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Abstract. Boundary relations for a symmetric relation in a Pontryagin space

are studied and the corresponding Weyl families are characterized. In partic-
ular, it is shown that every generalized Nevanlinna family can be realized as

the Weyl family of a boundary relation in a Pontryagin space.

1. Introduction

The notions of boundary triplets and associated Weyl functions play a key role in
the extension theory of symmetric operators and relations. By means of a boundary
triplet all selfadjoint extensions of a given symmetric operator can be parametrized
and their spectral properties can be described efficiently with the help of the Weyl
function; see, e.g. [10, 11]. If the underlying space is a Hilbert space or a Pontrya-
gin space, then the Weyl function belongs to the class of Nevanlinna or generalized
Nevanlinna functions, respectively, and satisfies an additional strictness condition.
Conversely, every Nevanlinna or generalized Nevanlinna function with this addi-
tional strictness property can be realized as a Weyl function of a boundary triplet.

The concept of boundary relations and associated Weyl families for symmetric
operators and relations in Hilbert spaces was introduced in [8] and studied further
in [9]. The notion of boundary relation is a generalization of the notion of boundary
triplet which makes it possible to interpret all Nevanlinna functions and even so-
called Nevanlinna families as Weyl families. This was shown in [8] with the help of
the Naimark dilation theorem; in [2, 3, 7] an alternative realization in reproducing
kernel Hilbert spaces was given.

In the present paper the main interest is in the notions of boundary relations
and Weyl families in a Pontryagin space setting; for the Krĕın space case see also
[4]. Many of the basic definitions and facts from the Hilbert space case remain the
same in the indefinite setting due to one of the key observations in [8]: boundary
triplets and relations are unitary relations in a Krĕın space sense. However, in the
Pontryagin (and Krĕın) space case certain new difficulties arise: it may happen
that the so-called main transform of the boundary relation leads to a selfadjoint
relation which has an empty resolvent set, see Example 3.7. As becomes clear from
the considerations below, the Pontryagin space setting, when compared with the
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Hilbert space case, yields a somewhat more delicate interplay between the geometric
properties of boundary relations and the analytic properties of their Weyl families.
The treatments needed here are important in establishing the connection to the
class of generalized Nevanlinna families.

In an earlier paper [9] the coupling method was introduced to deal with the
selfadjoint extensions in an exit space (being a Hilbert space) of a given symmetric
operator or relation in a Hilbert space. The present results make it possible to also
consider selfadjoint extensions in an exit space which is allowed to be a Pontryagin
space. Hence this paper gives a possibility to extend the scope of the applica-
tions of the theory of boundary relations to abstract boundary value problems with
eigenparameter dependent boundary conditions.

Here is a short overview over the contents of the paper. In Section 2 some
definitions and preparatory facts on linear operators and relations on Krĕın and
Pontryagin spaces are given. In Section 3 boundary relations in Pontryagin and
Krĕın spaces are considered involving a study of their main transforms with empty
resolvent sets. In Section 4 the main results of the paper are established: it will
be shown that every Weyl family associated to a boundary relation of a symmet-
ric operator or relation in a Pontryagin space is a generalized Nevanlinna family
(Theorem 4.8), and that, conversely, every generalized Nevanlinna family can be
realized as the Weyl family of a boundary relation in a Pontryagin space (Theo-
rem 4.10). For this converse statement a Pontryagin space variant of the functional
model from [2, 3, 7] is established. A partial case of Theorem 4.10 for normalized
generalized Nevanlinna pairs was formulated in other terms and proved in [21].

2. Preliminaries

2.1. Linear relations in Banach spaces. Let H and K be linear spaces. A linear
relation (multivalued operator) S from H to K is a linear subspace of the product
space H×K. For the usual definitions concerning operations with relations, see for
instance [15]. The domain, kernel, range, and multivalued part of a linear relation
S from a linear space H to a linear space K will be denoted by domS, kerS, ranS,
and mulS, respectively. The elements in a linear relation S will usually be written
in the form

{f, f ′} or

(
f
f ′

)
, where f ∈ domS, f ′ ∈ ranS.

Linear operators from H into K are viewed as linear relations via their graphs.
Now consider the case where H and K are Banach spaces. A linear relation S

from H to K is said to be closed if S is closed as a subspace of the product space
H×K. The linear space of bounded linear operators defined on H with values in K
is denoted by B(H,K) and by B(H) when K = H. Let S be a closed linear relation
in H. The set of points of regular type ρ̂(S) of S is the set of all λ ∈ C such that
(S − λ)−1 is a bounded linear operator (defined on ran (S − λ)). The resolvent
set ρ(S) of S is the set of all λ ∈ C such that (S − λ)−1 ∈ B(H); the spectrum
σ(S) of S is the complement of ρ(S) in C. A point λ ∈ C is an eigenvalue of S if
ker(S−λ) 6= {0}. The set of all eigenvalues of S is denoted by σp(S). When λ ∈ C
is an eigenvalue of S the corresponding linear space of eigenelements is denoted by
Nλ(S) := ker(S − λ) and, furthermore,

N̂λ(S) =
{
{fλ, λfλ} : fλ ∈ Nλ(S)

}
.
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The following situation occurs frequently.

Lemma 2.1. Let H be a Banach space and let A,B ∈ B(H). Define the linear
relation S in H by

S = { {Ah,Bh} : h ∈ H }.
If B − λA is boundedly invertible for some λ ∈ C, then the relation S is closed and
λ ∈ ρ(S). Moreover, (S − λ)−1 = A(B − λA)−1.

2.2. Linear relations and operators in Krĕın spaces. Let (H, [·, ·]) be a Krĕın
space and let JH be a corresponding fundamental symmetry. Then

(·, ·) := [JH·, ·]

defines a scalar product on H such that [·, ·] is continuous with respect to the
norm induced by (·, ·) and (H, (·, ·)) is a Hilbert space; see [1]. In the following all
topological notions are understood with respect to the norm ‖ · ‖ induced by (·, ·).

Let U ⊂ H× K be a linear relation from the Krĕın space (H, [·, ·]H) to the Krĕın
space (K, [·, ·]K). The adjoint U+ is defined by

U+ :=
{
{ k̃, h̃} ∈ K× H : [k, k̃]K = [h, h̃]H for all {h, k} ∈ U

}
.

It is a closed linear relation from K to H, i.e., a closed subspace of K × H when
considered as the direct sum of the corresponding Hilbert spaces. A linear relation
U ⊂ H × K is said to be isometric if U−1 ⊂ U+ and unitary if U−1 = U+. Recall
that a unitary relation U from H to K satisfies

kerU = (domU)[⊥]H and mulU = (ranU)[⊥]K .

Furthermore, recall that domU is closed if and only if ranU is closed (see [23]).
Unitary relations may be multivalued; and single-valued unitary relations may be
unbounded. A unitary relation from H to K is said to be a standard unitary operator
if it is (the graph of) an operator belonging to B(H,K). The inverse of a standard
unitary operator is automatically also a standard unitary operator.

Finally, a linear relation A ⊂ H × H in a Krĕın space (H, [·, ·]) is said to be
symmetric if A ⊂ A+ and selfadjoint if A = A+. A selfadjoint relation in a Krĕın
space (or in a Pontryagin space) may have an empty resolvent set; cf. Example 3.7.

2.3. Linear relations and operators in Pontryagin spaces. Symmetric and
selfadjoint relations in Pontryagin spaces have some useful properties. If S is a
symmetric operator in a Pontryagin space H, then automatically the set of points
of regular type is nonempty: ρ̂(S) 6= ∅; in fact, then #(C± \ ρ̂(S)) ≤ κ. If A is a
selfadjoint operator in a Pontryagin space with κ negative squares, then the upper
and lower half planes consist of points of the resolvent set with the exception of at
most κ eigenvalues in each of the half planes; see [1], [16]. The situation is different
for selfadjoint relations in a Pontryagin space; see [14].

Lemma 2.2. Let A be a selfadjoint linear relation in a Pontryagin space H with κ
negative squares. Then σ(A) = C if and only if σp(A) contains at least κ+ 1 points
in C+ or in C−. In this case

span { ker(A− λ) : λ ∈ C+ } and span { ker(A− λ) : λ ∈ C− }

are neutral subspaces of H, which contain at least one nontrivial vector from mulA.
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Proof. For the first statement, see [14]. Now let λ1, λ2, . . . , λκ+1 be different
eigenvalues of A in C+ and let

(2.1) {uj , λjuj} ∈ A, uj 6= 0, j = 1, 2, . . . , κ+ 1.

Then [uj , uk] = 0 for all j, k = 1, 2, . . . , κ+ 1 and thus, the subspace

L = span {uj : j = 1, 2, . . . , κ+ 1}
is neutral. Since H is a Pontryagin space with negative index κ the dimension d of
the neutral subspace L is less or equal to κ, and hence the vectors uj are linearly
dependent. Enumerate uj such that u1, . . . , ud form a basis in L. Then there are

αj ∈ C such that ud+1 =
∑d
j=1 αjuj and

(2.2)

ud+1,

d∑
j=1

αjλjuj

 ∈ A.
It follows from (2.1) and (2.2) that0 ,

d∑
j=1

αj(λj − λd+1)uj

 ∈ A,
and, hence,

u∞ :=

d∑
j=1

αj(λj − λd+1)uj ∈ mulA.

