
On the Spectral Theory of Singular Indefinite

Sturm-Liouville Operators

Jussi Behrndt

Technische Universität Berlin, Institut für Mathematik, MA 6–4,

Straße des 17. Juni 136, D–10623 Berlin, Germany

Abstract

We consider a singular Sturm-Liouville differential expression with an indefinite
weight function and we show that the corresponding self-adjoint differential operator
in a Krein space locally has the same spectral properties as a definitizable operator.
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1 Introduction

In this paper we investigate the spectral properties of a Sturm-Liouville oper-
ator associated to the differential expression
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)
, p−1, q, r ∈ L1

loc(R). (1.1)

In contrast to standart Sturm-Liouville theory we deal with the case where
the weight function r changes its sign. If (1.1) is in the limit point case at
both singular endpoints ∞ and −∞, and the functions p, q, r are real, r 6= 0
a.e., then the usual maximal operator A associated to (1.1) is self-adjoint in
the Krein space (L2

|r|(R), [·, ·]), where the indefinite inner product is defined
by

[f, g] :=
∫

R

f(x)g(x) r(x) dx, f, g ∈ L2
|r|(R).

Spectral problems for such singular indefinite differential operators have been
considered in, e.g., [8,10–12], and, in particular, for the case r = sgn and p = 1
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in, e.g., [5,6,9,22–27]. Under suitable assumptions on the indefinite weight r
and the functions p and q the operator A turns out to be definitizable in the
sense of H. Langer and the well developed spectral theory for these operators
can be used for further investigations, see [28].

Here we are interested in more general indefinite differential expressions of
the form (1.1) and our main goal is to show that under certain assumptions
the self-adjoint differential operator A in (L2

|r|(R), [·, ·]) at least locally has the
same spectral properties as a definitizable operator. For this we assume that
the weight function r is negative on an interval (−∞, a) and positive on an
interval (b,∞). With the help of Glazmans decomposition method A can be
regarded as a finite-dimensional perturbation in resolvent sense of the direct
sum of three self-adjoint differential operators A−, Aab and A+ which corre-
spond to restrictions of (1.1) onto the intervals (−∞, a), (a, b) and (b,∞) and
are subject to suitable boundary conditions. The singular differential operators
A+ and A− act in Hilbert spaces (or anti-Hilbert spaces) and Aab is a regular
indefinite Sturm-Liouville expression which is known to be definitizable, cf.
[8]. Under the assumption that A+ and A− are semibounded the direct sum
of A−, Aab and A+ becomes a locally definitizable operator. Making use of
a recent perturbation result from [3] we show in Theorem 3.2 that A is also
locally definitizable and the region of definitizability is expressed in terms of
the essential spectra of A+ and A−. A typical difficulty in our general setting
is to ensure that the resolvent set ρ(A) of A is nonempty; here we will impose
a condition on the existence of absolutely continuous spectrum of one of the
singular differential operators A+ or A− and make use of Titchmarsh-Weyl
theory.

The paper is organized as follows. In Section 2 we briefly recall the defini-
tions and some important properties of definitizable and locally definitizable
self-adjoint operators. Furthermore we provide the reader with a very short
introduction into extension and spectral theory of symmetric and self-adjoint
operators in Krein spaces with the help of boundary triples and Weyl func-
tions. Section 3 is devoted to the analysis of the spectral properties of the
self-adjoint operator A associated to (1.1) and contains our main result on
local definitizability of A.

2 Locally definitizable self-adjoint operators in Krein spaces

We briefly recall the definitions and basic properties of definitizable and locally
definitizable self-adjoint operators in Krein spaces. For a detailed exposition
we refer the reader to the fundamental papers [20,28].

