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Essential spectrum of Schrodinger operators with J-interactions on the
union of compact Lipschitz hypersurfaces
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In this note we prove that the essential spectrum of a Schrédinger operator with J-potential supported on a finite number of
compact Lipschitz hypersurfaces is given by [0, +00). We emphasize that the union of a family of Lipschitz hypersurfaces is
in general not Lipschitz.
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1 Introduction

Let S := {X;}}_, be a family of (d — 1)-dimensional Lipschitz manifolds, each of which separates the Euclidean space
R4, d > 2, into a bounded part Q0 ; and an unbounded exterior part Q.. Let A := {oy}7_, be a family of L>°-functions
oy, + ¥ — R and define a sesquilinear form t 4, s by

n

taslf,g] == (Vf,Vg)r2maca) — Z(Oékﬂzk,glzk)m(zk)? domty s = H'(RY). ()
=1

It can be shown that t 4 s is a closed, densely defined, symmetric sesquilinear form which is bounded from below and hence
induces a self-adjoint operator —A 4 s in L? (Rd) via the first representation theorem, see [1,2,4,5]. The main objective of
this note is to prove the following result.

Theorem 1.1 co55(—A 4.s5) = [0, +00).

We note that Theorem 1.1 is slightly more general than [4, Theorem 4.2 (i)] since the J-interaction is supported on the
union of hypersurfaces which itself may not be locally the graph of a Lipschitz function. The proof of Theorem 1.1 is based
on a compact perturbation argument for one hypersurface, variational principles and singular sequences.

2 Proof of Theorem 1.1 for one hypersurface
Let us introduce the self-adjoint free Laplacian — Ay, defined via the sesquilinear form
three [f7 g] = (va v.g)Lz(Rd;(Cd)7 dom tfree = H! (Rd)

It is well-known that oess(—Afree) = 0(—Apree) = [0,+00). Let S = {¥} and A = {a}, where a : ¥ — Ris an
L*°-function, and denote the self-adjoint operator corresponding to the form (1) in this case by —A x.

Theorem 2.1 The resolvent difference
(_Afree - A)_1 - (_A(LZ - )\)_1 (2)
is compact for all A € p(—Agree) N p(—Aq.x). In particular, 0ess(—Aqp x) = [0, +00).

Proof. According to its definition, the operator —A, 5, is semibounded from below. Hence we can fix a constant ¢ > 0
such that —A, 5, + @ > 0. We denote the resolvent difference in (2) with A = —a by W. Let f, g € L?(R?) and set

ui=(~Agee +a) "' f,  vi=(-Aas+a)lg 3)
Using (3) and the definition of the operator I/ we obtain
W 9) 2@y = ((—Afee +a)~ 'f, )Lz (R) — ((FAax+a)'f, )Lz (R)
= (u, g)L2(Rd) (f, (~Aax +a)” 19)L2(Rd)
= (u, (~Aax +a)v )L?(Rd) — ((~Atpree + a)u, U)L2(Rd)
= (

U, —Aq,50) 2Ry — (—Afreel, V) 12(RA) -

“
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524 Section 23: Applied operator theory

This formula can be rewritten in a more suitable way. Observe that both functions u and v belong to H'(R%), which is the
form domain of the operators —A, 5, and —Ag.... Hence, we can use the first representation theorem to rewrite (4) in the
following form

(va )Lz (Rd) = _(u|27aU|E)L2(Z)7 )

where we made use of the explicit formulae for tf.c. and t4 s. Introduce the operators 77, T5: L?(RY) — L%(%) by

Tif = (“Breet ) f)ly Tagi=—a|(-Aas +a) )]y

It follows from the trace theorem for Sobolev functions [8, Theorem 3.37] that both operators 77 and 75 are everywhere
defined in L?(R?) and bounded. Moreover, ranT; C H'/?(X) and as ¥ is a compact Lipschitz manifold the embedding of
HY 2(¥) into L?(X) is compact, see, e.g., [7, Section 2] and the references therein. Therefore, we obtain in addition that 7
is compact. Combining (3) with (5) and with the definition of the operators 7} and 75 we find

W f,9) 2wy = (Tlf’T2g>L2(E)'

In fact, we have shown that W = 75T} and the compactness of 77 and boundedness of 7% imply compactness of W. Note
that by [3, Lemma 2.2] the resolvent difference in (2) is compact for all A € p(—Apee) N p(—Aq 5). O

3 Proof of Theorem 1.1 in the general case

We will make use of the following fact: Let A and B be self-adjoint operators which are semibounded from below and have
the same form domain. Then the inequality

min gess(A + B) > min 0ess(A) + min oess(B) 6)

holds, where the sum A + B should be understood in the form sense. In fact, this is a consequence of the min-max theorem [9,
Theorem XIII.2] since the corresponding sequences for the operators A, B and A+ B satisfy the inequality A, 4n—1(A+B) >
Am(A) + A, (B) and it remains to pass to the limit m,n — oco.

Obviously the equality t4 s[f, f] = % Shey tinag}, {53 LS, f] holds for all f € H'(R%). Employing inequality (6) and
Theorem 2.1 we arrive at

n
mMin oegs(—Au,s) > Zmlnaess A{nak}’{zk}) =0.
k=1

For the opposite inclusion we follow some ideas in the proof of [6, Proposition 5.1]. Pick a function ¢ € C§°([0,2)) such
that p(r) > 0 and [, ¢(|z[)? = 1. Choose p € R? and z,, € R? such that the balls By, (x,,) with the centers ,, and the
radii 2n are mutually disjoint and do not intersect any hypersurface from the family S. Then

1 1 ,
— . 1pT
wn,p(x) . nd/QSO(nm xn>€

with n € N is a singular sequence for the operator —A 4 g corresponding to |p|?. In fact, the sequence {t,, , }», is a singular
sequence for |p|? corresponding to the free Laplacian — Ay, but, since the supports of the functions ), , do not intersect
the support of the d-interaction, this sequence is also a singular sequence for —A 4 s corresponding to the same value [p|?.
Hence, we get 0ess(—A 4 ) = [0, +00).
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