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Abstract

In this paper second order elliptic boundary value problems on bounded domains
Ω ⊂ Rn with boundary conditions on ∂Ω depending nonlinearly on the spectral pa-
rameter are investigated in an operator theoretic framework. For a general class of
locally meromorphic functions in the boundary condition a solution operator of the
boundary value problem is constructed with the help of a linearization procedure.
In the special case of rational Nevanlinna or Riesz-Herglotz functions on the bound-
ary the solution operator is obtained in an explicit form in the product Hilbert
space L2(Ω) ⊕ (L2(∂Ω))m, which is a natural generalization of known results on
λ-linear elliptic boundary value problems and λ-rational boundary value problems
for ordinary second order differential equations.
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1 Introduction

Let Ω be a bounded domain in Rn, n > 1, with smooth boundary ∂Ω and
consider a uniformly elliptic differential expression

` = −
n∑

j,k=1

∂j ajk ∂k + a (1.1)

on Ω with coefficients ajk, a ∈ C∞(Ω) such that ajk = akj for all j, k = 1, . . . , n
and a is real-valued. The main objective of this paper is to solve the following
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eigenparameter dependent boundary value problem: For a given function g ∈
L2(Ω) and λ in some open set D ⊂ C find f ∈ L2(Ω) such that

(`− λ)f = g and τ(λ)f |∂Ω =
∂fD

∂ν`

∣∣∣
∂Ω

(1.2)

holds. Here τ is assumed to be a meromorphic function on D with values in the
space of bounded linear operators on L2(∂Ω), λ is a point of holomorphy of τ ,
f is a function in the maximal domain Dmax = {h ∈ L2(Ω) : `h ∈ L2(Ω)} and
fD is the component of f which lies in the domain of the Dirichlet operator.

For the special case of a selfadjoint constant τ in the boundary condition in
(1.2) the boundary value problem is uniquely solvable for all λ which belong
to the resolvent set of the selfadjoint partial differential operator

Tτf = `f, dom Tτ =

{
f ∈ Dmax : τf |∂Ω =

∂fD

∂ν`

∣∣∣
∂Ω

}
, (1.3)

in L2(Ω) and the unique solution of (1.2) is given by f = (Tτ−λ)−1g. Similarly,
the nontrivial solutions of the associated homogeneous problem, i.e., g = 0 in
(1.2), are given by the eigenvectors corresponding to the (real) eigenvalues λ
of Tτ .

Elliptic problems with λ-linear boundary conditions were already considered
by J. Ercolano and M. Schechter in [35,36] and a solution operator Ã in the
larger space L2(Ω)⊕L2(∂Ω) was constructed and its spectral properties were
studied. Again the resolvent of Ã, or, more precisely, the compression of the
resolvent onto the basic space L2(Ω),

f = PL2(Ω)(Ã− λ)−1 ¹L2(Ω) g,

yields the unique solution f of (1.2), and the eigenvalues and the (components
in L2(Ω) of the) eigenvectors of Ã are the nontrivial solutions of the homo-
geneous problem. We emphasize that the solution operator Ã in the λ-linear
case is selfadjoint with respect to the Hilbert scalar product in L2(Ω)⊕L2(∂Ω)
if τ(λ) = λ and selfadjoint with respect to an indefinite (Krein space) inner
product if τ(λ) = −λ. The spectral properties of selfadjoint operators in Krein
spaces differ essentially from the spectral properties of selfadjoint operators
in Hilbert spaces and this affects the solvability of (1.2). E.g., if τ(λ) = −λ
in (1.2), then the solution operator Ã and the homogeneous boundary value
problem may have non-real eigenvalues, see [15].

The main objective of this paper is to go far beyond the λ-linear case and
to investigate the solvability of the boundary value problem (1.2) for a large
class of operator-valued functions in the boundary condition. Here it will be
assumed that τ is a meromorphic function on some simply connected open set
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D ⊂ C+ with values in the space L(L2(∂Ω)) of bounded linear operators on
L2(∂Ω) and that τ admits a minimal representation

τ(λ) = Re τ(λ0) + γ+
(
(λ− Re λ0) + (λ− λ0)(λ− λ̄0)(A0 − λ)−1

)
γ (1.4)

with the help of the resolvent of a selfadjoint operator or relation A0 in a
Krein or Hilbert space H and a mapping γ ∈ L(L2(∂Ω),H). We mention that,
e.g., locally holomorphic functions, Nevanlinna and generalized Nevanlinna
functions, and so-called definitizable and locally definitizable functions can be
represented in the form (1.4), see [2,28,45–48,50,54].

For the construction of a solution operator Ã of the boundary value prob-
lem (1.2) we make use of the notion of (generalized) boundary triples, and
associated Weyl or M -functions, a convenient and useful tool for the spectral
analysis of the selfadjoint extensions of an arbitrary symmetric operator with
equal deficiency indices, see, e.g., [17,19,20,25,26,40]. Boundary triples for the
maximal operator Tmaxf = `f , f ∈ Dmax, generated by the elliptic differential
expression in L2(Ω) were used (also in the non-symmetric case) in [16,39,43]
and appear in a slightly different form already in the fundamental paper [41]
of G. Grubb. One of the main ingredients in the construction of a solution
operator Ã of (1.2) is to realize the function τ in the boundary condition as
the Weyl function corresponding to some boundary triple, cf. [21] and, e.g.,
[6,8,10], and [3,9,18,27,29–31,53] for other approaches. So far this is possible
only under rather restrictive assumptions on the function τ , e.g., in the spe-
cial case of an L(L2(∂Ω))-valued Nevanlinna function one has to assume that
Im τ(λ) is boundedly invertible, see [25,54], or one has to apply the concept
of boundary relations and Weyl families from [22,23]. Therefore, in order to
treat the problem (1.2) in a general setting, we extend the existing results on
realizations of operator functions as Weyl functions in Section 3. Here a new
method is proposed in which an arbitrary operator function τ of the form (1.4)
can be realized as the Weyl function corresponding to a generalized boundary
triplet associated to a restriction of the selfadjoint operator or relation A0.
The idea is based on a decomposition of τ in a constant part and a “smaller”
part which satisfies a special strictness condition, see Definition 3.4 and [7]
for the special case of matrix Nevanlinna functions. Although the realization
obtained in Theorem 3.1 is in general not minimal it turns out that the con-
nections between the solvability of the boundary value problem (1.2) and the
spectral properties of the solution operator Ã are not affected at all.

The heart of the paper is Section 4, where the eigenvalue dependent bound-
ary value problem (1.2) is discussed. After recalling some basic properties on
elliptic operators associated to (1.1) and a corresponding ordinary boundary
triple for Tmax in Section 4.1 we construct a solution operator Ã of the elliptic
boundary value problem (1.2) in a larger Krein or Hilbert space L2(Ω) × K
with the help of the realization result from Section 3. The unique solution
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f ∈ L2(Ω) of (1.2) and the compression of the resolvent of Ã onto the basic
space L2(Ω) are then expressed in the form

f = PL2(Ω)(Ã− λ)−1 ¹L2(Ω) g = (TD − λ)−1g − γ(λ)
(
M(λ) + τ(λ)

)−1
γ(λ̄)∗g,

where TD is the Dirichlet operator asssociated to ` in L2(Ω), M denotes the
Weyl or M -function corresponding to an ordinary boundary triple for Tmax and
γ(·) is the associated γ-field, cf. Proposition 4.1. We point out that for a con-
stant selfadjoint boundary condition τ the solution operator Ã coincides with
Tτ in (1.3) and the above formula reduces to the well-known Krein formula for
canonical selfadjoint extensions in L2(Ω) of the minimal operator associated
to `, cf. [1,8,16,37–39,44,56–60]. The proof of our main result Theorem 4.2 is
based on a coupling technique of ordinary and generalized boundary triples
which differs from the methods applied in earlier papers.

We illustrate our general approach in Section 4.3 in an example where τ is cho-
sen to be a rational L(L2(∂Ω))-valued Nevanlinna (or Riesz-Herglotz) function
of the form

τ(λ) = α1 + λβ1 +
m∑

i=2

β
1/2
i (αi − λ)−1β

1/2
i λ ∈

m⋂
i=2

ρ(αi). (1.5)

Here αi, βi are bounded selfadjoint operators on L2(∂Ω) and βi ≥ 0. In this
special case the solution operator from Theorem 4.2 acts in the product space
L2(Ω) ⊕ (L2(∂Ω))m and can be constructed in a more explicit form, cf. The-
orem 4.6 and Corollary 4.7 for the λ-linear problem. We point out that an
analogous selfadjoint solution operator in L2(I) ⊕ Cm of a Sturm-Liouville
problem on a bounded interval I ⊂ R with a scalar variant of (1.5) in the
boundary condition was constructed in [12].

The paper is organized as follows. In Section 2 we give a brief introduction
into the theory of ordinary boundary triples and generalized boundary triples
associated to symmetric operators and relations in Krein spaces. The corre-
sponding γ-field and Weyl function are defined and some of their basic proper-
ties are recalled. In Section 3 it is shown how an arbitrary operator function τ
of the form (1.4) can be interpreted as the Weyl function of some generalized
boundary triple and some special classes of operator functions are discussed in
Section 3.3. Section 4 treats the elliptic boundary value problem (1.2), in par-
ticular, a solution operator Ã is constructed, it is shown that the compressed
resolvent of Ã onto the basic space L2(Ω) yields the unique nontrivial solution
of the inhomogeneous problem (1.2) and that the eigenvalues and eigenvectors
of Ã solve the homogenous boundary value problem.

4



2 Generalized boundary triples and Weyl functions of symmetric
relations in Krein spaces

Let (H, [·, ·]) be a Krein space and let J be a corresponding fundamental
symmetry. We study linear relations in H, that is, linear subspaces of H×H.
The elements in a linear relation will be denoted by f̂ = {f, f ′}, f, f ′ ∈ H. For
the set of all closed linear relations in H we write C̃(H). Linear operators in
H are viewed as linear relations via their graphs. The linear space of bounded
linear operators defined on a Krein space H with values in a Krein space K is
denoted by L(H,K). If H = K we simply write L(H). We refer the reader to
[4,11,32,33] for more details on Krein spaces and linear operators and relations
acting therein.