Let in the following (K, [·, ·]) be a Krein space and let A be a self-adjoint
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operator in (K, [·, ·]). A point λ ∈ C is said to belong to the approximative
point spectrum σap(A) of A if there exists a sequence (xn) ⊂ domA with
‖xn‖ = 1, n = 1, 2, . . . , and ‖(A − λ)xn‖ → 0 if n → ∞. If λ ∈ σap(A) and
each sequence (xn) ⊂ domA with ‖xn‖ = 1, n = 1, 2, . . . , and ‖(A−λ)xn‖ → 0
for n→ ∞, satisfies

lim inf
n→∞

[xn, xn] > 0
(
lim sup
n→∞

[xn, xn] < 0
)
,

then λ is called a spectral point of positive (resp. negative) type of A, cf. [20,29].
The self-adjointness of A implies that the spectral points of positive and neg-
ative type are real. An open set ∆ ⊂ R is said to be of positive (negative)
type with respect to A if ∆∩σ(A) consists of spectral points of positive (resp.
negative) type. We say that an open set ∆ ⊂ R is of definite type with respect
to A if ∆ is either of positive or negative type with respect to A. The following
definition can be found in a more general form in, e.g. [19].

Definition 2.1 Let I ⊂ R be a closed interval and let A be a self-adjoint
operator in (K, [·, ·]) such σ(A) ∩ (C\R) consists of isolated points which are
poles of the resolvent of A, and no point of R\I is an accumulation point of
the non-real spectrum of A. Then A is said to be definitizable over C\I, if the
following holds.

(i) Every point µ ∈ R\I has an open connected neighborhood Uµ in R such
that both components of Uµ\{µ} are of definite type with respect to A.

(ii) For every finite union ∆ of open connected subsets of R, ∆ ⊂ R\I, there
exists m ≥ 1, M > 0 and an open neighborhood O of ∆ in C such that

‖(A− λ)−1‖ ≤M(1 + |λ|)2m−2 |Imλ|−m

holds for all λ ∈ O\R.

If A is a self-adjoint operator in K such that σ(A)∩ (C\R) consists of at most
finitely many poles of the resolvent of A, and (i) and (ii) in Definition 2.1 hold
with R\I replaced by R, then A is said to be definitizable. This is equivalent
to the fact that there exists a polynomial p such that [p(A)x, x] ≥ 0 holds
for all x ∈ dom p(A) and ρ(A) 6= ∅, cf. [20, Theorem 4.7] and [28]. Roughly
speaking, a self-adjoint operator A which is locally definitizable over C\I can
be regarded as the direct sum of a definitizable operator and an operator with
spectrum in a neighborhood of I, see [20, Theorem 4.8].

Let I ⊂ R be a closed interval and let A be a self-adjoint operator in K which
is definitizable over C\I. Then A possesses a local spectral function δ 7→ E(δ)
on R\I which is defined for all finite unions δ of connected subsets of R\I the
endpoints of which belong to R\I and are of definite type, see [20, Section 3.4
and Remark 4.9]. We note that an open set ∆ ⊂ R\I is of positive (negative)
type with respect to A if and only if for every finite union δ of open intervals,
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δ ⊂ ∆, such that the boundary points of δ in R are of definite type, the
spectral subspace (E(δ)K, [·, ·]) (resp. (E(δ)K,−[·, ·])) is a Hilbert space. As
a generalization of open sets of positive and negative type we introduce open
sets of type π+ and type π− in the next definition, cf. [19].

Definition 2.2 Let I ⊂ R be a closed interval and let A be a self-adjoint
operator in K which is definitizable over C\I An open set ∆ ⊂ R\I is called
of type π+ (type π−) with respect to A if for every finite union δ of open
intervals, δ ⊂ ∆, such that the boundary points of δ in R are of definite type,
the spectral subspace (E(δ)K, [·, ·]) is a Pontryagin space with finite rank of
negativity (resp. positivity).

We remark that spectral points in sets of type π+ and type π− can also be
characterized with the help of approximative eigensequences, see [2].

In the proof of our main result in the next section locally definitizable operators
will arise as self-adjoint extensions of a symmetric operator. We use the notion
of so-called boundary triples and associated Weyl functions for the description
of the closed extensions of a symmetric operator in a Krein space, see [12] and,
e.g., [13].