If u∞ = 0, then αj = 0 for all j = 1, . . . , d and hence ud+1 = 0, a contradiction.
Thus u∞ is not trivial. �

Corollary 2.3. If A is a selfadjoint linear relation in a Pontryagin space H such
that σ(A) = C, then mulA contains at least one nontrivial neutral vector. In
particular, if mulA is either a positive subspace or a negative subsoace of H, then
ρ(A) 6= ∅.

Lemma 2.4. Let K be a closed densely defined linear operator acting from a Hilbert
space (L, (·, ·)) to a Pontryagin space (H, [·, ·]) of negative index κ. Then the operator
K+K is selfadjoint in L and the form [K·,K·] is semibounded from below on domK.

Proof. It follows from (K+Kx, y) = [Kx,Ky] = (x,K+Ky), x, y ∈ dom (K+K),
that K+K is a symmetric operator in L. Since K+K has at most κ negative
eigenvalues, one can assume that −1 6∈ σp(K+K). Then the subspace

K = {{Ku, u} : u ∈ domK}
is a closed nondegenerate subspace of H⊕L and its orthogonal complement in H⊕L
takes the form

K[⊥] =
{
{f,−K+f} : f ∈ domK+

}
.

Since H ⊕ L is a Pontryagin space it follows that H ⊕ L = K[+]K[⊥] holds; cf. [1,
Theorem 9.9], [16, Theorem 3.2]. Hence there exist u ∈ domK and f ∈ domK+

such that
{0, h} = {Ku, u}+ {f,−K+f}

This implies u ∈ dom (K+K), h = (I+K+K)u and hence ran (I+K+K) = L. Thus
−1 ∈ ρ(K+K) and it follows that K+K is a selfadjoint operator in L. Furthermore,
as H is a Pontryagin space with negative index κ it follows that the spectral subspace
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of K+K corresponding to the negative spectrum has at most dimension κ and
therefore K+K is semibounded from below.

To see that also the form [K·,K·] is semibounded from below on domK it suffices
to prove that

K0 :=
{
{Ku, u} : u ∈ dom (K+K)

}
is dense in K. Indeed, if {Kv, v} is orthogonal to K0 for some v ∈ domK then

(v, (I +K+K)u) = (v, u) + [Kv,Ku] = 0

for all u ∈ dom (K+K) and hence v = 0. �

3. Boundary relations and Weyl families

In this section boundary relations and their Weyl families in Krĕın spaces will
be studied. It will be shown that on an algebraic level there is a close connection
between the Krĕın space and the Hilbert space situations.

3.1. Boundary relations in Krĕın spaces. Let (H, [·, ·]) be a Krĕın space and
let JH be a corresponding fundamental symmetry. The product space H2 = H× H
will be equipped with the indefinite inner product

(3.1)
[[
f̂ , ĝ
]]
H2 = i

(
[f, g′]− [f ′, g]

)
, f̂ = {f, f ′}, ĝ = {g, g′} ∈ H2.

Then (H2, [[·, ·]]H2) is also a Krĕın space and(
0 −iJH
iJH 0

)
∈ B(H2)

is a corresponding fundamental symmetry. In the following (H, (·, ·)) will be a
Hilbert space. By replacing the inner product [·, ·] on the right hand side of (3.1)
with (·, ·) the product space H2 equipped with the corresponding indefinite inner
product [[·, ·]]H2 is also a Krein space with the fundamental symmetry

(3.2) JH2 =

(
0 −iIH
iIH 0

)
∈ B(H2).

Let Γ ⊂ H2 × H2 be a linear relation from the Krĕın space (H2, [[·, ·]]H2) to the

Krĕın space (H2, [[·, ·]]H2) and denote the adjoint of Γ by Γ[[+]]. Then Γ is [[·, ·]]-
isometric or [[·, ·]]-unitary if Γ is an isometric or unitary relation from (H2, [[·, ·]]H2)

to (H2, [[·, ·]]H2); i.e., if Γ−1 ⊂ Γ[[+]] or Γ−1 = Γ[[+]], respectively.

Definition 3.1. Let S be a closed symmetric relation in a Krĕın space H. A linear
relation Γ ⊂ H2 ×H2 is called a boundary relation for S+ if H is a Hilbert space,
T := dom Γ is dense in S+ w.r.t. the graph topology on S+ (induced by the Hilbert
space inner product on H2 = H× H), and Γ is [[·, ·]]-unitary.

One can restate this definition also as follows: a [[·, ·]]-unitary relation Γ ⊂ H2×H2

is a boundary relation for S+ if and only if ker Γ = S; see [8, Proposition 2.3]. The
space H in Definition 3.1 is the parameter space of the boundary relation Γ; it plays
the role of the boundary space in applications to ODE’s and PDE’s.

The product space H2 can be provided with another indefinite inner product

� f̂ , ĝ �H2 = i
(
(f, g′)− (f ′, g)

)
= i
(
[JHf, g

′]− [JHf
′, g]
)
, f̂ = {f, f ′}, ĝ = {g, g′} ∈ H2,
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where (·, ·) = [JH·, ·] is the Hilbert space inner product on H. The fundamental
symmetry JH can be used to give a connection between different classes of linear
relations in Krĕın spaces and Hilbert spaces. This is formulated in the next lemma,
whose proof is straightforward.

Lemma 3.2. The linear operator UJH from the Krĕın space (H2, [[·, ·]]H2) to the

Krĕın space (H2,� ·, · �H2) defined by

(3.3) UJH{f, f ′} = {f, JHf ′}, {f, f ′} ∈ H2,

is a standard unitary operator. Furthermore, for every linear relation A in H2,

(3.4) UJH(A+) = (UJH(A))∗,

where ∗ denotes the adjoint in H with respect to the Hilbert space inner product (·, ·).
In particular, UJH establishes a bijective correspondence between the symmetric and
selfadjoint relations in the Krĕın space (H, [·, ·]) and the symmetric and selfadjoint
relations in the Hilbert space (H, (·, ·)), respectively.

Using this connection one can conclude the existence and give a description of
all boundary relations Γ ⊂ H2×H2 for an arbitrary closed symmetric relation S in
a Krĕın space setting.

Proposition 3.3. Let S be a closed symmetric relation in the Krĕın space (H, [·, ·])
with the fundamental symmetry JH. Then the mapping UJH in (3.3) establishes a
bijective correspondence between the boundary relations Γ ⊂ H2×H2 for S+ and the

boundary relations Γ̃ ⊂ H2 ×H2 for S̃∗, where S̃ = UJH(S) is a closed symmetric
relation in the Hilbert space (H, (·, ·)), via

Γ = Γ̃ ◦ UJH .

Proof. Let S̃ = UJH(S) and let Γ̃ ⊂ H2 × H2 be a boundary relation for S̃∗.

Then Γ̃ is a unitary relation from the Krĕın space (H2,� ·, · �H2) to the Krĕın

space (H2, [[·, ·]]H2) with ker Γ̃ = S̃. Since UJH is a standard unitary operator by
Lemma 3.2, it follows from [9, Theorem 2.10 (iv)] that the composition

Γ = Γ̃ ◦ UJH
is a unitary relation from the Krĕın space (H2, [[·, ·]]H2) to the Krĕın space

(H2, [[·, ·]]H2). Clearly, ker Γ = S and thus Γ defines a boundary relation for S+.

The inverse U−1
JH

is also a standard unitary operator and, therefore, if Γ ⊂ H2×H2

is a boundary relation for S+, then the same argument shows that the composition

Γ̃ = Γ ◦ U−1
JH

is a boundary relation for S̃∗. This yields the one-to-one correspondence between

the boundary relations of S+ and S̃∗. �

The existence of boundary relations for closed symmetric operators or relations
in the Hilbert space setting was proved in [8, Proposition 3.7], which together with
Proposition 3.3 gives the corresponding fact for symmetric relations in a Krĕın
space.

A boundary relation Γ is said to be an ordinary boundary triplet for S+ if ran Γ =
H × H; see [8, Proposition 5.3]. The existence of ordinary boundary triplets for
symmetric relations in a Krĕın space can now be described as follows.
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Proposition 3.4. Let S be a closed symmetric relation in the Krĕın space (H, [·, ·])
with the fundamental symmetry JH. Then there exists an ordinary boundary triplet
for S+ if and only if S admits a selfadjoint extension in (H, [·, ·]). In this case the
mapping UJH in (3.3) establishes a bijective correspondence between all ordinary

boundary triplets {H,Γ0,Γ1} for S+ and all ordinary boundary triplets {H, Γ̃0, Γ̃1}
for S̃∗, where S̃ = UJH(S) is a closed symmetric relation in the Hilbert space
(H, (·, ·)), via

{Γ0,Γ1} = {Γ̃0 ◦ UJH , Γ̃1 ◦ UJH} = Γ̃ ◦ UJH .
Moreover, A0 := ker Γ0 and A1 := ker Γ1 are selfadjoint extensions of S in the
Krĕın space (H, [·, ·]) which are transversal, i.e., A0 +̂ A1 = S+.