We equip H×H with the Krein space inner product [[·, ·]] defined by[[
f̂ , ĝ

]]
:= i

(
[f, g′]− [f ′, g]

)
, f̂ = {f, f ′}, ĝ = {g, g′} ∈ H ×H. (2.1)

Then
(

0 −iJ
iJ 0

)
∈ L(H2) is a corresponding fundamental symmetry. Observe

that also in the special case when (H, [·, ·]) is a Hilbert space, [[·, ·]] is an
indefinite metric. In the following we shall often use at the same time inner
products [[·, ·]] arising from different Krein and Hilbert spaces as in (2.1). Then
we shall indicate these forms by subscripts, for example, [[·, ·]]H2 , [[·, ·]]G2 .

For a linear relation A in the Krein space H the adjoint relation A+ ∈ C̃(H)
is defined as the orthogonal companion of A in (H2, [[·, ·]]), i.e.,

A+ := A[[⊥]] =
{
f̂ ∈ H2 :

[[
f̂ , ĝ

]]
= 0 for all ĝ ∈ A

}
.

A linear relation A in H is said to be symmetric (selfadjoint) if A ⊂ A∗

(A = A∗, respectively). We say that a closed symmetric relation A ∈ C̃(H) is
of defect m ∈ N0 ∪ {∞}, if the deficiency indices

n±(JA) = dim ker
(
(JA)∗ ∓ i

)
of the closed symmetric relation JA in the Hilbert space (H, [J ·, ·]) are both
equal to m. Here ∗ denotes the adjoint with respect to the Hilbert scalar
product [J ·, ·]. Note that a symmetric relation A ∈ C̃(H) is of defect m if
and only if there exists a selfadjoint extension of A in H and each selfadjoint
extension A′ of A in H satisfies dim(A′/A) = m.

For symmetric operators in Hilbert spaces the concept of generalized boundary
triples or generalized boundary value spaces was introduced by V.A. Derkach
and M.M. Malamud in [26], see also [22, §5.2]. We use the same definition in
the Krein space case.
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Definition 2.1 Let A be a closed symmetric relation in the Krein space H
and let T be a linear relation in H such that T = A+. A triple {G, Γ0, Γ1} is
said to be a generalized boundary triple for A+, if G is a Hilbert space and
Γ = (Γ0, Γ1)

> : T → G × G is a linear mapping such that[[
f̂ , ĝ

]]
H2

=
[[
Γf̂ , Γĝ

]]
G2

(2.2)

holds for all f̂ , ĝ ∈ T , ran Γ0 = G and A0 := ker Γ0 is a selfadjoint relation in
H.

Let A ∈ C̃(H) be a closed symmetric relation in H. Then a generalized bound-
ary triple {G, Γ0, Γ1} for A+ exists if and only if A admits a selfadjoint exten-
sion in H. In this case the defect of A coincides with dimG. Assume now that
{G, Γ0, Γ1} is a generalized boundary triple for A+. Note that (2.2) can also
be written in the form

[f ′, g]− [f, g′] = (Γ1f̂ , Γ0ĝ)G − (Γ0f̂ , Γ1ĝ)G, f̂ = {f, f ′}, ĝ = {g, g′} ∈ T.
(2.3)

and that by (2.2) the operator Γ : T → G2, T = dom Γ, is an isometry from the
Krein space (H2, [[·, ·]]H2) to the Krein space (G2, [[·, ·]]G2), i.e. Γ−1 ⊂ Γ[[+]], where
[[+]] denotes the adjoint with respect to the Krein space inner products [[·, ·]]H2

in H2 and [[·, ·]]G2 in G2, respectively. From ran Γ0 = G and the selfadjointness

of A0 = ker Γ0 one concludes that also the inclusion Γ[[+]] ⊂ Γ−1 is true (cf.
[22, Lemma 5.5]) and therefore Γ is a unitary operator from (H2, [[·, ·]]H2) to
(G2, [[·, ·]]G2). This implies that Γ is closed and from [22, Proposition 2.3] we
conclude A = ker Γ and that ran Γ is dense in G2. Moreover, Γ is surjective if
and only if dom Γ = A+ holds.

Generalized boundary triples are a generalization of the well-known concept
of (ordinary) boundary triples, see, e.g., [17,19,20,25,26,40], and both notions
coincide if the defect of the symmetric relation is finite. In short, a general-
ized boundary triple with a surjective Γ is an ordinary boundary triple. The
following definition from [20] reads slightly different.

Definition 2.2 Let A be a closed symmetric relation in the Krein space H.
A triple {G, Γ0, Γ1} is said to be an ordinary boundary triple for A+, if G is a
Hilbert space and Γ = (Γ0, Γ1)

> : A+ → G × G is a surjective linear mapping
such that [[

f̂ , ĝ
]]
H2

=
[[
Γf̂ , Γĝ

]]
G2

(2.4)

holds for all f̂ , ĝ ∈ A+.

Let again A ∈ C̃(H) be symmetric and let {G, Γ0, Γ1} be a generalized bound-
ary triple for A+, T = dom Γ. If the resolvent set ρ(A0) of the selfadjoint
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relation A0 = ker Γ0 is nonempty, then it is not difficult to see that

A+ = A0 +̂ N̂λ,A+ , N̂λ,A+ =
{
{fλ, λfλ} : fλ ∈ Nλ,A+ = ker(A+ − λ)

}
,

holds for all λ ∈ ρ(A0). Here +̂ denotes the direct sum of subspaces. Since
T = A+ and A0 ⊂ T it follows that

N̂λ,T =
{
{fλ, λfλ} : fλ ∈ Nλ,T = ker(T − λ)

}
is dense in N̂λ,A+ and T can be decomposed as

T = A0 +̂ N̂λ,T = ker Γ0 +̂ N̂λ,T , λ ∈ ρ(A0). (2.5)

Associated to a generalized boundary triple are the so-called γ-field and Weyl
function. For symmetric operators in Hilbert spaces the following definition
can be found in [26].

Definition 2.3 Let A be a closed symmetric relation in the Krein space H and
let {G, Γ0, Γ1}, A0 = ker Γ0, be a generalized boundary triple for A+. Assume
ρ(A0) 6= ∅ and denote the projection in H×H onto the first component by π1.
The γ-field γ and Weyl function M corresponding to {G, Γ0, Γ1} are defined
by

γ(λ) = π1

(
Γ0 ¹N̂λ,T

)−1
and M(λ) = Γ1

(
Γ0 ¹N̂λ,T

)−1
, λ ∈ ρ(A0).

In the following proposition we collect some properties of the γ-field and the
Weyl function associated to a generalized boundary triple. For γ-fields and
Weyl functions of ordinary boundary triples the statements in Proposition 2.4
are well known (see, e.g., [20]) and in our slightly more general situation the
proofs are similar and in essence included in [8, § 2.3].

Proposition 2.4 Let A ∈ C̃(H) be symmetric, let {G, Γ0, Γ1} be a generalized
boundary triple for A+ and assume ρ(A0) 6= ∅, A0 = ker Γ0. Then the γ-field
λ 7→ γ(λ) ∈ L(G,H) and Weyl function λ 7→ M(λ) ∈ L(G) of {G, Γ0, Γ1} are
holomorphic on ρ(A0) and the identities

γ(λ) =
(
I + (λ− µ)(A0 − λ)−1

)
γ(µ) (2.6)

and

γ(λ̄)+h = Γ1

{
(A0 − λ)−1h, (I + λ(A0 − λ)−1)h

}
, h ∈ H, (2.7)

as well as

M(λ)−M(µ)∗ = (λ− µ̄)γ(µ)+γ(λ) (2.8)
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and

M(λ) = Re M(λ0) + γ(λ0)
+
(
(λ− Re λ0) + (λ− λ0)(λ− λ̄0)(A0 − λ)−1

)
γ(λ0)

hold for all λ, µ ∈ ρ(A0) and any fixed λ0 ∈ ρ(A0).

3 Realization of operator functions as Weyl functions

Let D ⊂ C+ be a simply connected open set, let G be a Hilbert space and let
τ be a piecewise meromorphic L(G)-valued function on D ∪ D∗, D∗ = {λ ∈
C : λ̄ ∈ D}, which admits the representation

τ(λ) = Re τ(λ0) + γ+
(
(λ− Re λ0) + (λ− λ0)(λ− λ̄0)(A0 − λ)−1

)
γ, (3.1)

with some selfadjoint relation A0 in a Krein space H and a mapping γ ∈
L(G,H). It is assumed that ρ(A0) is nonempty, that (3.1) holds for a fixed
λ0 ∈ O ∪ O∗ and all λ ∈ O ∪ O∗, where O is an open subset of ρ(A0) ∩ D,
O∗ = {λ ∈ C : λ̄ ∈ O}, and that the minimality condition

H = clsp
{(

I + (λ− λ0)(A0 − λ)−1
)
γx : λ ∈ O ∪O∗, x ∈ G

}
(3.2)

is satisfied. It is clear that τ is holomorphic on O∪O∗ and that τ(λ)∗ = τ(λ̄)
holds for all λ ∈ O∪O∗. The set of points of holomorphy of τ will be denoted
by h(τ).

The following theorem is the main result of this section. The proof of Theo-
rem 3.1 will be given after some preparations at the end of in Section 3.2.

Theorem 3.1 Let τ : D ∪ D∗ → L(G) be a piecewise meromorphic operator
function which is represented in the form (3.1)-(3.2). Then there exists a Krein
space K, a closed symmetric operator S in K and a generalized boundary triple
{G, Γ0, Γ1} for S+ such that the corresponding Weyl function coincides with τ
on O ∪O∗.

Since generalized boundary triples reduce to ordinary boundary triples if dimG
is finite we obtain the following corollary.

Corollary 3.2 Let τ : D ∪ D∗ → L(G) be a piecewise meromorphic operator
function which is represented in the form (3.1)-(3.2) and assume, in addition,
that dimG is finite. Then there exists a Krein space K, a closed symmetric
operator S in K and an ordinary boundary triple {G, Γ0, Γ1} for S+ such that
the corresponding Weyl function coincides with τ on O ∪O∗.
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Remark 3.3 Many important classes of L(G)-valued functions satisfy the
above assumptions, cf. Section 3.3. E.g., for Nevanlinna functions or gen-
eralized Nevanlinna functions one chooses D = C+, A0 becomes a selfadjoint
relation in a Hilbert or Pontryagin space, respectively, and (3.1) holds for all
λ ∈ ρ(A0), cf. [45,50]. So-called definitizable and locally definitizable functions
can be represented in the form (3.1)-(3.2) with the help of definitizable and lo-
cally definitizable selfadjoint relations A0 in Krein spaces, see [46–48]. For
operator functions piecewise holomorphic in D ∪ D∗ and a given open subset
O, O ⊂ D, a Krein space H and a selfadjoint relation A0 with O∪O∗ ⊂ ρ(A0)
such that (3.1)-(3.2) holds for all λ ∈ O ∪O∗ was constructed in [2,28,48].

