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Söllerhaus, 13.–16.10.2016

U. Langer, M. Schanz, O. Steinbach, W. L. Wendland (eds.)

Berichte aus dem

Institut für Numerische Mathematik

Book of Abstracts 2016/1





Technische Universität Graz

14. Workshop on

Fast Boundary Element Methods in

Industrial Applications
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Program

Thursday, October 13, 2016
15.00 Coffee
18.00–18.30 Opening
18.30–19.30 Dinner
19.30–20.15 J. Zapletal (Ostrava, Czech Republic)

A note on the multi– and many–core implementation of the boundary
element method

20.15–21.00 S. Christophersen (Kiel, Germany)
Fast boundary integral operator setup with Green cross–approximation
on the GPGPU

Friday, October 14, 2016
8.00–9.00 Breakfast
9.00–9.45 E. P. Stephan (Hannover, Germany)

Collocation with trigonometric polynomials for integral equations
for mixed boundary value problems

9.45–10.30 M. Zank (Graz, Austria)
Space-Time Boundary Integral Equations for the Wave Equation

10.30–11.00 Coffee
11.00–11.45 R. Hiptmair (Zürich, Switzerland)

Second–kind BIE for multi–domain diffusion problems
11.45-12.30 K. Niino (Graz, Austria; Kyoto, Japan)

A preconditioning for the electric field integral equation
discretized with the H(div) inner product

12.30 Lunch
14.00–14.45 F. Wolf (Darmstadt, Germany)

IGA BEM for Maxwell eigenvalue problems
14.45–15.30 G. Unger (Graz, Austria)

Numerical analysis of boundary element methods for time–harmonic
Maxwell’s eigenvalue problem

15.30–16.00 Coffee
16.00–16.45 G. Of (Graz, Austria)

Computational aspects of the fast multipole method in adaptive
boundary element methods

16.45–17.30 Z. Adnani (Paris, France)
Fast multipole accelerated boundary element method for soil
impedance operator computation

17.30–17.45 Break
17.45–18.30 M. Peters (Basel, Switzerland)

Bayesian Inversion for Electrical Impedance Tomography
18.30 Dinner
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Saturday, October 15, 2016
8.00–9.00 Breakfast
9.00–9.45 C. Urzua–Torres (Zürich, Switzerland)

Optimal operator preconditioning for boundary elements on
screens

9.45–10.30 S. Dohr (Graz, Austria)
Preconditioned space–time boundary element methods for
the heat equation

10.30–11.00 Coffee
11.00–11.45 J. Dölz (Basel, Switzerland)

H–matrix techniques for uncertainty quantification of PDE
on random domains

11.45–12.30 S. Bonkhoff (Graz, Austria)
Boundary integral solution of the time fractional diffusion equation

12.30 Lunch
13.30–18.00 Hiking Tour
18.30 Dinner

Sunday, October 16, 2016
8.00–9.00 Breakfast
9.00–9.45 H. Harbrecht (Basel, Switzerland)

A fast sparse grid based space–time boundary element method
for the nonstationary heat equation

9.45–10.30 O. Steinbach (Graz, Austria)
Boundary element methods for shape optimization problems

10.30–11.00 Coffee
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Fast multipole accelerated boundary element method for soil
impedance operator computation