Proof. It follows from (3.4) that S admits a selfadjoint extension in the Krĕın space

(H, [·, ·]) if and only if S̃ admits a selfadjoint extension in the Hilbert space (H, (·, ·)),
or equivalently, S̃ has equal defect numbers in (H, (·, ·)). This is a necessary and

sufficient condition for the existence of an ordinary boundary triplet {H, Γ̃0, Γ̃1}
for S̃∗; cf. [11], [8, Section 5.1]. On the other hand, it is clear that Γ̃ = {Γ̃0, Γ̃1} is

an ordinary boundary triplet for S̃∗ if and only if Γ̃ ◦UJH is an ordinary boundary

triplet for S+, since UJH is a standard unitary operator and UJH(S+) = S̃∗. This
yields the bijective correspondence between the ordinary boundary triplets for S+

and S̃∗. Clearly, UJH(Aj) = ker Γ̃j and hence (3.4) implies that A0 and A1 are
transversal selfadjoint extensions of S in (K, [·, ·]). �

The existence of an ordinary boundary triplet for a closed symmetric relation S
in a Krĕın space which admits a selfadjoint extension A0 with a nonempty resolvent
set was shown in [5]. Proposition 3.4 implies that all ordinary boundary triplets
of S+ in a fixed parameter space H can be described in the same way as in the
Hilbert space setting; cf., e.g., [11, Proposition 1.7].

Lemma 3.5. Let Γ be a boundary relation for the adjoint S+ and let W be a
standard unitary operator in the Krĕın space (H2, [[·, ·]]H2). Then W ◦ Γ is also a
boundary relation for S+. Moreover, if Γ is an ordinary boundary triplet for S+,
then the same is true for W ◦ Γ and all ordinary boundary triplets for S+ can be
obtained in this way.

The connection between the boundary relations of S+ of a symmetric relation

S in a Krĕın space (H, [·, ·]) and the boundary relations of S̃∗ in the Hilbert space
(H, (·, ·)) given in Proposition 3.3 makes it possible to extend or easily translate
several facts for (different types of) boundary relations as well as various results
on their composition and coupling which were proved in the Hilbert space setting
in [8, 9] for boundary relations of symmetric relations in Krĕın spaces. The reason
is that many of the results involving the construction of boundary triplets and
relations (e.g. for various intermediate extensions of orthogonal sums of symmetric
relations as in [9, Sections 3–5]) have been proved by using composition of two
unitary operators or relations (cf. [9, Theorem 2.10]), i.e., they are of algebraic
nature: when such a result on boundary relations is established for symmetric
relations in a Hilbert space it also holds for symmetric relations in a Krĕın space
due to the connection of boundary relations and triplets in Propositions 3.3, 3.4
via the standard unitary mapping UJH in (3.3). In this way one gets also various
transformation results for Weyl families (see Definition 3.6 below) of boundary
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relations in the Krĕın space setting, proved in the Hilbert space setting in [8, 9];
as a simple example see, e.g., Lemma 3.8. It is emphasized that these results
give the ”algebraic part” involving, e.g., various transformations of Weyl families
of symmetric operators in a Krĕın space; they do not make it possible to derive
specific analytic properties of a given Weyl family of some symmetric operator S in
a Krĕın space from the analytic properties of a Weyl family of a symmetric operator

S̃ = UJH(S) in a Hilbert space. The reason is that the defect subspaces of S and S̃
are not connected by the mapping UJH and therefore there is no direct connection

between the Weyl families of the boundary relations of S+ and S̃∗.

3.2. Weyl families for boundary relations in Krĕın spaces. The introduction
of Weyl families and γ-fields for the present situation follows the same pattern as
in the Hilbert space case; see [8, 9].

Definition 3.6. Let S be a closed symmetric relation in the Krĕın space H and let
Γ ⊂ H2×H2 be a boundary relation for S+ with T = dom Γ. The γ-field γ and the
Weyl family M of the boundary relation Γ are defined by

γ(λ) :=
{{

h, f
}

:
{
f̂ , ĥ

}
∈ Γ and f̂ = {f, f ′} ∈ N̂λ(T )

}
, λ ∈ C,

and

M(λ) := Γ
(
N̂λ(T )

)
=
{
ĥ : {f̂ , ĥ} ∈ Γ and f̂ ∈ N̂λ(T )

}
, λ ∈ C.

Let S be a closed symmetric relation in the Krĕın space H and let Γ ⊂ H2 ×H2

be a boundary relation for S+. Then Γ induces a selfadjoint extension A of S in
the Krĕın space H×H defined by

(3.5) A :=

{{(
f
h

)
,

(
f ′

h′

)}
:

{(
f
f ′

)
,

(
h
−h′

)}
∈ Γ

}
,

which is called the main transform of Γ in [8]. As was shown in [8, Theorem 3.9]
the Weyl family M of the boundary relation Γ and the selfadjoint extension A in
(3.5) associated to Γ are connected via

(3.6) PH(A− λ)−1�H = −(M(λ) + λ)−1, λ ∈ ρ(A),

and that therefore in this case

(3.7) −(M(λ) + λ)−1 ∈ B(H), λ ∈ ρ(A).

However, in general, the selfadjoint relation A in (3.5) has an empty resolvent set
and (3.7) will not hold in general. In fact, the righthand side of (3.6) suggests that
ρ(A) will be empty if the Weyl family of Γ is M(λ) = −λ. In the following example
this situation is considered.

Example 3.7. Let H be the one-dimensional Pontryagin space (C, [·, ·]), where the
inner product is defined by [f, g] := −fg, f, g ∈ C. Then

Γ :=

{{(
f
f ′

)
,

(
f
−f ′

)}
: f, f ′ ∈ C

}
⊂ H2 × C2

is a boundary relation for T = S+ = { {f, f ′} : f, f ′ ∈ H } when the closed sym-
metric operator S is defined by S = {0}. In fact,

Γ[[+]] :=

{{(
h
h′

)
,

(
g
g′

)}
: −(h, f ′)− (h′, f) = [g, f ′]− [g′, f ] for all f, f ′ ∈ C

}
,
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and simple observations show Γ−1 = Γ[[+]]. The Weyl family associated with Γ,
defined by

M(λ) =

{(
f
−λf

)
: f ∈ C

}
= −λ,

is a scalar generalized Nevanlinna function with one negative square. The selfad-
joint relation A in H× C associated with the boundary relation Γ is given by

A =

{{(
f
f

)
,

(
f ′

f ′

)}
: f, f ′ ∈ C

}
.

Clearly every λ ∈ C is an eigenvalue of A and hence ρ(A) = ∅. Note that also
H = Nλ(T ), λ ∈ C, and H = mulA.

Recall that standard unitary operators in (H2, [[·, ·]]H2) transform boundary re-
lations by interpreting the standard unitary operator W in H as a transformer (of
linear relations) in the sense of Shmuljan [24]; see Lemma 3.5. The corresponding
Weyl families transform accordingly, cf. [9, Proposition 3.11].

Lemma 3.8. Let S be a closed symmetric relation in the Krĕın space H and let
Γ ⊂ H2×H2 be a boundary relation for S+ with corresponding Weyl family M . Let
W be a standard unitary operator in the Krĕın space (H2, [[·, ·]]H2) decomposed as

W =

(
W00 W01

W10 W11

)
,

and let ΓW = W ◦Γ be the transformed boundary relation with corresponding Weyl
family MW . Then dom ΓW = dom Γ and

(3.8) MW (λ) =
{
{W00f +W01f

′,W10f +W11f
′} : {f, f ′} ∈M(λ)

}
.

In the following lemma a particularly useful transform of a boundary relation is
described with some further details; the first part (in the Hilbert space setting) is
contained in [9, Proposition 3.18] and the second part is obtained by applying (3.5)
to ΓW .

Lemma 3.9. Let S be a closed symmetric relation in the Krĕın space H and let
Γ ⊂ H2×H2 be a boundary relation for S+ with corresponding Weyl family M . Let
X,X−1, Y = Y ∗ ∈ B(H) and define

(3.9) W =

(
X−1 0
Y X−1 X∗

)
.

Then W is a standard unitary operator in (H2, [[·, ·]]H2) and the Weyl family MW

related to the boundary relation ΓW = W ◦ Γ is given by

(3.10) MW (λ) = X∗M(λ)X + Y.

