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Abstract

We introduce a generalized index for certain meromorphic, unbounded, operator-valued functions. The 
class of functions is chosen such that energy parameter dependent Dirichlet-to-Neumann maps associated 
to uniformly elliptic partial differential operators, particularly, non-self-adjoint Schrödinger operators, on 
bounded Lipschitz domains, and abstract operator-valued Weyl–Titchmarsh M-functions and Donoghue-
type M-functions corresponding to closed extensions of symmetric operators belong to it.

The principal purpose of this paper is to prove index formulas that relate the difference of the al-
gebraic multiplicities of the discrete eigenvalues of Robin realizations of non-self-adjoint Schrödinger 
operators, and more abstract pairs of closed operators in Hilbert spaces with the generalized index of the 
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corresponding energy dependent Dirichlet-to-Neumann maps and abstract Weyl–Titchmarsh M-functions, 
respectively.
© 2016 Elsevier Inc. All rights reserved.

MSC: primary 47A53, 47A56; secondary 47A10, 47B07

Keywords: Index computations for meromorphic operator-valued functions; Dirichlet-to-Neumann maps; 
Non-self-adjoint Schrödinger operators; Boundary triples; Weyl functions; Donoghue-type M-functions

1. Introduction

The principal purpose of this paper is to prove index formulas that relate the algebraic multi-
plicities of the discrete eigenvalues of closed operators in Hilbert spaces with a certain general-
ized index of a class of meromorphic, unbounded, closed, operator-valued functions, which have 
constant domains and are not necessarily Fredholm. In the following, we shall briefly illustrate 
the index formulas in our main applications and familiarize the reader with the structure of this 
article.

Let us first consider the Schrödinger differential expression

L = −� + q (1.1)

on a bounded Lipschitz domain � ⊂ R
n, n ≥ 2, with a complex-valued, bounded, measurable 

potential q ∈ L∞(�). Denote by AD the Dirichlet realization of L in L2(�) and let A� be a 
closed realization of L subject to Robin-type boundary conditions of the form

�γDf = γNf, (1.2)

where γD and γN denote the Dirichlet and Neumann trace operator, and � is a bounded operator 
in L2(∂�); for precise definitions of the trace maps and the operators AD and A� we refer to 
Section 3. We emphasize that the differential expression (1.1) is non-symmetric and hence the 
Dirichlet and Robin realization AD and A� are non-self-adjoint, and that, in addition, also the 
parameter � in the Robin boundary condition in (1.2) is non-self-adjoint in general. Since the 
Lipschitz domain � is bounded, the spectra of the operators AD and A� consist of isolated 
eigenvalues with finite algebraic multiplicities. As one of our main results we show that the 
algebraic multiplicities ma(z0; AD) and ma(z0; A�) of an eigenvalue z0 of AD and A� satisfy 
the generalized index formula

ĩndC(z0;ε)(D(·) − �) = ma(z0;A�) − ma(z0;AD), (1.3)

where the generalized index ĩndC(z0;ε)( · ) is defined below in (1.4), and D(·) denotes the en-
ergy parameter-dependent Dirichlet-to-Neumann map associated to the differential expression L. 
The index formula (1.3) remains valid for points z0 in the resolvent set of ρ(AD) or ρ(A�), in 
which case ma(z0; AD) = 0 or ma(z0; A�) = 0, respectively. However, since the values D(z), 
z ∈ ρ(AD), of the Dirichlet-to-Neumann map are unbounded operators in L2(∂�), the classical 
concept of an index for a meromorphic, bounded, Fredholm operator-valued function as intro-
duced in [36] (see also [33, Chapter XI.9] and [35, Chapter 4]) does not apply to D(·) − � on 
the left-hand side of (1.3).
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Instead, it is necessary to specify a suitable class of meromorphic operator-valued functions 
M(·) with values in the set of unbounded closed operators such that on one hand the function 
D(·) − � in (1.3) is contained in this class, and on the other hand the generalized index

ĩndC(z0;ε)(M(·)) := tr

(
1

2πi

‰

C(z0;ε)
dζ M ′(ζ )M(ζ )−1

)
(1.4)

is well-defined; here C(z0; ε) is the counterclockwise oriented circle centered at z0 with radius 
ε > 0 sufficiently small, and M ′(ζ ) denotes the closure of the derivative of M(·) at ζ . This is the 
main purpose of the preliminary Section 2, which is inspired by considerations in [7] and [26]. 
Here we collect a set of assumptions and define a class of meromorphic, unbounded, closed, 
operator-valued functions, which are not necessarily Fredholm, such that the functions M ′(·)
and M(·)−1 in the integrand in (1.4) are both finitely meromorphic (see [33,35]), and hence 
definition (1.4) turns out to be meaningful. Although the generalized index in (1.4) may not be 
integer-valued in general (in contrast to the classical index, where the operator-valued version of 
the argument principle from [36] or [35, Theorem 4.4.1] applies) in our main applications (1.3)
and (1.6) below it certainly is, since the right-hand side equals an integer.

The main objective of Section 3 is to prove the index formula (1.3) in Theorem 3.10. Besides 
the differential expression L = −� + q we also consider the formal adjoint expression L̃ =
−� +q and obtain an analogous index formula for the algebraic multiplicities of the eigenvalues 
of A∗

D and A∗
� in Theorem 3.11. The main ingredient in the proof of the index formula (1.3) is 

the Krein-type resolvent formula in Theorem 3.10 in which the difference of the resolvents of 
A� and AD in L2(�) is traced back to the boundary space L2(∂�) and the perturbation term 
D(·) − �. Such resolvent formulas are well-known for the symmetric case (see, e.g., [1,9,11,
15,30,48,58,59]) and in the context of dual pairs related formulas can be found, for instance, in 
[14] and [49]; the Dirichlet-to-Neumann map D(·) has attracted a lot of attention in the recent 
past (see, e.g., [1–5,8–12,29,30,57,58], and the references therein). Although formally the index 
formula (1.3) is an immediate consequence of the Krein-type resolvent formula in Theorem 3.10
we wish to emphasize that it is necessary to verify that the generalized index (1.4) is well-defined 
for the function D(·) − �. In fact, a somewhat subtle analysis is required in this context, and the 
key difficulty is to show that (D(·) − �)−1 is a finitely meromorphic function (cf. Lemma 3.9).

Besides the index formula for Robin realizations of L in Section 3, we also discuss a slightly 
more abstract situation in Section 4. Here it is assumed that B1 and B2 are closed operators in a 
Hilbert space H which are both extensions of a common underlying densely defined, symmetric 
operator S. We shall use the abstract concept of boundary triples (see, e.g., [10,17,18,22,23,37,
42]) to parametrize B1 and B2 in the form

B1 = S∗ � ker(�1 − �1�0), B2 = S∗ � ker(�1 − �2�0), (1.5)

where �0 and �1 are linear maps from dom(S∗) into a boundary space G and �1 and �2 are 
closed operators in G. Let M(·) denote the Weyl–Titchmarsh function corresponding to the 
boundary triple {G, �0, �1}. Our goal in Section 4 is to prove the index formula

ĩndC(z0;ε)
(
�1 − M(·)) − ĩndC(z0;ε)

(
�2 − M(·)) = ma

(
z0;B1

) − ma

(
z0;B2

)
, (1.6)

in which the generalized index of the functions �1 − M(·) and �2 − M(·) is related to the al-
gebraic multiplicities of a discrete eigenvalue z0 of B1 and B2 (the formula is also valid for 
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points z0 in the resolvent set of B1 or B2, in which case ma(z0; B1) = 0 or ma(z0; B2) = 0, 
respectively). In contrast to the index formula (1.3) in Section 3, here the values of the Weyl–
Titchmarsh function M(·) are bounded operators, but the parameters �1 and �2 are in general 
unbounded, closed operators. However, the strategy and the difficulties in the proof of the index 
formula in Theorem 4.3 are similar to those in Section 3: One first has to verify that the general-
ized index is well-defined for the functions �1 − M(·) and �2 − M(·) (again the key difficulty 
is to show that the inverses (�1 − M(·))−1 and (�2 − M(·))−1 are finitely meromorphic at a 
discrete eigenvalue of B1 and B2, respectively) and then a Krein-type resolvent formula (see, 
e.g., [1,2,9,11,12,14–16,21–24,27–30,32,38,43–47,61], and the references cited therein) yields 
the index formula (1.6).