Fix some µ0 ∈ h(τ) and define the closed subspace Ĝ of G by

Ĝ :=
⋂

λ∈h(τ)

ker
τ(λ)− τ(µ0)

∗

λ− µ̄0

. (3.3)

It is not difficult to see that Ĝ does not depend on the choice of µ0 ∈ h(τ) and
that the set h(τ) in the intersection in (3.3) can be replaced by the union of
an open subset in D and an open subset in D∗, e.g., O ∪O∗.

Definition 3.4 A piecewise meromorphic function τ : D ∪ D∗ → L(G) is
called strict if the space Ĝ in (3.3) is trivial.

3.1 Realization of strict operator functions

In this subsection we prove that every strict L(G)-valued operator function τ
of the form (3.1)-(3.2) can be realized as the Weyl function of a generalized
boundary triple. We start with a simple observation.

Lemma 3.5 Let τ : D ∪ D∗ → L(G) be a meromorphic function represented
in the form (3.1)-(3.2) with some γ ∈ L(G,H) and let Ĝ be as in (3.3). Then
Ĝ = ker γ and, in particular, τ is strict if and only if γ is injective.

Proof. For x ∈ ker γ we conclude from (3.1) τ(λ)x = Re τ(λ0)x for all λ ∈
O ∪O∗ and therefore x belongs to

Ĝ =
⋂

λ∈h(τ)

ker
τ(λ)− τ(µ0)

∗

λ− µ̄0

. (3.4)
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Conversely, if x ∈ Ĝ, then x belongs also to the right hand side of (3.4) with
µ0 replaced by λ̄0. Making use of (3.1) for λ ∈ O ∪O∗ we obtain

0 =

(
τ(λ)− τ(λ0)

λ− λ0

x, y

)
=
(
γ+
(
I + (λ− λ̄0)(A0 − λ)−1

)
γx, y

)
=
[
γx, (I + (λ̄− λ0)(A0 − λ̄)−1)γy

]
for all y ∈ G and all λ ∈ O ∪ O∗. The minimality condition (3.2) implies
γx = 0. ¤

The following theorem is a generalization of [6, Theorem 3.3], [24, Proposi-
tion 3.1] and [26, §3].

Theorem 3.6 Let τ be a strict L(G)-valued function represented in the form
(3.1)-(3.2). Then there exists a closed symmetric operator A in the Krein space
H and a generalized boundary triple {G, Γ0, Γ1} for A+ such that τ is the cor-
responding Weyl function on O∪O∗. Furthermore, {G, Γ0, Γ1} is an ordinary
boundary triple if and only if ran γ is closed.

Proof. Let τ be represented by the selfadjoint relation A0 in H as in (3.1).
For all λ ∈ O ∪O∗ and the fixed λ0 ∈ O ∪O∗ we define the mapping

γ(λ) :=
(
I + (λ− λ0)(A0 − λ)−1

)
γ ∈ L(G,H). (3.5)

Then we have γ(λ0) = γ, γ(ζ) = (1 + (ζ − η)(A0 − ζ)−1)γ(η) and

τ(ζ)− τ(η)∗ = (ζ − η̄)γ(η)+γ(ζ) (3.6)

for all ζ, η ∈ O ∪ O∗. For some ξ ∈ O ∪ O∗ we define the closed symmetric
relation

A :=
{
{f0, f

′
0} ∈ A0 : [f ′0 − ξ̄f0, γ(ξ)x] = 0 for all x ∈ G

}
(3.7)

inH. Note that the definition of A does not depend on the choice of ξ ∈ O∪O∗

and that ran (A− λ̄) = (ran γ(λ))[⊥] holds for all λ ∈ O ∪O∗. Hence Nλ,A+ =

ran γ(λ) or, if ran γ(λ) is closed, then Nλ,A+ = ran γ(λ). Since τ is assumed to
be strict it follows from Lemma 3.5 that γ is injective. Furthermore, the fact
that the operator I + (λ − λ0)(A0 − λ)−1, λ ∈ O ∪ O∗, is an isomorphism of
Nλ0,A+ onto Nλ,A+ implies that γ(λ), regarded as a mapping from G into Nλ,A+

is injective and has dense range. Note also that the minimality condition (3.2)
together with (3.5) implies that A is an operator.

We fix a point µ ∈ O ∪ O∗. Then A+ = A0 +̂ N̂µ,A+ holds and the linear
relation

T := A0 +̂ N̂µ,T , N̂µ,T =
{
{γ(µ)x, µγ(µ)x} : x ∈ G

}
,
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is dense in A+. The elements f̂ ∈ T will be written in the form

f̂ = {f0, f
′
0}+ {γ(µ)x, µγ(µ)x}, {f0, f

′
0} ∈ A0, x ∈ G.

Let Γ0, Γ1 : T → G be the linear mappings defined by

Γ0f̂ := x and Γ1f̂ := γ(µ)+(f ′0 − µ̄f0) + τ(µ)x.

Then obviously ran Γ0 = G and A0 = ker Γ0 is selfadjoint. Moreover, for f̂ ∈ T
and

ĝ = {g0, g
′
0}+ {γ(µ)y, µγ(µ)y} ∈ T, {g0, g

′
0} ∈ A0, y ∈ G,

we compute

−i
[[
f̂ , ĝ

]]
= [γ(µ)x, g′0 − µ̄g0]− [f ′0 − µ̄f0, γ(µ)y]− (µ− µ̄)[γ(µ)x, γ(µ)y]

=
(
x, γ(µ)+(g′0 − µ̄g0)

)
−
(
γ(µ)+(f ′0 − µ̄f0), y

)
−
(
(τ(µ)− τ(µ)∗)x, y

)
= −i

[[
Γf̂ , Γĝ

]]
,

where we have used A0 = A+
0 and τ(µ)−τ(µ)∗ = (µ− µ̄)γ(µ)+γ(µ). Therefore

{G, Γ0, Γ1} is a generalized boundary triple for A+.

Let us check that the Weyl function corresponding to {G, Γ0, Γ1} coincides
with τ on O∪O∗. Note first that by the definition of Γ0 and Γ1 it is clear that
τ(µ)Γ0f̂µ = Γ1f̂µ holds for f̂µ = {γ(µ)x, µγ(µ)x} ∈ N̂µ,T . Now let η ∈ O ∪O∗

and f̂η ∈ N̂η,T . Since T = A0 +̂ N̂µ,T there exist {f0, f
′
0} ∈ A0 and x ∈ G such

that

f̂η = {fη, ηfη} = {f0, f
′
0}+ {γ(µ)x, µγ(µ)x}. (3.8)

It follows from (3.6) and γ(η) = (I + (η − µ)(A0 − η)−1)γ(µ) that

τ(η) = τ(µ)∗ + (η − µ̄)γ(µ)+γ(η)

= τ(µ) + γ(µ)+
(
(µ̄− µ)γ(µ) + (η − µ̄)γ(η)

)
= τ(µ) + γ(µ)+(η − µ)

(
I + (η − µ̄)(A0 − η)−1

)
γ(µ).

Hence we have

τ(η)Γ0f̂η = τ(µ)x + γ(µ)+(η − µ)
(
I + (η − µ̄)(A0 − η)−1

)
γ(µ)x (3.9)

and from (3.8) it follows that

f ′0 − ηf0 = (η − µ)γ(µ)x and f ′0 − µ̄f0 = (η − µ)γ(µ)x + (η − µ̄)f0
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hold. The first identity yields f0 = (η−µ)(A0− η)−1γ(µ)x and therefore (3.9)
becomes

τ(η)Γ0f̂η = τ(µ)x + γ(µ)+(f ′0 − µ̄f0) = Γ1f̂η,

i.e., τ coincides with the Weyl function of {G, Γ0, Γ1} on O ∪O∗.

It remains to show that the triple {G, Γ0, Γ1} is an ordinary boundary triple for
A+ if and only if ran γ = ran γ. Clearly, if {G, Γ0, Γ1} is an ordinary boundary
triple, then the range of the γ-field is closed and hence ran γ = ran γ(λ0) is
closed. Conversely, if ran γ is closed it is sufficient to check that (Γ0, Γ1)

> is
surjective, cf. Section 2. Observe first that {0} = ker γ(µ) = (ran γ(µ)+)⊥ and
that ran γ(λ) is closed for every λ ∈ O ∪ O∗. Hence ran γ(µ)+ = G and for
given elements x, y ∈ G there exist {f0, f

′
0} ∈ A0 such that γ(µ)+(f ′0 − µ̄f0) =

y − τ(µ)x. Now it easy to see that f̂ = {f0, f
′
0} + {γ(µ)x, µγ(µ)x} satisfies

Γ0f̂ = x and Γ1f̂ = y. ¤

Remark 3.7 If τ is a strict L(G)-valued function which admits a represen-
tation as in (3.1)-(3.2) and {G, Γ0, Γ1} is a generalized boundary triple as in
Theorem 3.6 with T = dom Γ, then the span of the subspaces of Nλ,T is dense
in H, i.e., H = clsp {Nλ,T : λ ∈ O ∪ O∗}, and the closed symmetric operator
A = ker Γ has no eigenvalues.

If τ is a matrix-valued function, that is, dimG < ∞, then of course the range
of the mapping γ ∈ L(G,H) in (3.1) is closed. Hence Theorem 3.6 implies the
following corollary.

Corollary 3.8 Let τ be a strict L(G)-valued function represented in the form
(3.1)-(3.2) and assume, in addition, that dimG is finite. Then there exists a
closed symmetric operator A in the Krein space H and an ordinary boundary
triple {G, Γ0, Γ1} for A+ such that τ is the corresponding Weyl function on
O ∪O∗.

3.2 Realization of non-strict operator functions

Let again τ : D ∪ D∗ → L(G) be a piecewise meromorphic operator function
which is represented in the form (3.1)-(3.2). We are now interested in the case
where τ is not strict, i.e., the space Ĝ in (3.3) is not trivial. Roughly speaking
the next lemma states that τ can always be written as a selfadjoint constant
and a smaller strict operator function. For special classes of matrix-valued
functions Lemma 3.9 can be found in [6].

