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Program

Thursday, September 26, 2013
15.30–16.50 Coffee
16.50–17.00 Opening
17.00–17.30 R. Hiptmair (Zürich)

Combined field integral equations for acoustic scattering by
partially impenetrable composite objects

17.30–18.00 E. Spindler (Zürich)
Second–kind single trace BEM for acoustic scattering at
composite objects

18.30 Dinner
Friday, September 27, 2013

9.00–9.30 R. James (London)
Recent progress on the fast boundary–element library BEM++

9.30–10.00 B. Kager (Graz)
A data efficient, CQM–based BEM approach for elastodynamics

10.00–10.30 A. Bantle (Ulm)
NURBS–enhanced boundary element methods

10.30–11.00 Coffee
11.00–11.30 T. Traub (Graz)

A directional fast multipole method for elastodynamics
11.30–12.00 G. Mitscha–Eibl (Wien)

Stability of FEM–BEM couplings for nonlinear elasticity problems
12.00–12.30 M. Peters (Basel)

H–matrix accelerated second moment analysis for elliptic
problems with rough correlation

12.30 Lunch
15.00–15.30 Coffee
17.00–17.30 C. A. Urzua Torres (Santiago)

Operational preconditioners for boundary integral equations on
screens in R

2

17.30–18.00 T. Führer (Wien)
Efficient additive Schwarz preconditioning of the hypersingular
integral equation on locally refined triangulations

18.00–18.30 S. Kurz (Tampere)
Modeling and simulation of the Wilson–Wilson experiment

18.30 Dinner
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Saturday, September 28, 2013
9.00–9.30 Z. Peng (Albuquerque)

Integral equation domain decomposition with discontinuous
Galerkin discretization for time–harmonic Maxwell equations

9.30–10.00 G. Unger (Graz)
Boundary element methods for resonance problems

10.00–10.30 O. Stein (Zürich)
Maxwell equations on S2

10.30–11.00 Coffee
11.00–11.30 H. Harbrecht (Basel)

On shape optimization with parabolic state equation
11.30–12.00 A. Kimeswenger (Graz)

Boundary control of exterior boundary value problems
12.30 Lunch
13.30–18.00 Hiking Tour
18.30 Dinner

Sunday, September 29, 2013
9.00–9.30 M. Utzinger (Basel)

Adaptive wavelet BEM
9.30–10.00 O. Steinbach

An energy space approach for the Cauchy problem
10.00–10.30 Closing and Coffee
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NURBS–enhanced boundary element methods

A. Bantle, S. Funken

Universität Ulm, Germany

When using high order Boundary Element Methods (BEM) to solve problems on
domains with curved boundaries it is necessary to approximate the boundary accu-
rately. An significant loss of accuracy is observed in p- and hp- BEM using a po-
lygonal approximation of the boundary. There are several approaches that remedy
this problem, namely isoparametric, isogeometric, and NURBS-enhanced methods.
In order to preserve the convergence rates of high order methods the isoparametric
approach approximates the boundary using piecewise polynomials of the same order
as the polynomials in the ansatz space. However, there is still an approximation error
that has to be considered in the error analysis.
Isogeometric methods use Non-Uniform Rational B-Splines (NURBS) for the appro-
ximation of the boundary, so that complicated geometries are approximated more
accurately and common geometries like circles, ellipses, etc. are represented exact-
ly. However, since NURBS are also taken as ansatz functions, the approximation
theory for piecewise polynomials cannot be adapted easily.
NURBS-enhanced methods combine the ideas of both approaches. While the geo-
metry is approximated with NURBS, a piecewise polynomial basis is used for the
ansatz space. This approach has the advantages that in many cases the convergence
is not affected negatively by a geometrical error. However, using different bases for
the geometry and the ansatz space results in a higher computational effort compared
to the other two approaches.
We present a NURBS-enhanced BEM for the Laplace and the Lamé equations,
where we use NURBS to describe the geometry and Legendre polynomials as ansatz
functions. The arising singular integrals are evaluated using different regularization
techniques and adapted quadrature rules. Finally, we present numerical results for
h-, p- and hp- NURBS-enhanced BEM.
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Efficient additive Schwarz preconditioning of the hypersingular integral