Zouhair Adnani

Paris-Saclay University, France

The evaluation of accurate structural responses under seismic loading is an im-
portant issue for the safety assessments of operational power plants. Available ex-
perimental data show that site effects can significantly modify the seismic ground
motion reaching the structure, thus causing, in some cases, either an amplification
or an alteration of the spectrum of the signal. The quantification of these site effects
generally involves expensive numerical simulations in terms of memory requirements
and CPU time, due to the complexity of the model (topography and geology) and
to the large spatial scale of the problems.
This work aims at developing a new numerical approach to solve soil-structure in-
teraction (SSI) problems that accounts for site effects. We use a substructuring
technique: the structure is modeled using the Finite Element Method (FEM) whi-
le the unbounded soil domain is represented by an impedance operator computed
using the Boundary Element Method (BEM). The FEM part of the model may
include a portion of the soil in addition to the structure itself. However, the BEM
involves fully-populated matrices thus reducing the capabilities of the method to
deal with large-scale geometries or broadband seismic signals. To overcome these
limitations, the Fast Multipole Method (FMM) is used to accelerate the BEM (FM-
BEM). However, since the FM-BEM requires the use of an iterative solver, the soil
impedance matrix must be assembled using an indirect approach, which entails sol-
ving judiciously chosen problems by means of the FM-BEM and combining these
solutions appropirately. Accordingly, the present work proposes a numerical ap-
proach to evaluate soil impedance matrices in a reduced modal basis defined over
the FEM/FM-BEM interface. The obtained results are validated by comparison to
literature values and classical BEM solutions. The validation models include rigid
and flexible foundations on homogeneous and stratified basin.
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Boundary integral solution of the time fractional diffusion equation

Sarah–Lena Bonkhoff

TU Graz, Austria

In the last years fractional partial dfferential equations are gaining more and more
interest since they are a useful approach for the description of recently investigated
phenomena in physics. We consider the time fractional diffusion equation in a space-
time cylinder with a time derivative of order α ∈ (0, 1). For this purpose, fractional
order derivatives are introduced and replace the first order time derivative of the
standard diffusion equation. We can construct a fundamental solution and represent
the solution of the time fractional diffusion equation in terms of layer potentials.
This approach lead to boundary integral equations and we investigate the behaviour
of the layer potentials in appropriate function spaces.
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Fast boundary integral operator setup with Green cross-approximation
on the GPGPU

Sven Christophersen

Universität Kiel, Germany

The boundary element method is advantageous with respect to matrix dimensions
compared to the finite element method. The fact that these matrices are densely
populated and their entries arise from four-dimensional integration with a singular
kernel function has always been a drawback of these method.
Therefore fast approximative algorithms have been developed in the past, that not
only reduce the storage complexity to O(n logn) or even O(n), but also reduce
setup times dramatically. Methods that achieve this goal can be categorized into
three groups: purely analytical methods like tensor interpolation, purely algebraic
methods like adaptive cross-approximation and hybrid methods like hybrid cross-
approximation, that combine both approaches.
Recently we developed a new hybrid method, the Green cross-approximation method
(GCA), that constructs a degenerate approximation of the kernel function g utilizing
Green’s representation formula with quadrature. Upon that, a subsequent cross-
approximation step further reduces the local ranks and therefore also the memory
and time requirements.
We can show that this method has complexity of O(n) and we can also prove
rigorous error bounds. For the construction on the analytical part, it is sufficient
to know the Green’s function g as well as their normal derivatives. Therefore it is
easier to implement for various PDEs than the famous fast multipole methods.
In the context of Galerkin discretization with H2-matrices the entries of both ne-
arfield and coupling matrices still consist of four-dimensional singular integrals in
3D, which introduce a high amount of computational effort to setup these boundary
integral operators.
Since quadrature has a high computational intensity, this is a very suitable task for
vector computers, e.g. GPGPUs. Therefore we have developed an efficient algorithm,
that is capable of computing all these entries entirely on the GPGPU. By this
approach we can easily outperform multi-socket servers at relatively low costs for
the GPU hardware.
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Preconditioned space-time boundary element methods for the
heat equation

