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Abstract
We consider a singular Sturm-Liouville differential expression with an indefinite

weight function and we show that the corresponding self-adjoint differential operator
in a Krein space locally has the same spectral properties as a definitizable operator.
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1 Introduction

In this paper we investigate the spectral properties of a Sturm-Liouville oper-
ator associated to the differential expression

1( d( d B )
; <—% (p@> +q> R p ,q,7r € LlOC(R)' (1.1)

In contrast to standart Sturm-Liouville theory we deal with the case where
the weight function r changes its sign. If (1.1) is in the limit point case at
both singular endpoints co and —oo, and the functions p, ¢, r are real, r # 0
a.e., then the usual maximal operator A associated to (1.1) is self-adjoint in
the Krein space (Lf(R),[,,-]), where the indefinite inner product is defined
by

fgli= [ f@)g@) r@)de,  fige LE(R).

Spectral problems for such singular indefinite differential operators have been
considered in, e.g., [8,10-12], and, in particular, for the case r = sgn and p =1
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in, e.g., [5,6,9,22-27]. Under suitable assumptions on the indefinite weight r
and the functions p and ¢ the operator A turns out to be definitizable in the
sense of H. Langer and the well developed spectral theory for these operators
can be used for further investigations, see [28].

Here we are interested in more general indefinite differential expressions of
the form (1.1) and our main goal is to show that under certain assumptions
the self-adjoint differential operator A in (Lf, (R), [, ]) at least locally has the
same spectral properties as a definitizable operator. For this we assume that
the weight function r is negative on an interval (—oo, a) and positive on an
interval (b,00). With the help of Glazmans decomposition method A can be
regarded as a finite-dimensional perturbation in resolvent sense of the direct
sum of three self-adjoint differential operators A_, A, and A, which corre-
spond to restrictions of (1.1) onto the intervals (—oo, a), (a,b) and (b, 00) and
are subject to suitable boundary conditions. The singular differential operators
A, and A_ act in Hilbert spaces (or anti-Hilbert spaces) and A, is a regular
indefinite Sturm-Liouville expression which is known to be definitizable, cf.
[8]. Under the assumption that A, and A_ are semibounded the direct sum
of A_, Ay and A, becomes a locally definitizable operator. Making use of
a recent perturbation result from [3] we show in Theorem 3.2 that A is also
locally definitizable and the region of definitizability is expressed in terms of
the essential spectra of A, and A_. A typical difficulty in our general setting
is to ensure that the resolvent set p(A) of A is nonempty; here we will impose
a condition on the existence of absolutely continuous spectrum of one of the
singular differential operators A, or A_ and make use of Titchmarsh-Weyl
theory.

The paper is organized as follows. In Section 2 we briefly recall the defini-
tions and some important properties of definitizable and locally definitizable
self-adjoint operators. Furthermore we provide the reader with a very short
introduction into extension and spectral theory of symmetric and self-adjoint
operators in Krein spaces with the help of boundary triples and Weyl func-
tions. Section 3 is devoted to the analysis of the spectral properties of the
self-adjoint operator A associated to (1.1) and contains our main result on
local definitizability of A.

2 Locally definitizable self-adjoint operators in Krein spaces

We briefly recall the definitions and basic properties of definitizable and locally
definitizable self-adjoint operators in Krein spaces. For a detailed exposition
we refer the reader to the fundamental papers [20,28].

Let in the following (I, [-,-]) be a Krein space and let A be a self-adjoint



operator in (K, [-,+]). A point A € C is said to belong to the approzimative
point spectrum o,,(A) of A if there exists a sequence (z,) C dom A with
|lzn|| =1, n=1,2,..., and ||[(A — Nz,|| = 0if n — oco. If A € 0,,(A) and
each sequence (z,) C dom A with ||z,||=1,n=1,2,...,and ||(A=\)z,|| — 0
for n — oo, satisfies

lim inf [T, 2] >0 (lim Sup [, T,) < 0),
then \ is called a spectral point of positive (resp. negative) type of A, cf. [20,29].
The self-adjointness of A implies that the spectral points of positive and neg-
ative type are real. An open set A C R is said to be of positive (negative)
type with respect to A if ANo(A) consists of spectral points of positive (resp.
negative) type. We say that an open set A C R is of definite type with respect
to A if A is either of positive or negative type with respect to A. The following
definition can be found in a more general form in, e.g. [19].