equation on locally refined triangulations

M. Feischl1, T. Führer1, D. Praetorius1, E. P. Stephan2

1TU Wien, Austria
2Leibniz Universität, Hannover, Germany

We consider the hypersingular integral equation for the 2D and 3D Laplacian. It is
well-known that the condition number of the Galerkin matrix grows as the mesh is
refined. The situation is even worse on locally refined meshes, where the condition
number grows with the number of elements as well as the global mesh-size quotient
hmax/hmin. Therefore, the developement of efficient preconditioners is a necessary
and important task.
In this talk, we present the results of our recent work [1], where we consider a
(local) multilevel diagonal preconditioner. The basic idea of this preconditioner is
to consider only newly created nodes in Tℓ+1\Tℓ plus their immediate neighbours
for preconditioning. For uniform refinement, it was proved in [3] that multilevel
diagonal preconditioners are efficient in the sense, that the condition number of the
preconditioned system is independent of the number of levels and the mesh-size. On
locally refined triangulations such a result was unknown.
Basically, the proof consists of providing a stable subspace decomposition for the
fractional order Sobolev space H1/2 by means of a variant of the Scott-Zhang pro-
jection [2]. In the frame of 2D-FEM, a stable subspace decomposition of H1 has
been considered in [4], and we transfer and extend these ideas to H1/2.
We show efficiency of the (local) multilevel diagonal preconditioner in the sense that
the condition number of the resulting system is independent of the mesh-size and
the number of levels. Numerical examples on closed and open boundaries underline
our theoretical results.

References

[1] M. Feischl, T. Führer, D. Praetorius, E. P. Stephan: Efficient multilevel additive
Schwarz preconditioning for hypersingular integral equations on locally refined
trinangulations. In preparation, 2013.

[2] L. R. Scott, S. Zhang: Finite element interpolation of nonsmooth functions
satisfying boundary equations. Math. Comp. 54 (1990) 483–493.

[3] T. Tran, E. P. Stephan: Addtive Schwarz methods for the h–version boundary
element method. Appl. Anal. 60 (1996) 63–84.

[4] H. Wu, Z. Chen: Uniform convergence of multigrid V–cycle on adaptively re-
fined finite element meshes for second order elliptic problems. Sci. China Ser.
A 49 (2006) 1405–1429.
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On shape optimization with parabolic state equation

H. Harbrecht1, J. Tausch2

1Universität Basel, Switzerland
2Southern Methodist Universität, Dallas, USA

The present talk is concerned with the numerical solution of shape identification
prob- lems for the heat equation. Namely, we aim at the determination of inclusions
or voids from measurements of the temperature and the heat flux at the boundary.
The particular shape identification problem is reformulated as a shape optimization
problem. Then, the shape gradient is computed by means of the adjoint method.
A gradient based nonlinear Ritz-Galerkin scheme is applied to discretize the shape
optimization problem. The states and their adjoint equations are expressed as pa-
rabolic boundary integral equations and solved using a Nyström discretization and
a space-time fast multipole method for the rapid evaluation of thermal potentials.
Special quadrature rules are derived to handle singularities of the kernel and the
solution. Numerical experiments are carried out to demonstrate the feasibility and
scope of the present approach.
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Combined field integral equations for acoustic scattering by partially

impenetrable composite objects

X. Claeys1, R. Hiptmair2

1 Laboratoire Jacques–Louis Lions, UPMC, Paris, France
2ETH Zürich, Switzerland

We study the direct first-kind boundary integral equations of [4] arising from trans-
mission problems for the Helmholtz equation with piecewise constant coefficients
and Dirichlet boundary conditions imposed on a closed surface. We identify neces-
sary and sufficient conditions for the occurrence of so-called spurious resonances,
that is, the failure of the boundary integral equations to possess unique solutions.
Inspired by the combined field integral equations (CFIE) of [1] we propose a modified
version of the boundary integral equations that is immune to spurious resonances.
Via a gap construction [3, Sect. 5.2] it will serve as the basis for a universally well-
posed stabilized global multi-trace CFIE formulation that generalizes the method
of [2] to situations with Dirichlet boundary conditions.