Stefan Dohr

TU Graz, Austria

Regarding time-dependent initial boundary value problems, there are different nu-
merical approaches to compute an approximate solution. In addition to finite ele-
ment methods and time-stepping schemes one can use boundary element methods
to solve time-dependent problems. As for stationary problems, one can use the fun-
damental solution of the partial differential equation and the given boundary and
intial conditions to derive boundary integral equations and apply some discretiza-
tion method to compute an approximate solution of those equations.
In this talk, we describe the boundary element method for the discretization of the
time-dependent heat equation. In contrast to standard time-stepping schemes we
consider an arbitrary decomposition of the space-time cylinder into boundary ele-
ments. Besides adaptive refinement strategies, this approach allows us to parallelize
the computation of the global solution of the whole space-time system. In addition
to the analysis of the boundary integral operators and the derivation of boundary
element methods for the Dirichlet initial boundary value problem, we state conver-
gence properties and error estimates of the approximations. Those estimates are
based on the approximation properties of boundary element spaces in anisotropic
Sobolov-spaces, in particular in H
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4 (Σ). The systems of linear
equations, which arise from the discretization of the boundary integral equations,
are being solved with GMRES. For an efficient computation of the solution we need
preconditioners. Based on the mapping properties of the single layer- and hypersin-
gular boundary integral operator we construct and analyse a preconditioner for the
discretization of the first boundary integral equation. Finally we present numerical
examples for the spatial one-dimensional heat equation to confirm the theoretical
results.
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H-matrix Techniques for Uncertainty Quantification of PDE on
Random Domains

Jürgen Dölz, Helmut Harbrecht

Universität Basel, Switzerland

We are interested in the first and second moment of the solution of PDE with ran-
dom input data. Previous works have shown that these moments can be computed
by theH-matrix arithmetics in almost linear time if the solution depends linearly on
the data. However, in the case of random domains the dependence of the solution of
the data is nonlinear. Extending previous perturbation approaches we can linearize
the problem and can compute the first moment up to third order accuracy and the
second moment up to second order accuracy in almost linear time.
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A fast sparse grid based space-time boundary element method for the
nonstationary heat equation

Helmut Harbrecht

Universität Basel, Switzerland

This talk is dedicated to a fast sparse grid based space-time boundary element
method for the solution of the nonstationary heat equation. We make an indirect
ansatz based on the thermal single layer potential which yields a first kind integral
equation. This integral equation is discretized by Galerkin’s method with respect
to the sparse tensor product of the spatial and temporal ansatz spaces. By employ-
ing the H-matrix and Toeplitz structure of the resulting discretized operators, we
arrive at an algorithm which computes the approximate solution in a complexity
that essentially corresponds to that of the spatial discretization. Nevertheless, the
convergence rate is nearly the same as in case of a traditional discretization in full
tensor product spaces.
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Second-kind BIE for multi-domain diffusion problems

Xavier Claeys1, Ralf Hiptmair2, Elke Spindler2

1LJLL, UMPC Paris, France, 2Seminar for Applied Mathematics, ETH Zürich,
Switzerland

We consider isotropic scalar diffusion boundary value problems on R
d, whose dif-

fusion coefficients are piecewise constant with respect to a partition of space into
Lipschitz subdomains. We allow so-called material junctions where three subdmains
may abut. We derive a boundary integral equation (BIE) of the second kind posed
on the skeleton of the subdomain partition that involves, as unknown, only one
trace function at each point of each interface. We prove the well-posedness of the
corresponding boundary integral equations. We also report numerical tests for Ga-
lerkin boundary element discretizations, in which the new approach proves to be
highly competitive compared to the well-established
rst-kind direct single-trace boundary integral formulation. In particular, for the
discrete second-kind BIEs, GMRES enjoys fast convergence independent of the mesh
resolution.
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A preconditioning for the electric field integral equation discretised
with the H(div) inner product