Definition 2.1 Let I C R be a closed interval and let A be a self-adjoint
operator in (IC,[-,]) such o(A) N (C\R) consists of isolated points which are
poles of the resolvent of A, and no point of R\I is an accumulation point of
the non-real spectrum of A. Then A is said to be definitizable over C\I, if the
following holds.

(i) Ewvery point i € R\I has an open connected neighborhood U, n R such
that both components of U, \{p} are of definite type with respect to A.

(ii) For every finite union A of open connected subsets of R, A C R\ I, there
exists m > 1, M > 0 and an open neighborhood © of A in C such that

1A =X) 7 < M1+ M) [Im A7
holds for all A € O\R.

If A is a self-adjoint operator in K such that o(A) N (C\R) consists of at most
finitely many poles of the resolvent of A, and (i) and (ii) in Definition 2.1 hold
with R\ replaced by R, then A is said to be definitizable. This is equivalent
to the fact that there exists a polynomial p such that [p(A)z,z] > 0 holds
for all € domp(A) and p(A) # 0, cf. [20, Theorem 4.7] and [28]. Roughly
speaking, a self-adjoint operator A which is locally definitizable over C\I can
be regarded as the direct sum of a definitizable operator and an operator with
spectrum in a neighborhood of I, see [20, Theorem 4.8].

Let I C R be a closed interval and let A be a self-adjoint operator in C which
is definitizable over C\I. Then A possesses a local spectral function § — E(§)
on R\ which is defined for all finite unions § of connected subsets of R\ the
endpoints of which belong to R\ and are of definite type, see [20, Section 3.4
and Remark 4.9]. We note that an open set A C R\ is of positive (negative)
type with respect to A if and only if for every finite union ¢ of open intervals,



0 C A, such that the boundary points of § in R are of definite type, the
spectral subspace (E(9)IC,[-,-]) (resp. (E (), —[-,-])) is a Hilbert space. As
a generalization of open sets of positive and negative type we introduce open
sets of type 7, and type m_ in the next definition, cf. [19].

Definition 2.2 Let I C R be a closed interval and let A be a self-adjoint
operator in K which is definitizable over C\I An open set A C R\I is called
of type my (type m_) with respect to A if for every finite union § of open
intervals, 6 C /A, such that the boundary points of 6 in R are of definite type,
the spectral subspace (E(0)IC,[-,-]) is a Pontryagin space with finite rank of
negativity (resp. positivity).

We remark that spectral points in sets of type 7. and type m_ can also be
characterized with the help of approximative eigensequences, see [2].

In the proof of our main result in the next section locally definitizable operators
will arise as self-adjoint extensions of a symmetric operator. We use the notion
of so-called boundary triples and associated Weyl functions for the description
of the closed extensions of a symmetric operator in a Krein space, see [12] and,
e.g., [13].

Definition 2.3 Let S be a densely defined closed symmetric operator in
(K, [-,])- A triple {G,T,I'1} is said to be a boundary triple for the adjoint
operator ST, if G is a Hilbert space and I'y,T'; : dom ST — G are linear map-
pings such that I' := (??) . dom St — G? is surjective, and the ”abstract

Lagrange identity”

[STf,9] = [f,57gl = (T1f,Tog) — (Tof,T19)
holds for all f,g € dom S™.