References

[1] A. Buffa, R. Hiptmair: Regularized combined field integral equations. Numer.
Math. 100 (2005) 1–19.

[2] X. Claeys, R. Hiptmair: Multi–trace boundary integral formulation for acoustic
scattering by composite structures. Comm. Pure Appl. Math. 66 (2013) 1163–
1201.

[3] X. Claeys, R. Hiptmair, C. Jerez–Hanckes: Multi-trace boundary integral equa-
tions. Report 2012-20, SAM, ETH Zürich, Zürich, Switzerland, 2012. In: Di-
rect and Inverse Problems in Wave Propagation and Applications (I. Graham,
U. Langer, M. Sini, M. Melenk eds.), de Gruyter, Berlin, 2013.

[4] T. von Petersdorff: Boundary integral equations for mixed Dirichlet, Neumann
and transmission problems. Math. Meth. Appl. Sci. 11 (1989) 185–213.
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Recent progress on the fast boundary–element library BEM++

S. Arridge, T. Betcke, N. Chaulet, R. James, M. Schweiger, W. Śmigaj

University College London, UK

BEM++ is an open-source boundary element library written in C++ and Python.
It has been developed jointly by University College London (UCL), the University
of Reading and the University of Durham. All standard boundary integral opera-
tors, namely the single-layer potential, double-layer potential, adjoint double-layer
potential and hypersingular operators are implemented by the library for Laplace,
Helmholtz and modified Helmholtz problems in three dimensions and discretised
using the Galerkin method. More complex operators may be built either explicitly
or more simply by superposition of the standard operators. Acceleration is achieved
using the Adaptive Cross Approximation (ACA) using the well-established AHMED
library [1].
An overview of the recent updates made to BEM++ over the past year will be
given, in addition to the work in progress and future directions for the library. New
features include support for mixed Dirichlet/Neumann problems, higher order basis
functions and Maxwell problems. Current work is under way to incorporate the
Fast Multipole Method (FMM) into the library, with preliminary support for high
frequency Helmholtz, and support for more general operators under way using the
black-box FMM [2]. Future directions include time-domain analysis, and improved
(opposite order) pre-conditioners for Helmholtz and Maxwell are in development.

References

[1] M. Bebendorf: Approximation of boundary element matrices. Numer. Math.
86 (2000) 565–589.

[2] W. Fong, E. Darve: The black–box fast multipole method. J. Comp. Phys. 228
(2009) 8712–8725.
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A data efficient, CQM-based BEM approach for elastodynamics

B. Kager, M. Schanz

TU Graz, Austria

The treatment of time dependent wave propagation phenomena with the bounda-
ry element method inherently involves the computation of convolution integrals. If
Lubich’s Convolution Quadrature Method [1] is used to evaluate approximations of
such integrals, the convolution weights are usually computed via Cauchy’s Integral
Formula. Contrary to this, Hackbusch et. al. [2] proposed a direct weight computa-
tion involving Hermite polynomials for the simulation of acoustic wave propagation.
In this talk, we present a new algorithm for the computation of linear elastodynamic
problems that is an extension of this approach. Additionally, taking into account
crucial properties of the weight functions, we present a data efficient storage scheme
based on geometrical clustering. Finally, we further enhance the proposed algorithm
by application of low rank approximation.
The talk will be concluded by discussing the results of some numerical examples in
terms of memory efficiency.

[1] C. Lubich: Convolution quadrature and discretized operational calculus. I. Nu-
mer. Math. 52 (1988) 129–145.