Kazuki Niino

Kyoto University, Japan

A discretisation method with the Hdiv inner product for the electric field integral
equation (EFIE) and preconditioning for this discretised integral equation are dis-
cussed. It is known that the boundary element method for Maxwell’s equations
suffer from bad accuracy in low-frequency problems. One of the remedies for this
bad accuracy is the discretisation method using the Hdiv inner product. The BEM
with this discretisation, however, shows slow convergence of iteration methods and,
what is worse, a naive application of the Calderon preconditoining is not effective
for this problem.
In this talk, I will propose a different approach of preconditioning, which can effi-
ciently reduce the computational time of the BEM discretised with the H(div) inner
product.
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Computational Aspects of the Fast Multipole Method in Adaptive
Boundary Element Methods

Günther Of

TU Graz, Austria

We will address computational aspects of fast methods in adaptive boundary ele-
ment methods for 3d computations for the Laplace equation. In the computational
examples we will use the (h - h/2)-error estimation strategy [1]. An important aspect
is the automatic choice of parameters of the Fast Multipole method with respect to
error estimation and in adaptive boundary element methods.

References

[1] M. Karkulik, G. Of, D. Praetorius: Convergence of adaptive 3D BEM for weak-
ly singular integral equations based on isotropic mesh–refinement. Numer. Me-
thods Part. Diff. Eq. 29 (2013) 2081–2106.
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Bayesian Inversion for Electrical Impedance Tomography

Michael Peters

Universität Basel, Switzerland

In this talk, we consider a Bayesian approach towards Electrical Impedance Tomo-
graphy, where we are interested in computing moments, in particular the expecta-
tion, of the contour of an unknown inclusion, given noisy current measurements at
the surface. By casting the forward problem into the framework of elliptic diffusion
problems on random domains, we solve a suitably parametrized version by means
of the domain mapping method. This straightforwardly yields parametric regularity
results for the system response, which we exploit to conduct a rigorous analysis of
the posterior measure, facilitating the application of sophisticated quadrature me-
thods for the approximation of moments of quantities of interest. As an example of
such a quadrature method, we consider an anisotropic sparse grid quadrature. To
solve the forward problem numerically, we employ a fast boundary integral solver.
Numerical examples are provided to illustrate the presented approach and validate
the theoretical findings.
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Boundary element methods for shape optimization problems

Niels Köster, Olaf Steinbach

TU Graz, Austria

The shape derivative of cost functionals in shape optimization problems can be
represented in the Hadamard–Zolesio form which implies the choice of the new
search direction. We will recall the computation of the shape derivative, and we
comment and discuss the choice of different cost functionals and search directi-
ons. First numerical results are given which illustrate the potential of the proposed
approach.
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Collocation with trigonometric polynomials for integral equations for
mixed boundary value problems

Ernst P. Stephan, M. Teltscher

Leibniz Universität Hannover, Germany

We consider the direct boundary integral equation formulation for the mixed Dirichlet-
Neumann bvp for the Laplace equation on a plane domain with a polygonal boun-
dary. The resulting system of integral equations is solved by a collocation method
which uses a mesh grading transformation and trigonometric polynomials. The mesh
grading transformation method yields fast convergence of the collocation solution
by smoothing the singularities of the exact solution. Special care is taken for hand-
ling the hypersingular operator as in [1]. With the indirect method in [2] this was
avoided. Using Mellin transformation techniques a stability and solvability analysis
of the transformed integral equations can be performed, in a setting in which each
arc of the polygon has associated with it a periodic Sobolev space [3].

References

[1] T. Hartmann, E. P. Stephan: A discrete collocation method for a hypersingular
integral equation on curves with corners, to appear.

[2] J. Elschner, Y. Jeon, I. H. Sloan, E. P. Stephan: The collocation method for
mixed bvps in domains with curved polygonal boundaries, Numer. Math. 76
(1997) 355–381.