If the selfadjoint relations A and AW correspond to the boundary relations Γ and
ΓW via (3.5), then

AW =

{{(
f

X−1h

)
,

(
f ′

X∗h′ − Y X−1h

)}
:

{(
f
h

)
,

(
f ′

h′

)}
∈ A

}
,

and the subspace mulAW admits the representation

(3.11) mulAW =

{(
f ′

X∗h′

)
:

(
f ′

h′

)
∈ mulA

}
.
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Proof. A direct computation shows

W [[+]] =

(
X 0

−X−∗Y X−∗

)
= W−1,

so that W is a standard unitary operator in (H2, [[·, ·]]H2). The identity (3.10)
follows from (3.8), which in the present circumstances (3.8) reads as

MW (λ) =
{
{X−1f, Y X−1f +X∗f ′} : {f, f ′} ∈M(λ)

}
.

The remaining statements follow from ΓW = W ◦ Γ and (3.5). �

Lemma 3.10. Let S be a closed symmetric relation in the Krĕın space H, let
Γ ⊂ H2 × H2 be a boundary relation for S+, and let A be the selfadjoint relation
associated with Γ via (3.5). Assume that

(3.12) mulA ∩ H = {0}.
Then there exists a closed linear operator K : domK ⊂ H → H such that

(3.13) mulA =

{(
Ku
u

)
: u ∈ domK ⊂ H

}
.

The condition (3.12) is satisfied, if S is an operator.

Proof. Observe that mulA is a closed subspace of H⊕H given by

mulA =

{(
f ′

h′

)
:

{(
0
0

)
,

(
f ′

h′

)}
∈ A

}
.

Hence, the condition (3.12) is necessary and sufficient for mulA to be the graph of
a linear operator K : domK ⊂ H → H. Clearly, the operator K is closed, since
mulA is a closed subspace of H⊕H.

To prove the last statement assume that f ′ ∈ mulA ∩ H. Then(
f ′

0

)
∈ mulA and

{(
0
0

)
,

(
f ′

0

)}
∈ A,

and therefore {(
0
f ′

)
,

(
0
0

)}
∈ Γ and

(
0
f ′

)
∈ ker Γ.

Hence, f ′ ∈ mulS and if S is an operator this yields f ′ = 0. �

3.3. Boundary relations in Pontryagin spaces. In this subsection somewhat
more specific results for boundary relations in Pontryagin spaces are given. It is
clear from (3.6) that a nonempty resolvent set ρ(A) 6= ∅ of the selfadjoint relation
A in (3.5) simplifies the investigation of the analytic properties of the Weyl families
and γ-fields associated with boundary relations for S+. Another helpful condition
in this connection is the notion of minimality of boundary relations; the definition
given here is a slight adaption of [8, Definition 3.4] in the case of Hilbert spaces.

Definition 3.11. Let S be a closed symmetric relation in the Pontryagin space H
and let Γ ⊂ H2×H2 be a boundary relation for S+ with dom Γ = T . The boundary
relation Γ is called minimal if ρ̂(S) 6= ∅ and

(3.14) H = span {Nλ(T ) : λ ∈ ρ̂(S) } .

Recall that if S is a closed symmetric operator in the Pontryagin space H, then
ρ̂(S) 6= ∅.
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Proposition 3.12. Let S be a closed symmetric operator in the Pontryagin space
H and let Γ ⊂ H2 ×H2 be a boundary relation for S+ with dom Γ = T . Then there
exists a boundary relation ΓW for S+ with the same domain dom ΓW = T , such
that the selfadjoint relation AW associated with ΓW via (3.5) satisfies

ρ(AW ) 6= ∅.

Proof. Assume that ρ(A) = ∅ for the main transform A of Γ; otherwise the state-
ment is clear. Since S is an operator it follows from Lemma 3.10 that there exists
a closed linear operator K : domK ⊂ H → H such that (3.13) holds. Due to
Lemma 2.4 the form [K·,K·] on domK is semibounded from below, that is there
is a > 0 such that

[Ku,Ku] ≥ −a2‖u‖2, u ∈ domK.

Consider a standard unitary operator W in (H2, [[·, ·]]H2) of the form (3.9). The
selfadjoint relation A is transformed into the selfadjoint relation AW whose mul-
tivalued part is given by (3.11). The inner product on mulAW is obtained from
(3.13) and (3.11):

(3.15)

[(
Ku
X∗u

)
,

(
Ku
X∗u

)]
= (XX∗u, u) + [Ku,Ku], u ∈ domK.

By choosing W such that the inner product in (3.15) is positive (for instance X =
(a+ib)I with some b > 0 and Y = 0), it follows from Corollary 2.3 that ρ(AW ) 6= ∅.
By construction, dom ΓW = dom Γ and this completes the proof. �

Clearly, the above result need not hold if S is not an operator: consider S ⊕ A,
where S is symmetric and A a selfadjoint relation with ρ(A) = ∅. Proposition 3.12
gives a couple of useful corollaries; it will be also used in establishing the charac-
teristic properties of the Weyl families in the next section.

Corollary 3.13. Let S be a closed symmetric operator in the Pontryagin space H
and let Γ ⊂ H2 × H2 be a boundary relation for S+ with dom Γ = T . Then the
selfadjoint relation AW in Proposition 3.12 satisfies

(3.16) Nλ(T ) = ranPH(AW − λ)−1|H, λ ∈ ρ(AW ).

Proof. Due to dom ΓW = T and ρ(AW ) 6= ∅ the result is obtained by using the
arguments appearing in [8, Lemma 2.14]. �

The next corollary is valid for arbitrary boundary relations in Pontryagin spaces.

Corollary 3.14. Let S be a closed symmetric operator in the Pontryagin space H,
let Γ ⊂ H2 × H2 be a boundary relation for S+ with dom Γ = T and let AW be a
selfadjoint relation as in Proposition 3.12. Then the following statements hold:

(i) Nλ(T ) is dense in Nλ(S+), λ ∈ ρ(AW );
(ii) Γ is minimal if and only if S is simple, i.e.,

H = span
{
Nλ(S+) : λ ∈ ρ̂(S)

}
;

(iii) for λ ∈ C± except for at most κ points the linear spaces Nλ(T ) in (3.16)
satisfy

‖PH(AW − λ)−1 − PH(AW − λ0)−1‖ → 0, λ→ λ0, λ, λ0 ∈ ρ(AW ).

Proof. The statements (i) and (ii) are obtained from Corollary 3.13 combined with
[8, Lemma 2.14]. To prove (iii) it suffices to apply the resolvent identity for AW . �



12 J. BEHRNDT, V.A. DERKACH, S. HASSI, AND H.S.V. DE SNOO

As to part (iii) of Corollary 3.14 note that the linear spaces of eigenelements
Nλ(T ) are in general nonclosed and that S = ker Γ need not have equal defect
numbers, cf. [8], in which case there are no selfadjoint extensions in H connecting
e.g. the defect subspaces of S as in the case of ordinary boundary triplets where
one may use the resolvent of A0 := ker Γ0. Note that Corollary 3.14 makes it also
possible to replace ρ̂(S) in the definition of minimality in (3.14) by much smaller
subsets in C±.

To this end the following result is given for completeness; it is well-known at
least for simple symmetric operators with equal defect numbers.

Lemma 3.15. Let S be a closed symmetric relation in the Pontryagin space H and
let Γ ⊂ H2 × H2 be a minimal boundary relation for S+. Then S = ker Γ is an
operator without eigenvalues.

Proof. To see that S is an operator, assume that {0, g} ∈ S. Then for all fλ ∈
Nλ(T ), λ ∈ C,

0 = [g, fλ]− [0, λfλ] = [g, fλ],

and hence it follows from (3.14) that g = 0. Next assume that {h, ζh} ∈ S for some
ζ ∈ C. Then

0 = [ζh, fλ]− [h, λfλ] = (ζ − λ̄)[h, fλ],

and hence again using (3.14) one easily concludes that h = 0. �

4. Generalized Nevanlinna families and Weyl families of boundary
relations in Pontryagin spaces

In this section boundary relations and their Weyl families are considered when
the space H is a Pontryagin space. The corresponding Weyl family turns out to
be a generalized Nevanlinna family and it is also shown that, conversely, every
generalized Nevanlinna family is the Weyl family corresponding to a boundary
relation in a Pontryagin space.

4.1. Generalized Nevanlinna pairs and families. The next definition gener-
alizes the notion of Nevanlinna pairs which was first introduced apparently in [22],
but its prototype can be found in other places, in particular, in the theory of the
Bezoutiant, see [20]. The notions of Nevanlinna pairs and families has been used for
the description of generalized resolvents in, e.g., [17], and in the theory of boundary
value problems with spectral parameter depending boundary conditions, see, e.g.,
[12], [13].

For a subset O in C the notation

O∗ := {λ ∈ C : λ̄ ∈ O}
will be used in the following.

