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1 Introduction

Let (K, [·, ·]) be a Krein space, i.e., K can be written as the direct [·, ·]-
orthogonal sum K+[+̇]K− of Hilbert spaces (K+, [·, ·]) and (K−,−[·, ·]), and
let A be an operator in K which coincides with its adjoint A+ with respect
to the indefinite inner product [·, ·]. In general such selfadjoint operators may
have unpleasant spectral properties, e.g., the spectrum may cover the whole
complex plane. In this paper we consider the special class of definitizable oper-
ators. A selfadjoint operator A in K is called definitizable if the resolvent set of
A is nonempty and there exists a polynomial p 6= 0 such that p(A) is a nonneg-
ative operator in the Krein space K, cf., [20,21]. Definitizable operators arise
in various applications and have been studied extensively in the last decades,
see, e.g., [3–7,14–17,19–24]. In connection with spectral problems for Sturm-
Liouville operators with indefinite weights definitizable operators were studied
in [1,3,4,6,15,16]. In these applications the particular operator of interest can
be regarded as a perturbation of a definitizable operator A+×A− in K, where
A+ and A− are selfadjoint operators in K+ and K−, respectively. Therefore
general perturbation results for definitizable operators are very useful and of
great importance.

A classical well-known result on finite rank perturbations of definitizable op-
erators was proved by P. Jonas and H. Langer in [13]. Assume that A is a
definitizable selfadjoint operator in the Krein space K, let B be a selfadjoint
operator in K with nonempty resolvent set ρ(B) and suppose that

dim ran
(

(B − λ)−1 − (A − λ)−1
)

< ∞

holds for some, and hence for all, λ ∈ ρ(A) ∩ ρ(B). Then it was shown in
[13, Theorem 1] that also the perturbed operator B is definitizable. However,
in applications it is often difficult to verify the condition on ρ(B), e.g., for
ordinary differential operators with indefinite weights, cf., [6], so that there is a
strong desire to have a perturbation result of the above type available without
any assumptions on the resolvent set of B. It is the aim of Theorem 2.2 in the
present note to fill this gap. Instead of a finite rank perturbation in resolvent
sense we suppose that the symmetric operator S = A ∩ B is of finite defect,
i.e., the (graphs) of A and B “differ” by finitely many dimensions. Under this
assumption we prove the following equivalence for two selfadjoint operators A
and B in a Krein space: A is definitizable if and only if B is definitizable.

In Section 3 this new variant of the perturbation result from [13] is applied to
ordinary differential operators with an indefinite weight function. We consider
singular differential expressions of order 2n on R and generalize some of the
results in [6, §2.2].

2



2 Finite rank perturbations of definitizable operators

2.1 Definitizable operators in Krein spaces

Let (K, [·, ·]) be a Krein space and let A be a linear operator in K. The sym-
bols dom A, kerA, and ranA stand for the domain, kernel and range of A,
respectively. Suppose that A is a selfadjoint operator in K, i.e., A coincides
with its adjoint A+ with respect to the indefinite inner product [·, ·]. Then A
is said to be definitizable if its resolvent set ρ(A) is nonempty and there exists
a real polynomial p, p 6= 0, such that

[p(A)x, x] ≥ 0 for all x ∈ dom p(A).

It was shown by H. Langer that a definitizable operator A has a spectral
function which is defined on all real intervals with boundary points which are
not critical points of A, see [20,21]. Moreover, for a definitizable operator A
the nonreal spectrum σ(A) ∩ (C\R) consists of at most finitely many pairs
of eigenvalues which are symmetric with respect to the real line. Note that a
selfadjoint operator A with ρ(A) 6= ∅ and the property that the hermitian form
[A·, ·] defined on dom A has finitely many negative squares is definitizable, cf.,
[21].

Definitizability of selfadjoint operators in Krein spaces can also be character-
ized in a different form, see Theorem 2.1 below. Recall that for a selfadjoint
operator A in K a point λ from the approximative point spectrum is said to
be a spectral point of positive type (negative type) of A if for each sequence
(xn) ⊂ dom A with ‖xn‖ = 1, n = 1, 2, . . . , and ‖(A − λ)xn‖ → 0 for n → ∞,

lim inf
n→∞

[xn, xn] > 0
(

lim sup
n→∞

[xn, xn] < 0, respectively
)

holds, cf. [12,22]. The selfadjointness of A implies that the spectral points of
positive and negative type are real. An open set ∆ ⊂ R is said to be of positive
type (negative type) with respect to A if ∆ ∩ σ(A) consists of spectral points
of positive type (negative type, respectively). We say that an open set ∆ ⊂ R

is of definite type with respect to A if ∆ is either of positive or negative type
with respect to A.