Definition 2.3 Let S be a densely defined closed symmetric operator in
(K, [·, ·]). A triple {G,Γ0,Γ1} is said to be a boundary triple for the adjoint
operator S+, if G is a Hilbert space and Γ0,Γ1 : domS+ → G are linear map-
pings such that Γ :=

(
Γ0

Γ1

)
: domS+ → G2 is surjective, and the ”abstract

Lagrange identity”

[S+f, g] − [f, S+g] = (Γ1f,Γ0g) − (Γ0f,Γ1g)

holds for all f, g ∈ domS+.

Let S be a densely defined closed symmetric operator in K and let {G,Γ0,Γ1}
be a boundary triple for S+. Then A0 := S+ ↾ ker Γ0 and A1 := S+ ↾ ker Γ1 are
self-adjoint extensions of S in K. Furthermore, if Θ is self-adjoint in G, then
the extension AΘ := S+ ↾ ker(Γ1 −ΘΓ0) is a self-adjoint operator in the Krein
space K.

Assume that the self-adjoint operator A0 = S+ ↾ ker Γ0 has a nonempty resol-
vent set. Then for each λ ∈ ρ(A0) we have domS+ = domA0+̇ ker(S+ − λ)
and hence the operator

M(λ) = Γ1

(
Γ0 ↾ ker(S+ − λ)

)−1
∈ L(G)

is well-defined. Here L(G) denotes the space of everywhere defined bounded
linear operators in G. The L(G)-valued function λ 7→M(λ) is called the Weyl
function of the boundary triple {G,Γ0,Γ1}, M is holomorphic on ρ(A0) and
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symmetric with respect to the real axis, i.e. M(λ) = M(λ)∗ holds for all
λ ∈ ρ(A0). The Weyl function can be used to describe the spectral properties
of the closed extensions of S, see [12] for details. We will later in particular use
the fact that a point λ ∈ ρ(A0) belongs to ρ(AΘ), AΘ = S+ ↾ ker(Γ1 − ΘΓ0),
if and only if 0 ∈ ρ(M(λ) − Θ).

Finally we remark that if K is a Hilbert space, S is a closed densely defined
symmetric operator in K and M is the Weyl function of a boundary triple for
the adjoint operator S∗, then M is a Nevanlinna function with the additional
property 0 ∈ ρ(ImM(λ)) for all λ ∈ C\R, cf. [13].

3 Spectral properties of a class of singular indefinite Sturm-

Liouville operators

In this section we investigate the spectral properties of an operator associated
to the Sturm-Liouville differential expression

1

r

(
−
d

dx

(
p
d

dx

)
+ q

)
, (3.1)

where p−1, q, r ∈ L1
loc(R) are assumed to be real valued functions such that

p > 0 and r 6= 0 for a.e. x ∈ R. Here we are interested in the case that the
weight function r has different signs at ∞ and −∞, more precisely, we will
assume that the following condition (I) holds.

(I) There exist a, b ∈ R, a < b, such that the restrictions r+ := r ↾(b,∞) and
r− := r ↾ (−∞, a) satisfy r+(λ) > 0 for a.e. λ ∈ (b,∞) and r−(λ) < 0 for
a.e. λ ∈ (−∞, a).

We note that the case r+ < 0 and r− > 0 can be treated analogously and
the case that r+ and r− have the same signs is not of special interest to us,
cf. Remark 3.3. In the following we agree to choose a, b ∈ R in such a way
that the sets {x ∈ (a, b) | r(x) > 0} and {x ∈ (a, b) | r(x) < 0} have positive
Lebesgue measure. This is no restriction.

Let L2
|r|(R) be the Hilbert space of all equivalence classes of measurable func-

tions f defined on R for which
∫
R
|f |2|r| is finite. We equip L2

|r|(R) with the
inner product

[f, g] :=
∫

R

f(x)g(x)r(x)dx, f, g ∈ L2
|r|(R),

and denote the corresponding Krein space (L2
|r|(R), [·, ·]) by L2

r(R). As a funda-

mental symmetry in L2
r(R) we choose (Jf)(x) := (sgn r(x))f(x), f ∈ L2

r(R),
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then [J ·, ·] coincides with the usual Hilbert scalar product (f, g) =
∫
R
fg|r| on

L2
|r|(R).