To ensure a self-contained presentation in Section 4, we have added a short Appendix A on 
the abstract concept of boundary triples and their Weyl–Titchmarsh functions. In this appendix 
we also establish the connection to abstract Donoghue-type M-functions studied in [27,28,31,
32], so that the index formula (1.6) can also be interpreted in the framework of Donoghue-type 
M-functions.

Finally, we summarize the basic notation used in this paper: H, H, and G denote separable 
complex Hilbert spaces with scalar products ( · , · )H, ( · , · )H, and ( · , · )G , linear in the first en-
try, respectively. The Banach spaces of bounded, compact, and trace class (linear) operators in 
H are denoted by B(H), B∞(H), and B1(H), respectively. The subspace of all finite rank oper-
ators will be abbreviated by F(H). The analogous notation B(H, G) will be used for bounded 
operators between the Hilbert spaces H and G. The set of densely defined, closed, linear op-
erators in H will be denoted by C(H). For a linear operator T we denote by dom(T ), ran(T )

and ker(T ) the domain, range, and kernel, respectively. If T is closable, the closure is denoted 
by T . The spectrum, point spectrum, continuous spectrum, residual spectrum, and resolvent set 
of a closed operator T ∈ C(H) will be denoted by σ(T ), σp(T ), σc(T ), σr(T ), and ρ(T ); the 
discrete spectrum of T consists of eigenvalues of T with finite algebraic multiplicity which are 
isolated in σ(T ), this set is abbreviated by σd(T ). For the algebraic multiplicity of an eigenvalue 
z0 ∈ σd(T ) we write ma(z0; T ) and we set ma(z0; T ) = 0 if z0 ∈ ρ(T ). Furthermore, trH(T )

denotes the trace of a trace class operator T ∈ B1(H). The symbol � denotes a direct (but not 
necessary orthogonal direct) sum decomposition in connection with subspaces of Banach spaces.

2. On the notion of a generalized index of meromorphic operator-valued functions

Let H be a separable complex Hilbert space, assume that D ⊆ C is an open set, and let M(·)
be a B(H)-valued meromorphic function on D that has the norm convergent Laurent expansion 
around z0 ∈D of the form

M(z) =
∞∑

k=−N0

(z − z0)
kMk(z0), z ∈ D(z0; ε0)\{z0}, (2.1)

where Mk(z0) ∈ B(H), k ∈ Z, k ≥ −N0 and ε0 > 0 is sufficiently small such that the punctured 
open disc

D(z0; ε0)\{z0} = {z ∈C |0 < |z − z0| < ε0} (2.2)

is contained in D. The principal part ppz {M(z)} of M(·) at z0 is defined as the finite sum

0
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ppz0
{M(z)} =

−1∑
k=−N0

(z − z0)
kMk(z0). (2.3)

Definition 2.1. Let D ⊆ C be an open set and let M(·) be a B(H)-valued meromorphic function 
on D. Then M(·) is called finitely meromorphic at z0 ∈ D if M(·) is analytic on the punctured 
disk D(z0; ε0)\{z0} ⊂ D with sufficiently small ε0 > 0, and the principal part ppz0

{M(z)} of 
M(·) at z0 is of finite rank, that is, the principal part of M(·) is of the type (2.3), and one has

Mk(z0) ∈F(H), −N0 ≤ k ≤ −1. (2.4)

The function M(·) is called finitely meromorphic on D if it is meromorphic on D and finitely 
meromorphic at each of its poles.

Assume that Mj(·), j = 1, 2, are B(H)-valued meromorphic functions on D that are both 
finitely meromorphic at z0 ∈ D, choose ε0 > 0 such that (2.1) and (2.4) hold for both functions 
Mj(·), and let 0 < ε < ε0. Then by [33, Lemma XI.9.3] or [35, Proposition 4.2.2] also the func-
tions M1(·)M2(·) and M2(·)M1(·) are finitely meromorphic at z0 ∈D, the operators

‰

C(z0;ε)
dζ M1(ζ )M2(ζ ) and

‰

C(z0;ε)
dζ M2(ζ )M1(ζ ) (2.5)

are both of finite rank and the identity

trH

( ‰

C(z0;ε)
dζ M1(ζ )M2(ζ )

)
= trH

( ‰

C(z0;ε)
dζ M2(ζ )M1(ζ )

)
(2.6)

holds; here the symbol 
�

denotes the contour integral and C(z0; ε) = ∂D(z0; ε) is the counter-
clockwise oriented circle with radius ε centered at z0.

In the next example a standard situation is discussed: the resolvent of a closed operator T in 
the Hilbert space H is finitely meromorphic at a discrete eigenvalue (cf. [34] or [41]).

Example 2.2. Let T be a closed operator in the Hilbert space H and let z0 ∈ σd(T ). Choose 
ε0 > 0 sufficiently small such that the punctured disc D(z0; ε0)\{z0} is contained in ρ(T ) and 
let 0 < ε < ε0. Then the Riesz projection

P(z0;T ) = − 1

2πi

‰

C(z0;ε)
dζ (T − ζ IH)−1, (2.7)

where as above C(z0; ε) = ∂D(z0; ε), is a finite rank operator in H and the range of P(z0; T )

coincides with the algebraic eigenspace of T at z0; in particular, one has

trH(P (z0;T )) = ma(z0;T ). (2.8)

Furthermore, the Hilbert space H admits the direct sum decomposition
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H = ran(P (z0;T )) +̇ ran(IH − P(z0;T )) (2.9)

and the spaces P(z0; T )H and (IH − P(z0; T ))H are both invariant for the closed operators 
T and T − z0IH. Moreover, the restriction T1 − z0IH of T − z0IH onto the finite-dimensional 
subspace P(z0; T )H is nilpotent, that is, (T1 − z0IH)N0 = 0 for some N0 ∈ N and we agree to 
choose the integer N0 with this property minimal. The restriction T2 − z0IH of T − z0IH onto 
(IH −P(z0; T ))H is a boundedly invertible operator in the Hilbert space (IH −P(z0; T ))H. As 
in [34, Chapter 1, §2. Proof of Theorem 2.1] one verifies that the resolvent of T in D(z0; ε0)\{z0}
admits a norm convergent Laurent expansion of the form

(T − zIH)−1 = −
−1∑

k=−N0

(z − z0)
k(T1 − z0IH)−k−1P(z0;T )

+
∞∑

k=0

(z − z0)
k(T2 − zIH)−(k+1)(IH − P(z0;T )),

(2.10)

and, in particular, the operators (T1 − z0IH)−k−1P(z0; T ), −N0 ≤ k ≤ −1, are of finite rank. 
Therefore, the resolvent z 
→ (T − zIH) is finitely meromorphic at z0. It also follows from the 
Laurent expansion (2.10) that the derivatives dk

dzk (T − zIH)−1, k ∈ N, are finitely meromorphic 
at z0.

The following example is a simple generalization and immediate consequence of Example 2.2. 
The observation below will be used frequently in this paper.

Example 2.3. Let T be a closed operator in the Hilbert space H and let z0 ∈ σd(T ). Assume that 
G is an auxiliary Hilbert space and let γ ∈ B(G, H). Then the B(G)-valued function

z 
→ γ ∗(T − zIH)−1γ, z ∈ ρ(T ), (2.11)

is finitely meromorphic at z0. Indeed, this simply follows by multiplying the Laurent expansion 
of the resolvent in (2.10) by γ ∗ ∈ B(H, G) from the left and by γ ∈ B(G, H) from the right.

The aim of this preliminary section is to introduce an extended notion of the index applicable 
to certain non-Fredholm and also unbounded meromorphic operator-valued functions M(·) in 
Definition 2.5 below. We start by collecting our assumptions on M(·).

Hypothesis 2.4. Let D ⊆C be open and connected, and D0 ⊂D a discrete set (i.e., a set without 
limit points in D). Suppose that the map

M : D\D0 → C(H), z 
→ M(z), (2.12)

takes on values in the set of densely defined, closed operators, C(H), with the following addi-
tional properties:

(i) M0 := dom(M(z)) is independent of z ∈D\D0.

(ii) M(z) is boundedly invertible, M(z)−1 ∈ B(H) for all z ∈ D\D0.
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(iii) The function

M(·)−1 :D\D0 → B(H), z 
→ M(z)−1, (2.13)

is analytic on D\D0 and finitely meromorphic on D.