The next theorem follows from [11, Section 2.1] and [12] where the concept
of local definitizability of selfadjoint operators in Krein spaces is investigated
in detail. We shall use the equivalent characterization of definitizable opera-
tors from Theorem 2.1 in the proof of Theorem 3.1. The one-point compact-
ifications of the real line and the complex plane are denoted by R and C,
respectively.
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Theorem 2.1 Let A be a selfadjoint operator in the Krein space K. Then A
is definitizable if and only if the following holds.

(i) Every point µ ∈ R has an open connected neighborhood Uµ in R such that
both intervals Uµ\{µ} are of definite type with respect to A;

(ii) σ(A) ∩ (C\R) consists of at most finitely many isolated points which are
poles of the resolvent of A;

(iii) There exist m ≥ 1, M > 0 and an open neighborhood O of R in C such
that

‖(A − λ)−1‖ ≤ M(1 + |λ|)2m−2 |Im λ|−m for all λ ∈ O\R.

2.2 Finite rank perturbations

In this section a classical result from [13] on finite rank perturbations of defini-
tizable operators is generalized, see Theorem 2.2 below. Roughly speaking we
drop the assumption from [13, Theorem 1] that the perturbed operator has a
nonempty resolvent set. In order to formulate our variant of the perturbation
result we remind the reader that a (possibly nondensely defined) operator
S in the Krein space (K, [·, ·]) is called symmetric if [Sx, x] is real for all
x ∈ dom S. Recall also that a closed symmetric operator S in K is said to be
of defect m ∈ N0 if there exists a selfadjoint extension A of S in K such that
dim(graph(A)/graph(S)) = m. Note that m is independent of the choice of
the selfadjoint extension A of S.

Theorem 2.2 Let A and B be selfadjoint operators in the Krein space K and
assume that A ∩ B is of finite defect. Then A is definitizable if and only if B
is definitizable.

Proof. Assume that A is definitizable and let S := A ∩ B, i.e.,

dom S =
{

f ∈ dom A ∩ domB : Af = Bf
}

,

Sf = Af = Bf, f ∈ dom S.
(2.1)

We will prove in the following that ρ(B) is nonempty. Then the assumption
that the defect of S is finite implies that

dim
(

dom (A − λ)−1/dom (S − λ)−1
)

= dim
(

dom (B − λ)−1/dom (S − λ)−1
)

is finite for all λ ∈ ρ(A)∩ρ(B) and (A−λ)−1f = (B−λ)−1f , f ∈ dom (S−λ)−1,
yields

dim ran
(

(B − λ)−1 − (A − λ)−1
)

< ∞ for all λ ∈ ρ(A) ∩ ρ(B). (2.2)
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Therefore the statement of Theorem 2.2 follows from [13, Theorem 1].

Let p 6= 0 be a definitizing real polynomial for the selfadjoint operator A,
that is, p(A) is a nonnegative operator in K and with the exception of at
most finitely many points the set C\R belongs to ρ(A). It is clear that p(A) is
symmetric in the Krein space K and it follows from σ(p(A)) = p(σ(A)) (see,
e.g., [10, §VII.9, Theorem 10]) that ρ(p(A)) ∩ (C\R) is nonempty. Therefore
p(A) is a selfadjoint operator in K and as p(A) is nonnegative we have

C\R ⊂ ρ
(

p(A)
)

. (2.3)

Observe that domS in (2.1) is in general not a dense subspace in K and
therefore the adjoint of S has to be defined in the sense of linear relations,
i.e., S+ is the linear subspace

S+ :=
{

{f, f ′} ∈ K2 : [Sg, f ] = [g, f ′] for all g ∈ domS
}

of K×K, cf., e.g., [8]. Here and in the following the elements of a linear relation
are written in curly brackets. Operators are regarded as linear relations via
their graphs. Note that the definition of S+ extends the usual definition of the
adjoint of a densely defined operator and, moreover, S+ is (the graph of) an
operator if and only if domS is dense in K.

