potential of the 2D
or 3D Laplacian, Φℓ ∈ P0(Eℓ) is the Eℓ-piecewise constant Galerkin approximation
of φ, and ∇ denotes the arclength derivative for 2D resp. the surface gradient for
3D. Throughout, the index ℓ denotes quantities associated with the ℓ-th step of the
adaptive mesh-refining algorithm.
The weighted residual estimators enjoy the property to be reliable

|||φ− Φℓ||| ≤ Crel µℓ,

where the constant Crel > 0 depends only on the shape of the elements in Eℓ and
where ||| · ||| ≃ ‖ · ‖H̃−1/2(Γ) denotes the energy norm induced by V .

We prove a certain (local) inverse-type estimate which allows us to conclude, for
the usual h-adaptive algorithm, that µℓ satisfies the estimator reduction

µ2
ℓ+1 ≤ κ̃ µ2

ℓ + C |||Φℓ+1 − Φℓ|||
2

with ℓ-independent constants 0 < κ̃ < 1 and C > 0. Boots trapping this result by
means of the Galerkin orthogonality, we then prove that a properly weighted sum
of Galerkin error and weighted residual error estimator is contractive in each step
of the adaptive algorithm, i.e.

∆ℓ+1 ≤ κ∆ℓ with ∆ℓ = |||φ− Φℓ|||
2 + γ µ2

ℓ

with certain ℓ-independent constants 0 < κ, γ < 1. This proves linear convergence
of adaptive BEM.
Finally, we identify the right notion of quasi-optimal convergence for an adaptive
BEM algorithm. The neccessary ingredients, that led to success in proving quasi-
optimal convergence rates in adaptive FEM, are extended to weakly singular integral
equations and associated weighted residual error estimators. Finally, we show that
adaptive BEM algorithms choose substantially an optimal sequence of meshes.
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Boundary integral equations for linear elasticity problems

O. Steinbach

TU Graz, Austria

In this talk I will review several analytic properties of boundary integral operators
which are related to linear elasticity problems. This covers ellipticity estimates for
two–dimensional problems, almost incompressible materials, contraction estimates
for the double layer potential, boundary value problems with inclusions, and the
coupling of boundary element methods with finite elements.
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Large Boundary Element Computation: Molodensky Problem and

Sound Radiation of Car Tyres

E. P. Stephan, A. Costea, Z. Nezhi

Leibniz Universität Hannover, Germany

For given potential and gravity vector of the earth, we perform boundary element
methods for the Molodensky problem. Our algorithm constructs the surface of the
earth and the gravitational potential by combining iterative solutions of integral
equations. We start from the unit sphere and determine in each interative step the
correction to the surface. Crucial for our method is the computation of the gravity
gradient for the updated surface. Next, we analyse the numerical solution of time
dependent scattering phenomena in unbounded domains using retarded potential
boundary integral equations also known as time domain boundary integral equa-
tions. We employ an unconditionally stable space-time boundary element scheme
based on a Burton-Miller type formulation which uses various retarded potential. Its
fully discrete formulation results in a marching-on-in-time (MOT) scheme through
a history of sparse matrices and solution vectors.
The main focus of this work lies on the efficient computation of the matrix entries.
We study the discrete retarded potentials evaluated on one element of a triangula-
tion of the surface. Furthermore we discuses the use of hp-quadrature to compute
the entries of the Galerkinmatrix.
We present numerical experiments for the Molodensky problem and for the sound
radiation of car tyres.
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HYENA - A modular and extensible C++ library for solving

hyperbolic and elliptic PDEs

T. Traub, B. Kager, Ma. Messner, Mi. Messner, F. Rammerstorfer, P. Urthaler

TU Graz, Austria

In this presentation we outline the basic concepts and structure of the open source
boundary element library HyENA (Hyperbolic and elliptic numerical analysis)
which is jointly developed by the Institute of Applied Mechanics and the Institute
of Computational Mathematics at the Graz University of Technology.
Its primary goal is to provide a flexible and extensible framework to implement and
test new algorithms. The focus of the library lies on the solution of static and time
dependent problems in the area of applied mechanics.
Our aim is to increase productivity through the implementation of reusable mo-
dules, which results in a library structure and allow the design of specific high
level solvers. This is achieved by employing a generic programming approach. Con-
sequently, different programs, which lack unnecessary control instructions, can be
build in order to solve specific problems.
Starting from essential implementation strategies and the chosen program structure
we continue with an overview of modularity, functionality and usability. Features
like, Convolution quadrature methods for time discretization and fast methods, are
described briefly. Since the modularity of the library offers a variety of interfaces
for further development another main objective is to demonstrate this extensibility.
Finally, we end up with some examples and an outlook of HyENA’s future.
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Coupled FE-BE eigenvalue problems for fluid-structure interaction

A. Kimeswenger, O. Steinbach, G. Unger
TU Graz, Austria

In this talk we present a coupled finite and boundary element eigenvalue problem
formulation for the simulation of the vibro-acoustic behavior of bodies in fluids as
submarines. The proposed eigenvalue problem is nonlinear in the frequency para-
meter and it is analyzed in the framework of eigenvalue problems for holomorphic
Fredholm operator–valued functions. For the solution of the eigenvalue problem we
use the contour integral method which reduces the algebraic nonlinear eigenvalue
problem to a linear one. The method is based on a contour integral representation
of the resolvent operator and it is suitable for the extraction of all eigenvalues which
are enclosed by a given contour. The dimension of the resulting linear eigenvalue
problem corresponds to the number of eigenvalues inside the contour. The main
computational effort consists in the evaluation of the resolvent operator for the con-
tour integral which requires the solution of several linear systems involving finite
and boundary element matrices.
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A convolution quadrature boundary element method for

poroelastodynamics

O. Steinbach, P. Urthaler

TU Graz, Austria

We consider wave propagation in porous media. We formulate a linear system of
coupled partial differential equations in the Laplace domain based on Biot’s theory
with the solid displacements and the pore pressure as the primary unknowns. To
solve this system of coupled partial differential equations in a semi-infinite homo-
geneous domain the Boundary Element Method and the Convolution Quadrature
Method are applied. The boundary integral operators are analyzed, i.e., unique sol-
vability of the analytic and of the discrete system is shown. Suitable error estimates
are given and discussed with the help of numerical examples.
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Boundary Element Approximation for Maxwell’s Eigenvalue Problems

C. Wieners, Jiping Xin

Karlsruhe Institute of Technology, Germany

We present the Galerkin boundary element methods to solve the eigenvalue problem
for Maxwell’s equations. This uses the method of Steinbach/Unger for the Laplace
eigenvalue problem. The main idea is to apply Newton method to find a nontrivial
solution of the equation curlcurlu + k2u = 0 together with a normalization for u.
This approach is compared with the contour integral method recently introduced
by W. Beyn and applied to the Laplace eigenvalue problem by G. Unger.
Next, we use the interface conditions to couple the Calderón projections for dif-
ferent domains with piecewise constant material parameters. Finally, we discuss
periodic and quasi-periodic boundary conditions. This is applied to the band gap
computation of photonic crystals. Our results are also compared with finite element
computations using standard Nédélec elements.
The presentation summarizes results from my PhD work (Karlsruhe 2011).
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