Lemma 3.9 Let τ be a piecewise meromorphic L(G)-valued function repre-
sented in the form (3.1)-(3.2), let Ĝ be as in (3.3) and set G ′ := GªĜ. Denote
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the corresponding orthogonal projections and canonical embeddings by π̂, π′, ι̂
and ι′, respectively, and fix some µ0 ∈ h(τ). Then

τ(λ) =

π′τ(λ)ι′ 0

0 0

+

 0 π′τ(µ0)ι̂

π̂τ(µ0)ι
′ π̂τ(µ0)ι̂

 :

G ′
Ĝ

→
G ′
Ĝ

 (3.10)

for all λ ∈ h(τ) and the L(G ′)-valued function λ 7→ π′τ(λ)ι′ is strict.

Proof. It follows from the definition of Ĝ in (3.3) that for x̂ ∈ Ĝ and all
λ ∈ h(τ) the relation τ(λ)ι̂x̂ = τ(µ̄0)ι̂x̂ = τ(µ0)ι̂x̂ holds. Therefore

τ(λ) =

· π′τ(µ0)ι̂

· π̂τ(µ0)ι̂

 :

G ′
Ĝ

→
G ′
Ĝ

 , λ ∈ h(τ),

and the symmetry property τ(λ̄) = τ(λ)∗ implies

π̂τ(λ)ι′ = (π′τ(λ̄0ι̂)∗ = (π′τ(µ̄0)ι̂)
∗ = π̂τ(µ0)ι

′

which yields the representation (3.10). Let us show that λ 7→ π′τ(λ)ι′ is a
strict function. Assume that x′ ∈ G ′ belongs to

⋂
λ∈h(τ)

ker
π′τ(λ)ι′ − π′τ(µ̄0)ι

′

λ− µ̄0

.

Then π′τ(λ)ι′x′ = π′τ(µ̄0)ι
′x′ and also π̂τ(λ)ι′x′ = π̂τ(µ̄0)ι

′x′ by (3.10) for all
λ ∈ h(τ), and this implies ι′x′ ∈ Ĝ. This is possible only for x′ = 0, i.e., the
function λ 7→ π′τ(λ)ι′ is strict. ¤

Next we construct a nondensely defined closed symmetric operator B in a
Krein space and an ordinary boundary triple for B+ such that the corre-
sponding Weyl function is a selfadjoint constant.

Lemma 3.10 Let Ĝ be a Hilbert space, let Θ = Θ∗ ∈ L(Ĝ) and fix some

ϑ ∈ C. Then H̃ = (Ĝ2, (J ·, ·)), where J =
(

0 I
I 0

)
, is a Krein space and there

exists a closed symmetric operator B in H̃ and an ordinary boundary triple
{Ĝ, Γ̂0, Γ̂1}, B0 = ker Γ̂0, for B+ such that the corresponding Weyl function is
the selfadjoint constant Θ and σ(B0) = {ϑ, ϑ̄}.

Proof. We equip Ĝ × Ĝ with the indefinite inner product [·, ·] := (J ·, ·), where

J =
(

0 I
I 0

)
and (·, ·) is the Hilbert scalar product on Ĝ2. Then

B0 :=

ϑ I

0 ϑ̄

 ∈ L(Ĝ2)
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is selfadjoint in the Krein space H̃ = (Ĝ2, [·, ·]) and for every λ ∈ C\{ϑ, ϑ̄} we
have

(B0 − λ)−1 =

(ϑ− λ)−1 (λ− ϑ)−1(ϑ̄− λ)−1

0 (ϑ̄− λ)−1

 ∈ L(H̃).

Let λ0 ∈ C\{ϑ, ϑ̄}, γ̂λ0 : Ĝ → H̃, x 7→ (x, 0)>, and define for λ ∈ C\{ϑ, ϑ̄}

γ̂(λ) : Ĝ → H̃, x 7→
(
I + (λ− λ0)(B0 − λ)−1

)
γ̂λ0x =

(
ϑ− λ0

ϑ− λ
x, 0

)>
.

Then obviously ran γ̂(λ) = Ĝ × {0}. From

γ̂(η)+ : H̃ → Ĝ, (x, y)> 7→ ϑ̄− λ̄0

ϑ̄− η̄
y, η ∈ C\{ϑ, ϑ̄}, (3.11)

we obtain γ̂(η)+γ̂(λ) = 0 for all λ, η ∈ C\{ϑ, ϑ̄}. Consider the closed symmet-
ric operator

B := B0 ¹
(
Ĝ × {0}

)
(3.12)

in H̃. Then we haveNλ,B+ = Ĝ×{0} = ran γ̂(λ) for all λ ∈ C\{ϑ, ϑ̄}, the defect

of B coincides with dim Ĝ and Nλ,B+ [⊥]Nη,B+ holds for all λ, η ∈ C\{ϑ, ϑ̄}.
For a fixed µ ∈ C\{ϑ, ϑ̄} we write the elements ĝ ∈ B+ = B0 +̂ N̂µ,B+ in the
form

ĝ = {g0, B0g0}+ {γ̂(µ)x, µγ̂(µ)x}, g0 ∈ H̃, x ∈ Ĝ.

Then it follows as in the proof of Theorem 3.6 that {Ĝ, Γ̂0, Γ̂1}, where

Γ̂0ĝ := x and Γ̂1ĝ := γ̂(µ)+(B0 − µ̄)g0 + Θx, (3.13)

is a boundary triple for B+ and the corresponding Weyl function is the self-
adjoint constant Θ ∈ L(Ĝ). ¤

Remark 3.11 Note that the negative and the positive index of the Krein space
H̃ = (Ĝ2, (J ·, ·)) in Proposition 3.10 coincides with dim Ĝ, that is,

dim
(
ker(J − I)

)
= dim

(
ker(J + I)

)
= dim Ĝ.

Proof of Theorem 3.1. Let τ : D ∪D∗ → L(G) be a (in general non-strict)
piecewise meromorphic function which is represented in the form (3.1)-(3.2)
for a fixed λ0 ∈ O∪O∗ and all λ ∈ O∪O∗. Let Ĝ be as in (3.3), set G ′ = GªĜ
and decompose τ as in (3.10).
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Then by Lemma 3.9 the piecewise meromorphic function

τs := π′τι′ : D ∪D∗ → L(G ′)

is strict. Setting γ′ := γι′ ∈ L(G ′,H) it follows directly from (3.1) that

τs(λ) = Re τs(λ0) + γ′+
(
(λ− Re λ0) + (λ− λ0)(λ− λ̄0)(A0 − λ)−1

)
γ′

holds for a fixed λ0 ∈ O∪O∗ and all λ ∈ O∪O∗. Furthermore, (3.2) together
with the fact Ĝ = ker γ, cf. Lemma 3.5, implies that the minimality condition

H = clsp
{(

1 + (λ− λ0)(A0 − λ)−1
)
γ′x′ : λ ∈ O ∪O∗, x′ ∈ G ′

}
is satisfied. Therefore we can apply Theorem 3.6 to the function τs, i.e., τs

coincides on O ∪ O∗ with the Weyl function corresponding to some closed
symmetric operator A ⊂ A0 in the Krein space H and a generalized boundary
triple {G ′, Γ′0, Γ′1} for the adjoint A+. Note that A0 = ker Γ′0 and that dom Γ′,
Γ′ = (Γ′0, Γ

′
1)
>, is dense in A+.

According to Lemma 3.10 there exists a Krein space H̃, a closed symmetric
operator B in H̃ and an ordinary boundary triple {Ĝ, Γ̂0, Γ̂1} such that the
corresponding Weyl function is the selfadjoint constant

π̂τ(µ0)ι̂ ∈ L(Ĝ).

Moreover, the spectrum of the selfadjoint relation B0 = ker Γ̂0 consists of a
pair of eigenvalues {ϑ, ϑ̄} and it is no restriction to assume that ϑ, ϑ̄ 6∈ O∪O∗

holds.

In the following we consider the closed symmetric operator S := A×B in the
Krein space K := H×H̃ and its adjoint S+ = A+×B+. Note that dom Γ′×B+

is dense in S+. The elements in dom Γ′×B+ will be denoted in the form {f̂ , ĝ},
f̂ ∈ dom Γ′, ĝ ∈ B+. We claim that {G, Γ0, Γ1}, where

Γ0{f̂ , ĝ} :=

Γ′0f̂

Γ̂0ĝ

 and Γ1{f̂ , ĝ} :=

Γ′1f̂ + π′τ(µ0)ι̂ Γ̂0ĝ

Γ̂1ĝ + π̂τ(µ0)ι
′ Γ′0f̂

 ,

{f̂ , ĝ} ∈ dom Γ′ × B+, is a generalized boundary triple for S+ such that
the corresponding Weyl function coincides with τ on O ∪ O∗. In fact, since
{G ′, Γ′0, Γ′1} and {Ĝ, Γ̂0, Γ̂1} are generalized and ordinary boundary triples for
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A+ and B+, respectively, it follows that for {f̂ , ĝ}, {ĥ, k̂} ∈ dom Γ′ ×B+

[[
Γ{f̂ , ĝ}, Γ{ĥ, k̂}

]]
(G′⊕Ĝ)2

= i


Γ′0f̂

Γ̂0ĝ

 ,

Γ′1ĥ + π′τ(µ0)ι̂ Γ̂0k̂

Γ̂1k̂ + π̂τ(µ0)ι
′ Γ′0ĥ


− i


Γ′1f̂ + π′τ(µ0)ι̂ Γ̂0ĝ

Γ̂1ĝ + π̂τ(µ0)ι
′ Γ′0f̂

 ,

Γ′0ĥ

Γ̂0k̂




=
[[
Γ′f̂ , Γ′ĥ

]]
G′2

+
[[
Γ̂ĝ, Γ̂k̂

]]
Ĝ2

=
[[
f̂ , ĥ

]]
H2

+
[[
ĝ, k̂

]]
H̃2

=
[[
{f̂ , ĝ}, {ĥ, k̂}

]]
(H×H̃)2

holds. Here we also have used (π′τ(µ0)ι̂ )∗ = π̂τ(µ0)ι
′. Moreover, since A0 =

ker Γ′0 and B0 = ker Γ̂0 are selfadjoint in H and H̃, respectively, it is clear
that ker Γ0 = A0 × B0 is a selfadjoint relation in K = H× H̃. As ran Γ′0 = G ′
and ran Γ̂0 = Ĝ we also have that ran Γ0 coincides with G = G ′ ⊕ Ĝ. Hence
{G, Γ0, Γ1} is a generalized boundary triple for S+ = A+ × B+. It remains to
show that the corresponding Weyl function coincides with τ . For this, note
that