[3] E. P. Stephan, M. Teltscher: Collocation with trigonometric polynomials for
the Calderon system for the mixed bvp, to appear.
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Numerical analysis of boundary element methods for time–harmonic
Maxwell’s eigenvalue problems

Gerhard Unger

TU Graz, Austria

We consider Galerkin approximations of boundary integral formulations of different
kinds of Maxwell’s eigenvalue problems. An analysis of the boundary integral formu-
lations and their numerical approximations is given in the framework of eigenvalue
problems for holomorphic Fredholm operator-valued functions. We use recent re-
sults from [1] to show that the Galerkin approximation provides a so-called regular
approximation of the underlying operator of the eigenvalue problem. This enables us
to apply the abstract results of the numerical analysis of [2,3] which guarantee con-
vergence of the eigenvalues as well as of the eigenspaces. In addition quasi-optimal
error estimates are given. Numerical examples confirm the theoretical results.

References

[1] M. Halla. Regular Galerkin approximations of holomorphic T-G̊arding operator
eigenvalue problems. ASC Report 4, TU Wien, 2016.

[2] O. Karma. Approximation in eigenvalue problems for holomorphic Fredholm
operator functions. I. Numer. Funct. Anal. Optim., 17:365–387, 1996.

[3] O. Karma. Approximation in eigenvalue problems for holomorphic Fredholm
operator functions. II. (Convergence rate) Numer. Funct. Anal. Optim., 17:389–
408, 1996.

[4] G. Unger. Convergence analysis of a boundary element method for Maxwell’s
time-harmonic eigenvalue problems. Technical report.
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IGA BEM for Maxwell eigenvalue problems

Felix Wolf, Stefan Kurz, Sebastian Schöps

TU Darmstadt, Germany

Superconducting cavities are standard components of particle accelerators. Their
design is typically described by parametrized ellipses and determined by mathe-
matical optimization. The simulation model is subject to demanding requirements,
such as a relative accuracy of 10−9 for the resonance frequency of the accelerating
mode. Since the geometry and the electromagnetic fields are smooth, an approach
in the gist of isogeometric analysis (IGA) suggests itself. The geometry is modeled
by a NURBS mapping, while the electromagnetic fields are discretized by the B-
spline de Rahm complex [2]. An IGA finite element method (FEM) for the Maxwell
eigenvalue problem was investigated and showed promising results [3]. For the same
accuracy, the number of required degrees of freedom was reduced by a factor 3 . . . 9
compared to classical FEM. However, CAD systems feature surface descriptions
only, so the volumetric spline model had to be created manually.
To live up to the promises of IGA, namely closing the gap bewteen design and
analysis, we suggest an IGA boundary element method (BEM). We will review
the state-of-the-art of all relevant building blocks. We will address the B-spline de
Rham complex on a boundary manifold, the Galerkin discretization of the electric
field integral equation, and present a convergence result. We will discuss a recent
contour integral method [1] to solve the resulting non-linear eigenvalue problem.
Aspects of integrating so-called ”fast methods” will also be presented, in particular
Adaptive Cross Approximation [5] and Calderón preconditioning [4].

References

[1] W.-J. Beyn: An integral method for solving nonlinear eigenvalue problems.
Linear Algebra Appl. 436 (2012) 3839–3863.

[2] A. Buffa, G. Sangalli, R. Vázquez: Isogeometric analysis in electromagnetics:
B-splines approximation. Comput. Method. Appl. Mech. Engrg. 199 (2010)
1143–1152.

[3] J. Corno, C. de Falco, H. De Gersem, S. Schöps: Isogeometric simulation of
Lorentz detuning in superconducting accelerator cavities. Comput. Phys. Com-
mun. 201 (2016) 1–7.

[4] J. Li, D. Dault, B. Liu, Y. Tong, B. Shanker: Subdivision based isogeometric
analysis technique for electric field integral equations for simply connected
structures. J. Comput. Phys. 319 (2016) 145–162.