(iv) For ϕ ∈M0 the function

M(·)ϕ : D\D0 → H, z 
→ M(z)ϕ, (2.14)

is analytic; in particular, the derivative M ′(z)ϕ exists for all ϕ ∈M0 and z ∈D\D0.

(v) For z ∈ D\D0, the operators M ′(z) defined on dom(M ′(z)) = M0, admit bounded continua-
tions to operators M ′(z) ∈ B(H), and the operator-valued function

M ′(·) :D\D0 → B(H), z 
→ M ′(z), (2.15)

is analytic on D\D0 and finitely meromorphic on D.

Granted Hypothesis 2.4 it follows that the maps

z 
→ M ′(z)M(z)−1, z 
→ M(z)−1M ′(z) (2.16)

are finitely meromorphic and hence identity (2.6) applies. This leads to the following definition 
of a generalized index of M(·), which extends the notion of an index for finitely meromorphic 
B(H)-valued functions employed in [36] and, for instance, in [33,35] (cf. [7, Definition 4.2]).

Definition 2.5. Assume Hypothesis 2.4, let z0 ∈ D, and 0 < ε sufficiently small. Then the 
generalized index of M(·) with respect to the counterclockwise oriented circle C(z0; ε), 
ĩndC(z0;ε)(M(·)), is defined by

ĩndC(z0;ε)(M(·)) = trH

(
1

2πi

‰

C(z0;ε)
dζ M ′(ζ )M(ζ )−1

)

= trH

(
1

2πi

‰

C(z0;ε)
dζ M(ζ )−1M ′(ζ )

)
.

(2.17)

(Of course, ĩndC(z0;ε0)(M(·)) = 0, unless, z0 ∈ D0.)

The main objective of this paper is to show that this notion of generalized index applies to 
Dirichlet-to-Neumann maps associated to non-self-adjoint Schrödinger operators in Section 3
and to abstract operator-valued Weyl–Titchmarsh functions or Donoghue-type M-functions in 
Section 4. It will also turn out that the generalized index is integer-valued in both of these appli-
cations.
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3. Schrödinger operators with complex potentials and Dirichlet-to-Neumann maps

In this section we discuss applications to Schrödinger operators with bounded, complex-
valued potentials on bounded Lipschitz domains. In particular, we consider Krein-type resolvent 
formulas and compute the generalized index associated to underlying (energy parameter depen-
dent) Dirichlet-to-Neumann maps.

Hypothesis 3.1. Let � ⊂ R
n, n ≥ 2, be a bounded Lipschitz domain and let q ∈ L∞(�) be a 

complex-valued potential.

Assuming Hypothesis 3.1, we consider the Schrödinger differential expression

L = −� + q, (3.1)

and its formal adjoint

L̃ = −� + q. (3.2)

For our purposes, it is convenient to work with operator realizations of L and L̃ in L2(�) which 
are defined via boundary conditions on functions from the space

H
3/2
� (�) := {

f ∈ H 3/2(�)
∣∣�f ∈ L2(�)

}
, (3.3)

where for each f ∈ H 3/2(�), �f is understood in the sense of distributions. The space H 3/2
� (�)

equipped with the scalar product

(f, g)
H

3/2
� (�)

= (f, g)H 3/2(�) + (�f,�g)L2(�), f, g ∈ H
3/2
� (�), (3.4)

is a Hilbert space. According to [30, Lemmas 3.1 and 3.2], the Dirichlet trace operator defined 
on C∞(�) admits a continuous surjective extension

γD : H 3/2
� (�) → H 1(∂�), (3.5)

and the Neumann trace operator defined on C∞(�) admits a continuous surjective extension

γN : H 3/2
� (�) → L2(∂�). (3.6)

For our investigations it is important to note that Green’s Second Identity extends to functions in 
H

3/2
� (�), that is,

(Lf,g)L2(�) − (f, L̃g)L2(�) = (γDf,γNg)L2(∂�) − (γNf,γDg)L2(∂�),

f, g ∈ H
3/2
� (�).

(3.7)

Next, we introduce the Dirichlet operators associated to the differential expressions L and L̃.



J. Behrndt et al. / J. Differential Equations 261 (2016) 3551–3587 3559
Hypothesis 3.2. In addition to the assumptions in Hypothesis 3.1, let AD and ÃD denote the 
Dirichlet operators associated to the differential expressions L and L̃ in L2(�), that is,

ADf = Lf, f ∈ dom(AD) = {
g ∈ H

3/2
� (�)

∣∣γDg = 0
}
, (3.8)

and

ÃDf = L̃f, f ∈ dom
(
ÃD

) = {
g ∈ H

3/2
� (�)

∣∣γDg = 0
}
. (3.9)

In the special case q ≡ 0, the operator AD coincides with the self-adjoint free Dirichlet Lapla-
cian on �, which we denote by A(0)

D :

A
(0)
D f = −�f, f ∈ dom(A

(0)
D ) = {

g ∈ H
3/2
� (�)

∣∣γDg = 0
}

(3.10)

(cf., e.g., [29, Theorem 2.10 and Lemma 3.4] or [39, Theorem B.2]). Clearly, AD (resp., ÃD) 
may be viewed as an additive perturbation of A(0)

D by the bounded potential q (resp., q). These 
facts lead to the following result.

Proposition 3.3. Assume Hypothesis 3.2. The Dirichlet operators AD and ÃD are densely de-
fined, closed operators in L2(�) which are adjoint to each other,

A∗
D = ÃD. (3.11)

In addition, AD and ÃD have compact resolvents.

We note that (3.11) also implies

z ∈ ρ(AD) if and only if z ∈ ρ
(
ÃD

)
. (3.12)

In light of the fact that the Dirichlet trace operator γD maps H 3/2
� (�) onto H 1(∂�), it follows 

that for z ∈ ρ(AD) and ϕ ∈ H 1(∂�) the boundary value problem

Lf − zf = 0, γDf = ϕ, (3.13)

admits a unique solution fz ∈ H
3/2
� (�). Analogously, for z̃ ∈ ρ

(
ÃD

)
and ψ ∈ H 1(∂�), the 

boundary value problem

L̃g − z̃g = 0, γDg = ψ, (3.14)

admits a unique solution g̃z ∈ H
3/2
� (�). These observations imply that the solution operators and 

the Dirichlet-to-Neumann maps in the next definition are well-defined.

Definition 3.4. Assume Hypothesis 3.2 and suppose z ∈ ρ(AD) and z̃ ∈ ρ
(
ÃD

)
. Let fz, g̃z ∈

H
3/2
� (�) denote the unique solutions of (3.13) and (3.14) for ϕ, ψ ∈ H 1(∂�), respectively.

(i) The solution operators P(z) and P̃ ( ̃z ) associated to the boundary value problems (3.13) and 
(3.14) are defined by
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P(z)ϕ = fz, P̃ ( z̃ )ψ = g̃z, (3.15)

respectively.
(ii) The (energy parameter dependent) Dirichlet-to-Neumann maps D(z) and D̃( ̃z ) associated 
to L and L̃ are defined by

D(z)ϕ = γNfz, D̃( z̃ )ψ = γN g̃z, (3.16)

respectively.

In the following, the solution operators P(z) and P̃ ( ̃z ) will often be regarded as densely de-
fined operators from L2(∂�) into L2(�), and the Dirichlet-to-Neumann maps will be viewed as 
densely defined operators in L2(∂�). The next lemma collects relevant properties of the solution 
operators and Dirichlet-to-Neumann maps, and its proof is based primarily on Green’s Second 
Identity, (3.7). The arguments are almost the same as in the self-adjoint case, or in the abstract 
framework of boundary triples for dual pairs of operators (see [49]), and will not be repeated 
here. The reader is also referred to Steps 4–6 in the proof of Lemma 3.9 where similar methods 
are used.