We claim that for each λ ∈ C\R the linear relation p(S+) (see, e.g., [9,26]),
can be decomposed in the form

p(S+) = p(A) +̇
{

{h, λh} : h ∈ ker(p(S+) − λ)
}

, (2.4)

where +̇ denotes the direct sum of subspaces. In fact, S ⊂ A and A = A+

implies A ⊂ S+, and hence also p(A) ⊂ p(S+). Therefore the inclusion

p(A) +̇
{

{h, λh} : h ∈ ker(p(S+) − λ)
}

⊂ p(S+)

holds and the sum is direct since by (2.3) we have ker(p(A)−λ) = {0} for any
λ ∈ C\R. In order to verify the reverse inclusion let {f, f ′} ∈ p(S+). By (2.3)
we have ran (p(A) − λ) = K, λ ∈ C\R, and hence there exists {g, g′} ∈ p(A)
such that f ′−λf = g′−λg. This, together with {f, f ′ −λf} ∈ p(S+)−λ and
{g, g′ − λg} ∈ (p(A) − λ) ⊂ (p(S+) − λ) implies

{f − g, 0} = {f, f ′ − λf} − {g, g′ − λg} ∈ p(S+) − λ,

i.e., f − g ∈ ker(p(S+) − λ). Thus {f, f ′} = {g, g′} + {f − g, λ(f − g)} is
decomposed as in (2.4).

Next it will be shown that p(S+) is a finite dimensional extension of p(A).
According to (2.4) it is sufficient to check that ker(p(S+)−λ0) is finite dimen-
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sional for some λ0 ∈ C\R. Observe first that the polynomial

q(µ) := p(µ) − λ0

has no real zeros since p is a real polynomial and λ0 ∈ C\R. Hence there exist
m ∈ N, k1, . . . , km ∈ N, β1, . . . , βm ∈ C\R and α ∈ C\{0} such that

q(µ) = α
m
∏

i=1

(µ − βi)
ki .

Furthermore we can assume that λ0 ∈ C\R was chosen in such a way that
none of the nonreal eigenvalues of the definitizable operator A is a zero of q.
According to [26, Theorem 3.4]

ker q(S+) = ker
(

p(S+) − λ0

)

=
m

∑

i=1

ker(S+ − βi)
ki (2.5)

holds. As the defect of S is finite, S+ is a finite dimensional extension of A
and from the fact that each βi belongs to ρ(A) we conclude from

S+ = A +̇
{

{g, βig} : g ∈ ker(S+ − βi)
}

that the dimension of ker(S+ − βi), i = 1, . . . ,m, is also finite. In a similar
way as for operators one then verifies

dim
(

ker(S+ − βi)
ki

)

< ∞

and thus (2.4) and (2.5) imply

n := dim
(

p(S+)/p(A)
)

= dim
(

ker(p(S+) − λ0)
)

< ∞. (2.6)

Hence, p(S+) is a finite dimensional extension of p(A). From (2.6) we conclude
that the closed symmetric operator (p(S+))+ in K has finite defect n and
(p(S+))+ ⊂ p(A) implies that (p(S+))+ is nonnegative.

Since p is a real polynomial it follows that p(B) is a symmetric operator in K.
From B = B+ and S ⊂ B we obtain B ⊂ S+, hence p(B) is a restriction of
p(S+) and an extension of (p(S+))+,

(p(S+))+ ⊂ p(B) ⊂ p(S+).

As (p(S+))+ has finite defect and p(B) is a symmetric operator, it follows that
p(B) admits selfadjoint extensions in K which are operators. Then it follows
in the same way as in the proof of [6, Proposition 1.1] that such a selfadjoint
(operator) extension T of p(B) has a nonempty resolvent set. In fact, by (2.3)
we have ran (p(A)−λ) = K for all λ ∈ C\R, hence the ranges of p(S+)+−λ are
closed and the same holds for the ranges of the finite dimensional extensions
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p(B)−λ and T−λ, λ ∈ C\R. Suppose now ρ(T ) = ∅. Then it follows that in at
least one of the halfplanes there are infinitely many points belonging to σp(T ).
Let f1, . . . , fn+1 be eigenvectors corresponding to n+1 different eigenvalues of
T in that halfplane. Choose vectors g1, . . . , gn+1 in the dense subspace dom T
such that [Tfi, gj ] = δij , i, j = 1, . . . , n+1, holds, cf. [6]. Then the Krein space

L :=
(

span{f1, . . . , fn+1, g1, . . . , gn+1}, [T ·, ·]
)

contains an n + 1-dimensional neutral subspace. Hence L contains also an
n + 1-dimensional negative subspace, which contradicts the fact that T is
an n-dimensional extension of the nonnegative operator p(S+)+. Therefore
ρ(T ) 6= ∅.