Let us assume that the Sturm-Liouville differential expression

ℓ :=
1

|r|

(
−
d

dx

(
p
d

dx

)
+ q

)
(3.2)

is in the limit point case at both singular endpoints ∞ and −∞. Then it is
well-known that the operator By = ℓ(y) defined on the usual maximal domain

Dmax =
{
y ∈ L2

|r|(R) : y, py′ ∈ ACloc(R), ℓ(y) ∈ L2
|r|(R)

}
, (3.3)

is self-adjoint in the Hilbert space L2
|r|(R), see e.g. [14,31–33].

In the following we are interested in the spectral properties of the indefinite
Sturm-Liouville operator

Ay := JBy =
1

r

(
−(py′)′ + qy

)
, domA = dom JB = Dmax, (3.4)

which is self-adjoint in the Krein space L2
r(R). We shall interpret the operator

A as a finite rank perturbation in resolvent sense of the direct sum of three
differential operators A−, Aab and A+ defined in the sequel. Let us denote the
restrictions of p and q onto the intervals (−∞, a) and (b,∞) by p−, p+ and
q−, q+, respectively. Moreover, we denote the restriction of r, p and q onto the
finite interval (a, b) by rab, pab and qab. Besides the differential expression ℓ in
(3.2) we shall deal with the differential expressions ℓ−, ℓ+ and ℓab defined by

ℓ− :=
1

−r−

(
d

dx

(
p−

d

dx

)
− q−

)
, ℓ+ :=

1

r+

(
−
d

dx

(
p+

d

dx

)
+ q+

)
, (3.5)

and

ℓab :=
1

|rab|

(
−
d

dx

(
pab

d

dx

)
+ qab

)
, (3.6)

respectively, and operators associated to them. Note that ℓ+ and ℓ− are in
the limit point case at ∞ and −∞ and regular at the endpoints b and a,
respectively, whereas ℓab is regular at both endpoints a and b. By Dmax,+

(Dmax,− and Dmax,ab) we denote the set in (3.3) if r, R and ℓ are replaced
by r+, (b,∞) and ℓ+ (resp. r−, (−∞, a), ℓ− and rab, (a, b), ℓab). We shall in
particular make use of the differential operators

A+g = ℓ+(g), domA+ =
{
g ∈ Dmax,+ : g(b) = 0

}
,

A−f = ℓ−(f), domA− =
{
f ∈ Dmax,− : f(a) = 0

}
,

(3.7)
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and

Aabh =
1

rab

(
−(pabh

′)′ + qabh
)
,

domAab =
{
h ∈ Dmax,ab : h(a) = h(b) = 0

}
.

Here A+ is self-adjoint in the Hilbert space L2
|r+|((b,∞)) = L2

r+
((b,∞)) and A−

is self-adjoint in the Hilbert space L2
|r−|((−∞, a)) = L2

−r−
((−∞, a)) as well as

in the anti-Hilbert space L2
r−

((−∞, a)) = (L2
|r−|((−∞, a)),−(·, ·)). Moreover,

Aab is self-adjoint in the Krein space L2
rab

((a, b)) and the spectrum σ(Aab) is
discrete and consists of eigenvalues of multiplicity one which accumulate to
∞ and −∞, see [8, Propositions 1.8 and 2.2].

Besides condition (I) we will assume that the following condition (II) is satis-
fied.

(II) The operator A+ is semibounded from below and the operator A− is
semibounded from above.

Sufficient criteria on r+, p+ and q+ or r−, p− and q− such that A+ or A−

are semibounded can be found in, e.g. [14,31–33] (see also Corollary 3.4), and
the essential spectra σess(A+) and σess(A−) can be described. The next lemma
states that condition (II) is independent of the choice of the finite interval
(a, b) and the self-adjoint realizations A+ and A− in (3.7). The proof is based
on Glazmans decomposition method (see [18]) and be found in, e.g., [1].