Lemma 3.5. Assume Hypothesis 3.2. For z1, z2 ∈ ρ(AD) and ̃z1, ̃z2 ∈ ρ
(
ÃD

)
the following iden-

tities hold:

(i) The solution operator P(z1) : L2(∂�) → L2(�) defined on the dense subspace dom(P (z1)) =
H 1(∂�) is bounded and its adjoint P(z1)

∗ ∈ B
(
L2(�), L2(∂�)

)
is given by

P(z1)
∗ = −γN

(
ÃD − z1IL2(�)

)−1
. (3.17)

(̃i) The solution operator P̃ ( ̃z1) : L2(∂�) → L2(�) defined on the dense subspace
dom

(
P̃ ( ̃z1)

) = H 1(∂�) is bounded and its adjoint P̃ ( ̃z1)
∗ ∈ B

(
L2(�), L2(∂�)

)
is given by

P̃ ( z̃1)
∗ = −γN(AD − z̃1IL2(�))

−1. (3.18)

(ii) For all ϕ ∈ H 1(∂�) one has

P(z1)ϕ = (
IL2(�) + (z1 − z2)(AD − z1IL2(�))

−1)P(z2)ϕ. (3.19)

(̃ii) For all ψ ∈ H 1(∂�) one has

P̃ ( z̃1)ψ = (
IL2(�) + ( z̃1 − z̃2)

(
ÃD − z̃1IL2(�)

)−1)
P̃ ( z̃2)ψ. (3.20)

(iii) The Dirichlet-to-Neumann map D(z1) : L2(∂�) → L2(∂�) defined on the dense subspace 
dom(D(z1)) = H 1(∂�) is a closed operator in L2(∂�) and it satisfies the identity(

D(z1) − D(z2)
)
ϕ = (z2 − z1)P̃ (z2)

∗P(z1)ϕ, ϕ ∈ H 1(∂�). (3.21)

In particular, one has
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D(z1)ϕ = D(z2)ϕ + (z2 − z1)P̃ (z2)
∗(IL2(�) + (z1 − z2)(AD − z1IL2(�))

−1)P(z2)ϕ, (3.22)

and for all ϕ ∈ H 1(∂�), the map z1 
→ D(z1)ϕ is holomorphic on ρ(AD).
(̃iii) The Dirichlet-to-Neumann map D̃( ̃z1) : L2(∂�) → L2(∂�) defined on the dense subspace 
dom

(
D̃( ̃z1)

) = H 1(∂�) is a closed operator in L2(∂�) and it satisfies the identity(
D̃( z̃1) − D̃( z̃2)

)
ψ = ( z̃2 − z̃1)P ( z̃2)

∗P̃ ( z̃1)ψ, ψ ∈ H 1(∂�). (3.23)

In particular, one has

D̃( z̃1)ϕ = D̃( z̃2)ψ + ( z̃2 − z̃1)P ( z̃2)
∗(IL2(�) + ( z̃1 − z̃2)

(
ÃD − z̃1IL2(�)

)−1)
P̃ ( z̃2)ψ, (3.24)

and for all ψ ∈ H 1(∂�), the map ̃z1 
→ D̃( ̃z1)ψ is holomorphic on ρ
(
ÃD

)
.

As a useful consequence of Lemma 3.5, one obtains the following result.

Corollary 3.6. For all ϕ, ψ ∈ H 1(∂�) one has

d

dz
D(z)ϕ = −P̃ (z)∗P(z)ϕ,

d

dz̃
D̃( z̃ )ψ = −P( z̃ )∗P̃ ( z̃ )ψ, (3.25)

and the densely defined bounded operators D′(z) = d
dz

D(z) and D̃′( ̃z ) = d
dz̃

D̃( ̃z ) in L2(∂�)

admit continuous extensions

D′(z) = −P̃ (z)∗P(z) ∈ B(L2(∂�)) (3.26)

and

D̃′( z̃ ) = −P( z̃ )∗P̃ ( z̃ ) ∈ B(L2(∂�)). (3.27)

The B(L2(∂�))-valued functions z 
→ D′(z) and ̃z 
→ D̃′( z̃ ) are analytic on ρ(AD) and ρ
(
ÃD

)
, 

respectively, and finitely meromorphic on C.

Proof. By (3.21) and (3.23), the derivatives d
dz

D(z)ϕ and d
dz̃

D̃( ̃z )ψ exist for all ϕ, ψ ∈ H 1(∂�)

and have the form as in (3.25). It is also clear from Lemma 3.5 that the operators

P̃ (z)∗P(z), P ( z̃ )∗P̃ ( z̃ ) (3.28)

are defined on the dense subspace H 1(∂�), and both are bounded. Hence, the continuous exten-
sions onto L2(�) are given by (3.26) and (3.27), respectively. From (3.26) and Lemma 3.5 we 
conclude for some z0 ∈ ρ(AD) and all z ∈ ρ(AD) that

D′(z) = −((
IL2(�) + (z − z0)

(
ÃD − zIL2(�)

)−1)
P̃ (z0)

)∗

× (
IL2(�) + (z − z0)(AD − zIL2(�))

−1)P(z0)

= −P̃ (z0)
∗(IL2(�) + (z − z0)(AD − zIL2(�))

−1)
× (

I 2 + (z − z )(A − zI 2 )−1)P(z ),

(3.29)
L (�) 0 D L (�) 0
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which shows that z 
→ D′(z) is analytic on ρ(AD) and finitely meromorphic on C (cf. Exam-
ples 2.2 and 2.3). �
Hypothesis 3.7. In addition to the assumptions in Hypothesis 3.1, suppose � ∈ B(L2(∂�)), and 
let A� and Ã�∗ denote the Robin realizations of L and L̃ in L2(�),

A�f = −�f + qf, f ∈ dom(A�) = {
g ∈ H

3/2
� (�)

∣∣�γDg = γNg
}
, (3.30)

and

Ã�∗f = −�f + qf, f ∈ dom
(
Ã�∗

) = {
g ∈ H

3/2
� (�)

∣∣�∗γDg = γNg
}
. (3.31)

In connection with A� and Ã�∗ , one obtains the following variant of Proposition 3.3:

Proposition 3.8. Assume Hypothesis 3.7. Then A� and Ã�∗ are closed operators in L2(�) which 
are adjoint to each other,

A∗
� = Ã�∗ . (3.32)

In addition, A� and Ã�∗ have compact resolvents.

In the next preparatory lemma, we study the operators D(z) − � and D̃( ̃z ) − �∗ and their 
inverses in L2(∂�). As will turn out, these operators play an important role in the Krein-type 
resolvent formulas and index formulas at the end of this section.

Lemma 3.9. Assume Hypothesis 3.7. Let z ∈ ρ(AD) ∩ ρ(A�), z̃ ∈ ρ
(
ÃD

) ∩ ρ
(
Ã�∗

)
, and let 

D(z) and D̃( ̃z ) be the Dirichlet-to-Neumann maps associated to L and L̃, respectively. Then 
the following assertions hold:
(i) D(z) − � is boundedly invertible and the inverse is a compact operator in L2(∂�),

(D(z) − �)−1 ∈ B∞(L2(∂�)). (3.33)

Furthermore, the map z 
→ (D(z) − �)−1 is analytic on ρ(A�) and finitely meromorphic on C.

(̃i) D̃( ̃z ) − �∗ is boundedly invertible and the inverse is a compact operator in L2(∂�),(
D̃( z̃ ) − �∗)−1 ∈ B∞(L2(∂�)). (3.34)

Furthermore, the map z̃ 
→ (
D̃( z̃ ) − �∗)−1

is analytic on ρ
(
Ã�

)
and finitely meromorphic 

on C.

Proof. The proof of Lemma 3.9 (i) is divided into seven separate steps. The proof of item (̃i)
follows precisely the same strategy and is hence omitted.

Step 1. It will be shown first that the operator D(z) − � is injective for any z ∈ ρ(AD) ∩ ρ(A�). 
Assume that for some ϕ ∈ H 1(∂�), (

D(z) − �
)
ϕ = 0 (3.35)
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and let fz ∈ H
3/2
� (�) be the unique solution of the boundary value problem{

Lf − zf = 0,

γDf = ϕ.
(3.36)

Then one infers

�γDfz = �ϕ = D(z)ϕ = D(z)γDfz = γNfz, (3.37)

and hence fz ∈ dom(A�) with A�fz = zfz. As z ∈ ρ(A�), one concludes fz = 0, and hence 
ϕ = γDfz = 0.

Step 2. In order to see that D(z) − � maps onto L2(∂�), one recalls that the inverse of the 
Dirichlet-to-Neumann map N(z) = D(z)−1, the Neumann-to-Dirichlet map, is well-defined for 
all z ∈ ρ(AD) ∩ ρ(AN), where AN denotes the Neumann realization of L = −� + q ,

ANf = −�f + qf, f ∈ dom(AN) = {
g ∈ H

3/2
� (�)

∣∣γNg = 0
}
. (3.38)

Moreover, it follows in the same way as in [9, Proposition 4.6] or [8, Lemma 4.6] that

N(z) ∈ B∞(L2(∂�)). (3.39)

For z ∈ ρ(A�) ∩ ρ(AD) ∩ ρ(AN), the operator IL2(∂�) − �N(z) is injective. In fact, suppose 

that ϕ = �N(z)ϕ for some ϕ ∈ L2(∂�) and choose fz ∈ H
3/2
� (�) such that Lfz = zfz and 

γNfz = ϕ. Then

γNfz = ϕ = �N(z)ϕ = �N(z)γNfz = �γDfz, (3.40)

and hence fz ∈ dom(A�). As z ∈ ρ(A�), one concludes that fz = 0, and therefore, ϕ =
γNfz = 0.