Since [T ·, ·] has finitely many negative squares and ρ(T ) 6= ∅ it follows that T
is a definitizable operator, cf. [21]. In particular, the set C\R with the possible
exception of at most finitely many points belongs to ρ(T ). Therefore, up to
a finite set each λ ∈ C\R is a point of regular type of the finite dimensional
restriction p(B) of T , that is, ker(p(B) − λ) = {0} and ran (p(B) − λ) is
closed. This together with σp(p(B)) = p(σp(B)) and the fact that the range
of B − λ is closed for all λ ∈ ρ(A) implies that there exists a pair {µ, µ̄},
µ ∈ C\R, of points of regular type of B, i.e., ran (B − µ) and ran (B − µ̄)
are closed and ker(B − µ) = ker(B − µ̄) = {0}. But this is possible only if
ran (B − µ) = ran (B − µ̄) = K, therefore {µ, µ̄} ∈ ρ(B). Thus ρ(B) 6= ∅ and
the statement of Theorem 2.2 follows from (2.2) and [13, Theorem 1]. We note
for the sake completeness that ρ(B) 6= ∅ implies ρ(p(B)) 6= ∅ and hence p(B)
and T coincide. �

Remark 2.3 The notion of definitizability of selfadjoint operators can be gen-
eralized to selfadjoint relations, see, e.g., [9]. We note that Theorem 2.2 is not
true if B (or A) is allowed to be a selfadjoint relation since then the assumption
that A ∩ B has finite defect in general does not imply that B has a nonempty
resolvent set. However, if ρ(B) is assumed to be nonempty then definitizability
of the selfadjoint relation A implies definitizability of the selfadjoint relation
B, see, e.g., [2].

Remark 2.4 Locally definitizable selfadjoint operators and relations were
comprehensively studied by P. Jonas, see, e.g., [12], and it was shown in [2]
that the notion of local definitizability is also stable under finite rank pertur-
bations in resolvent sense if the perturbed operator or relation is selfadjoint
and has a nonempty resolvent set. Nevertheless, Theorem 2.2 does not hold
for locally definitizable operators. This is due to fact that the assumption of
finite defect of A ∩B does not imply that B (or A) has a nonempty resolvent
set, see [2, §3.3] for a simple counterexample.

The following corollary is generalization of [6, Proposition 1.1].
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Corollary 2.5 Let S be a closed symmetric operator of finite defect in the
Krein space K and assume that there exists a selfadjoint extension of S in K
which is definitizable. Then the following holds:

(i) every selfadjoint extension of S in K which is an operator has a nonempty
resolvent set and is definitizable;

(ii) if S is densely defined, then every selfadjoint extension of S in K has a
nonempty resolvent set and is definitizable.

3 An application: ordinary differential operators with indefinite

weight functions

We consider the formal differential expression of order 2n on R given by

ℓ(f) =
1

r

(

(−1)n(p0f
(n))(n) + (−1)n−1(p1f

(n−1))(n−1) + · · · + pnf
)

, (3.1)

where r, p−1
0 , p1, . . . , pn ∈ L1

loc(R) are assumed to be real functions such that
r 6= 0 and p0 > 0 a.e. on R. With the help of the quasi-derivatives

f [0] := f, f [k] :=
dkf

dxk
, k = 1, 2, . . . , n − 1,

f [n] := p0
dnf

dxn
, f [n+k] := pk

dn−kf

dxn−k
−

d

dx
f [n+k−1], k = 1, 2, . . . , n,

cf. [18,25], the formal expression (3.1) can be written as

ℓ(f) =
1

r
f [2n]. (3.2)

Following the lines of [1,6] we show that under suitable assumptions definitiz-
able selfadjoint operators in a Krein space can be associated to the differential
expression ℓ.

