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Essential spectrum of Schrödinger operators with δ-interactions on the
union of compact Lipschitz hypersurfaces
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In this note we prove that the essential spectrum of a Schrödinger operator with δ-potential supported on a finite number of
compact Lipschitz hypersurfaces is given by [0,+∞). We emphasize that the union of a family of Lipschitz hypersurfaces is
in general not Lipschitz.
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1 Introduction

Let S := {Σk}nk=1 be a family of (d − 1)-dimensional Lipschitz manifolds, each of which separates the Euclidean space
Rd, d ≥ 2, into a bounded part Ωk,i and an unbounded exterior part Ωk,e. Let A := {αk}nk=1 be a family of L∞-functions
αk : Σ→ R and define a sesquilinear form tA,S by

tA,S [f, g] := (∇f,∇g)L2(Rd;Cd) −
n∑
k=1

(αkf |Σk
, g|Σk

)L2(Σk), dom tA,S = H1(Rd). (1)

It can be shown that tA,S is a closed, densely defined, symmetric sesquilinear form which is bounded from below and hence
induces a self-adjoint operator −∆A,S in L2(Rd) via the first representation theorem, see [1, 2, 4, 5]. The main objective of
this note is to prove the following result.

Theorem 1.1 σess(−∆A,S) = [0,+∞).
We note that Theorem 1.1 is slightly more general than [4, Theorem 4.2 (i)] since the δ-interaction is supported on the

union of hypersurfaces which itself may not be locally the graph of a Lipschitz function. The proof of Theorem 1.1 is based
on a compact perturbation argument for one hypersurface, variational principles and singular sequences.

2 Proof of Theorem 1.1 for one hypersurface

Let us introduce the self-adjoint free Laplacian −∆free defined via the sesquilinear form

tfree[f, g] := (∇f,∇g)L2(Rd;Cd), dom tfree = H1(Rd).

It is well-known that σess(−∆free) = σ(−∆free) = [0,+∞). Let S = {Σ} and A = {α}, where α : Σ → R is an
L∞-function, and denote the self-adjoint operator corresponding to the form (1) in this case by −∆α,Σ.

Theorem 2.1 The resolvent difference

(−∆free − λ)−1 − (−∆α,Σ − λ)−1 (2)

is compact for all λ ∈ ρ(−∆free) ∩ ρ(−∆α,Σ). In particular, σess(−∆α,Σ) = [0,+∞).

P r o o f. According to its definition, the operator −∆α,Σ is semibounded from below. Hence we can fix a constant a > 0
such that −∆α,Σ + a > 0. We denote the resolvent difference in (2) with λ = −a by W . Let f, g ∈ L2(Rd) and set

u := (−∆free + a)−1f, v := (−∆α,Σ + a)−1g. (3)

Using (3) and the definition of the operator W we obtain

(Wf, g)L2(Rd) =
(
(−∆free + a)−1f, g

)
L2(Rd)

−
(
(−∆α,Σ + a)−1f, g

)
L2(Rd)

=
(
u, g
)
L2(Rd)

−
(
f, (−∆α,Σ + a)−1g

)
L2(Rd)

=
(
u, (−∆α,Σ + a)v

)
L2(Rd)

−
(
(−∆free + a)u, v

)
L2(Rd)

= (u,−∆α,Σv)L2(Rd) − (−∆freeu, v)L2(Rd).

(4)
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524 Section 23: Applied operator theory

This formula can be rewritten in a more suitable way. Observe that both functions u and v belong to H1(Rd), which is the
form domain of the operators −∆α,Σ and −∆free. Hence, we can use the first representation theorem to rewrite (4) in the
following form

(Wf, g)L2(Rd) = −
(
u|Σ, αv|Σ

)
L2(Σ)

, (5)

where we made use of the explicit formulae for tfree and tA,S . Introduce the operators T1, T2 : L2(Rd)→ L2(Σ) by

T1f :=
(
(−∆free + a)−1f

)∣∣
Σ
, T2g := −α

[(
(−∆α,Σ + a)−1g

)∣∣
Σ

]
.

It follows from the trace theorem for Sobolev functions [8, Theorem 3.37] that both operators T1 and T2 are everywhere
defined in L2(Rd) and bounded. Moreover, ranT1 ⊂ H1/2(Σ) and as Σ is a compact Lipschitz manifold the embedding of
H1/2(Σ) into L2(Σ) is compact, see, e.g., [7, Section 2] and the references therein. Therefore, we obtain in addition that T1

is compact. Combining (3) with (5) and with the definition of the operators T1 and T2 we find

(Wf, g)L2(Rd) =
(
T1f, T2g

)
L2(Σ)

.

In fact, we have shown that W = T ∗2 T1 and the compactness of T1 and boundedness of T2 imply compactness of W . Note
that by [3, Lemma 2.2] the resolvent difference in (2) is compact for all λ ∈ ρ(−∆free) ∩ ρ(−∆α,Σ).

3 Proof of Theorem 1.1 in the general case

We will make use of the following fact: Let A and B be self-adjoint operators which are semibounded from below and have
the same form domain. Then the inequality

minσess(A+B) ≥ minσess(A) + minσess(B) (6)

holds, where the sum A+B should be understood in the form sense. In fact, this is a consequence of the min-max theorem [9,
Theorem XIII.2] since the corresponding sequences for the operatorsA,B andA+B satisfy the inequality λm+n−1(A+B) ≥
λm(A) + λn(B) and it remains to pass to the limit m,n→∞.

Obviously the equality tA,S [f, f ] = 1
n

∑n
k=1 t{nαk},{Σk}[f, f ] holds for all f ∈ H1(Rd). Employing inequality (6) and

Theorem 2.1 we arrive at

minσess(−∆A,S) ≥
n∑
k=1

minσess

(
− 1
n∆{nαk},{Σk}

)
= 0.

For the opposite inclusion we follow some ideas in the proof of [6, Proposition 5.1]. Pick a function ϕ ∈ C∞0 ([0, 2)) such
that ϕ(r) ≥ 0 and

∫
Rd ϕ(|x|)2 = 1. Choose p ∈ Rd and xn ∈ Rd such that the balls B2n(xn) with the centers xn and the

radii 2n are mutually disjoint and do not intersect any hypersurface from the family S. Then

ψn,p(x) :=
1

nd/2
ϕ

(
1

n
|x− xn|

)
eipx

with n ∈ N is a singular sequence for the operator −∆A,S corresponding to |p|2. In fact, the sequence {ψn,p}n is a singular
sequence for |p|2 corresponding to the free Laplacian −∆free, but, since the supports of the functions ψn,p do not intersect
the support of the δ-interaction, this sequence is also a singular sequence for −∆A,S corresponding to the same value |p|2.
Hence, we get σess(−∆A,S) = [0,+∞).
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