The fact (3.39) and the assumption � ∈ B(L2(∂�)) imply �N(z) ∈ B∞(L2(∂�)) and since 
IL2(∂�) − �N(z) is injective, one concludes

(
D(z) − �

)−1 = N(z)
(
(D(z) − �)N(z)

)−1

= N(z)
(
IL2(∂�) − �N(z)

)−1 ∈ B(L2(∂�))
(3.41)

for all z ∈ ρ(A�) ∩ρ(AD) ∩ρ(AN). Therefore, (D(z) −�)−1 is closed as an operator in L2(∂�)

and since ran((D(z) −�)−1) = H 1(∂�), the operator (D(z) −�)−1 is also closed as an operator 
from L2(∂�) to H 1(∂�). This implies

(D(z) − �)−1 ∈ B
(
L2(∂�),H 1(∂�)

)
, (3.42)

and as H 1(∂�) is compactly embedded in L2(∂�), one concludes

(D(z) − �)−1 ∈ B∞(L2(∂�)), z ∈ ρ(A�) ∩ ρ(AD) ∩ ρ(AN). (3.43)
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Step 3. Let z ∈ ρ(A�) ∩ ρ(AD) ∩ ρ(AN) and ̃z ∈ ρ
(
Ã�∗

) ∩ ρ
(
ÃD

) ∩ ρ
(
ÃN

)
. One observes first 

that for ϕ ∈ L2(∂�) and ψ ∈ L2(∂�) the boundary value problems{
Lf − zf = 0,

γNf − �γDf = ϕ,
(3.44)

and {
L̃g − z̃g = 0,

γNg − �∗γDg = ψ,
(3.45)

admit unique solutions in H 3/2
� (�). In fact, since the operators (D(z) −�)−1 and 

(
D̃( z̃ )−�∗)−1

are defined on L2(∂�), and map into H 1(∂�), the boundary value problems{
Lf − zf = 0,

γDf = (D(z) − �)−1ϕ,
(3.46)

and {
L̃g − z̃g = 0,

γDg = (
D̃( z̃ ) − �∗)−1

ψ,
(3.47)

admit unique solutions fz ∈ H
3/2
� (�) and g̃z ∈ H

3/2
� (�). Since

γNfz − �γDfz = (D(z) − �)γDfz = ϕ, (3.48)

and

γN g̃z − �∗γDg̃z = (
D̃( z̃ ) − �∗)γDg̃z = ψ, (3.49)

it is clear that fz and g̃z solve (3.44) and (3.45), respectively. We shall denote the solution op-
erators corresponding to the boundary value problems (3.44) and (3.45) by P�(z) and P̃�∗( ̃z ), 
respectively, that is,

P�(z) : L2(∂�) → L2(�), ϕ 
→ fz, (3.50)

and

P̃�∗( z̃ ) : L2(∂�) → L2(�), ψ 
→ g̃z, (3.51)

where fz ∈ H
3/2
� (�) and g̃z ∈ H

3/2
� (�) denote the unique solutions of (3.44) and (3.45), respec-

tively.

Step 4. We claim that for z ∈ ρ(A�) ∩ ρ(AD) ∩ ρ(AN) and ̃z ∈ ρ
(
Ã�∗

) ∩ ρ
(
ÃD

) ∩ ρ
(
ÃN

)
the 

operators P�(z) and P̃�∗( ̃z ) in (3.50) and (3.51), respectively, are bounded, that is,
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P�(z) ∈ B
(
L2(∂�),L2(�)

)
, P̃�∗( z̃ ) ∈ B

(
L2(∂�),L2(�)

)
. (3.52)

In fact, in order to verify the assertion for P�(z) let ϕ ∈ L2(∂�) and k ∈ L2(�). Since z ∈ ρ(A�)

implies z ∈ ρ
(
Ã�∗

)
, there exists h ∈ dom

(
Ã�∗

)
such that

k = (
Ã�∗ − zIL2(�)

)
h. (3.53)

Thus one computes with the help of Green’s Second Identity (3.7), the boundary condition γNh =
�∗γDh, and the definition of P�(z), that

(P�(z)ϕ, k)L2(�) = (
fz,

(
Ã�∗ − zIL2(�)

)
h
)
L2(�)

= (
fz, L̃h

)
L2(�)

− (fz, zh)L2(�)

= (
fz, L̃h

)
L2(�)

− (Lfz,h)L2(�)

= (γNfz, γDh)L2(∂�) − (γDfz, γNh)L2(∂�)

= (γNfz, γDh)L2(∂�) − (γDfz,�
∗γDh)L2(∂�)

= ([γNfz − �γDfz], γDh
)
L2(∂�)

= (
ϕ,γD

(
Ã�∗ − zIL2(�)

)−1
k
)
L2(∂�)

.

(3.54)

The above computation implies that P�(z)∗ is defined on all of L2(�) and given by

P�(z)∗ = γD

(
Ã�∗ − zIL2(�)

)−1
, (3.55)

and since P�(z)∗ is automatically closed it follows that

P�(z)∗ ∈ B
(
L2(�),L2(∂�)

)
. (3.56)

Hence P�(z)∗∗ ∈ B(L2(∂�), L2(�)) and since dom(P�(z)) = L2(∂�) it follows that P�(z) and 
P�(z)∗∗ coincide. Consequently, P�(z) ∈ B

(
L2(∂�), L2(�)

)
. The proof of the second assertion 

in (3.52) is completely analogous.

Step 5. It will be shown that the solution operators in (3.50) and (3.51) satisfy the identities

P�(z) = (
IL2(�) + (z − z0)(A� − zIL2(�))

−1)P�(z0) (3.57)

for all z, z0 ∈ ρ(A�) ∩ ρ(AD) ∩ ρ(AN), and

P̃�∗( z̃ ) = (
IL2(�) + ( z̃ − z̃0)

(
Ã�∗ − z̃IL2(�)

)−1)
P̃�∗( z̃0) (3.58)

for all ̃z, ̃z0 ∈ ρ
(
Ã�∗

) ∩ ρ
(
ÃD

) ∩ ρ
(
ÃN

)
, respectively. We verify (3.57) and omit details of the 

analogous proof of (3.58). Let ϕ ∈ L2(∂�) and let fz0 ∈ H
3/2
� (�) be the unique solution of the 

boundary value problem
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{
Lf − z0f = 0,

γNf − �γDf = ϕ,
(3.59)

so that P�(z0)ϕ = fz0 . Since z ∈ ρ(A�), one can make use of the direct sum decomposition

H
3/2
� (�) = dom(A�) +̇{

f ∈ H
3/2
� (�)

∣∣Lf − zf = 0
}

(3.60)

and write fz0 in the form

fz0 = f� + fz, (3.61)

where f� ∈ dom(A�) and fz ∈ H
3/2
� (�) satisfies Lfz − zfz = 0. Since γNf� − �γDf� = 0, it 

follows from (3.61) that

γNfz − �γDfz = γNfz0 − �γDfz0 = ϕ, (3.62)

and hence fz in (3.61) is the unique solution of the boundary value problem{
Lf − zf = 0,

γNf − �γDf = ϕ,
(3.63)

so that P�(z)ϕ = fz. As fz − fz0 = −f� ∈ dom(A�), one can choose g ∈ L2(�) such that

fz − fz0 = (A� − zIL2(�))
−1g, (3.64)

and then one computes

(z − z0)fz0 = z
(
fz − (A� − zIL2(�))

−1g
) − z0fz0

= L(fz − fz0) − z(A� − zIL2(�))
−1g

= L(A� − zIL2(�))
−1g − z(A� − zIL2(�))

−1g

= g,

(3.65)

which yields

P�(z)ϕ = fz

= fz0 + (A� − zIL2(�))
−1g

= fz0 + (z − z0)(A� − zIL2(�))
−1fz0

= (
IL2(�) + (z − z0)(A� − zIL2(�))

−1)P�(z0)ϕ.