For the weight function r the following condition (I) is supposed to hold (cf.,
[1] and [6, Proposition 2.5]):

(I) There exist a, b ∈ R, a < b, such that the restrictions r+ := r ↾ (b,∞)
and r− := r ↾ (−∞, a) satisfy r+ > 0 a.e. on (b,∞) and r− < 0 a.e. on
(−∞, a).

In the following we agree to choose a, b ∈ R in such a way that the sets
{x ∈ (a, b) | r(x) > 0} and {x ∈ (a, b) | r(x) < 0} have positive Lebesgue
measure. This is no restriction. We note that the case r+ < 0 and r− > 0
can be treated analogously. We do not consider the case that r+ and r− have

8



the same signs. Under suitable assumptions these cases are contained in the
considerations in [6], cf., Remark 3.3 below.

Let L2
|r|(R) be the Hilbert space of all equivalence classes of measurable func-

tions f defined on R for which
∫

R
|f(x)|2|r(x)|dx is finite. We equip L2

|r|(R)
with the indefinite inner product

[f, g] :=
∫

R

f(x)g(x)r(x)dx, f, g ∈ L2
|r|(R), (3.3)

and denote the corresponding Krein space (L2
|r|(R), [·, ·]) by L2

r(R). The maxi-
mal operator Smaxf = ℓ(f) associated to (3.2) is defined on the dense subspace
Dmax consisting of all functions f ∈ L2

r(R) which have absolutely continuous
quasi derivatives f [0], f [1], . . . , f [2n−1] such that ℓ(f) ∈ L2

r(R). The restriction
S0

min of Smax to functions with compact support is a densely defined symmetric
operator in the Krein space L2

r(R). The minimal operator Smin is the closure
of S0

min. It is a symmetric operator in L2
r(R) of defect m, 0 ≤ m ≤ 2n, and

S+
min = Smax holds, cf., [6,25]. In particular, the selfadjoint realizations of ℓ in

L2
r(R) are finite dimensional extensions of Smin in L2

r(R).

Denote by ℓ−, ℓab and ℓ+ the differential expressions on the intervals (−∞, a),
(a, b) and (b,∞), respectively, which are defined in the same way as ℓ, except
that the functions r, p0, p1, . . . , pn in (3.1) are replaced by their restrictions
onto (−∞, a), (a, b) and (b,∞), respectively. By condition (I) the inner prod-
uct (3.3) is positive definite on functions with support in (b,∞) and negative
definite on functions with support in (−∞, a). Furthermore, (3.3) is indefinite
on functions with support in (a, b). Therefore

L2
r+

((b,∞)) :=
(

L2
|r+|((b,∞)), [·, ·]

)

is a Hilbert space,

L2
r
−

((−∞, a)) :=
(

L2
|r

−
|((−∞, a)), [·, ·]

)

is an anti Hilbert space, i.e., (L2
|r

−
|((−∞, a)),−[·, ·]) is a Hilbert space, and

L2
rab

((a, b)) :=
(

L2
|rab|

((a, b)), [·, ·]
)

, rab := r ↾(a, b),

is a Krein space with infinite positive and negative index. Since a and b are
regular endpoints, the minimal closed symmetric operators Smin,+ and Smin,−

associated to ℓ+ and ℓ− have defect m, n ≤ m ≤ 2n, cf. [25, §17.5], and the
selfadjoint realizations of ℓ+ and ℓ− in L2

r+
((b,∞)) and L2

r
−

((−∞, a)) are finite
dimensional extensions of Smin,+ and Smin,−, respectively.

Theorem 3.1 Suppose that the weight function r satisfies condition (I) and
assume that A+ and A− are selfadjoint realizations of ℓ+ and ℓ− in the spaces
L2

r+
((b,∞)) and L2

r
−

((−∞, a)), respectively, such that the following holds:
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(i) A+ is semibounded from below and A− is semibounded from above;
(ii) the set e := σ(A+) ∩ σ(A−) is finite;
(iii) there exist disjoint open intervals I1, . . . , In ⊂ R and some j0 ∈

{1, . . . , n} such that

σ(A+)\{e} ⊂
j0
⋃

k=1

Ik and σ(A−)\{e} ⊂
n
⋃

k=j0+1

Ik.