Definition 4.1. Let H be a Hilbert space and let κ ∈ N0. A pair {Φ,Ψ} of B(H)-
valued functions Φ,Ψ holomorphic on a symmetric open set O ∪ O∗, O ⊂ C+, is
said to be a generalized Nevanlinna pair with κ negative squares, if

(P1) for all λ ∈ O:

Ψ(λ̄)∗Φ(λ)− Φ(λ̄)∗Ψ(λ) = 0;

(P2) for some µ ∈ C+ and some λ ∈ O:

0 ∈ ρ(Ψ(λ) + µΦ(λ)), 0 ∈ ρ(Ψ(λ̄) + µ̄Φ(λ̄));
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(P3) the kernel

(4.1) KΦ,Ψ(λ, µ) :=
Ψ(λ̄)∗Φ(µ̄)− Φ(λ̄)∗Ψ(µ̄)

λ− µ̄

has κ negative squares on O ∪O∗.
A generalized Nevanlinna pair with κ = 0 negative squares is said to be a Nevanlinna
pair.

Observe that if the condition (P2) is satisfied, then it also holds for all points in
some neighborhood of λ by continuity of the functions Ψ and Φ. Hence, by making
O smaller (if necessary) one can equivalently assume that (P2) actually holds for
all λ ∈ O. Recall also that (P3) means that for all n ∈ N and every choice of
λi ∈ O ∪ O∗ and xi ∈ H, i = 1, . . . , n, the matrix (KΦ,Ψ(λi, λj)xj , xi)

n
i,j=1 has at

most κ negative eigenvalues and that the number κ with this property is minimal.
Two Nevanlinna pairs {Φ,Ψ} and {Φ1,Ψ1} are said to be equivalent, if for some

holomorphic and boundedly invertible operator function χ(·) ∈ B(H) on O ∪O∗

Φ1(λ) = Φ(λ)χ(λ) and Ψ1(λ) = Ψ(λ)χ(λ)

holds for all λ ∈ O ∪O∗. Note that{
{Φ(λ)h,Ψ(λ)h} : h ∈ K

}
=
{
{Φ(λ)χ(λ)k,Ψ(λ)χ(λ)k} : k ∈ K

}
, λ ∈ O ∪O∗,

and that the kernel

KΦχ,Ψχ(λ, µ) = χ(λ̄)∗KΦ,Ψ(λ, µ)χ(µ̄)

also has κ negative squares on O ∪O∗.

Definition 4.2. Let κ ∈ N0. A family of linear relations τ in a Hilbert space H
defined on O∪O∗ where O ⊂ C+ is an open set, is called a generalized Nevanlinna
family with κ negative squares if

(Q1) τ(λ)∗ = τ(λ̄) for all λ ∈ O ∪O∗;
(Q2) for some µ ∈ C+ the operator family (τ(λ) + µ)−1 has values in B(H) and

is holomorphic on O ⊂ C+;
(Q3) the kernel KΦ̃,Ψ̃(λ, µ) associated with the pair

(4.2) Φ̃(λ) :=

{
(τ(λ) + µ)−1, λ ∈ O,
(τ(λ) + µ̄)−1, λ̄ ∈ O,

Ψ̃(λ) :=

{
I − µ(τ(λ) + µ)−1, λ ∈ O,
I − µ̄(τ(λ) + µ̄)−1, λ̄ ∈ O,

has κ negative squares on O ∪O∗.
A generalized Nevanlinna family with κ = 0 negative squares is said to be a Nevan-
linna family.

The following proposition shows how generalized Nevanlinna pairs and general-
ized Nevanlinna families are connected to each other and how they can be extended
onto C \ R with the possible exception of at most κ pairs of points in C \ R.

Proposition 4.3. Let {Φ,Ψ} be a generalized Nevanlinna pair with κ negative
squares on O ∪O∗ and let τ be defined by

(4.3) λ 7→ τ(λ) =
{
{Φ(λ)h,Ψ(λ)h} : h ∈ H

}
, λ ∈ O ∪O∗.
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Then τ is a generalized Nevanlinna family with κ negative squares and τ can be
uniquely extended to a generalized Nevanlinna family with κ negative squares on a
domain

(4.4) D+ ∪ D∗+, where D+ ⊂ C+ and #(C+ \ D+) ≤ κ.
Moreover, for every ζ ∈ C+ the condition 0 ∈ ρ(τ(λ) + ζ) holds for all λ ∈ D+

except at most κ points.
Conversely, if τ is a generalized Nevanlinna family with κ negative squares, then

the pair {Φ̃, Ψ̃} defined by (4.2) is a generalized Nevanlinna pair with κ negative
squares and admits a unique extension to a generalized Nevanlinna pair with κ
negative squares on a domain as in (4.4).

Proof. Let {Φ,Ψ} be a generalized Nevanlinna pair and let τ be defined by (4.3).
Then it follows from (P1) that τ(λ) ⊂ τ(λ̄)∗. The definition (4.3) implies that

(4.5) τ(λ) + µ = {{Φ(λ)h,Ψ(λ)h+ µΦ(λ)h} : h ∈ H} ,
and, hence (P2) shows that 0 ∈ ρ(τ(λ) + µ) for all λ ∈ O(⊂ C+). Similarly, one
shows that 0 ∈ ρ(τ(λ̄) + µ̄) for all λ ∈ O. This implies that τ(λ)∗ = τ(λ) and also
proves (Q1) and (Q2). The property (Q3) follows immediately from (P3) since the

pair {Φ̃, Ψ̃} is equivalent to {Φ,Ψ}:

Φ̃(λ) =

{
Φ(λ)(Ψ(λ) + µΦ(λ))−1, λ ∈ O,
Φ(λ)(Ψ(λ) + µ̄Φ(λ))−1 λ ∈ O∗,

Ψ̃(λ) =

{
Ψ(λ)(Ψ(λ) + µΦ(λ))−1, λ ∈ O,
Ψ(λ)(Ψ(λ) + µ̄Φ(λ))−1 λ ∈ O∗

.

Therefore τ defined in (4.3) is a generalized Nevanlinna family with κ negative
squares.

Associate with the Nevanlinna pair {Φ̃, Ψ̃} the operator valued function

(4.6) Θ(λ) =

{
Ψ̃(λ) + µ̄Φ̃(λ), λ ∈ O,
Ψ̃(λ) + µΦ̃(λ), λ ∈ O∗.

Note that the condition (P1) is equivalent to the condition Θ(λ̄)∗ = Θ(λ). In
particular, (P1) implies that

(4.7) Φ̃(λ) = Φ̃(λ̄)∗, Ψ̃(λ) = Ψ̃(λ̄)∗, λ ∈ O.
Associate with Θ the Schur kernel SΘ(λ, ω) in O by the formula

SΘ(λ, ω) :=
I −Θ(λ)Θ(ω)∗

−2i(λ− ω̄)
, λ, ω ∈ O.

It follows from (4.6), (4.7) and the equalities

Ψ̃(λ) + µΦ̃(λ) = I Ψ̃(λ̄) + µ̄Φ̃(λ̄) = I, λ ∈ O,
that the Schur kernel SΘ(λ, ω) is connected to the Nevanlinna kernel KΦ̃,Ψ̃(λ, ω) on

O via

(4.8) SΘ(λ, ω) = ImµKΦ̃,Ψ̃(λ, ω).

Hence, in the terminology of [18] Θ belongs to the generalized Schur class Sκ(H)
and according to [18, Satz 3.2, Folgerung 3.3] Θ admits a unique holomorphic

continuation Θ̃(λ) to a set D+ in the open upper half plane C+ with #(C+ \D+) ≤
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κ. Let Θ̃ be extended to the lower half plane C− by Θ̃(λ) := Θ(λ̄)∗, λ ∈ D∗+ and
let the family of linear relations τ̃ be defined by

(4.9) τ̃(λ) =

{
{ {(I − Θ̃(λ))f, (µΘ̃(λ)− µ̄)f} : f ∈ H}, λ ∈ D+,

{ {(I − Θ̃(λ))f, (µ̄Θ̃(λ)− µ)f} : f ∈ H}, λ ∈ D∗+.

Then the family of linear relations τ̃ is a continuation of τ to the domain Dτ :=
D+ ∪ D∗+ and the property (Q1) is easily verified on Dτ .

Introduce the kernel DΘ̃(λ, ω) on (D+ ∪ D∗+)× (D+ ∪ D∗+) by

DΘ̃(λ, ω) :=



I−Θ̃(λ)Θ̃(ω)∗

−2i(λ−ω̄) , ω ∈ D+, λ ∈ D+,
Θ̃(λ)−Θ̃(ω)∗

−2i(λ−ω̄) , ω ∈ D+, λ ∈ D∗+,
Θ̃(λ)−Θ̃(ω)∗

2i(λ−ω̄) , ω ∈ D∗+, λ ∈ D+,
I−Θ̃(λ)Θ̃(ω)∗

2i(λ−ω̄) , ω ∈ D∗+, λ ∈ D∗+.

Due to [12] (see also [6] in the present notation) the kernel DΘ̃(λ, ω) has κ negative
squares on (D+ ∪ D∗+)× (D+ ∪ D∗+). Similar calculations as in (4.8) show that

DΘ̃(λ, ω) = ImµKΦ̃,Ψ̃(λ, ω),

where Φ̃, Ψ̃ are determined by (4.2) with τ̃ instead of τ . Therefore, the property
(Q3) for τ̃ is satisfied.