(3.66)

This establishes (3.57); the proof of (3.58) is analogous.

Step 6. Let z ∈ ρ(A�) ∩ ρ(AD) ∩ ρ(AN) and ̃z ∈ ρ
(
Ã�∗

) ∩ ρ
(
ÃD

) ∩ ρ
(
ÃN

)
. In this step we 

verify the identity
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(
D(z) − �

)−1 = (
D( z̃ ) − �

)−1 + (z − z̃ )
(
P̃�∗( z̃ )

)∗
P�(z). (3.67)

Let ϕ, ψ ∈ L2(∂�) and let fz = P�(z)ϕ and g̃z = P̃�∗( ̃z )ψ . Then fz satisfies{
Lfz − zfz = 0,

γNfz − �γDfz = ϕ,
(3.68)

g̃z satisfies {
L̃g̃z − z̃g̃z = 0,

γN g̃z − �∗γDg̃z = ψ,
(3.69)

and

γDfz = (D(z) − �)−1ϕ, γDg̃z = (
D̃( z̃ ) − �∗)−1

ψ. (3.70)

Hence, one infers

(
(D(z) − �)−1ϕ,ψ

)
L2(∂�)

− (
ϕ,

(
D̃( z̃ ) − �∗)−1

ψ
)
L2(∂�)

= (
γDfz, [γN g̃z − �∗γDg̃z]

)
L2(∂�)

− ([γNfz − �γDfz], γDg̃z

)
L2(∂�)

= (γDfz, γN g̃z )L2(∂�) − (γNfz, γDg̃z )L2(∂�)

= (
Lfz, g̃z

)
L2(�)

− (
fz, L̃g̃z

)
L2(�)

= (zfz, g̃z )L2(�) − (fz, z̃g̃z )L2(�)

= (z − z̃ )
(
P�(z)ϕ, P̃�∗ (̃z)ψ

)
L2(�)

= (z − z̃ )
((

P̃�∗( z̃ )
)∗

P�(z)ϕ,ψ
)
L2(∂�)

.

(3.71)

In particular, for z = z̃,

(
(D( z̃ ) − �)−1ϕ,ψ

)
L2(∂�)

= (
ϕ,

(
D̃( z̃ ) − �∗)−1

ψ
)
L2(∂�)

, (3.72)

and hence

(D( z̃ ) − �)−1 = ((
D̃( z̃ ) − �∗)−1)∗

. (3.73)

Together with (3.73), (3.71) implies that

(D(z) − �)−1 − (D( z̃ ) − �)−1 = (z − z̃ )
(
P̃�∗( z̃ )

)∗
P�(z), (3.74)

yielding (3.67).

Step 7. For z ∈ ρ(A�) ∩ ρ(AD) ∩ ρ(AN) and ̃z ∈ ρ
(
Ã�∗

) ∩ ρ
(
ÃD

) ∩ ρ
(
ÃN

)
one obtains via 

(3.57) and (3.67) the identity
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(
D(z) − �

)−1 = (
D( z̃ ) − �

)−1
(3.75)

+ (z − z̃ )
(
P̃�∗( z̃ )

)∗(
IL2(�) + (z − z̃ )(A� − zIL2(�))

−1)P�( z̃ ).

Here, the fact that ̃z ∈ ρ(A�) ∩ ρ(AD) ∩ ρ(AN) has been used. It follows from (3.75) that the 
map

z 
→ (D(z) − �)−1 (3.76)

is holomorphic on the set ρ(A�) ∩ρ(AD) ∩ρ(AN) and that it admits an analytic continuation to 
the set ρ(A�). One also infers from (3.43) that the values of this analytic continuation are com-
pact operators in L2(∂�). Moreover, the fact that z 
→ (A� − zIL2(�))

−1 is finitely meromorphic 
on C implies that the map in (3.76) is finitely meromorphic on C (cf. Example 2.3), completing 
the proof of Lemma 3.9. �

The next theorems contain the index formulas that constitute the main results in this sec-
tion. To set the stage, we also verify Krein-type resolvent formulas which relate the inverses 
(A� − zIL2(�))

−1 and 
(
Ã�∗ − z̃IL2(�)

)−1
with the resolvents of the Dirichlet realizations AD

and ÃD , respectively. For the self-adjoint case, such formulas are well-known and can be found, 
for example, in [1,8,9,11,15,29,30,48,58,59]. For dual pairs of elliptic differential operators we 
refer to [14], and for a more abstract operator theory framework, see [49] and [50]. The present 
version is partly inspired by [10, Theorem 6.16] and can be regarded as a non-self-adjoint variant 
for dual pairs of Schrödinger operators with complex-valued potentials.

Theorem 3.10. Assume Hypotheses 3.2 and 3.7. For z ∈ ρ(AD) ∩ρ(A�) the Krein-type resolvent 
formula

(A� − zIL2(�))
−1 = (AD − zIL2(�))

−1 + P(z)(D(z) − �)−1P̃ (z)∗ (3.77)

holds, and

ĩndC(z0;ε)(D(·) − �) = ma(z0;A�) − ma(z0;AD), z0 ∈ C. (3.78)

Theorem 3.11. Assume Hypotheses 3.2 and 3.7. For ̃z ∈ ρ
(
ÃD

) ∩ ρ
(
Ã�∗

)
the Krein-type resol-

vent formula(
Ã�∗ − z̃IL2(�)

)−1 = (
ÃD − z̃IL2(�)

)−1 + P̃ ( z̃ )
(
D̃( z̃ ) − �∗)−1

P( z̃ )∗ (3.79)

holds and

ĩndC(z0;ε)
(
D̃(·) − �∗) = ma

(
z0; Ã�∗

) − ma

(
z0; ÃD

)
, z0 ∈C. (3.80)

Proof of Theorem 3.10. Fix z ∈ ρ(AD) ∩ ρ(A�). One recalls that according to Lemma 3.9,

(D(z) − �)−1 ∈ B∞(L2(∂�)). (3.81)

Moreover, since
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dom(P (z)) = dom
(
D(z) − �

) = ran
(
(D(z) − �)−1), (3.82)

the perturbation term

P(z)
(
D(z) − �

)−1
P̃ (z)∗ (3.83)

on the right-hand side of (3.77) is well-defined. Next, let f ∈ L2(�) and consider the function

h = (AD − zIL2(�))
−1f + P(z)(D(z) − �)−1P̃ (z)∗f. (3.84)

We claim that h ∈ H
3/2
� (�) satisfies the boundary condition

�γDh = γNh. (3.85)

First of all, it is clear that h ∈ H
3/2
� (�) since dom(AD) ⊂ H

3/2
� (�) by (3.8) and ran(P (z)) ⊂

H
3/2
� (�) by Definition 3.4. In order to check (3.85) one observes that

γDh = γD(AD − zIL2(�))
−1f + γDP (z)(D(z) − �)−1P̃ (z)∗f

= (D(z) − �)−1P̃ (z)∗f,
(3.86)

and

γNh = γN(AD − zIL2(�))
−1f + γNP (z)(D(z) − �)−1P̃ (z)∗f

= −P̃ (z)∗f + D(z)(D(z) − �)−1P̃ (z)∗f

= �(D(z) − �)−1P̃ (z)∗f,

(3.87)

where we have used Lemma 3.5 (̃i) and the definition of the Dirichlet-to-Neumann map. At this 
point it is clear from (3.86) and (3.87) that (3.85) holds. Thus, one concludes h ∈ dom(A�) and 
hence it follows from

(A� − zIL2(�))h

= (A� − zIL2(�))
(
(AD − zIL2(�))

−1f + P(z)(D(z) − �)−1P̃ (z)∗f
)

= (L− zIL2(�))(AD − zIL2(�))
−1f + (L− zIL2(�))P (z)(D(z) − �)−1P̃ (z)∗f

= f (3.88)

that (3.77) holds as well.
Next we will verify that the map

z 
→ M(z) = D(z) − �, z ∈ ρ(AD), (3.89)

satisfies the assumptions in Hypothesis 2.4 with D = C and D0 = σp(AD) ∪ σp(A�). First, 
one recalls that the values of D(·) in (3.89) are closed operators in L2(∂�) according to 
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Lemma 3.5 (iii) and since � ∈ B(L2(∂�)) the same is true for the values of M(·). It is also 
clear from Lemma 3.5 (iii) that

dom(M(z)) = dom(D(z)) = H 1(∂�) (3.90)

is independent of z, that is, Hypothesis 2.4 (i) holds. Furthermore, it follows from Lemma 3.9 (i) 
that M(z)−1 ∈ B(L2(∂�)) for all z ∈ C\D0, and that M(·)−1 is analytic on C\D0 and finitely 
meromorphic on C. Hence, items (ii) and (iii) in Hypothesis 2.4 are satisfied as well. Finally, the 
validity of items (iv) and (v) in Hypothesis 2.4 follow from Lemma 3.5 (iii) and Corollary 3.6.