N̂λ,domΓ = N̂λ,domΓ′×B+ = N̂λ,domΓ′ × N̂λ,B+ , λ ∈ O ∪O∗,

and let {f̂λ, ĝλ} ∈ dom Γ′ ×B+, where f̂λ ∈ N̂λ,domΓ′ and ĝλ ∈ N̂λ,B+ . Since

τs(λ)Γ′0f̂λ = Γ′1f̂λ and π̂τ(µ0)ι̂ Γ̂0ĝλ = Γ̂1ĝλ, λ ∈ O ∪O∗,

we conclude

τ(λ)Γ0{f̂λ, ĝλ} =

 τs(λ) π′τ(µ0)ι̂

π̂τ(µ0)ι
′ π̂τ(µ0)ι̂


Γ′0f̂λ

Γ̂0ĝλ


=

Γ′1f̂λ + π′τ(µ0)ι̂ Γ̂0ĝλ

π̂τ(µ0)ι
′ Γ′0f̂λ + Γ̂1ĝλ

 = Γ1{f̂λ, ĝλ}

for all λ ∈ O ∪O∗, that is, τ coincides with the Weyl function corresponding
to {G, Γ0, Γ1} on O ∪O∗. ¤

Remark 3.12 Let τ be as in (3.1)-(3.2) and let K = H × H̃, S = A × B
and {G, Γ0, Γ1} be as in the proof of Theorem 3.1. If τ is non-strict, then
Ĝ 6= {0} and in contrast to Theorem 3.6 and Remark 3.7 here the defect
subspaces Nλ,domΓ, λ ∈ O ∪ O∗, are not dense in K. Indeed, it follows from
the construction in the proof of Lemma 3.10 that

clsp
{
Nλ,B+ : λ ∈ O ∪O∗

}
= Ĝ × {0} 6= H̃ = Ĝ × Ĝ

holds. Therefore

clsp
{
Nλ,domΓ : λ ∈ O ×O∗

}
= H× Ĝ × {0} 6= K.
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This implies that the analytic properties of τ are in general not completely
reflected by the spectral properties of the selfadjoint operator or relation
S0 = ker Γ0 in K, but this disadvantage arises only at the points ϑ, ϑ̄ which
can be chosen arbitrary, e.g. in C\(D ∪ D∗). In Section 4 we shall see that
the non-minimality does not affect solvability properties of a certain class of
elliptic boundary value problems investigated here. Note also, that ϑ is the
only eigenvalue of the symmetric operator S = A × B, since σp(A) = ∅ by
Remark 3.7 and σp(B) = {ϑ}; cf. (3.12).

3.3 Some special classes of operator functions

Many classes of R-symmetric operator functions satisfy the general assump-
tions in the beginning of Section 3, cf. Remark 3.3. In this subsection we
briefly recall some necessary definitions and we formulate some corollaries of
Theorem 3.1.

The first corollary concerns the case of a locally holomorphic operator function.
We refer to [2,28,48] for the existence of the representation (3.1)-(3.2).

Corollary 3.13 Let τ : D ∪D∗ → L(G) be a piecewise holomorphic function
which satisfies τ(λ̄) = τ(λ)∗, λ ∈ D ∪ D∗, and let O be a simply connected
open set with O ⊂ D. Then there exists a Krein space K, a closed symmetric
operator S in K and a generalized boundary triple {G, Γ0, Γ1} for S+ such that
the corresponding Weyl function coincides with τ on O ∪ O∗. If, in addition,
dimG < ∞ holds, then {G, Γ0, Γ1} is an ordinary boundary triple.

The classes of generalized Nevanlinna functions were introduced and studied
by M.G. Krein and H. Langer, see, e.g., [49–51]. Recall that an L(G)-valued
function τ belongs to the generalized Nevanlinna class Nκ(L(G)), κ ∈ N0, if τ
is piecewise meromorphic in C\R and R-symmetric, i.e., τ(λ̄) = τ(λ)∗ for all
λ belonging to the set of points of holomorphy h(τ) of τ , and the kernel

Kτ (λ, µ) :=
τ(λ)− τ(µ)∗

λ− µ̄
, λ, µ ∈ C+ ∩ h(τ),

has κ negative squares, that is, for all n ∈ N, λ1, . . . , λn ∈ C+ ∩ h(τ) and all
x1, . . . , xn ∈ G the selfadjoint matrix(

(Kτ (λi, λj)xi, xj)
)n

i,j=1

has at most κ negative eigenvalues, and κ is minimal with this property. The
functions in the class N0(L(G)) are called Nevanlinna functions. A function τ ∈
N0(L(G)) is holomorphic on C\R and Im τ(λ) is nonnegative for all λ ∈ C+.
It is well-known that Nevanlinna functions can equivalently be characterized
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by integral representations. More precisely, τ is a L(G)-valued Nevanlinna
function if and only if there exist selfadjoint operators α, β ∈ L(G), β ≥ 0,
and a nondecreasing selfadjoint operator function t 7→ Σ(t) ∈ L(G) on R such
that

∫
R

1
1+t2

dΣ(t) ∈ L(G) and

τ(λ) = α + λβ +
∫ ∞

−∞

(
1

t− λ
− t

1 + t2

)
dΣ(t) (3.14)

holds for all λ ∈ h(τ). It is worth to note that a Nevanlinna function τ is
strict if and only if Im τ(λ) is uniformly positive for some (and hence for all)
λ ∈ C+.

It was shown in [45,50] that every function τ ∈ Nκ(L(G)) can be represented
in the form (3.1)-(3.2) with D = C+, O = h(τ) ∩ C+ and H is a Pontryagin
space with negative index κ. For generalized Nevanlinna functions our main
result reads as follows, cf. Remark 3.11 and [7, Theorem 3.2] for the special
case of L(Cn)-valued Nevanlinna functions.

Corollary 3.14 Let τ ∈ Nκ(L(G)), κ ∈ N0, and let Ĝ be as in (3.3). Then
there exists a Krein space K with negative index κ+dim Ĝ, a closed symmetric
operator S in K and a generalized boundary triple {G, Γ0, Γ1} for S+ such that
the corresponding Weyl function coincides with τ on h(τ). If, in addition,
dimG < ∞, then K is a Pontryagin space with negative index κ + dim Ĝ and
{G, Γ0, Γ1} is an ordinary boundary triple.

Next we briefly recall the definitions of definitizable and locally definitizable
operator functions introduced by P. Jonas in [46–48]. An R-symmetric piece-
wise meromorphic L(G)-valued function τ in C\R is called definitizable if there
exists an R-symmetric scalar rational function r such that rτ is the sum of a
Nevanlinna function G ∈ N0(L(G)) and an L(G)-valued rational function P
with the poles of P belonging to h(τ),

r(λ)τ(λ) = G(λ) + P (λ), λ ∈ h(rτ).

The classes Nκ(L(G)), κ ∈ N0, are contained in the set of definitizable func-
tions, see [46,47]. Let Ω be a domain in C which is symmetric with respect
to R, such that Ω ∩ R 6= ∅ and Ω ∩ C+ and Ω ∩ C− are simply connected. A
L(G)-valued function τ is said to be definitizable in Ω if for every domain Ω′

with the same properties as Ω, Ω′ ⊂ Ω, the restriction of τ to Ω′ can be writ-
ten as the sum of a definitizable function τd and an R-symmetric L(G)-valued
function τh holomorphic in Ω′, τ(λ) = τd(λ) + τh(λ) for all λ ∈ h(τ) ∩ Ω′.

Operator representations of the form (3.1)-(3.2) for definitizable and locally
definitizable functions can be found in [47,48]. If τ is definitizable in Ω and Ω′

is a domain as Ω, Ω′ ⊂ Ω, one can choose D = Ω∩C+ and O = Ω′∩h(τ)∩C+.
This yields the following corollary.
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Corollary 3.15 Let τ be a L(G)-valued function definitizable in Ω and let Ω′

be a domain with the same properties as Ω, Ω′ ⊂ Ω. Then there exists a Krein
space K, a closed symmetric operator S in K and a generalized boundary triple
{G, Γ0, Γ1} for S+ such that the corresponding Weyl function coincides with τ
on Ω′ ∩ h(τ) ∩ C\R. If, in addition, dimG < ∞ holds, then {G, Γ0, Γ1} is an
ordinary boundary triple.

4 Elliptic PDEs with λ-dependent boundary conditions

Let Ω be a smooth bounded domain in Rn, n > 1, with C∞-boundary ∂Ω and
consider the second order differential expression

` = −
n∑

j,k=1

∂j ajk ∂k + a (4.1)

on Ω with coefficients ajk, a ∈ C∞(Ω) such that ajk = akj for all j, k = 1, . . . , n
and a is real-valued. In addition, it is assumed that the ellipticity condition

n∑
j,k=1

ajk(x)ξjξk ≥ C
n∑

k=1

ξ2
k, ξ = (ξ1, . . . , ξn)> ∈ Rn, x ∈ Ω,

holds for some constant C > 0. In this section we investigate the following
λ-dependent elliptic boundary value problem: For a given function g ∈ L2(Ω)
and λ ∈ h(τ) find f ∈ L2(Ω) such that

(`− λ)f = g and τ(λ)f |∂Ω =
∂fD

∂ν`

∣∣∣
∂Ω

(4.2)

holds. Here τ is assumed to be a piecewise meromorphic L(L2(∂Ω))-valued
function and fD denotes the component of f in the domain of the Dirichlet
operator. The precise formulation of the problem will be given in Section 4.2.