It follows from (4.9) that for ζ ∈ C+ and λ ∈ C+ ∩ Dτ ,

τ̃(λ) + ζ = { {(I − Θ̃(λ))f, ((µ− ζ)Θ̃(λ)− (µ̄− ζ))f} : f ∈ H}.

Let ν = (µ − ζ)/(µ̄ − ζ). Then by [18, Satz 3.2, Lemma 3.5] 0 ∈ ρ(I − νΘ̃(λ)) or,
equivalently, 0 ∈ ρ(τ̃(λ) + ζ) for all λ ∈ D+ except at most κ points. In particular,
also (Q2) is satisfied.

Conversely, assume that τ(·) is a generalized Nevanlinna family with κ negative

squares and let the pair {Φ̃, Ψ̃} be defined by (4.2) on O ∪ O∗. The first part
of the proof implies that τ can be extended to a generalized Nevanlinna family
with κ negative squares on the domain Dτ = D∗τ , #(C+ \ Dτ ) ≤ κ; compare [19,
Satz 3.4]. Now clearly (P1) is implied by (Q1). It follows from (4.5) and (Q2) that

0 ∈ ρ(Ψ̃(λ) + µΦ̃(λ)) for all λ ∈ Dτ ∩ C+. Similarly, (Q1) and (Q2) imply that

0 ∈ ρ(τ(λ̄) + µ̄) and, hence, 0 ∈ ρ(Ψ̃(λ̄) + µ̄Φ̃(λ)) for all λ ∈ Dτ ∩ C−. This proves
(P2). Finally, (P3) is clear from (Q3). �

Remark 4.4. Proposition 4.3 contains the continuation property for generalized
Nevanlinna families and generalized Nevanlinna pairs with κ negative squares on
O ∪O∗. A similar fact for generalized Schur functions with κ negative squares on
some open set in the unit disk was proved by M.G. Krĕın and H. Langer in [18], and
the present result is obtained from their result by applying Caley transforms. The
continuation property in the case of bounded operator functions τ whose Nevan-
linna kernel has κ negative squares on a set D0 ⊂ C+, which contains at least one
accumulation point was proved earlier in [12, Section 2].

By replacing the generalized Nevanlinna pair {Φ,Ψ} by the extended generalized

Nevanlinna pair {Φ̃, Ψ̃} in Proposition 4.3 one can consider generalized Nevanlinna
pairs being defined in the maximal domain of holomorphy D+ ∪ D∗+ of a given
generalized Nevanlinna family τ . In what follows such a pair is often still denoted
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by {Φ,Ψ} with the indication that its domain of holomorphy is denoted by DΦ,Ψ :=
D+ ∪ D∗+, instead of being a pair defined on some open subset O ∪O∗ ⊂ C \ R.

4.2. Standard unitary transforms of generalized Nevanlinna pairs and
families. Let H be a Hilbert space and let the generalized Nevanlinna pair {Φ,Ψ}
and the generalized Nevanlinna family τ(λ) be connected by

(4.10) τ(λ) =
{
{Φ(λ)h,Ψ(λ)h} : h ∈ K

}
,

where λ ∈ DΦ,Ψ; see Proposition 4.3. Let W = (Wij)
1
i,j=0 be a standard unitary

operator in the Krĕın space (H2, [[·, ·]]H2). Then W transforms the generalized
Nevanlinna pair {Φ,Ψ} as follows:

(4.11)

(
ΦW (λ)
ΨW (λ)

)
=

(
W00 W01

W10 W11

)(
Φ(λ)
Ψ(λ)

)
.

Moreover, by considering W as a transformer (in the sense of [24]) of the generalized
Nevanlinna family τ one obtains the family

(4.12) τW (λ) = { {W00f +W01f
′,W10f +W11f

′} : {f, f ′} ∈ τ(λ) }.

Clearly, the pair {ΦW ,ΨW } and the family τW (λ) are connected by

(4.13) τW (λ) =
{
{ΦW (λ)h,ΨW (λ)h} : h ∈ K

}
.

The next purpose is to show that for suitable standard unitary operators W the pair
{ΦW ,ΨW } in (4.11) is a generalized Nevanlinna pair with κ negative squares and
that τW in (4.12) is a generalized Nevanlinna family with κ negative squares. Due
to the correspondence in (4.13) it suffices to restrict attention to standard unitary
transforms of generalized Nevanlinna pairs. Corresponding results for standard
unitary transforms of generalized Nevanlinna families follow accordingly.

Proposition 4.5. Let H be a Hilbert space, let {Φ,Ψ} be a generalized Nevan-
linna pair with κ negative squares, and let W be a standard unitary operator in
(H2, [[·, ·]]H2). Then the pair {ΦW ,ΨW } defined in (4.11) satisfies the properties
(P1) and (P3) of Definition 4.1. Moreover, for every ζ ∈ C+ the operator func-
tions

(W ∗00 − ζW ∗01)ΨW (λ)− (W ∗10 − ζW ∗11)ΦW (λ),

(W ∗00 − ζ̄W ∗01)ΨW (λ̄)− (W ∗10 − ζ̄W ∗11)ΦW (λ̄),
(4.14)

are boundedly invertible for all λ ∈ DΦ,Ψ ∩ C+ except at most κ points.

Proof. Let {Φ,Ψ} be a generalized Nevanlinna pair with κ negative squares on
DΦ,Ψ. Note that the condition (P1) can be rewritten as

(4.15)

(
Φ(λ̄)
Ψ(λ̄)

)∗(
0 −I
I 0

)(
Φ(λ)
Ψ(λ)

)
= 0

and that the kernel in (P3) can be written as

(4.16) KΦ,Ψ(λ, µ) =
1

λ− µ̄

(
Φ(λ̄)
Ψ(λ̄)

)∗(
0 −I
I 0

)(
Φ(µ̄)
Ψ(µ̄)

)
.

Since W is a standard unitary operator

(4.17) W ∗JH2W = WJH2W ∗ = JH2
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holds, where JH2 is as in (3.2). Hence, it follows from (4.15) and (4.16) that the
pair {ΦW ,ΨW } also satisfies the conditions (P1) and (P3). Furthermore, by means
of (4.17) the following identities are easily checked

(W ∗00 − ζW ∗01)ΨW (λ)− (W ∗10 − ζW ∗11)ΦW (λ) = Ψ(λ) + ζΦ(λ),

(W ∗00 − ζ̄W ∗01)ΨW (λ̄)− (W ∗10 − ζ̄W ∗11)ΦW (λ̄) = Ψ(λ̄) + ζ̄Φ(λ̄).

Hence, these identities and the condition (P2) of Definition 4.1 yield (4.14). �

Remark 4.6. Assume that the standard unitary operator W is of the form (3.9),
so that the pair {ΦW ,ΨW } in (4.11) is given by

ΦW (λ) = X−1Φ(λ), ΨW (λ) = Y X−1Φ(λ) +X∗Ψ(λ),

and the family τW (λ) in (4.12) is given by

(4.18) τW (λ) = X∗τ(λ)X + Y.

Then the condition (4.14) is equivalent to

(4.19) ΨW (λ) + (ζX∗X − Y )ΦW (λ) and ΨW (λ̄)∗ + ΦW (λ̄)∗(ζX∗X − Y )

to be boundedly invertible for all λ ∈ DΦ,Ψ ∩ C+ except at most κ points.
Moreover, if the operator ζX∗X − Y in (4.19) is of the form µI with µ ∈ C+,

then (4.19) is equivalent to (P2) of Definition 4.1. Hence, in this case {ΦW ,ΨW }
in (4.11) is a generalized Nevanlinna pair with κ negative squares and τW (λ) in
(4.12) is a generalized Nevanlinna family with κ negative squares.

The previous situation occurs in the particular case that W is of the form (3.9)
with

(4.20) X = xIH, Y = yIH, x ∈ C, y ∈ R.
Then

(4.21) ζX∗X − Y = (ζ|x|2 − y)I and ζ|x|2 − y ∈ C+.

Therefore, under these circumstances, {ΦW ,ΨW } in (4.11) is a generalized Nevan-
linna pair with κ negative squares.

Proposition 4.5 and its special cases as discussed in Remark 4.6 now lead to the
following corollary (see (4.20) and (4.21)).

Corollary 4.7. Assume that the generalized Nevanlinna pair {Φ,Ψ} satisfies

0 ∈ ρ(Ψ(λ0) + ζΦ(λ0)) and 0 ∈ ρ(Ψ(λ̄0) + ζ̄Φ(λ̄0)),

with λ0 = a+ ib, a ∈ R, b > 0, and ζ = c+ id, c ∈ R, d > 0. Let W be the standard
unitary operator of the form (3.9), where X and Y are given by (4.20) with

x =

√
b

d
, y =

cb− ad
d

.