It remains to prove the index formula (3.78). Making use of Corollary 3.6 one obtains for 
0 < ε sufficiently small,

ĩndC(z0;ε)(M(·)) = trL2(∂�)

(
1

2πi

‰

C(z0;ε)
dζ M(ζ )−1M ′(ζ )

)

= trL2(∂�)

(
1

2πi

‰

C(z0;ε)
dζ

(
D(ζ) − �

)−1
D′(ζ )

)

= trL2(∂�)

(
− 1

2πi

‰

C(z0;ε)
dζ

(
D(ζ) − �

)−1
P̃ (ζ )∗P(ζ )

)
.

(3.91)

Next, we fix a point ζ ′ ∈ ρ(AD) and use Lemma 3.5 to rewrite

P(ζ ) = (
IL2(�) + (ζ − ζ ′)(AD − ζ )−1)P(ζ ′) (3.92)

and (
D(ζ) − �

)−1
P̃ (ζ )∗ = (

D(ζ) − �
)−1

P̃ (ζ ′)∗
(
IL2(�) + (ζ − ζ ′)(AD − ζ )−1). (3.93)

Since ζ 
→ IL2(�) + (ζ − ζ ′)(AD − ζ )−1 and ζ 
→ (D(ζ ) −�)−1 are finitely meromorphic func-
tions by Example 2.2 and Lemma 3.9, the functions in (3.92) and (3.93) admit the representations

P(ζ ) =
∞∑

k=−N0

(ζ − z0)
kGk(z0), (3.94)

and

(
D(ζ) − �

)−1
P̃ (ζ )∗ =

∞∑
k=−N0

(ζ − z0)
kHk(z0), (3.95)

for ζ ∈ D(z0; ε)\{z0}, where N0 ∈ N, Gk(z0) ∈ B(L2(∂�), L2(�)), Hk(z0) ∈ B(L2(�),

L2(∂�)) for all k ≥ 0, and

Gk(z0) ∈F
(
L2(∂�),L2(�)

)
, Hk(z0) ∈F

(
L2(�),L2(∂�)

)
, −N0 ≤ k ≤ −1. (3.96)
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Now we argue in the same manner as in the proof of [35, Proposition 4.2.2]. From (3.94) and 
(3.95) one first concludes with the help of Cauchy’s theorem that

1

2πi

‰

C(z0;ε)
dζ

(
D(ζ) − �

)−1
P̃ (ζ )∗P(ζ ) =

∑
−N0≤k≤N0−1

Hk(z0)G−k−1(z0), (3.97)

1

2πi

‰

C(z0;ε)
dζ P (ζ )

(
D(ζ) − �

)−1
P̃ (ζ )∗ =

∑
−N0≤k≤N0−1

Gk(z0)H−k−1(z0), (3.98)

where

Hk(z0)G−k−1(z0) ∈ F
(
L2(∂�)

)
, −N0 ≤ k ≤ N0 − 1, (3.99)

and

Gk(z0)H−k−1(z0) ∈F
(
L2(�)

)
, −N0 ≤ k ≤ N0 − 1. (3.100)

Using the cyclicity of the trace (see, e.g. [62, Theorem 7.11 (b)]) one finds

trL2(∂�)

(
− 1

2πi

‰

C(z0;ε)
dζ

(
D(ζ) − �

)−1
P̃ (ζ )∗P(ζ )

)

= trL2(∂�)

(
−

∑
−N0≤k≤N0−1

Hk(z0)G−k−1(z0)

)

= trL2(�)

(
−

∑
−N0≤k≤N0−1

Gk(z0)H−k−1(z0)

)

= trL2(�)

(
− 1

2πi

‰

C(z0;ε)
dζ P (ζ )

(
D(ζ) − �

)−1
P̃ (ζ )∗

)
.

(3.101)

At this point one concludes from (3.91), (3.101) and (3.77) that

ĩndC(z0;ε)(M(·)) = trL2(�)

(
− 1

2πi

‰

C(z0;ε)
dζ P (ζ )

(
D(ζ) − �

)−1
P̃ (ζ )∗

)

= trL2(�)

(
− 1

2πi

‰

C(z0;ε)
dζ

(
(A� − ζ IL2(�))

−1 − (AD − ζ IL2(�))
−1))

= trL2(�)(P (z0;A�)) − trL2(�)(P (z0;AD))

= ma(z0;A�) − ma(z0;AD),

(3.102)

where P(z0; A�) and P(z0; AD) denote the Riesz projections onto the algebraic eigenspaces of 
A� and AD corresponding to z0 (cf. Example 2.2). �
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4. Closed extensions of symmetric operators and abstract Weyl–Titchmarsh M-functions

Let B1 and B2 be densely defined closed operators in a separable complex Hilbert space H
such that ρ(B1) ∩ ρ(B2) �= ∅ and consider the intersection S = B1 ∩ B2 of B1 and B2, which is 
a closed operator of the form

Sf = B1f = B2f, dom(S) = {f ∈ dom(B1) ∩ dom(B2) |B1f = B2f }. (4.1)

Hypothesis 4.1. Assume that S in (4.1) is densely defined and symmetric in H with equal defi-
ciency indices. Let A0 be a fixed self-adjoint extension of S in H, and assume that for j = 1, 2
the operators A0 and Bj , as well as A0 and B∗

j , are disjoint extensions of S, that is,

S = A0 ∩ B1 = A0 ∩ B2 = A0 ∩ B∗
1 = A0 ∩ B∗

2 . (4.2)

It follows from Hypothesis 4.1 that both operators B1 and B2 are closed restrictions of the 
adjoint S∗ of S, and hence B1 and B2 can be parametrized with the help of a boundary triple for 
S∗ and closed parameters �1 and �2 in G (cf. (A.3)–(A.4)). In the same manner, B∗

1 and B∗
2 are 

closed restrictions of S∗ and by (A.5) they correspond to the parameters �∗
1 and �∗

2 in G. The 
assumption that for j = 1, 2 the operators A0 and Bj , and A0 and B∗

j are disjoint extensions of S
implies that �j and �∗

j , j = 1, 2, are closed operators, and hence their domains are dense in G. 
We refer the reader to Appendix A for a brief introduction to the theory of boundary triples.

The following lemma is an immediate consequence of Proposition A.4, (A.3)–(A.5), and 
(A.7).

Lemma 4.2. Assume that B1, B2, S and A0 satisfy Hypothesis 4.1. Then there exists a boundary 
triple {G, �0, �1} for S∗, and densely defined closed operators �1, �2, �∗

1, �
∗
2 ∈ C(G), such that 

A0 = S∗ � ker(�0) and

B1 = S∗ � ker(�1 − �1�0), B2 = S∗ � ker(�1 − �2�0),

B∗
1 = S∗ � ker(�1 − �∗

1�0), B∗
2 = S∗ � ker(�1 − �∗

2�0).
(4.3)

The next theorem is the main result of this section. Here we make use of the boundary triple in 
Lemma 4.2 and express the difference of the algebraic multiplicities of a discrete eigenvalue of 
B1 and B2 with the help of the corresponding Weyl–Titchmarsh function M(·) and the parameters 
�1 and �2. Theorem 4.3 can be viewed as an abstract variant of Theorem 3.10.