Lemma 3.1 Let a, b and A+, A− be as above and assume that ã, b̃ ∈ R sat-
isfy condition (I). Let ℓ̃+ and ℓ̃− be the differential expressions on (b̃,∞) and
(−∞, ã) defined analogously to ℓ+ and ℓ− in (3.5), and let Ã+ and Ã− be ar-
bitrary self-adjoint realizations of ℓ̃+ and ℓ̃− in the Hilbert spaces L2

r̃+
((b̃,∞))

and L2
−r̃−

((−∞, ã)), respectively. Then Ã+ is semibounded from below, Ã− is
semibounded from above and we have

σess(A+) = σess(Ã+) and σess(A−) = σess(Ã−).

Assume that condition (II) holds and let η+, η− ∈ R be lower and upper
bounds for the essential spectra of A+ and A−, respectively, that is

σess(A+) ⊆ [η+,∞) and σess(A−) ⊆ (−∞, η−]. (3.8)

The following theorem is the main result in our paper. In terms of the bounds
η+ and η− of the essential spectra of A+ and A− we characterize the regions
where the indefinite Sturm-Liouville operator A from (3.4) is definitizable. In
order to ensure that the resolvent set ρ(A) of A is nonempty we assume that
there exists a point in the absolutely continuous spectrum σac of A+ or A−
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which is an eigenvalue of Aab. We note that for the special case r(x) = sgn (x)
and p(x) = 1, x ∈ R, this assumption is not necessary, see [22–27], where
asymptotic properties of certain Titchmarsh-Weyl functions from [15,30] were
used to ensure ρ(A) 6= ∅, cf. Corollary 3.4 and Remark 3.5. The emphasis in
Theorem 3.2 is on cases (i) and (ii) where the essential spectra of A+ and
A− overlap, i.e., η+ ≤ η−. If the essential spectra of A+ and A− are sepa-
rated (case (iii)), then ρ(A) is automatically nonempty and A is definitizable
(over C). This can easily be deduced from [8] (cf. [6, Proposition 6.2]).

Theorem 3.2 Let A be the self-adjoint indefinite Sturm-Liouville operator in
the Krein space L2

r(R) from (3.4) and assume that conditions (I) and (II) are
satisfied. Choose η+, η− ∈ R as in (3.8) and suppose that there exists a point
µ ∈ σ(Aab) such that

µ ∈ σac(A−) ∩ ρ(A+) or µ ∈ σac(A+) ∩ ρ(A−).

Then the following holds.

(i) If η+ < η−, then A is definitizable over C\[η+, η−].
(ii) If η+ = η−, then A is definitizable over C\{η+}. If, in addition,

σp(A+) ∩ (η+ − ε, η+) = ∅ and σp(A−) ∩ (η−, η− + ε) = ∅

for some ε > 0, then A is definitizable.
(iii) If η− < η+, then A is definitizable and σ(A) ∩ (η−, η+) consists of eigen-

values of A with η+ and η− as only possible accumulation points.

Furthermore, the interval (−∞, η+) is of type π− with respect to A and the
interval (η−,∞) is of type π+ with respect to A.

Proof. The regular indefinite Sturm-Liouville operator

Sabh =
1

rab

(
−(pabh

′)′ + qabh
)
,

domSab =
{
h ∈ Dmax,ab : h(a) = h(b) = (pabh

′)(a) = (pabh
′)(b) = 0

}
,

is a densely defined closed symmetric operator in the Krein space L2
rab

((a, b))
and has defect two, its adjoint S+

ab is given by

S+
abh =

1

rab

(
−(pabh

′)′ + qabh
)
, domS+

ab = Dmax,ab.