Then the pair {ΦW ,ΨW } in (4.11) is a generalized Nevanlinna pair with κ negative
squares which satisfies the additional properties

0 ∈ ρ(ΨW (λ0) + λ0ΦW (λ0)) and 0 ∈ ρ(ΨW (λ̄0) + λ̄0ΦW (λ̄0)).

It will be a consequence of the main realization result, Theorem 4.10 below, that
the result stated in Corollary 4.7 holds actually for every standard unitary operator
W in (H2, [[·, ·]]H2), that is, {ΦW ,ΨW } in Proposition 4.5 is a generalized Nevanlinna
pair, i.e. it satisfies also the invertibility conditions (P2) in Definition 4.1; see
Corollary 4.12.
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4.3. Weyl families as generalized Nevanlinna families. In this subsection it
will be shown that every Weyl family corresponding to a boundary relation for the
adjoint of a symmetric relation in a Pontryagin space is a generalized Nevanlinna
family.

Theorem 4.8. Let S be a closed symmetric relation in a Pontryagin space H with
negative index κ and let Γ ⊂ H2 ×H2 be a minimal boundary relation for S+ with
the corresponding Weyl family M . Then M is a generalized Nevanlinna family with
κ negative squares.

Proof. Let A be the selfadjoint relation in H×H defined by the boundary relation
Γ as in (3.5). Since H×H is a Pontryagin space there is an alternative for A: either
ρ(A) 6= ∅, in which case the nonreal spectrum of A consists of at most finitely many
eigenvalues, or ρ(A) = ∅; cf. Lemma 2.2. The proof will be given in two steps
corresponding to these cases.

Step 1. Assume that ρ(A) 6= ∅. Denote the compressed resolvent PH(A−λ)−1|H
by Φ(λ), λ ∈ ρ(A). Then by (3.6) Φ(λ) = −(M(λ) + λ)−1 for all λ ∈ ρ(A) and
therefore

(4.22) M(λ) =
{{

Φ(λ)h,−(I + λΦ(λ))h
}

: h ∈ H
}
.

Setting Ψ(λ) = −(I + λΦ(λ)) it is clear that Φ and Ψ are meromorphic on C \ R
and it follows from Φ(λ) = Φ(λ̄)∗ and Ψ(λ) = Ψ(λ̄)∗ that the symmetry condition
(P1) in Definition 4.1 holds. Observe that Ψ(λ) + λΦ(λ) = −I, which shows that
condition (P2) of Definition 4.1 is satisfied. Furthermore, a simple calculation shows
that the kernel KΦ,Ψ takes the form

KΦ,Ψ(λ, µ) =
Φ(λ)− Φ(µ̄)

λ− µ̄
− Φ(λ)Φ(µ̄)

= PH(A− λ)−1(I − PH)(A− µ̄)−1|H.

Thus for n ∈ N, λi ∈ C+, and xi ∈ H, i = 1, . . . , n, it follows that(
KΦ,Ψ(λi, λj)xi, xj

)n
i,j=1

=

[
PH

(
A− λ̄j

)−1
(

0
xi

)
, PH

(
A− λ̄i

)−1
(

0
xj

)]n
i,j=1

,

where [·, ·] denotes the inner product in H. Hence the number of negative squares
of KΦ,Ψ(·, ·) is less or equal to κ, the negative index κ−(H×H) = κ−(H).

If the boundary relation Γ is assumed to be minimal, then the condition

H = span
{

ranPH(A− λ)−1|H : λ ∈ ρ(A) ∩ (C \ R)
}

is satisfied; see Corollaries 3.13, 3.14. Therefore the numbers of negative squares
of KΦ,Ψ(·, ·) is equal to κ−(H), and the condition (P3) of Definition 4.2 is satisfied.
Thus {Φ,Ψ} is a generalized Nevanlinna pair with κ negative squares. It follows
from (4.22) that M is a generalized Nevanlinna family with κ negative squares; cf.
Proposition 4.3.

Step 2. In the general case the resolvent set ρ(A) may be empty. The minimality
of Γ implies that S is an operator; cf. Lemma 3.13. By Proposition 3.12 there exists
a standard unitary operator W such that the main transform AW corresponding to
the boundary relation ΓW = W ◦Γ satisfies the condition ρ(AW ) 6= ∅. Furthermore,
the boundary relation ΓW is automatically minimal, since dom ΓW = dom Γ (see
also Corollary 3.14).
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According to Step 1 the Weyl family MW corresponding to ΓW is a generalized
Nevanlinna family with κ negative squares with the property

(4.23) 0 ∈ ρ(MW (λ) + λ),

cf. (3.6). Let {Φ̃, Ψ̃} be a generalized Nevanlinna pair with κ negative squares,
induced by MW . Then (4.23) implies that

(4.24) 0 ∈ ρ(Ψ̃(λ) + λΦ̃(λ)).

Define the pair {Φ,Ψ} by (
Φ(λ)
Ψ(λ)

)
= W−1

(
Φ̃(λ)

Ψ̃(λ)

)
.

According to Proposition 4.5 (applied with W replaced by W−1) it follows that
{Φ,Ψ} has the properties (P1) and (P3). Moreover, the standard unitary operator
W can be chosen of the form (3.9), where

X = (a+ ib)I, Y = 0,

with a > 0 sufficiently large and b > 0 (see the proof of Proposition 3.12). Then
Remark 4.6 yields

(4.25) Ψ̃(λ) + λΦ̃(λ) = (a− ib)
(

Ψ(λ) +
λ

a2 + b2
Φ(λ)

)
.

It follows from (4.24) and (4.25) that {Φ,Ψ} also has the property (P2). Hence
{Φ,Ψ} is a generalized Nevanlinna pair with κ negative squares. According to
Proposition 4.3 the corresponding Weyl family M is a generalized Nevanlinna family
with κ negative squares. �

Observe that if S is a closed symmetric operator in a Pontryagin space H with
negative index κ and if Γ ⊂ H2 × H2 is a boundary relation for S+ which is not
necessarily minimal, then the corresponding Weyl family is a generalized Nevanlinna
family with κ′ ≤ κ negative squares. The next statement for the Hilbert space case
is known from [8].

Corollary 4.9. Let S be a closed symmetric relation in a Hilbert space H and let
Γ ⊂ H2 × H2 be a boundary relation for S∗. Then the corresponding Weyl family
is a Nevanlinna family.

4.4. Generalized Nevanlinna families as Weyl families. Let τ be a general-
ized Nevanlinna family with κ negative squares in a Hilbert space H. Let τ have
the representation

(4.26) τ(λ) =
{
{Φ(λ)h,Ψ(λ)h : h ∈ H}

}
=
{
{k, k′} : Ψ(λ̄)∗k = Φ(λ̄)∗k′

}
with a generalized Nevanlinna pair {Φ,Ψ} with κ negative squares on DΦ,Ψ, see
Proposition 4.3; here the second equality follows from the property (Q1) in Def-
inition 4.2. The reproducing kernel space H(Φ,Ψ) induced by the pair {Φ,Ψ} is
characterized by the properties

(i) the mappings λ 7→ KΦ,Ψ(λ, µ)h ∈ H(Φ,Ψ) for all h ∈ H and all µ in the
domain of holomorphy DΦ,Ψ of Φ and Ψ form a dense set in H(Φ,Ψ);

(ii) for every f ∈ H(Φ,Ψ) the following identity holds:

(4.27) 〈f(·),KΦ,Ψ(·, µ)h〉 = (f(µ), h), h ∈ H.
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This function space equipped with (the extension) of the inner product

〈KΦ,Ψ(·, ν)k,KΦ,Ψ(·, µ)h〉 := (KΦ,Ψ(µ, ν)k, h), ν, µ ∈ DΦ,Ψ, h, k ∈ H,

is a Pontryagin space with κ negative squares.
Multiplication by the independent variable is a closed symmetric operator in the

reproducing kernel Pontryagin space H(Φ,Ψ). In the following theorem it will be
shown that every generalized Nevanlinna family can be realized as the Weyl family
of a boundary relation corresponding to the multiplication operator in H(Φ,Ψ).
The proof given here is based on the approach which in the Hilbert space setting
was used in [7, Theorem 2.5 and Remark 2.6]; for an other approach which uses
Cayley transforms, see [3, Theorem 6.1].

Theorem 4.10. Let τ be a generalized Nevanlinna family with κ negative squares
in a Hilbert space H and let τ be represented in the form (4.26) by a generalized
Nevanlinna pair {Φ,Ψ}. Then

(4.28) S =
{
{f, f ′} ∈ H(Φ,Ψ)2 : f ′(λ) = λf(λ)

}
is a closed symmetric operator in the reproducing kernel Pontryagin space H(Φ,Ψ)
and

(4.29) Γ =

{{(
f
f ′

)
,

(
h
h′

)}
:

f, f ′ ∈ H(Φ,Ψ), h, h′ ∈ H,
f ′(λ)− λf(λ) = Ψ(λ̄)∗h− Φ(λ̄)∗h′

}
is a minimal boundary relation for S+ such that the corresponding Weyl family
coincides with the generalized Nevanlinna family τ .