Let S be a densely defined closed symmetric operator in IC and let {G, T'o, "1}
be a boundary triple for S*. Then Ay := St [ kerI'y and A; := S™ | kerI'; are
self-adjoint extensions of S in K. Furthermore, if © is self-adjoint in G, then
the extension Ag := S* | ker(I';y — O@) is a self-adjoint operator in the Krein
space K.

Assume that the self-adjoint operator Ag = S™ | ker I'y has a nonempty resol-
vent set. Then for each A € p(Ag) we have dom ST = dom Ag+ ker(S* — \)
and hence the operator

-1

M) =Ty (Tol ker(S* = \)) " € L()

is well-defined. Here £(G) denotes the space of everywhere defined bounded
linear operators in G. The £(G)-valued function A — M ()) is called the Weyl
function of the boundary triple {G,'g,I'1}, M is holomorphic on p(Ay) and



symmetric with respect to the real axis, i.e. M(\) = M(A)* holds for all
A € p(Ap). The Weyl function can be used to describe the spectral properties
of the closed extensions of S, see [12] for details. We will later in particular use
the fact that a point A € p(Ag) belongs to p(Ag), Ae = S| ker(I';y — OI),
if and only if 0 € p(M(\) — ©).

Finally we remark that if I is a Hilbert space, S is a closed densely defined
symmetric operator in K and M is the Weyl function of a boundary triple for
the adjoint operator S*, then M is a Nevanlinna function with the additional
property 0 € p(Im M (X)) for all A € C\R, cf. [13].

3 Spectral properties of a class of singular indefinite Sturm-
Liouville operators

In this section we investigate the spectral properties of an operator associated
to the Sturm-Liouville differential expression

2 2))

where p~! q,7 € Ll (R) are assumed to be real valued functions such that
p > 0 and r # 0 for a.e. x € R. Here we are interested in the case that the
weight function r has different signs at oo and —oo, more precisely, we will
assume that the following condition (I) holds.

(I) There exist a,b € R, a < b, such that the restrictions r, := r [ (b, 00) and
r_ :=r](—00,a) satisfy r(A\) > 0 for a.e. A € (b,00) and r_(\) < 0 for
a.e. A € (—o0,a).

We note that the case ry < 0 and r_ > 0 can be treated analogously and
the case that r, and r_ have the same signs is not of special interest to us,
cf. Remark 3.3. In the following we agree to choose a,b € R in such a way
that the sets {z € (a,b)|r(z) > 0} and {x € (a,b)|r(z) < 0} have positive
Lebesgue measure. This is no restriction.

Let L|2,,‘(]R) be the Hilbert space of all equivalence classes of measurable func-
tions f defined on R for which [ |f[?|r| is finite. We equip L7, (R) with the
inner product

figl = [ F@g@ir(@)de,  f.g € L (R),

and denote the corresponding Krein space (L2, (R), [+, -]) by L?(R). As a funda-

mental symmetry in L?(R) we choose (Jf)(‘xrl) = (senr(z))f(z), f € L*(R),



then [J-, -] coincides with the usual Hilbert scalar product (f,g) = [z fg|r| on
12, (R).
||

Let us assume that the Sturm-Liouville differential expression

A

is in the limit point case at both singular endpoints oo and —oo. Then it is
well-known that the operator By = ¢(y) defined on the usual maximal domain

Dunax = {y € L2 (R) : 4, py’ € ACie(R), ((y) € L} (R)}, (3.3)
is self-adjoint in the Hilbert space L (R), see e.g. [14,31-33].