[2] W. Hackbusch, W. Kress, S. A. Sauter: Sparse convolution quadrature for
time domain boundary integral formulations of the wave equation by cuttoff
and panel–clustering. In: Boundary Element Analysis: Mathematical Aspects
and Applications (M. Schanz, O. Steinbach eds.), Lecture Notes in Applied and
Computational Mechanics, vol. 29, pp. 113–134, Springer, Berlin, Heidelberg,
2007.
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Modeling and simulation of the Wilson–Wilson experiment

H. Heumann1, S. Kurz2

1TU München, Germany
2Tampere University of Technology, Finland

The classical 1913 Wilson–Wilson experiment [1,2] has regained attention, both
from the experimental [3] and conceptual point of view [4–8]. The experiment con-
sists of a magnetic non–conducting hollow rotating cylinder which is immersed in
the external magnetic field of a solenoid. According to the relativistic theory of
moving media a potential difference occurs between the inner and outer surfaces of
the cylinder.
A mathematical model is presented, based on Maxwell’s equations and the 1910
Minkowski relations [9] for moving media. Electric and magnetic fields are coupled
through motional terms in the constitutive relations. This particular kind of coupling
is usually not considered in existing numerical models. Interestingly, Ohm’s law does
not enter the model, since there is no bulk conductivity.
Effects due to the finite axial extension of the cylinder can be conveniently assessed
with the help of a numerical simulation, for instance with finite elements [10]. This
should be useful for the correct interpretation of the experi–mental data.
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[1] H. Wilson: On the electric effect of a rotating dielectric in a magnetic field.
Phil. Trans. R. Soc. London A 204 (1905) 121–137.
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Measurement of the relativistic potential difference across a rotating magnetic
dielectric cylinder. Am. J. Phys. 69 (2001) 648–654.

[4] G. Pellegrini, A. Swift: Maxwell’s equations in a rotating medium: Is there a
problem? Am. J. Phys. 63 (1995) 694–705.

[5] P. Hillion: The Wilsons’ experiment. APEIRON 6 (1999) 1–8.

[6] C. Canovan, R. Tucker: Maxwell’s equations in a uniform rotating dielectric
medium and the Wilson–Wilson experiment. Am. J. Phys. 78 (2010) 1181–
1187.

[7] S. Kurz, H. Heumann: Transmission conditions in premetric electrodynamics.
ETH Zürich, Tech. Rep. 2010–28, 2010.

[8] A. L. Kholmetskii, O. V. Missevitch, T. Yarman: On relativistic polarization of
a rotating magnetized medium. Progr. Electromagn. Res. M 25 (2012) 157–172.

[9] H. Minkowski: Die Grundgleichungen für die elektromagnetischen Vorgänge in
bewegten Körpern. Math. Ann. 68 (1910) 472–525.

[10] H. Heumann, S. Kurz: Modeling and finite element simulation of the Wilson–
Wilson experiment. IEEE Trans. Magn., accepted for publication.
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Boundary control of exterior boundary value problems

A. Kimeswenger, O. Steinbach

TU Graz, Austria

In this presentation we discuss boundary control problems subject to second order
partial differential equations in unbounded exterior domains. Examples are given
by the Laplace and the Helmholtz equations. Since the control is considered in
H

1

2 (Γ) the regularisation is realised by the exterior Steklov-Poincaré operator. To
be able to deal with unbounded domains, boundary integral equations are used. For
the numerical approximation we consider a symmetric Galerkin boundary element
method and we apply a semi-smooth Newton method in the case of box constraints.
Numerical examples are given at the end of the talk.
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Stability of FEM-BEM couplings for nonlinear elasticity problems

M. Feischl1, T. Führer1, M. Karkulik2, G. Mitscha–Eibl1, D. Praetorius1

1TU Wien, Austria
2Pontificia Universidad Católica de Chile

We consider a transmission problem in elasticity with a nonlinear material behavior
in the bounded interior domain, which can be rewritten by means of the symmetric
coupling as well as non–symmetric coupling methods, such as the Johnson–Nédélec
coupling. Problems arise when trying to prove solvability of the Galerkin discreti-
zation, because the space of rigid body motions is contained in the kernel of the
Lamé operator.
In this talk, which is based on the recent preprint [3], we present how to extend the
ideas of implicit stabilization, developed for Laplace–type transmission problems in
[1], to elasticity problems. We introduce modified equations which are fully equiva-
lent (at the continuous as well as at the discrete level) to the original formulations.
Our analysis extends the works [2,4,5,6]. Unlike [2], we avoid any assumption on
the mesh-size. Unlike [4], we avoid the use of an interior Dirichlet boundary. Unlike
[6], we avoid any pre– and postprocessing steps as well as the numerical solution of
additional boundary value problems.
Numerical experiments for the Johnson–Nédélec coupling on adaptively generated
meshes conclude the talk.