Proof. The generalized Nevanlinna pair {Φ,Ψ} with κ negative squares is defined
in Definition 4.1. The maximality condition (P2) is weaker than the condition that

(4.30) 0 ∈ ρ(Ψ(λ0) + λ0Φ(λ0)), 0 ∈ ρ(Ψ(λ̄0) + λ̄0Φ(λ̄0))

hold for some λ0 ∈ C \ R in the domain DΦ,Ψ of holomorphy of Φ and Ψ. The proof
of the theorem will be given in two steps, depending on whether (4.30) is satisfied
or not.

Step 1. Assume that {Φ,Ψ} is a generalized Nevanlinna pair with κ negative
squares for which (4.30) is satisfied. In this case one can proceed in a similar way as
in the Hilbert space setting; cf. the proof of [7, Theorem 2.5]. For the convenience
of the reader a short sketch will be given; for some further details see also [21],
where the result is formulated in terms of the main transform. Using (4.30) it will
be shown that the linear relation

A =

{{(
f
h

)
,

(
f ′

−h′
)}

:
f, f ′ ∈ H(Φ,Ψ), h, h′ ∈ H,

f ′(λ)− λf(λ) = Ψ(λ̄)∗h− Φ(λ̄)∗h′

}
is selfadjoint in H(Φ,Ψ)⊕H. For this purpose define

(4.31) B = span

{{(
KΦ,Ψ(·, µ̄)k
−Φ(µ)k

)
,

(
µKΦ,Ψ(·, µ̄)k

Ψ(µ)k

)}
: k ∈ H, µ ∈ DΦ,Ψ

}
.

By means of (4.1) one can immediately check that B ⊂ A and, moreover, by using
(4.27) it is seen that B is symmetric in H(Φ,Ψ)⊕H. The elements in ran (B−λ0),
have the form (

(µ− λ0)KΦ,Ψ(·, µ̄)k
(Ψ(µ) + λ0Φ(µ))k

)
.
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Therefore, choosing µ = λ0 and taking into account that

ran (Ψ(λ0) + λ0Φ(λ0)) = H,

it follows that {0} ⊕H ⊂ ran (B − λ0); hence also the elements of the form(
KΦ,Ψ(·, µ̄)k

0

)
, k ∈ H, µ ∈ DΦ,Ψ, µ 6= λ̄0,

belong to ran (B− λ0). Therefore, ran (B− λ0) is dense in H(Φ,Ψ)⊕H. Similarly,
one shows that ran (B − λ̄0) is dense in H(Φ,Ψ) ⊕ H. Furthermore, by means of
(4.27) it is straightforward to check that the adjoint of B coincides with A. Hence,
A is a closed symmetric relation with ran (A− λ) dense in H(Φ,Ψ)⊕H for λ = λ0

and λ = λ̄0. Consequently, A is selfadjoint.
The Weyl family M associated with the boundary relation Γ is defined by

M(λ) =

{
{h, h′} :

{(
f
λf

)
,

(
h
h′

)}
∈ Γ

}
.

Therefore,

M(λ) =
{
{h, h′} : Ψ(λ̄)∗h = Φ(λ̄)∗h′

}
,

and it follows from (4.26) that M(λ) = τ(λ). Moreover, it is clear from the for-
mula (4.31) and the inclusion B ⊂ A that the boundary relation Γ is minimal; see
(3.14).

Step 2. Now assume that {Φ,Ψ} is a generalized Nevanlinna pair with κ negative
squares for which (4.30) is not necessarily satisfied. By Definition 4.1

0 ∈ ρ(Ψ(λ0) + ζΦ(λ0)), 0 ∈ ρ(Ψ(λ̄0) + ζ̄Φ(λ̄0))

for some λ0 = a+ ib ∈ DΦ,Ψ and some ζ = c+ id with b, d > 0. Then the standard
unitary operator W in Corollary 4.7 provides a generalized Nevanlinna pair of the
form (

ΦW (λ)
ΨW (λ)

)
= W

(
Φ(λ)
Ψ(λ)

)
with κ negative squares on DΦ,Ψ which additionally satisfies the condition (4.30)
for λ0 ∈ DΦ,Ψ∩C+ (equivalently, for all λ in a small neighborhood O of λ0). Hence
it follows from the first part of the proof that

(4.32) Γ(W ) :=

{{(
f
f ′

)
,

(
h
h′

)}
:

f, f ′ ∈ H(ΦW ,ΨW ), h, h′ ∈ H,
f ′(λ)− λf(λ) = ΨW (λ̄)∗h− ΦW (λ̄)∗h′

}
is a minimal boundary relation for S+ such that the corresponding Weyl family
coincides with the generalized Nevanlinna family

τW (λ) =
{
{ΦW (λ)h,ΦW (λ)h} : h ∈ H

}
.

Due to Lemma 3.9 Γ = W−1 ◦ Γ(W ) is a boundary relation for S+ and the cor-
responding Weyl family is precisely τ . It remains to note that due to the above
choice of W (cf. (4.18), Corollary 4.7) the equality H(ΦW ,ΨW ) = H(Φ,Ψ) holds.
Moreover, using the formulas for ΦW and ΨW one can rewrite the formula for Γ(W )

in (4.32) equivalently in the form (4.29) with
(
h
h′

)
= W−1

(
h̃
h̃′

)
. �

For the special case κ = 0, i.e. τ is a Nevanlinna family, Theorem 4.10 implies
the following result; cf. [2, 3] and [8, Theorem 3.9]
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Corollary 4.11. Let τ be a Nevanlinna family represented in the form (4.26) by
a Nevanlinna pair {Φ,Ψ}. Then the multiplication operator S in (4.28) is a closed
symmetric operator in the reproducing kernel Hilbert space H(Φ,Ψ) and the relation
Γ in (4.29) is a minimal boundary relation for S∗ such that the corresponding Weyl
family coincides with the Nevanlinna family τ .

The next corollary is an improvement of the statement in Proposition 4.5: the
maximality condition (4.14) can actually be replaced by the maximality condition
as in Definition 4.1; cf. Remark 4.6.

Corollary 4.12. Let {Φ,Ψ} is a generalized Nevanlinna pair with κ negative
squares on DΦ,Ψ and let W be a standard unitary operator in (H2, [[·, ·]]H2). Then
the transformed pair {ΦW ,ΨW } in (4.11) is a generalized Nevanlinna pair with κ
negative squares on DΦ,Ψ.

Proof. If {Φ,Ψ} be a generalized Nevanlinna pair with κ negative squares on DΦ,Ψ,
then by Theorem 4.10 it corresponds to a Weyl family of a (minimal) boundary
relation Γ via (4.10); cf. (4.29). By Lemma 3.8 ΓW = W ◦ Γ is also a boundary
relation whose Weyl family MW is given by (3.8). According to Theorem 4.8 MW

is also a generalized Nevanlinna family with κ negative squares. This shows that
the corresponding transformed pair {ΦW ,ΨW } in Proposition 4.5 is actually a
generalized Nevanlinna pair with κ negative squares on DΦ,Ψ; cf. Proposition 4.3.

�

In the following corollary condition (4.30) in the proof of Theorem 4.10 is con-
nected to the resolvent set of the selfadjoint relation A in H(Φ,Ψ) ×H associated
with the minimal boundary relation Γ ⊂ H(Φ,Ψ)2 ×H2 in (4.29).

Corollary 4.13. Let τ be a generalized Nevanlinna family with κ negative squares
in a Hilbert space H and let τ be represented in the form (4.26) by a generalized
Nevanlinna pair {Φ,Ψ}. Let A be the main transform of the boundary relation Γ
in (4.29),

A =

{{(
f
h

)
,

(
f ′

−h′
)}

:
f, f ′ ∈ H(Φ,Ψ), h, h′ ∈ H,

f ′(λ)− λf(λ) = Ψ(λ̄)∗h− Φ(λ̄)∗h′

}
,

and let λ0 ∈ C+. Then λ0 ∈ ρ(A) if and only if

(4.33) (τ(λ0) + λ0)−1 ∈ B(H) and (τ(λ̄0) + λ̄0)−1 ∈ B(H).

Proof. It is clear form (3.6) that λ0 ∈ ρ(A) implies the first condition in (4.33).
Since ρ(A) is symmetric with respect to the real line also λ̄0 ∈ ρ(A) and hence the
second condition in (4.33) is satisfied.

Conversely, if (4.33) holds, then the Nevanlinna pair {Φ,Ψ} in (4.26) satisfies
the conditions (4.30) in the proof of Theorem 4.10. It follows as in the proof of
Theorem 4.10 that λ0 and λ̄0 belong to ρ(A). �

Observe, that by taking adjoints and using the property (Q1) in Definition 4.2
it follows that the conditions in (4.33) are actually equivalent to each other:

(τ(λ0) + λ0)−1 ∈ B(H) ⇔ (τ(λ̄0) + λ̄0)−1 ∈ B(H).
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