Then every selfadjoint realization of the differential expression ℓ in the Krein
space L2

r(R) has a nonempty resolvent set and is a definitizable operator.

Proof. Denote the minimal closed symmetric operator associated to ℓab in the
Krein space L2

rab
((a, b)) by Smin,ab. The defect of Smin,ab is 2n, cf., [25, §17.3].

Let Aab be a selfadjoint extension of Smin,ab in the Krein space L2
rab

((a, b)).
Then according to [6, Proposition 2.2, Proposition 1.1 and Corollary 1.4] the
spectrum σ(Aab) is discrete, ρ(Aab) is nonempty, the hermitian sesquilinear
form [Aab·, ·] defined on domAab has finitely many negative squares and Aab

is definitizable. Let A+ and A− be selfadjoint realizations of ℓ+ and ℓ− in
L2

r+
((b,∞)) and L2

r
−

((−∞, a)), respectively, such that (i)-(iii) hold. We claim
that the direct sum

A = A− × Aab × A+, dom A = dom A− × dom Aab × dom A+, (3.4)

is a definitizable operator in the Krein space

L2
r
−

((−∞, a)) × L2
rab

((a, b)) × L2
r+

((b,∞)) = L2
r(R).

This will be verified with the help of Theorem 2.1. First of all A± are selfadjoint
operators in Hilbert or anti Hilbert spaces and thus their spectrum σ(A±)
is real. Therefore σ(A) ∩ (C\R) = σ(Aab) ∩ (C\R). As Aab is definitizable,
condition (ii) in Theorem 2.1 is satisfied. Similarly the definitizability of Aab

together with the growth properties of the resolvents (A± − λ)−1, λ ∈ C\R,
in L2

r+
((b,∞)) and L2

r
−

((−∞, a)), respectively, implies (iii) in Theorem 2.1.

It remains to check that each point µ ∈ R has an open connected neighborhood
Uµ such that both intervals Uµ\{µ} are of definite type with respect to A.
Assume first µ ∈ R. As A+ (A−) is a selfadjoint operator in a Hilbert space
(anti Hilbert space, respectively) σ(A+) (σ(A−)) consists only of points of
positive type (negative type, respectively). Now (ii) and (iii) imply that Uµ

can be chosen such that both intervals Uµ\{µ} are of definite type with respect
to A− × A+. Since σ(Aab) is discrete we can assume Uµ\{µ} ⊂ ρ(Aab) and
hence both intervals Uµ\{µ} are also of definite type with respect to A. Let
us now consider the case µ = ∞. As the hermitian sesquilinear form [Aab·, ·]
has finitely many negative squares it follows that there exist µ+ ∈ (0,∞) and
µ− ∈ (−∞, 0) such that the interval (µ+,∞) is of positive type with respect
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to Aab and the interval (−∞, µ−) is of negative type with respect to Aab. Since
by (i) A+ and A− are semibounded from below and above, respectively, µ+

and µ− can be chosen such that (µ+,∞) ⊂ ρ(A−) and (−∞, µ−) ⊂ ρ(A+).
As σ(A+) is of positive type and σ(A−) is of negative type we conclude that
(µ+,∞) is of positive type with respect to A and (−∞, µ−) is of negative type
with respect to A. Thus (i) in Theorem 2.1 holds and it follows that A is a
definitizable operator in the Krein space L2

r(R).

Since A± are selfadjoint extensions of the operators Smin,± and Aab is a self-
adjoint extension of Smin,ab it is clear that A is a selfadjoint extension of the
closed symmetric operator S = Smin,− × Smin,ab × Smin,+ in L2

r(R). Further-
more, dom S is dense and S has finite defect m, 4n ≤ m ≤ 6n. Hence by
Corollary 2.5(ii) every selfadjoint extension of S is definitizable. Since each
selfadjoint realization of ℓ in L2

r(R) is an extension of the minimal operator
Smin associated to ℓ and S ⊂ Smin the assertion of Theorem 3.1 follows. �

Remark 3.2 Conditions (i)-(iii) in Theorem 3.1 do not depend on the choice
of the selfadjoint extensions A+ and A− of Smin,+ and Smin,−. In fact, if A′

+

and A′
− are arbitrary selfadjoint realizations of ℓ+ and ℓ− in L2

r+
((b,∞)) and

L2
r
−

((−∞, a)), respectively, then semiboundedness of A± implies semibounded-
ness of A′

± since the resolvents of A± and A′
± differ by a finite rank operator.