4.1 Preliminaries and ordinary boundary triples for elliptic PDEs

The Sobolev space of kth order on Ω is denoted by Hk(Ω) and the closure
of C∞

0 (Ω) in Hk(Ω) is denoted by Hk
0 (Ω). Sobolev spaces on the bound-

ary are denoted by Hs(∂Ω), s ∈ R. Let (·, ·)−1/2×1/2 and (·, ·)−3/2×3/2 be
the extensions of the L2(∂Ω) inner product to H−1/2(∂Ω) × H1/2(∂Ω) and
H−3/2(∂Ω)×H3/2(∂Ω), respectively, and let ι± : H±1/2(∂Ω) → L2(∂Ω) be iso-
morphisms such that (x, y)−1/2×1/2 = (ι−x, ι+y) holds for all x ∈ H−1/2(∂Ω)
and y ∈ H1/2(∂Ω).
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Recall that the Dirichlet operator

TDfD = `fD, dom TD = H2(Ω) ∩H1
0 (Ω),

associated to the elliptic differential expression ` in (4.1) is selfadjoint in L2(Ω)
and the resolvent of TD is compact, cf. [34, VI. Theorem 1.4] and [52,55,61].
Furthermore, the minimal operator

Tf = `f, dom T = H2
0 (Ω),

is a densely defined closed symmetric operator in L2(Ω) and the adjoint oper-
ator T ∗f = `f is defined on the maximal domain

dom T ∗ = Dmax =
{
f ∈ L2(Ω) : `f ∈ L2(Ω)

}
.

Let us fix some η ∈ R ∩ ρ(TD). Then for each function f ∈ Dmax there is a
unique decomposition f = fD + fη, where fD ∈ dom TD and fη ∈ Nη,T ∗ =
ker(T ∗ − η). In fact, as TD − η is surjective for a given f ∈ Dmax there exists
fD ∈ dom TD such that (T ∗ − η)f = (TD − η)fD holds. It follows that fη :=
f − fD ∈ Nη,T ∗ and hence f = fD + fη is the desired decomposition. The
uniqueness follows from ker(TD − η) = {0}.

Let n = (n1, . . . , nn)> be the unit outward normal of Ω. It is well-known that
the map

C∞(Ω) 3 f 7→
{

f |∂Ω,
∂f

∂ν`

∣∣∣∣
∂Ω

}
, where

∂f

∂ν`

:=
n∑

j,k=1

ajknj∂kf,

can be extended to a linear operator from Dmax into H−1/2(∂Ω)×H−3/2(∂Ω)
and that for f ∈ Dmax and g ∈ H2(Ω) Green’s identity

(T ∗f, g)− (f, T ∗g) =

(
f |∂Ω,

∂g

∂ν`

∣∣∣
∂Ω

)
− 1

2
× 1

2

−
(

∂f

∂ν`

∣∣∣
∂Ω

, g|∂Ω

)
− 3

2
× 3

2

(4.3)

holds, see [41,55,61].

The λ-dependent boundary condition in (4.2) will be rewritten with the help
of an ordinary boundary triple for the maximal realization of ` in L2(Ω).
The ordinary boundary triple in the next proposition can also be found in
[16,39,43,44]. For the convenience of the reader we include a short proof based
on the general observations in [41,42].

Proposition 4.1 The triple {L2(∂Ω), Υ0, Υ1}, where

Υ0f̂ := ι−fη|∂Ω and Υ1f̂ := −ι+
∂fD

∂ν`

∣∣∣
∂Ω

,
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f̂ = {f, T ∗f}, f = fD + fη ∈ Dmax, is an ordinary boundary triple for the
maximal operator T ∗f = `f , dom T ∗ = Dmax, such that TD = ker Υ0. The
corresponding γ-field and Weyl function are given by

γ(λ)y = (I + (λ− η)(TD − λ)−1)fη(y), λ ∈ ρ(TD),

and

M(λ)y = (η − λ)ι+
∂(TD − λ)−1fη(y)

∂ν`

∣∣∣
∂Ω

, λ ∈ ρ(TD),

respectively, where fη(y) is the unique function in ker(T ∗ − η) satisfying
ι−fη(y)|∂Ω = y.

Proof. Let f, g ∈ Dmax be decomposed in the form f = fD+fη and g = gD+gη.
As TD is selfadjoint and η ∈ R we find

(T ∗f, g)− (f, T ∗g) = (TDfD, gη)− (fD, T ∗gη) + (T ∗fη, gD)− (fη, TDgD)

and then fD|∂Ω = gD|∂Ω = 0 together with Green’s identity (4.3) implies

(T ∗f, g)− (f, T ∗g) = −
(

∂fD

∂ν`

∣∣∣∣
∂Ω

, gη|∂Ω

)
1
2
×− 1

2

+

(
fη|∂Ω,

∂gD

∂ν`

∣∣∣∣
∂Ω

)
− 1

2
× 1

2

= (Υ1f̂ , Υ0ĝ)− (Υ0f̂ , Υ1ĝ).

Hence (2.4) in Definition 2.2 holds, cf. (2.3). Furthermore, by the classical
trace theorem the map H2(Ω) ∩ H1

0 (Ω) 3 fD 7→ ∂fD

∂ν`
|∂Ω ∈ H1/2(∂Ω) is onto

and the same holds for the map ker(T ∗−η) 3 fη 7→ fη|∂Ω ∈ H−1/2(∂Ω), which
is an isomorphism according to [42, Theorem 2.1]. Hence (Υ0, Υ1)

> maps T ∗

onto L2(∂Ω)×L2(∂Ω) and therefore {L2(∂Ω), Υ0, Υ1} is an ordinary boundary
triple for T ∗ with TD = ker Υ0.

It remains to show that the corresponding γ-field and Weyl function have the
asserted form. For this let y ∈ L2(∂Ω), choose the unique function fη(y) in
ker(T ∗ − η) such that y = ι−fη(y)|∂Ω holds and set

fλ := (λ− η)(TD − λ)−1fη(y) + fη(y) (4.4)

for λ ∈ ρ(TD). It is easy to see that (T ∗ − λ)fλ = 0 holds and since (TD −
λ)−1fη(y) ∈ dom TD and fη(y) ∈ ker(T ∗ − η) we obtain

Γ0f̂λ = Γ0{fλ, λfλ} = ι−fη(y)|∂Ω = y,

i.e. γ(λ)y = fλ = (I + (λ − η)(TD − λ)−1)fη(y). Finally, by the definition of
the Weyl function and (4.4) we have

M(λ)y = Γ1f̂λ = (η − λ)ι+
∂(TD − λ)−1fη(y)

∂ν`

∣∣∣
∂Ω

.
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4.2 Elliptic boundary value problems with eigenvalue depending boundary
conditions

Let D ⊂ C+ be a simply connected open set and let τ be a piecewise mero-
morphic L(L2(∂Ω))-valued function on D∪D∗ which admits a representation
of the form (3.1)-(3.2) via the resolvent of some selfadjoint relation on an open
subset O∪O∗ of D∪D∗. Note that τ is holomorphic on O∪O∗. We study the
following λ-dependent elliptic boundary value problem: For a given function
g ∈ L2(Ω) and λ ∈ O ∪O∗ find f ∈ Dmax such that

(`− λ)f = g and τ(λ)ι−f |∂Ω = ι+
∂fD

∂ν`

∣∣∣
∂Ω

(4.5)

holds. According to Theorem 3.1 there exists a Krein space K, a closed sym-
metric operator S in K and a generalized boundary triple {L2(∂Ω), Γ0, Γ1}
for S+ = dom Γ such that the corresponding Weyl function coincides with τ
on O ∪ O∗. In particular, the set O ∪ O∗ is a subset of the resolvent set of
the selfadjoint relation S0 = ker Γ0 in K. With the help of the operator S, the
generalized boundary triple {L2(∂Ω), Γ0, Γ1} and the ordinary boundary triple
{L2(∂Ω), Υ0, Υ1} for the elliptic operator from Proposition 4.1 we construct a
linearization of the boundary value problem (4.5) in the next theorem.

Theorem 4.2 Let {L2(∂Ω), Υ0, Υ1} be the ordinary boundary triple for the
maximal differential operator T ∗ associated to ` from Proposition 4.1 with cor-
responding γ-field γ and Weyl function M , and assume that (M(µ)+τ(µ))−1 ∈
L(L2(∂Ω)) holds for some µ ∈ O.

Then the operator

Ã

f

k

 =

`f

k′

 ,

dom Ã =


f

k

 ∈ Dmax ×K :

Υ0f̂ − Γ0k̂ = 0

Υ1f̂ + Γ1k̂ = 0

 for
f̂ = {f, T ∗f},

k̂ = {k, k′} ∈ dom Γ

 ,

is a selfadjoint extension of the minimal differential operator T in the Krein
space L2(Ω)×K, the set

U :=
{
λ ∈ O ∪O∗ : (M(λ) + τ(λ))−1 ∈ L(L2(∂Ω))

}
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is a subset of ρ(Ã) ∩ ρ(TD) ∩ h(τ) and for every λ ∈ U the unique solution of
the boundary value problem (4.5) is given by

f = PL2

(
Ã− λ)−1 ¹L2 g = (TD − λ)−1g − γ(λ)

(
M(λ) + τ(λ)

)−1
γ(λ̄)∗g.

(4.6)

Proof. The proof of Theorem 4.2 is divided into two parts. In the first part
it will be shown that Ã is a selfadjoint operator in the Krein space L2(Ω)×K
and in the second part it is verified that the unique solution of (4.5) is given
by the function f in the theorem.

Step 1. Let us check first that Ã is an operator. In fact, iff

k

 ∈ dom Ã and f = k = 0,

then obviously T ∗f = 0 and hence f̂ = 0. This yields Υ0f̂ = 0 = Γ0k̂ and
Υ1f̂ = 0 = Γ1k̂. Therefore k̂ = {0, k′} ∈ S and as S is an operator k′ = 0
follows. The fact that Ã is symmetric in the Krein space L2(∂Ω) × K fol-
lows from the special form of dom Ã and the identities (2.4) and (2.2) for
the ordinary boundary triple {L2(∂Ω), Υ0, Υ1} and the generalized boundary

triple {L2(∂Ω), Γ0, Γ1}. Indeed, for
(

f
k

)
,
(

g
h

)
∈ dom Ã we have Υ0f̂ = Γ0k̂,

Υ0ĝ = Γ0ĥ, Υ1f̂ = −Γ1k̂, Υ1ĝ = −Γ1ĥ and henceÃ
f

k

 ,

g

h


−


f

k

 , Ã

g

h




= (Υ1f̂ , Υ0ĝ)− (Υ0f̂ , Υ1ĝ) + (Γ1k̂, Γ0ĥ)− (Γ0k̂, Γ1ĥ) = 0.