In the following we are interested in the spectral properties of the indefinite
Sturm-Liouville operator

1
Ay:=JBy= (- +ay). domA=domJB=Duu,  (34)

which is self-adjoint in the Krein space L?(R). We shall interpret the operator
A as a finite rank perturbation in resolvent sense of the direct sum of three
differential operators A_, A,, and A, defined in the sequel. Let us denote the
restrictions of p and ¢ onto the intervals (—oo,a) and (b, 00) by p_,py and
q_,q., respectively. Moreover, we denote the restriction of r,p and ¢ onto the
finite interval (a, b) by 74, pay and qqp. Besides the differential expression ¢ in
(3.2) we shall deal with the differential expressions ¢_, ¢, and ¢, defined by

1 d d 1 d d
o () o) e ) ) 09

1 d d
ea = - ab 7 a 5 .
b ool ( I (p bdx> +q b) (3.6)

respectively, and operators associated to them. Note that ¢, and ¢_ are in
the limit point case at oo and —oo and regular at the endpoints b and a,
respectively, whereas {4, is regular at both endpoints a and b. By Dpax +
(Dimax,— and Diaxap) we denote the set in (3.3) if r, R and ¢ are replaced
by ri, (b,00) and ¢, (resp. r_, (—o00,a), {_ and 74, (a,b), {4). We shall in
particular make use of the differential operators

A+g:€+(‘g>, dOInA+:{g€Dmax,+ g(b):0}7

3.7
Af=0.(f), domA_={f€Dpax_: fla) =0}, (3.)



and

Aabhf = T’ib (_<pabh/)l + Qabh)7
dom A, = {h € Daxas : h(a) = h(b) = 0}.

Here A, is self-adjoint in the Hilbert space L{. |((b, oo)) 7. ((b,00)) and A_
is self-adjoint in the Hilbert space Lf |((—00,a)) = (( 00, a)) as well as
in the anti-Hilbert space L? ((—oc,a)) = (L‘T ((—o0 )) —(+,+)). Moreover,

Ay is self-adjoint in the Krein space L2 ((a, b)) and the spectrum o(Agp) is
discrete and consists of eigenvalues of multiplicity one which accumulate to
oo and —oo, see [8, Propositions 1.8 and 2.2].

Besides condition (I) we will assume that the following condition (II) is satis-
fied.

(IT) The operator A, is semibounded from below and the operator A_
semibounded from above.

Sufficient criteria on r,, p, and ¢, or r_, p_ and ¢_ such that A, or A_
are semibounded can be found in, e.g. [14,31-33] (see also Corollary 3.4), and
the essential spectra gess(A1) and oess(A_) can be described. The next lemma
states that condition (II) is independent of the choice of the finite interval
(a,b) and the self-adjoint realizations A, and A_ in (3.7). The proof is based
on Glazmans decomposition method (see [18]) and be found in, e.g., [1].

Lemma 3.1 Let a,b and Ay, A_ be as above and assume that a, b e R sat-
isfy condition (I). Let £, and [_ be the differential expressions on (b o0) and
(=00, @) defined analogously to 0, and (_ in (3.5), and let A, and A_ be ar-
bitrary self-adjoint realizations of {4 and (_ in the Hilbert spaces L2 ((b o0))

and L*. ((—o0,a)), respectively. Then A, is semibounded from below A_ s
semibounded from above and we have

Oess(Ay) = aess(fLr) and  Oess(A_) = Tess(A_).

Assume that condition (II) holds and let n.,n7- € R be lower and upper
bounds for the essential spectra of A, and A_, respectively, that is

UeSS(A-i-) - [77+>OO) and UeSS(A—) - (_OO>77—]' (3'8)

The following theorem is the main result in our paper. In terms of the bounds
1y and 7_ of the essential spectra of A, and A_ we characterize the regions
where the indefinite Sturm-Liouville operator A from (3.4) is definitizable. In
order to ensure that the resolvent set p(A) of A is nonempty we assume that
there exists a point in the absolutely continuous spectrum o,. of A, or A_



which is an eigenvalue of A,,. We note that for the special case r(x) = sgn (z)
and p(z) = 1, = € R, this assumption is not necessary, see [22-27], where
asymptotic properties of certain Titchmarsh-Weyl functions from [15,30] were
used to ensure p(A) # 0, cf. Corollary 3.4 and Remark 3.5. The emphasis in
Theorem 3.2 is on cases (i) and (ii) where the essential spectra of A, and
A_ overlap, i.e., n. < n_. If the essential spectra of A, and A_ are sepa-
rated (case (iii)), then p(A) is automatically nonempty and A is definitizable
(over C). This can easily be deduced from [8] (cf. [6, Proposition 6.2]).