Furthermore, condition (ii) and (iii) ensure that A+ × A− is definitizable and
hence A′

+×A′
− is definitizable by [13, Theorem 1]. Therefore (ii) and (iii) hold

also for A′
+ and A′

−.

Remark 3.3 The case that the weight function r is positive (negative) on
(−∞, a) and (b,∞) is not considered in Theorem 3.1. We note that, e.g., the
positivity of r+, r− and the semiboundedness of A+ and A− from below imply
that for some α ∈ R the selfadjoint operator A−α, where A = A−×Aab ×A+

is as in (3.4), has a finite number of negative squares and σ(A) ∩ (−∞, η) is
discrete for some η ∈ R. Then the same is true for all selfadjoint realizations
of ℓ in L2

r(R), cf., [6].

Definitizability of selfadjoint realizations of indefinite Sturm-Liouville differen-
tial expressions of the form (3.1)-(3.2) was already studied in [6]. In addition,
the selfadjoint differential operators arising in [6] have finitely many negative
squares. The following two corollaries connect Theorem 3.1 with the results
in [6, §2.2].

Corollary 3.4 Suppose that the weight function r satisfies condition (I) and
assume that A+ and A− are selfadjoint realizations of ℓ+ and ℓ− in the spaces
L2

r+
((b,∞)) and L2

r
−

((−∞, a)), respectively, such that σ(A+) ∩ (−∞, 0) and
σ(A−) ∩ (0,∞) consist of finitely many eigenvalues.

Then every selfadjoint realization B of the differential expression ℓ in the Krein
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space L2
r(R) has a nonempty resolvent set and the form [B·, ·] has finitely many

negative squares.

Proof. The assumption that σ(A+) ∩ (−∞, 0) and σ(A−) ∩ (0,∞) consist of
finitely many eigenvalues implies that conditions (i)-(iii) in Theorem 3.1 hold.
Hence every selfadjoint realization of ℓ in L2

r(R) has a nonempty resolvent set
and is definitizable. Furthermore, it is not difficult to see that the selfadjoint
operator A− × A+ in L2

r
−

((−∞, a)) × L2
r+

((b,∞)) has finitely many negative
squares (cf., e.g., [4, §4.2]) and the same holds for the selfadjoint operator
A = A− × Aab × A+ in L2

r(R), cf. (3.4). Therefore the symmetric operator
S = Smin,− × Smin,ab × Smin,+ also has finitely many negative squares and
hence every selfadjoint realization B of ℓ in L2

r(R) has finitely many negative
squares. �

Corollary 3.5 Suppose that the weight function r satisfies condition (I) and
let Smin,+ and Smin,− be the minimal closed symmetric operators associated to
ℓ+ and ℓ− in L2

r+
((b,∞)) and L2

r
−

((−∞, a)), respectively. Assume that there
exist b′ ∈ (b,∞) and a′ ∈ (−∞, a) such that [Smin,+·, ·] and [Smin,−·, ·] are
positive on the set of functions from dom Smin,+ and dom Smin,− which have
compact support in (b′,∞) and (−∞, a′), respectively.

Then every selfadjoint realization B of the differential expression ℓ in the Krein
space L2

r(R) has a nonempty resolvent set and the form [B·, ·] has finitely many
negative squares.

Proof. As in the proof of [6, Proposition 2.3] one verifies that the inner product
[Smin,+·, ·] has a finite number of negative squares on domSmin,+. Hence, if A+

is an arbitrary selfadjoint extensions of Smin,+ in L2
r+

((b,∞)), then also the
form [A+·, ·] defined on dom A+ has a finite number of negative squares, so that
σ(A+) ∩ (−∞, 0) consists of finitely many eigenvalues. Analogously it follows
that for any selfadjoint extension A− of Smin,− the form −[A−·, ·] has finitely
many positive squares, hence the positive spectrum of A− in L2

r
−

((−∞, a)) =
(L2

|r
−
|((−∞, a),−[·, ·]) consists of at most finitely many eigenvalues. Therefore

the statement follows from Corollary 3.4. �
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