In order to prove that Ã is selfadjoint in L2(Ω)×K it is sufficient to verify that
the operators Ã − µ and Ã − µ̄ are surjective for some µ ∈ U . We show only
ran (Ã−µ) = L2(Ω)×K, the same reasoning applies for Ã− µ̄. By assumption
µ ∈ O is such that (M(µ) + τ(µ))−1 ∈ L(L2(∂Ω)) and moreover, µ belongs to
ρ(TD) ∩ ρ(S0) as σ(TD) ⊂ R and τ is holomorphic on O ∪O∗. Let g ∈ L2(Ω),
h ∈ K and define f̂ = {f, µf + g} and k̂ = {k, µk + h} by

f := (TD − µ)−1g − γ(µ)
(
M(µ) + τ(µ)

)−1
(γ(µ̄)∗g + γτ (µ̄)+h) ∈ L2(Ω) (4.7)

and

k := (S0 − µ)−1h− γτ (µ)
(
M(µ) + τ(µ)

)−1
(γ(µ̄)∗g + γτ (µ̄)+h) ∈ K.
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Here γ is the γ-field of the ordinary boundary triple {L2(∂Ω), Υ0, Υ1} and γτ is
the γ-field corresponding to the generalized boundary triple {L2(∂Ω), Γ0, Γ1}.
Note that f̂ ∈ T ∗ since γ(µ)(M(µ) + τ(µ))−1(γ(µ̄)∗g + γτ (µ̄)+h) ∈ Nµ,T ∗ and{

(TD − µ)−1g, (I + µ(TD − µ)−1)g
}
∈ TD. (4.8)

An analogous argument shows k̂ ∈ dom Γ ⊂ S+. We claim that {f̂ , k̂} satisfies

the boundary conditions Υ0f̂ = Γ0k̂ and Υ1f̂ = −Γ1k̂, so that
(

f
k

)
belongs

to dom Ã. In fact, as TD = ker Υ0 it follows from (4.7), (4.8) and (2.7) that

Υ0f̂ = −
(
M(µ) + τ(µ)

)−1
(γ(µ̄)∗g + γτ (µ̄)+h),

Υ1f̂ = γ(µ̄)∗g −M(µ)
(
M(µ) + τ(µ)

)−1
(γ(µ̄)∗g + γτ (µ̄)+h),

and analogously,

Γ0k̂ = −
(
M(µ) + τ(µ)

)−1
(γ(µ̄)∗g + γτ (µ̄)+h),

Γ1k̂ = γτ (µ̄)+h− τ(µ)
(
M(µ) + τ(µ)

)−1
(γ(µ̄)∗g + γτ (µ̄)+h).

Hence we have Υ0f̂ = Γ0k̂ and

Υ1f̂ =γ(µ̄)∗g − (γ(µ̄)∗g + γτ (µ̄)+h)

+ τ(µ)
(
M(µ) + τ(µ)

)−1
(γ(µ̄)∗g + γτ (µ̄)+h) = −Γ1k̂,

i.e., {f̂ , k̂} ∈ Ã and it follows that

(Ã− µ)

f

k

 =

µf + g

µk + h

− µ

f

k

 =

g

h


holds. As the elements g ∈ L2(Ω) and h ∈ K were chosen arbitrary we conclude
ran (Ã− µ) = L2(Ω)×K.

Step 2. Next it will be verified that for λ ∈ U the unique solution of (4.5) is
given by

f = PL2(Ã− λ)−1

g

0

 . (4.9)

We note first that the set U is a subset of ρ(Ã). In fact, for every λ ∈ U the
same argument as in Step 1 of the proof shows that Ã − λ and Ã − λ̄ are
surjective and hence ker(Ã− λ̄) = {0} = ker(Ã− λ), i.e. λ, λ̄ ∈ ρ(Ã). For f in
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(4.9) we have

(Ã− λ)−1

g

0

 =

f

k

 , where k := PK(Ã− λ)−1

g

0

 ,

and from Ã ⊂ T ∗ × dom Γ and

Ã

f

k

 =

g

0

+ λ

f

k

 =

g + λf

λk


we conclude that T ∗f = g + λf and k ∈ Nλ,S+ = ker(S+ − λ) holds.
As τ is the Weyl function corresponding to the generalized boundary triple
{L2(∂Ω), Γ0, Γ1} and S+ it follows that k̂ = {k, λk} ∈ N̂λ,S+ ∩ dom Γ satisfies

τ(λ)Γ0k̂ = Γ1k̂. Therefore, making use of the specific form of dom Ã and the
ordinary boundary triple in Proposition 4.1 we obtain

τ(λ)ι−f |∂Ω = τ(λ)Υ0f̂ = τ(λ)Γ0k̂ = Γ1k̂ = −Υ1f̂ = ι+
∂fD

∂ν`

∣∣∣∣
∂Ω

.

Hence (4.9) is a solution of the boundary value problem (4.5). The fact that
the compression of the resolvent of Ã onto L2(Ω) has the asserted form follows
from Step 1 of the proof by setting f̂ = {f, λf + g} and k̂ = {k, λk}. In this
case (4.7) reduces to

f = (TD − λ)−1g − γ(λ)
(
M(λ) + τ(λ)

)−1
γ(λ̄)∗g

and coincides with PL2(Ã− λ)−1|L2g by (4.9).

Finally, we check that for λ ∈ U the solution f of (4.5) in (4.9) is unique.
Assume that f1 ∈ Dmax is also a solution of (4.5). Then f − f1 ∈ Nλ,T ∗ and
as M is the Weyl function of {L2(∂Ω), Υ0, Υ1} we have

M(λ)Υ0(f̂ − f̂1) = Υ1(f̂ − f̂1), f̂ = {f, T ∗f}, f̂1 = {f1, T
∗f1}.

On the other hand, since f and f1 both satisfy the boundary condition in (4.5)
it is clear that τ(λ)Υ0(f̂ − f̂1) = −Υ1(f̂ − f̂1) holds and this implies

(M(λ) + τ(λ))Υ0(f̂ − f̂1) = 0.

Since λ ∈ U we conclude Υ0(f̂ − f̂1) = 0, i.e., f̂ − f̂1 ∈ TD = ker Υ0. ¿From
λ ∈ ρ(TD) we then obtain f̂ = f̂1 and hence the solution f in (4.9) is unique.
This completes the proof of Theorem 4.2. ¤
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Remark 4.3 The method applied in the proof of Theorem 4.2 differs from
the coupling techniques in [6, Theorem 4.3] and [21, § 5.2], where only or-
dinary boundary triples were used. The principal difficulty here is to ensure
selfadjointness of Ã, a fact that follows immediately via the abstract boundary
condition in [6,21].

In the special case that τ in (4.5) is a (in general non-strict) L(L2(∂Ω))-
valued Nevanlinna function the condition 0 ∈ ρ(M(µ) + τ(µ)) in Theorem 4.2
is automatically satisfied for every nonreal µ, because the imaginary part of
the Weyl function M of the ordinary boundary triple {L2(∂Ω), Υ0, Υ1} for T ∗

is uniformly positive (uniformly negative) for λ ∈ C+ (λ ∈ C−, respectively).
This proves the following corollary.

Corollary 4.4 Assume that the function τ in the boundary condition in (4.5)
belongs to the class N0(L(L2(∂Ω))) and let {L2(∂Ω), Υ0, Υ1} be the ordinary
boundary triple for T ∗ from Proposition 4.1 with corresponding γ-field γ and
Weyl function M . Then the operator Ã in Theorem 4.2 is a selfadjoint ex-
tension of T in L2(Ω)× K and for every λ ∈ C\R the unique solution of the
boundary value problem (4.5) is given by (4.6).

Observe that for g = 0 in (4.5) and λ ∈ U the unique solution of the homoge-
neous boundary value problem

(`− λ)f = 0 and τ(λ)ι−f |∂Ω = ι+
∂fD

∂ν`

∣∣∣
∂Ω

(4.10)

is given by f = PL2(Ã−λ)−1|L20 = 0, cf. Theorem 4.2. The following proposi-
tion shows, roughly speaking, that the nontrivial solutions of the homogeneous
problem (4.10) are given by the eigenvalues and eigenvectors of the operator
Ã.

Proposition 4.5 Let the assumptions be as in Theorem 4.2 and let Ã be the
selfadjoint operator in L2(Ω)×K from the same theorem. Then the following
holds.

(i) If λ ∈ O ∪ O∗ is an eigenvalue of Ã and
(

f
k

)
∈ ker(Ã − λ) is a corre-

sponding eigenvector, then f ∈ Dmax is a nontrivial solution of (4.10).
(ii) If λ ∈ O ∪O∗ and f ∈ Dmax is a nontrivial solution of (4.10), then λ is

an eigenvalue of Ã and
(

f
k

)
∈ ker(Ã− λ) for some k ∈ K.

Proof. (i) Suppose that
(

f
k

)
∈ dom Ã is an eigenvector corresponding to the

eigenvalue λ ∈ O ∪ O∗ of Ã. Then we have `f = λf and since k̂ = {k, λk} ∈
N̂λ,S+ ∩ dom Γ it follows from the specific form of dom Ã and the fact that τ

26



is the Weyl function of the generalized boundary triple {L2(∂Ω), Γ0, Γ1} that

τ(λ)ι−f |∂Ω = τ(λ)Υ0f̂ = τ(λ)Γ0k̂ = Γ1k̂ = −Υ1f̂ = ι+
∂fD

∂ν`

∣∣∣
∂Ω

holds. Therefore f ∈ Dmax is a solution of the homogeneous boundary value
problem (4.10). It remains to show f 6= 0. Assume the contrary. Then f̂ =
{f, T ∗f} = 0 and it follows from 0 = Υ0f̂ = Γ0k̂ that k̂ = {k, λk} belongs
to S0 = ker Γ0. Since (O ∪ O∗) ⊂ ρ(S0) (cf. the beginning of Section 4.2,

Theorem 3.1 and Remark 3.12) we conclude k = 0, a contradiction to
(

f
k

)
being an eigenvector.