References

[1] M. Aurada, M. Feischl, T. Führer, M. Karkulik, J. M. Melenk, D. Praetori-
us: Classical FEM–BEM coupling methods: nonlinearities, well–posedness, and
adaptivity. Comput. Mech., 51 (2013) 399–419.

[2] C. Carstensen, S. Funken, E. P. Stephan: On the adaptive coupling of FEM
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Integral equation domain decomposition with discontinuous Galerkin

discretization for time-harmonic Maxwell equations

J. F. Lee, R. Hiptmair2, Z. Peng3

1Ohio State University, Columbus, USA
2ETH Zürich, Switzerland

3University of New Mexico, Albuquerque, USA

Surface integral equation (SIE) methods have shown to be effective in solving elec-
tromagnetic wave scattering and radiation problems. It is mainly due to the fact
both the analysis and unknowns reside only on the boundary surfaces of the targets.
However, applications of the SIE methods often lead to dense and ill-conditioned
matrix equations. The efficient and robust solution of the SIE matrix equation poses
an immense challenge. This talk will discuss some recent progress in SIE methods
for solving time-harmonic Maxwell equations.
The first topic is domain decomposition for surface integral equations via multi-
trace formulation. The entire computational domain is decomposed into a number
of non-overlapping sub-regions. Each local sub-region is homogeneous with constant
material properties and described by a closed surface. Through this decomposition,
we have introduced at least two pairs of trace data as unknowns on interfaces
between sub-regions (multi-trace formulation). This multi-trace feature admits two
major benefits: the localized surface integral equation for the homogeneous sub-
region problem is amenable to operator preconditioning; the resulting linear systems
of equations readily lend themselves to optimized Schwarz methods.
A discontinuous Galerkin surface integral equation method is proposed for the nu-
merical solution of sub-regions. The main objective of this work is to allow the imple-
mentation of the combined field integral equation (CFIE) using square-integrable,
L2, trial and test functions without any considerations of continuity requirements
across element boundaries. Due to the local characteristics of L2 vector functions,
it is possible to employ non-conformal surface discretizations of the targets. Fur-
thermore, it enables the possibility to mix different types of elements and employ
different order of basis functions within the same discretization. Therefore, the pro-
posed method is highly flexible to apply adaptation techniques.
The capability of these methods is illustrated through several real-world applicati-
ons, including EMI/EMC analysis of multiple antennas installed on a high-definition
mock-up aircraft, and electromagnetic scattering from a complex composite unman-
ned aerial vehicle.
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H–matrix accelerated second moment analysis for elliptic problems

with rough correlation

J. Dölz, H. Harbrecht, M. Peters

Universität Basel, Switzerland

In this talk, we consider the efficient solution of the Laplace equation with stocha-
stic Dirichlet data by the boundary integral equation method. It is well understood
how to compute the two-point correlation of the solution if the two-point corre-
lation of the Dirichlet data is known and sufficiently smooth. Unfortunately, the
problem becomes much more involved in case of rough data. We will show here
that the concept of the H-matrix arithmetic provides a powerful tool to cope with
this problem. By employing a parametric surface representation, we end up with an
H-matrix arithmetic based on balanced cluster trees. This considerably simplifies
the implementation and improves the performance of the H-matrix arithmetic. Nu-
merical experiments are provided to validate and quantify the presented methods
and algorithms.
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Second–kind single trace BEM for acoustic scattering at composite

objects

X. Claeys1, R. Hiptmair2, E. Spindler2

1 Laboratoire Jacques–Louis Lions, Paris, France
2 ETH Zürich, Switzerland

We consider acoustic scattering at composite objects with Lipschitz boundary. The
widely used classical first-kind approach leads to ill-conditioned linear systems on
fine meshes and no suitable preconditioner is available. Consequently, one observes
slow convergence of iterative solvers, which are inevitable when solving compressed
large linear systems.
To tackle this problem, a new intrinsically well-conditioned second–kind boundary
element formulation has been discovered by one of the authors [1]. We adopt this