We leave it to the reader to check that {C
2,Γab0 ,Γ

ab
1 }, where

Γab0 h =



−(pabh

′)(a)

(pabh
′)(b)


 and Γab1 h =



h(a)

h(b)


 ,
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is a boundary triple for S+
ab. Note that the self-adjoint operator Aab coincides

with Aab,1 = S+
ab ↾ker Γ1 and that the Weyl function mab of {C2,Γab0 ,Γ

ab
1 } is a

two-by-two matrix-valued holomorphic function on C\σp(Aab,0), where Aab,0 =
S+
ab ↾ ker Γ0. According to [8] the self-adjoint operators Aab,i, i = 0, 1, are

definitizable, so that in particular σ(Aab,i)∩ (C\R) consists of at most finitely
many eigenvalues. Let ϕλ, ψλ ∈ L2

rab
((a, b)) be the fundamental solutions of

−(pabh
′)′ + qabh = λrabh, λ ∈ C, satisfying the boundary conditions

ϕλ(a) = 1, (pabϕ
′
λ)(a) = 0 and ψλ(a) = 0, (pabψ

′
λ)(a) = 1.

Since ker(S+
ab − λ) = sp {ϕλ, ψλ} and x 7→ ϕλ(x)(pabψ

′
λ)(x) − (pabϕ

′
λ)(x)ψλ(x)

has the constant value 1 we find that the Weyl function mab is given by

mab(λ) =
1

(pabϕ′
λ)(b)




(pabψ
′
λ)(b) 1

1 ϕλ(b)


 .

Next we define the singular Sturm-Liouville operators

S−f = ℓ−(f), domS− =
{
f ∈ Dmax,− : f(a) = (p−f

′)(a) = 0
}
,

S+g = ℓ+(g), domS+ =
{
g ∈ Dmax,+ : g(b) = (p+g

′)(b) = 0
}
,

which are closed densely defined symmetric operators of defect one in the
Hilbert spaces L2

−r−
((−∞, a)) and L2

r+
((b,∞)), respectively. We will re-

gard S− in the following as a symmetric operator in the anti-Hilbert space
L2
r−

((−∞, a)) = (L2
−r−

((−∞, a)),−(·, ·)). Then {C,Γ0,−,Γ1,−}, where

Γ0,−f := f(a), Γ1,−f := −(p−f
′)(a), f ∈ domS+

− = Dmax,−,

is a boundary triple for the adjoint S+
−f = ℓ−(f) in L2

r−
((−∞, a)) and

{C,Γ0,+,Γ1,+},

Γ0,+g := g(b), Γ1,+b := (p+g
′)(b), g ∈ domS∗

+ = Dmax,+,

is a boundary triple for the adjoint S∗
+(g) = ℓ+(g) in L2

r+
((b,∞)). The Weyl

functions corresponding to {C,Γ0,−,Γ1,−} and {C,Γ0,+,Γ1,+} will be denoted
by m− and m+. Note that m+ and −m− are scalar Nevanlinna functions
holomorphic on ρ(A+) and ρ(A−), respectively, so that for λ ∈ C

+ we have
Imm+(λ) > 0 and Imm−(λ) < 0.

The operator S− ×S+ ×Sab is a closed densely defined symmetric operator of
defect 4 in the Krein space L2

r−
((−∞, a))[+̇]L2

r+
((b,∞))[+̇]L2

rab
((a, b)) and it
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is straightforward to check that {C
4, Γ̃0, Γ̃1}, where

Γ̃0{f, g, h} :=




Γ0,−f

Γ0,+g

Γab0 h



, Γ̃1{f, g, h} :=




Γ1,−f

Γ1,+g

Γab1 h



,

{f, g, h} ∈ domS+
− × domS∗

+ × domSab is a boundary triple for the adjoint
operator S+

− ×S∗
+×S+

ab. Note that C\R, with the possible exception of finitely
many eigenvalues of Aab,i, belongs to the resolvent set of the self-adjoint op-
erators S+

− × S∗
+ × S+

ab ↾ ker Γ̃i, i = 0, 1. The Weyl function corresponding to

{C4, Γ̃0, Γ̃1} is given by

M̃(λ) =




m−(λ) 0 0 0

0 m+(λ) 0 0

0 0
(pabψ

′

λ
)(b)

(pabϕ
′

λ
)(b)

1
(pabϕ

′

λ
)(b)

0 0 1
(pabϕ

′

λ
)(b)

ϕλ(b)
(pabϕ

′

λ
)(b)




, λ ∈ ρ(A−) ∩ ρ(A+) ∩ ρ(Aab,0).