Theorem 3.2 Let A be the self-adjoint indefinite Sturm-Liouville operator in
the Krein space L?(R) from (3.4) and assume that conditions (1) and (II) are
satisfied. Choose ny,n- € R as in (3.8) and suppose that there ezists a point
w € o(Aw) such that

pE€ oac(A-) Np(Ay) or p € ouc(Ar) Np(A-).
Then the following holds.

(i) If ny <mn_, then A is definitizable over C\[ny,n_].
(ii) If ny =n_, then A is definitizable over C\{ny}. If, in addition,

op(A) Ny —emy) =0 and op(A-)N(n-,n-+e) =10

for some € > 0, then A is definitizable.
(i) If n_ <mny, then A is definitizable and o(A) N (n_,ny) consists of eigen-
values of A with ny and n_ as only possible accumulation points.

Furthermore, the interval (—oo,n.) is of type m_ with respect to A and the
interval (n_,00) is of type . with respect to A.

Proof. The regular indefinite Sturm-Liouville operator

Sabh = Tib (_(pabhl>/ + Qabh)7
dom Sy, = {h € Daxap : h(a) = h(b) = (pah’)(a) = (pash’) (b) = 0},

is a densely defined closed symmetric operator in the Krein space L} ((a,b))
and has defect two, its adjoint S}, is given by

1
S;E;h - T_ab (_(pabh/)/ + Qabh)a dom S(;Z = Dmax,ab-

We leave it to the reader to check that {C? I'¢®, %"}, where

~(Pul')(a) and F‘fbh =
(pabh”) (D) h(b)

Ieth =



is a boundary triple for S;. Note that the self-adjoint operator A, coincides
with Ag1 = Sy [ker T’y and that the Weyl function m,, of {C?, T8 9%} is a
two-by-two matrix-valued holomorphic function on C\o,(Ag0), where Agpo =
St 1 kerTg. According to [8] the self-adjoint operators Ag;, @ = 0,1, are
definitizable, so that in particular o(Au;) N (C\R) consists of at most finitely
many eigenvalues. Let @,y € L2 ((a,b)) be the fundamental solutions of
—(paph) + qaph = Argph, A € C, satisfying the boundary conditions

SOA(G’) =1, (pab(pl)\>(a) =0 and ¢/\(a) =0, (pab¢;)(a) =1

Since ker(Sg, — A) = sp {px,¥a} and z — oa(2) (Pat} ) (2) — (Pash) (2)¥a(2)
has the constant value 1 we find that the Weyl function m,;, is given by

R (AR
RN ( ! mb)) |

Next we define the singular Sturm-Liouville operators

S_f=1L(f), domS_={f € Dy : f(a) = (p_f')(a) = 0},
Sig=1i(g). domSy ={g € Doy : g(b) = (p1g)() = 0},

which are closed densely defined symmetric operators of defect one in the
Hilbert spaces L?, ((—oo,a)) and L7 ((b,00)), respectively. We will re-
gard S_ in the following as a symmetric operator in the anti-Hilbert space
L? ((—0,a)) = (L?, ((—o00,a)),—(+,-)). Then {C,Ty_,T;_}, where

Lo_f = f(a), [y f:=—(p_f)a), f€domSt="Dyau_,

is a boundary triple for the adjoint STf = ¢_(f) in L? ((—o00,a)) and
{C.To4, T4},

Lo+9:= g(b), I 40:=(p:g")(), g€ domS; = Dyax,

is a boundary triple for the adjoint St (g) = £4(g) in L ((b,00)). The Weyl
functions corresponding to {C,I'g _,T'; _} and {C,I'g 4,1 +} will be denoted
by m_ and m,. Note that m, and —m_ are scalar Nevanlinna functions
holomorphic on p(A,) and p(A_), respectively, so that for A € C* we have
Immy(A) >0 and Imm_(\) <O0.