(ii) Let f ∈ Dmax be a nontrivial solution of (4.10). Then the boundary condi-
tion τ(λ)Υ0f̂ = −Υ1f̂ , f̂ = {f, λf}, is fulfilled and as λ ∈ (O ∪O∗) ⊂ ρ(S0),
S0 = ker Γ0, we can decompose dom Γ in the form dom Γ = S0 +̂ N̂λ,domΓ, cf.
(2.5). Since {L2(∂Ω), Γ0, Γ1} is a generalized boundary triple for S+ = dom Γ
the map Γ0 : dom Γ → L2(∂Ω) is onto and hence there exists k̂ = {k, λk} ∈
N̂λ,domΓ = N̂λ,S+ ∩ dom Γ such that Γ0k̂ = ι−f |∂Ω holds. Hence we have

Γ0k̂ = Υ0f̂ , τ(λ)Γ0k̂ = Γ1k̂, and therefore

Υ1f̂ = −τ(λ)Υ0f̂ = −τ(λ)Γ0k̂ = −Γ1k̂,

i.e.,
(

f
k

)
∈ dom Ã is an eigenvector corresponding to the eigenvalue λ of Ã. ¤

4.3 An example: A rational Nevanlinna function τ

Let αi, βi ∈ L(L2(∂Ω)), i = 1, . . . ,m, be bounded selfadjoint operators in
L2(∂Ω) and assume that βi ≥ 0 holds for all i = 1, . . . ,m and 0 ∈ ρ(β1). We
consider the boundary value problem (4.5) with a function τ of the form

τ(λ) = α1 + λβ1 +
m∑

i=2

β
1/2
i (αi − λ)−1β

1/2
i , λ ∈

m⋂
i=2

ρ(αi). (4.11)

Observe that τ is an L(L2(∂Ω))-valued Nevanlinna function with the property
0 ∈ ρ(Im τ(λ)) for all λ ∈ C\R and hence τ is (uniformly) strict. The next
theorem, in which a solution operator Ã of the boundary value problem (4.5),
(4.11) is explicitely constructed, is essentially a consequence of Theorem 4.2
and an explicit realization of the function (4.11) as the Weyl function of an
ordinary boundary triple in the product space

L2(∂Ω)m = L2(∂Ω)× . . . × L2(∂Ω) (m copies).

A special case of Theorem 4.6 below was announced in [5]. For ordinary second
order differential operators in L2(I), I ⊂ R, and scalar rational Nevanlinna
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functions in the boundary condition a solution operator of similar form in
L2(I)⊕ Cm as in the next result can be found in [12], see also [13,14].

Theorem 4.6 Let τ be a rational L(L2(∂Ω))-valued Nevanlinna function of
the form (4.11) and let γ and M be as in Proposition 4.1. Then

Ã



f

k1

k2

...

km


=



`f

k′1

β
1/2
2 β

−1/2
1 k1 + α2k2

...

β1/2
m β

−1/2
1 k1 + αmkm


,

f = fD + fη ∈ Dmax,

k1, . . . , km, k′1 ∈ L2(∂Ω),

dom Ã =





f

k1

...

km


:

ι−fη|∂Ω = β
−1/2
1 k1

ι+
∂fD

∂ν`

∣∣∣
∂Ω

= α1β
−1/2
1 k1 + β

1/2
1 k′1 −

∑m
i=2 β

1/2
i ki


,

is a selfadjoint operator in the Hilbert space L2(Ω) × L2(∂Ω)m and for every
λ in ρ(Ã) ∩ ρ(TD) ∩ h(τ) the unique solution of the boundary value problem
(4.5) is given by (4.6).

Proof. The statements in Theorem 4.6 will follow by applying Theorem 4.2
to an explicit realization of the function τ in (4.11) as the Weyl function of an
ordinary boundary triple {L2(∂Ω), Γ0, Γ1} for some closed symmetric operator
in L2(∂Ω)m.

Denote the functions k ∈ L2(∂Ω)m in the form k = (k1, . . . , km)>, ki ∈ L2(∂Ω),
i = 1, . . . ,m, and consider the non-densely defined operator

S(k1, . . . , km)> =
( m∑

i=2

β
−1/2
1 β

1/2
i ki, α2k2, . . . , αmkm

)>
,

dom S =
{
(k1, . . . , km)> ∈ L2(∂Ω)m : k1 = 0

}
,

in L2(∂Ω)m. The scalar products in L2(∂Ω) and L2(∂Ω)m will both be denoted
by (·, ·). We hope that this does not lead to any confusion. As αi = α∗i ,
i = 1, . . . ,m, it follows that (Sk, k) is real for all k ∈ dom S and hence S is
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symmetric. We claim that the adjoint of S is given by

S∗ =







k1

k2

...

km


,



k′1

β
1/2
2 β

−1/2
1 k1 + α2k2

...

β1/2
m β

−1/2
1 k1 + αmkm




: k1, . . . , km, k′1 ∈ L2(∂Ω)


.

(4.12)

In fact, for l ∈ dom S and an element k̂ = {k, k′} belonging to the right hand
side of (4.12) we compute

(Sl, k)− (l, k′) =
m∑

i=2

(β
−1/2
1 β

1/2
i li, k1) +

m∑
i=2

(αili, ki)

−
m∑

i=2

(li, β
1/2
i β

−1/2
1 k1 + αiki) = 0

and hence the right hand side of (4.12) is a subset of S∗. Furthermore, for
each l ∈ dom S and k̂ = {k, k′} ∈ S∗ we have

0 = (Sl, k)− (l, k′) =
m∑

i=2

(β
−1/2
1 β

1/2
i li, k1) +

m∑
i=2

(αili, ki)−
m∑

i=2

(li, k
′
i).

Therefore, by inserting l = (0, . . . , 0, lj, 0, . . . , 0)>, lj ∈ L2(∂Ω), j = 2, . . . ,m,
we obtain

k′j = β
1/2
j β

−1/2
1 k1 + αjkj, j = 2, . . . ,m,

i.e., S∗ is a subset of the right hand side of (4.12) and hence S∗ is given by
(4.12).

Let us check that {L2(∂Ω), Γ0, Γ1}, where

Γ0k̂ = β
−1/2
1 k1 and Γ1k̂ = α1β

−1/2
1 k1 + β

1/2
1 k′1 −

m∑
i=2

β
1/2
i ki, k̂ ∈ S∗,

is an ordinary boundary triple for S∗ with τ in (4.11) as corresponding Weyl
function. Since for an element k̂ = {k, k′} ∈ S∗ the entries k1 and k′1 are
arbitrary elements in L2(∂Ω) it follows immediately from 0 ∈ ρ(β1) that the
mapping (Γ0, Γ1)

> : S∗ → L2(∂Ω)×L2(∂Ω) is onto. Next we verify the identity
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(2.3). For l̂ = {l, l′} and k̂ = {k, k′} ∈ S∗ a straightforward computation shows

(l′, k)− (l, k′) = (β
1/2
1 l′1, β

−1/2
1 k1)− (β

−1/2
1 l1, β

1/2
1 k′1)

+
m∑

i=2

(β
1/2
i β

−1/2
1 l1 + αili, ki)−

m∑
i=2

(li, β
1/2
i β

−1/2
1 k1 + αiki)

=

(
β

1/2
1 l′1 −

m∑
i=2

β
1/2
i li , β

−1/2
1 k1

)
−
(
β
−1/2
1 l1 , β

1/2
1 k′1 −

m∑
i=2

β
1/2
i ki

)
= (Γ1l̂, Γ0k̂)− (Γ0l̂, Γ1k̂),

where we have used α1 = α∗1 in the last step. Observe that the selfadjoint
relation S0 = ker Γ0 is given by

S0 =
{{

(0, k2 . . . , km)>, (k′1, α2k2, . . . , αmkm)>
}

: k′1, k2, . . . , km ∈ L2(∂Ω)
}

and that for λ ∈ ρ(S0) =
⋂m

i=2 ρ(αi) the resolvent of S0 is a diagonal block
operator matrix in L2(∂Ω)m with entries 0, (α2 − λ)−1, . . . , (αm − λ)−1 on the
diagonal. Let now k̂ = {k, λk} ∈ N̂λ,S∗ and λ ∈ ρ(S0). Then we have

k′1 = λk1 and β
1/2
i β

−1/2
1 k1 = (λ− αi)ki, i = 2, . . . ,m,

and this implies

(
α1 + λβ1 +

m∑
i=2

β
1/2
i (αi − λ)−1β

1/2
i

)
Γ0k̂

= α1β
−1/2
1 k1 + λβ

1/2
1 k1 +

m∑
i=2

β
1/2
i (αi − λ)−1β

1/2
i β

−1/2
1 k1

= α1β
−1/2
1 k1 + β

1/2
1 k′1 −

m∑
i=2

β
1/2
i ki = Γ1k̂

for λ ∈ ρ(S0). Hence τ is the Weyl function of the ordinary boundary triple
{L2(∂Ω), Γ0, Γ1}.

Now we apply Theorem 4.2 to the present situation. It follows directly from
(4.12) and the definition of the boundary triples {L2(∂Ω), Υ0, Υ1} in Propo-
sition 4.1 and {L2(∂Ω), Γ0, Γ1} above that the solution operator Ã in Theo-
rem 4.2 has the asserted form. As τ is a Nevanlinna function C\R is subset
of U , cf. the consideration before Corollary 4.4, and hence for every λ ∈ C\R
the unique solution f ∈ Dmax of (4.5) is given by (4.6). It can be shown with
similar arguments as in step 1 of the proof of Theorem 4.2 that this is also
true on the larger set ρ(Ã) ∩ ρ(TD) ∩ h(τ). ¤
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In the next corollary we consider the special case of a linear L(L2(∂Ω))-valued
Nevanlinna function τ in the boundary condition of (4.5). Similar λ-linear
elliptic boundary value problems were investigated in, e.g., [15,35,36].

Corollary 4.7 Let α, β be bounded selfadjoint operators in L2(∂Ω) and as-
sume that β is uniformly positive. Then

Ã

f

k

 =

 `f

β−1/2ι+
∂fD

∂ν`
|∂Ω − β−1/2αβ−1/2k


dom Ã =


f

k

 ∈ Dmax × L2(∂Ω) : ι−fη|∂Ω = β−1/2k


is a selfadjoint operator in L2(Ω)×L2(∂Ω) and for g ∈ L2(Ω) and λ ∈ ρ(Ã)∩
ρ(TD) the unique solution f ∈ Dmax of the boundary value problem

(`− λ)f = g, (α + λβ)ι−f |∂Ω = ι+
∂fD

∂ν`

∣∣∣
∂Ω

,

is given by (4.6).
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[49] M.G. Krein and H. Langer, Über die verallgemeinerten Resolventen und die
charakteristische Funktion eines isometrischen Operators im Raume Πκ, Hilbert
Space Operators and Operator Algebras, Colloq. Math. Soc. Janos Bolyai, 5.
North-Holland, Amsterdam (1972), 353–399.
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