If we identify L2
r−

((−∞, a))[+̇]L2
r+

((b,∞))[+̇]L2
rab

((a, b)) with the Krein space

L2
r(R) then the self-adjoint operator S+

− × S∗
+ × S+

ab ↾ker(Γ̃1 − Θ̃Γ̃0), where

Θ̃ =




0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0




,

coincides with the self-adjoint operator A from (3.4). In fact, an element
{f, g, h} ∈ domS+

− × domS∗
+ × domSab belongs to ker(Γ̃1 − Θ̃Γ̃0) if and only

if

f(a) = h(a), (p−f
′)(a) = (pabh

′)(a)

and

g(b) = h(b), (p+g
′)(b) = (pabh

′)(b)

holds, that is, {f, g, h} ∈ Dmax = domA.

We claim that ρ(A) is nonempty. For this it suffices to show that ker(M̃(λ)−Θ̃)
is trivial for some λ ∈ ρ(A−)∩ρ(A+)∩ρ(Aab,0), see the end of Section 2. Assume
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that

det(M̃(λ) − Θ̃) =m−(λ)

(
m+(λ) detmab(λ) −

(pabψ
′
λ)(b)

(pabϕ′
λ)(b)

)

−m+(λ)
ϕλ(b)

(pabϕ′
λ)(b)

+ 1 = 0

for all λ ∈ ρ(A−)∩ ρ(A+)∩ ρ(Aab,0). Let µ ∈ σp(Aab)∩R be as in the assump-
tions of the theorem and let, e.g., µ ∈ σac(A−) ∩ ρ(A+). Then the functions
mab and m+ are holomorphic in an open neighborhood Oµ of µ and take
real values in Oµ ∩ R, since Aab = S+

ab ↾ ker Γ1 and µ ∈ ρ(A+). By standart
Titchmarsh-Weyl theory the limit m−(λ+ i0) = limδ→+0m−(λ+ iδ) from the
upper half-plane exists for a.e. λ ∈ R and by [7, Proposition 4.2] (see also [17])
the Lebesgue measure of the set

(µ− ε, µ + ε) ∩ {x ∈ R : Imm−(λ+ i0) < 0}

is positive for every ε > 0. As the imaginary part of det(M̃(λ) − Θ̃) vanishes
for each λ ∈ ρ(A−) ∩ ρ(A+) ∩ ρ(Aab,0) it follows that

m+(λ) =
(pabψ

′
λ)(b)

(pabϕ′
λ)(b) detmab(λ)

=
(pabψ

′
λ)(b)

ψλ(b)

holds for all real λ in a neighborhood of µ, λ 6= µ, with Imm−(λ + i0) < 0.
But the expression on the right hand side has a pole at µ, which contradicts
the holomorphy of m+. Therefore ρ(A) 6= ∅ holds.

The operator A′ := A− × Aab × A+ is self-adjoint in the Krein space L2
r(R)

and C\R, with the possible exception of finitely many eigenvalues of Aab,
belongs to ρ(A′). Here we regard A− as a self-adjoint operator in the anti-
Hilbert space L2

r−
((−∞, a)). Since ρ(A) ∩ ρ(A′) 6= ∅ and both A and A′ are

self-adjoint extensions of a symmetric operator of defect 4 we conclude

dim
(
ran

(
(A− λ)−1 − (A′ − λ)−1

))
≤ 4, λ ∈ ρ(A) ∩ ρ(A′). (3.9)