The operator S_ x S, X Sy is a closed densely defined symmetric operator of
defect 4 in the Krein space L} ((—o0,a))[+]LZ, ((b,00))[]L; ((a,b)) and it

Tab



is straightforward to check that {C*, Ty, fl}, where

Lo f Ly f
PO{f?.g?h} = Fo,+g ) Pl{f?.gvh} = F1,+g s
rah I°h

{f,g9,h} € dom ST x dom S% x dom Sy is a boundary triple for the adjoint
operator ST x S* x Sf,. Note that C\R, with the possible exception of finitely
many eigenvalues of A, ;, belongs to the resolvent set of the self-adjoint op-
erators St x S* x St | ker fi, 1 = 0,1. The Weyl function corresponding to

{C* Ty, T} is given by

m_(\) 0 0 0
M(/\) = (Pap?’) (B) 1 ) A€ p<A—) N p(A+) n p<Aab,0)‘
0 0 o
(Pav\)(b)  (Pabp’y)(b)
0 0 1 )

(Pab P\ )(0)  (Pabp’y ) (b)

If we identify L2 ((—o0,a))[+]L;, ((b,00))[+]L7 ,((a,b)) with the Krein space
L2(R) then the self-adjoint operator S* x S* x S, [ker(I'; — OTy), where

0010
~ 0001
e =
1000
0100
coincides with the self-adjoint operator A from (3.4). In fact, an element

{f,g9,h} € dom ST x dom S* x dom S, belongs to ker(I'y, — OI) if and only
if

fla) = h(a), (p-f)(a) = (puh')(a)
and

g(0) = h(d), (p+9")(b) = (Pah’) (D)
holds, that is, {f,g,h} € Dyax = dom A.

We claim that p(A) is nonempty. For this it suffices to show that ker(M(\)—©)
is trivial for some A € p(A_)Np(A+)Np(Aasp), see the end of Section 2. Assume

10



that

det(M(/\) - é) Zm_(/\) <m+ (/\) det mab(/\) . (pab@%\)

(
(pabcpl)\) (b)

forall A € p(A-)Np(AL) N p(Awp). Let 1 € 0,(As) NR be as in the assump-
tions of the theorem and let, e.g., i € 0..(A_) N p(A;). Then the functions
meqy, and my are holomorphic in an open neighborhood O, of u and take
real values in O, N R, since Ay, = S [ker'y and p € p(Ay). By standart
Titchmarsh-Weyl theory the limit m_ (A +i0) = lims_, o m_ (A +id) from the
upper half-plane exists for a.e. A € R and by [7, Proposition 4.2] (see also [17])

the Lebesgue measure of the set

(p—e,p+e)N{x e R: Imm_(A+1i0) < 0}
is positive for every e > 0. As the imaginary part of det(M(\) — ©) vanishes
for each A € p(A_) N p(A+) N p(Aapo) it follows that

(pab%)(b) (pabqﬁg\) (b)

my () = =
N G ) detma () 0]
holds for all real A in a neighborhood of p, A # u, with ITmm_ (X 4 i0) < 0.

But the expression on the right hand side has a pole at p, which contradicts
the holomorphy of m . Therefore p(A) # () holds.