idea and extend it by lifting the formulation from the trace spaces H
1

2 (Γ)×H−

1

2 (Γ)
into the space L2(Γ) × L2(Γ). This enables us to solely work with discontinuous
ansatz functions in order to approximate the unknown boundary data.
In the talk we are going to focus on recent computational results obtained for
3D acoustic scattering. These results were obtained by an implementation of the
two approaches using the C++ Boundary Element Template Library (BETL) by
Lars Kielhorn (SAM, ETH Zürich). They show competitive accuracy of the new
second-kind approach compared to the classical first–kind approach, and confirm
the excellent conditioning of the Galerkin matrices and superior convergence of
GMRES.

References

[1] X. Claeys: A single trace integral formulation of the second–kind for multiple
sub–domain scattering. Tech. Rep. 2011-14, Seminar for Applied Mathematics,
ETH Zürich, Zürich, Switzerland, 2011.

[2] X. Claeys, R. Hiptmair, E. Spindler: A second–kind Galerkin boundary element
method for scattering at composite objects. Tech. Rep. 2013-13, Seminar for
Applied Mathematics, ETH Zürich, Switzerland, 2013.
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Maxwell Equations on S2

S. Kurz1, R. Hiptmair2, O. Stein2

1Tampere University of Technology, Finland
2ETH Zürich, Switzerland

We refer to the Söllerhaus workshop 2012 [1] where a case study concerning Maxwell-
type problems on S2 was presented. This is further elaborated in two directions:
We extend the case study from static problems to problems involving waves and we
look at numerical results.
We are interested in solving the following problem on the sphere S2:

(δd− k2)ω = 0, k > 0, (1)

where ω is a one form, with given boundary conditions on the boundary of a simply
connected domain Ω ⊂ S2. This is a generalization of curl curl-type problems from
flat space to a two-dimensional Riemannian manifold with constant curvature.
In this work, this problem is approached by first finding an explicit expression of
the Green’s double form for the Helmholtz problem with the Hodge Laplacian:

(△− k2)ω = 0, (2)

△ = δd+ dδ. This is accomplished for both zero and one forms. The case k = 0 for
zero forms has already been analyzed in [2]. In the general case k > 0 the Green’s
double forms involve hypergeometric functions, while in the case k = 0 they can be
reduced to simpler trigonometric functions.
The two Helmholtz Green’s double forms are then used to construct a Green’s
double form for (1). The treatment in [3] guides the transition of Green’s double
forms for (2) to Green’s double forms for (1). This Green’s double form can then
further be leveraged to set up boundary integral equations.

References

[1] U. Langer, O. Steinbach, W. L. Wendland (eds.): 10. Workshop on Fast Boun-
dary Element Methods in Industrial Applications. Book of Abstracts 2012/9,
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Maxwell-type problems. In: Fast Boundary Element Methods in Engineering
and Industrial Applications (U. Langer, M. Schanz, O. Steinbach, W. L. Wend-
land eds.), Lecture Notes in Applied and Computational Mechanics, vol. 63,
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An energy space approach for the Cauchy problem

T. X. Phan1, O. Steinbach2

1TU Hanoi, Vietnam, 2TU Graz, Austria

In this talk we discuss the Cauchy problem of the Laplace equation where the
complete Cauchy data are given on some part of the boundary, but are unknown
on the remainder. For the solution of this inverse problem we consider a tracking
type functional for the given Neumann datum while the unknown Dirichlet datum
enters as a regularisation. For both we consider the related energy norms which can
be realised by using Steklov–Poincaré or boundary integral operators. We present a
detailed numerical analysis of our approach, and we give some numerical results also
in comparison to more standard approaches when using more convenient norms.
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A Directional Fast Multipole Method for Elastodynamics