The interval (−∞, η+) consists of eigenvalues of A+ with η+ as only possible
accumulation point and each point in σ(A+) is a spectral point of positive
type. By [8] Aab is a definitizable operator with the additional property that
the hermitian form [Aab·, ·] has a finite number of negative squares. Therefore
the eigenvalues of Aab in (−∞, η+) are, with the exception of finitely many,
of negative type in the Krein space L2

rab
((a, b)). Moreover σ(A−) consists only

of negative spectral points and this implies that the interval (−∞, η+) is of
type π− with respect to A′ and that for some ν, −∞ < ν < η+, the interval
(−∞, ν) is of negative type with respect to A′. A similar argument shows that
(η−,∞) is of type π+ with respect to A′ and that for some ζ, η− < ζ < ∞,
the interval (ζ,∞) is of positive type with respect to A′.
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Therefore, if e.g. η+ < η−, then A′ is definitizable over C\[η+, η−] and [3,
Theorem 2.2] on finite rank perturbations of locally definitizable operators
together with (3.9) implies that the indefinite Sturm-Liouville operator A is
definitizable over C\[η+, η−]. This proves assertion (i). An analogous argument
proves the first assertion in (ii). Note that under the additional conditions
σp(A+) ∩ (η+ − ε, η+) = ∅ and σp(A−) ∩ (η−, η− + ǫ) = ∅ the operator A′

is definitizable and hence so is A, cf. [21, Theorem 1]. Assertion (iii) can be
deduced from [8] or follows in a similar manner as (i) and (ii), here it is
again sufficient to use the result on finite rank perturbations of definitizable
operators from [21]. Finally, since (−∞, η+) ((η−,∞)) is of type π− (resp.
type π+) with respect to A′ it follows from [2,4] (see also [3, Theorem 2.1]) and
(3.9) that the interval (−∞, η+) ((η−,∞)) is also of type π− (resp. type π+)
with respect to A. �

Remark 3.3 We note that if condition (I) is replaced by an analogous con-
dition where r ↾ (−∞, a) is positive, r ↾ (b,∞) is negative and η+ is defined
to be the lower bound of σess(A−) and η− is defined to be the upper bound of
σess(A+), then the statements in Theorem 3.2 remain true. The case that r
has the same sign on (−∞, a) and (b,∞) leads automatically to a definitizable
operator A.

In the next corollary we impose some extra conditions on r, p and q such that
conditions (I) and (II) are met and

(η+,∞) ⊂ σac(A+) and (−∞, η−) ⊂ σac(A−)

hold (see [33, Satz 14.25]), that is, the assumptions in Theorem 3.2 are fulfilled.

Corollary 3.4 Let r(x) = sgnx and p(x) = 1 for x ∈ (−∞, a) ∪ (b,∞) and
some a, b ∈ R, a ≤ 0 ≤ b. Suppose that the limits

q∞ := lim
x→∞

q+(x) and q−∞ := lim
x→−∞

q−(x)

exist and that the functions x 7→ q+(x) − q∞ and x 7→ q−(x) − q−∞ belong
to L1((b,∞)) and L1((−∞, a)), respectively. Then the statements (i)-(iii) in
Theorem 3.2 hold with η+ = q∞ and η− = −q−∞.

Remark 3.5 In the case a = b = 0 in Corollary 3.4 the indefinite Sturm-
Liouville operator A from (3.4) reduces to the self-adjoint operator

Ay = sgn (·)
(
−y′′ + qy

)
, domA = Dmax,

in the Krein space L2
sgn (R). The spectral properties of such differential op-

erators were comprehensively studied by I.M. Karabash, A.S. Kostenko and
M.M. Malamud, see, e.g., [22–27] and [9] for q = 0. In particular it was
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proved with the help of asymptotic properties of Titchmarsh-Weyl functions
(see [15,30]) corresponding to − d2

dx2 + q+ and − d2

dx2 + q− on R+ and R−, re-
spectively, that ρ(A) is nonempty for any real potential q ∈ L1

loc(R), and hence
local definitizability of A is implied by [3, Theorem 2.2].
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