[5] B. Marussig, J. Zechner, G. Beer, T.-P. Fries: Fast isogeometric boundary ele-
ment method based on independent field approximation. Comput. Method.
Appl. Mech. Engrg. 284 (2015) 458–488.
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Optimal operator preconditioning for boundary elements on screens

Ralf Hiptmair1, Carlos Jerez–Hanckes2, Carolina Urzua–Torres1

1Seminar for Applied Mathematics, ETH Zürich, Switzerland,
2PUC Santiago de Chile, Chile

In this presentation, we introduce Calderón-type preconditioners for the hypersin-
gular and weakly singular operators arising from the Laplacian on screens. For their
construction, we use operator preconditioning [1] and the bilinear forms induced by
their recently found inverse boundary integral operators (BIOs) over the disk.
By using this approach, for any screen that can be parametrized over the unit
disk by a bi-Lipschitz diffeomorphism, we obtain bounded condition numbers that
remain constant when increasing the number of degrees of freedom. Moreover, we
are able to apply this preconditioning strategy to non-uniform meshes [3].
Numerical examples illustrate the optimality of our preconditioner for the hyper-
singular operator when applied to different screens [2]. For the case of the weakly
singular operator, the direct implementation of its inverse BIO is impractical due to
its hypersingular nature. Instead, we build our preconditioner by using a regularized
bilinear form and show promising preliminary numerical results.

References

[1] R. Hiptmair: Operator preconditioning. Computers Math. Appl. 52 (2006) 699–
706.

[2] R. Hiptmair, C. Jerez–Hanckes, C. Urzúa–Torres: Optimal operator precondi-
tioning for hypersingular operator over 3D screens. Tech. Rep. 2016-09, Semi-
nar for Applied Mathematics, ETH Zürich, 2016. (Submitted to SINUM).

[3] R. Hiptmair, C. Urzúa–Torres: Dual mesh operator preconditioning on 3D
screens: Low–order boundary element discretization. Tech. Rep. 2016-14, Se-
minar for Applied Mathematics, ETH Zürich, 2016.
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Space-Time Boundary Integral Equations for the Wave Equation

Marco Zank

TU Graz, Austria

For the discretisation of the wave equation by boundary element methods the star-
ting point is the so-called Kirchhoff’s formula, which is a representation formula
by means of boundary potentials. In this talk different approaches to derive weak
formulations of related boundary integral equations are considered. First, weak for-
mulations based on the Laplace transform and second, space-time energetic formu-
lations are introduced. In both cases coercivity is shown in appropriate Sobolev
spaces. To derive an adaptive scheme an a posteriori error estimator based on the
representation formula is used.
Finally, numerical examples for a one-dimensional spatial domain are presented and
discussed.
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A note on the multi- and many-core implementation of the boundary
element method

Lukas Maly, Michal Merta, Jan Zapletal

TU VSB Ostrava, Czech Republic

Although the clock frequency of modern CPUs has not been growing as rapidly as
in the previous decades, the hardware manufacturers still look for ways of increasing
the theoretical performance limits. One possibility is the transition from multi-core
to many-core architectures. Instead of several high-performance cores the modern
many-core chips, including the Intel’s Xeon Phi technology, feature many rather
simple cores ready to deliver the power of several TFLOPS in total. However, this
puts higher demands on the developers of scientific codes, since the peak perfor-
mance can only be reached if the application scales well up to tens or even hundreds
of employed threads. Moreover, the newest Xeon Phi processor series introduces the
AVX-512 instruction set able to operate on 8 (16) double (single) precision operands
at once. Failing to exploit this feature again results in low performance of the code.
In this talk we present an efficient implementation of the regularized boundary
element quadrature deployable at both multi- and many-core architectures. The
local element contributions are distributed to the individual threads by standard
OpenMP pragmas. In addition, the SIMD vectorization is achieved by suitable loop
collapsing, data replication and transformation, and subsequently by the OpenMP
SIMD pragmas available since its 4.0 version. We present numerical experiments for
both full and ACA assembly performed at the multi-core Haswell architecture and
two generations of the many-core Intel Xeon Phi chips, namely the Knights Corner
and Knights Landing.
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