P. Blanchard1, M. Schanz2, T. Traub2

1École Normale Supérieure de Cachan, France
2TU Graz, Austria

Boundary elements methods are very well suited for the study of wave propagation
phenomena due to it’s reduction in dimensionality of the problem. However we need
to deal with a convolution in time and densely populated system matrices.
To efficiently treat the arising convolution integral we implement the Convolution
Quadrature Method as proposed by Banjai and Sauter [1] which leads to a decoupled
system of problems in Laplace domain. Thus, each problem can be solved separately
and only the results needs to be stored. This leads to a drastic reduction in memory
consumption.
To further reduce storage requirements and solution time, fast methods can be ap-
plied. While the efficiency of H-matrix techniques decreases as the integral kernel
becomes more and more oscillatory, Fast Multipole Methods overcome this bottlen-
eck by introducing suitable kernel expansions. A directional approach for oscillatory
kernel functions was developed by Engquist et al. [2]. Based thereupon a directional
Fast Multipole Method (DFMM) was introduced by Messner et al [3], which we
extend to the Lamé kernel.
To do this we need to separate the far field into two oscillating parts, which will
be approximated individually. This can be done either directly by computing the
tensorial fundamental solution or by utilizing a representation of the fundamental
solution using derivatives of the Helmholtz kernel [4]. We will present both methods
and discuss their advantages and disadvantages.
The talk will be concluded by discussing the results of some numerical examples in
terms of memory efficiency and computational costs.
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[1] L. Banjai, S. Sauter: Rapid solution of the wave equation in unbounded do-
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[2] B. Engquist, L. Ying: Fast directional multilevel algorithms for oscillatory ker-
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[3] M. Messner, M. Schanz, E. Darve: Fast directional multilevel summation for os-
cillatory kernels based on Chebyshev interpolation. J. Comp. Phys. 231 (2012)
1175–1196.
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Boundary element methods for resonance problems

O. Steinbach, G. Unger

TU Graz, Austria

We characterize resonances as eigenvalues of boundary integral operator eigenvalue
problems and use boundary element methods for their numerical approximation. Ei-
genvalue problem formulations for resonance problems which are based on standard
boundary integral equations exhibit additional eigenvalues which are not resonances
but eigenvalues of a related ı̈nteriorëigenvalue problem. In practical computations it
is for some typical applications hard to extract the resonances when using standard
boundary integral formulations. In this talk we present regularized combined boun-
dary integral formulations which only exhibit resonances as eigenvalues. We provi-
de a comprehensive numerical analysis of the boundary element approximations of
these eigenvalue problem formulations where general results of the discretization of
eigenvalue problems for holomorphic Fredholm operator–valued functions are used.
Finally we present some numerical examples.
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Operational preconditioners for boundary integral equations

on screens in R
2

R. Hiptmair1, C. Jerez–Hanckes2, C. A. Urzúa Torres2

1ETH Zürich, Switzerland
2Pontificia Universidad Católica de Chile, Santiago, Chile

Operator preconditioning [1,2] based on Calderón identitites breaks down when con-
sidering open boundaries as when modeling screens or cracks. On the one hand, the
double layer operator and its adjoint disappear. On the other hand, the associa-
ted weakly singular and hypersingular operators no longer map fractional Sobolev
spaces in a dual fashion but degenerate into different subspaces depending on their
extensibility by zero.
Based on Calderón-type identities deduced from Jerez-Hanckes and Nédélec [3,4]
for an open interval, we build preconditioners for associated integral operators for
uniform and locally quasi-uniform meshes [5,6,7]. In this presentation, we show the
numerical implementation of these preconditioners for the Laplacian, as well as an
extension to the Helmholtz operator.
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Adaptive wavelet BEM
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In this talk, we present an algorithm for the adaptive solution of boundary inte-
gral equations. This algorithm is based on adaptively chosen wavelet bases for the
Galerkin discretization of the equation under consideration. In particular, we will
elaborate on the efficient numerical implementation of this algorithm. The major
advantage of wavelet bases for the discretization of boundary integral equations
lies in the sparsity of the resulting stiffness matrix and the fact that they directly
provide a provable error estimator for the refinement. Numerical examples will be
provided to illustrate and quantify the presented algorithm.
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8092 Zürich, Switzerland
elke.spindler@sam.math.ethz.ch

23. Oded Stein
Seminar für Angewandte Mathematik, ETH Zürich, Rämistrasse 101,
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