The operator A’ := A_ x Ay, x A is self-adjoint in the Krein space L*(R)
and C\R, with the possible exception of finitely many eigenvalues of A,
belongs to p(A’). Here we regard A_ as a self-adjoint operator in the anti-
Hilbert space L? ((—oo,a)). Since p(A) N p(A’) # @ and both A and A’ are
self-adjoint extensions of a symmetric operator of defect 4 we conclude

dim(ran (A= N7 = (A =N7)) <4, AepA)npA).  (3.9)

The interval (—oo, 7, ) consists of eigenvalues of A, with n, as only possible
accumulation point and each point in o(A,) is a spectral point of positive
type. By [8] Ag is a definitizable operator with the additional property that
the hermitian form [Ag;-, -] has a finite number of negative squares. Therefore
the eigenvalues of Ay, in (—o0,ny) are, with the exception of finitely many,
of negative type in the Krein space L2 ((a,b)). Moreover o(A_) consists only
of negative spectral points and this implies that the interval (—oo,n.) is of
type m_ with respect to A’ and that for some v, —oo < v < 1., the interval
(—o0, ) is of negative type with respect to A’. A similar argument shows that
(n_,00) is of type 7, with respect to A" and that for some ¢, n_ < ¢ < o0,
the interval (¢, 00) is of positive type with respect to A’.

11



Therefore, if e.g. . < n_, then A’ is definitizable over C\[n,,n_] and [3,
Theorem 2.2] on finite rank perturbations of locally definitizable operators
together with (3.9) implies that the indefinite Sturm-Liouville operator A is
definitizable over C\[n,, n_]. This proves assertion (i). An analogous argument
proves the first assertion in (ii). Note that under the additional conditions
op(Ay) N (ny —e,my) = 0 and 0,(A_) N (n_,n— + €) = O the operator A’
is definitizable and hence so is A, cf. [21, Theorem 1]. Assertion (iii) can be
deduced from [8] or follows in a similar manner as (i) and (ii), here it is
again sufficient to use the result on finite rank perturbations of definitizable
operators from [21]. Finally, since (—oo,n4) ((n—,00)) is of type m_ (resp.
type ;) with respect to A’ it follows from [2,4] (see also [3, Theorem 2.1]) and
(3.9) that the interval (—oo,n4) ((n-,00)) is also of type m_ (resp. type m)
with respect to A. O

Remark 3.3 We note that if condition (1) is replaced by an analogous con-
dition where r | (—o0,a) is positive, v [ (b,00) is negative and n, is defined
to be the lower bound of oess(A_) and n_ is defined to be the upper bound of
Oess(AL), then the statements in Theorem 3.2 remain true. The case that r
has the same sign on (—oo,a) and (b, 00) leads automatically to a definitizable
operator A.

In the next corollary we impose some extra conditions on r, p and ¢ such that
conditions (I) and (II) are met and

(74,00) C 0ac(Ay) and (—00,7-) C gac(A-)
hold (see [33, Satz 14.25]), that is, the assumptions in Theorem 3.2 are fulfilled.

Corollary 3.4 Let r(z) = sgnx and p(x) = 1 for x € (—o0,a) U (b,00) and
some a,b € R, a <0 < b. Suppose that the limits

(oo = lim qi(z) and (- := lim ¢ (z)
exist and that the functions x +— ¢4 () — oo and x +— q_(T) — q_oo belong
to LY((b,0)) and L'((—o0,a)), respectively. Then the statements (i)-(iii) in
Theorem 3.2 hold with Ny = qoo and - = —q_o.

Remark 3.5 In the case a = b = 0 in Corollary 3.4 the indefinite Sturm-
Liouville operator A from (3.4) reduces to the self-adjoint operator

Ay=sen()(—y" +qy),  domA =Dy,

in the Krein space ngn (R). The spectral properties of such differential op-

erators were comprehensively studied by I.M. Karabash, A.S. Kostenko and
M.M. Malamud, see, e.g., [22-27] and [9] for ¢ = 0. In particular it was
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proved with the help of asymptotzc properties of thchmarsh Weyl functions
(see [15,30]) corresponding to —-L; + ¢, and — de +q- on Ry and R_, re-
spectively, that p(A) is nonempty for any real potential q € L}, .(R), and hence
local definitizability of A is implied by [3, Theorem 2.2].
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