Theorem 4.3. Assume that B1, B2, S and A0 satisfy Hypothesis 4.1, choose the boundary triple 
{G, �0, �1} in Lemma 4.2, and �1, �2 such that (4.3) holds. Let M(·) be the Weyl–Titchmarsh 
function corresponding to {G, �0, �1} and assume that

z0 ∈ σd(Bj ) ∪ ρ(Bj ), j = 1,2, and z0 ∈ σd(A0) ∪ ρ(A0). (4.4)

Then there exists ε0 > 0 such that both functions �j − M(·), j = 1, 2, satisfy Hypothesis 2.4
with D = D(z0; ε0) and D0 = {z0}, and the index formula

ĩndC(z0;ε)(�1 − M(·)) − ĩndC(z0;ε)(�2 − M(·)) = ma(z0;B1) − ma(z0;B2) (4.5)

holds.
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Proof. We verify that the functions �j − M(·), j = 1, 2, satisfy items (i)–(ii) and (iv)–(v) of 
Hypothesis 2.4 with D = D(z0; ε0) and D0 = {z0}. The proof of item (iii) is more involved 
and will be given separately in Proposition 4.7. First, one observes that by the assumptions in 
(4.4) one can choose ε0 > 0 such that the punctured disc D(z0; ε0)\{z0} is contained in the set 
ρ(B1) ∩ρ(B2) ∩ρ(A0). As �j , j = 1, 2 are densely defined closed operators by Lemma 4.2 and 
the values of the Weyl–Titchmarsh function M(·) are bounded operators in G, the functions

�j − M(·) : D(z0; ε0)\{z0} → C(G), z 
→ �j − M(z), j = 1,2, (4.6)

are well-defined and of the form as in Hypothesis 2.4 with D = D(z0; ε0) and D0 = {z0}. It 
is also clear that dom(�j − M(z)) = dom(�j ) is independent of z ∈ D(z0; ε0)\{z0} and that 
(�j − M(z))−1 ∈ B(G) for all z ∈ D(z0; ε0)\{z0} by Theorem A.5 (i). Hence items (i) and (ii)
in Hypothesis 2.4 are satisfied. Since the Weyl–Titchmarsh function M(·) is analytic on ρ(A0)

one infers

d

dz
(�j − M(z))ϕ = − d

dz
M(z)ϕ, ϕ ∈ dom(�j ), z ∈ D(z0; ε0)\{z0}, (4.7)

and hence

(�j − M(z))′ = −M ′(z), (4.8)

that is, items (iv) and (v) in Hypothesis 2.4 hold (see (A.15) and Lemma A.3 for the fact that 
M ′(·) is analytic on D(z0; ε0)\{z0} and finitely meromorphic on D(z0; ε0)).

Next, we turn to the proof of the index formula. According to Theorem A.5 one infers z ∈
ρ(Bj ) ∩ ρ(A0) if and only if (�j − M(z))−1 ∈ B(G) for j = 1, 2 and Krein’s formula

(Bj − zIH)−1 − (A0 − zIH)−1 = γ (z)(�j − M(z))−1γ (z)∗ (4.9)

is valid for all z ∈ ρ(Bj ) ∩ ρ(A0), j = 1, 2; here γ (·) denotes the γ -field corresponding to the 
boundary triple {G, �0, �1}. Let P(z0; Bj ), j = 1, 2, and P(z0; A0) be the Riesz projections onto 
the algebraic eigenspaces of Bj and A0 corresponding to z0; since A0 is self-adjoint the range of 
P(z0; A0) coincides with ker(A0 − z0IH). Then it follows from Definition 2.5, (4.8), and (A.17)
that for 0 < ε sufficiently small,

ĩndC(z0;ε)(�j − M(·))

= trG

(
1

2πi

‰

C(z0;ε)
dζ (�j − M(ζ))−1(�j − M(ζ))′

)

= trG

(
− 1

2πi

‰

C(z0;ε)
dζ (�j − M(ζ))−1M ′(ζ )

)

= trG

(
− 1

2πi

‰

C(z0;ε)
dζ (�j − M(ζ))−1γ (ζ )∗γ (ζ )

)
(4.10)

and the same argument as in the proof of Theorem 3.10 shows that
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trG

(
− 1

2πi

‰

C(z0;ε)
dζ (�j − M(ζ))−1γ (ζ )∗γ (ζ )

)

= trH

(
− 1

2πi

‰

C(z0;ε)
dζ γ (ζ )(�j − M(ζ))−1γ (ζ )∗

) (4.11)

holds. Hence it follows from (4.10), (4.11), and (4.9) that

ĩndC(z0;ε)(�j − M(·))

= trH

(
− 1

2πi

‰

C(z0;ε)
dζ γ (ζ )(�j − M(ζ))−1γ (ζ )∗

)

= trH

(
− 1

2πi

‰

C(z0;ε)
dζ

(
(Bj − ζ IH)−1 − (A0 − ζ IH)−1))

= trH(P (z0;Bj )) − trH(P (z0;A0))

= ma(z0;Bj ) − ma(z0;A0), j = 1,2,

(4.12)

and this implies

ĩndC(z0;ε)(�1 − M(·)) − ĩndC(z0;ε)(�2 − M(·))
= ma(z0;B1) − ma(z0;A0) − ma(z0;B2) + ma(z0;A0)

= ma(z0;B1) − ma(z0;B2). � (4.13)

In the next corollary, we discuss the special case that the closed operator B1 is self-adjoint 
in H. In this case we set A0 = B1 and instead of Hypothesis 4.1 it suffices to assume that the 
closed symmetric operator S = A0 ∩ B2 in (4.1) is densely defined and that S = A0 ∩ B∗

2 holds. 
Following Lemma 4.2 and Proposition A.4 one obtains a boundary triple {G, �0, �1} for S∗, and 
densely defined closed operators �2, �∗

2 ∈ C(G), such that A0 = S∗ � ker(�0) and

B2 = S∗ � ker(�1 − �2�0), B∗
2 = S∗ � ker(�1 − �∗

2�0). (4.14)

Corollary 4.4. Let B1 = A0, B2, and S = A0 ∩ B2 be as above, and choose a boundary triple 
{G, �0, �1} and �2 such that A0 = S∗ � ker(�0) and (4.14) holds. Let M(·) be the Weyl–
Titchmarsh function corresponding to {G, �0, �1} and assume that

z0 ∈ σd(B2) ∪ ρ(B2) ∪ σd(A0) ∪ ρ(A0). (4.15)

Then there exists ε0 > 0 such that the function �2 − M(·) satisfies Hypothesis 2.4 with D =
D(z0; ε0) and D0 = {z0}, and the index formula

ĩndC(z0;ε)
(
�2 − M(·)) = ma

(
z0;B2

) − ma

(
z0;A0

)
(4.16)

holds.
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It remains to show that the functions �j − M(·), j = 1, 2, satisfy Hypothesis 2.4 (iii). In the 
following considerations we discuss the general situation of unbounded closed operators �1 and 
�2 in Lemma 4.2 such that

Bj = S∗ � ker(�1 − �j�0), B∗
j = S∗ � ker(�1 − �∗

j�0), j = 1,2. (4.17)

For the special case of bounded operators �1, �2 ∈ B(G) the considerations simplify slightly 
and we refer the reader to Remark 4.8 for more details. We start with the following preliminary 
lemma.

Lemma 4.5. Let {G, �0, �1} be the boundary triple in Lemma 4.2, let �j ∈ C(G), j = 1, 2, be 
densely defined closed operators such that (4.17) holds, and consider the map

�
�j

0 = �1 − �j�0, dom
(
�

�j

0

) = {f ∈ dom(S∗) |�0f ∈ dom(�j )}. (4.18)

Then the following assertions hold for j = 1, 2:

(i) dom(Bj ) = ker
(
�

�j

0

)
;

(ii) ran(�
�j

0 ) is dense in G;

(iii) the direct sum decomposition

dom
(
�

�j

0

) = dom(Bj ) +̇ (
ker(S∗ − zIH) ∩ dom

(
�

�j

0

))
(4.19)

holds for all z ∈ ρ(Bj );

(iv) dom
(
�

�j

0

)
is dense in dom(S∗) with respect to the graph norm.

Proof. (i) is a direct consequence of the definition of �
�j

0 in (4.18) and (4.17).

(ii) In order to verify that ran
(
�

�j

0

)
is dense in G consider first the row operator [−�j IG] :

G × G → G defined on the dom(�j ) × G and note that by

ran
([−�j IG])⊥ = ker

([
−�∗

j

IG

])
= {0} (4.20)

the range of [−�j IG] is dense in G. Hence it follows from

�
�j

0 = �1 − �j�0 = [−�j IG]
[

�0

�1

]
and ran

([
�0

�1

])
= G × G (4.21)

that ran
(
�

�j

0

)
is dense in G.

(iii) The inclusion (⊃) in (4.19) is clear from (i). In order to verify the inclusion (⊂) in (4.19), 
let z ∈ ρ(Bj ) and h ∈ dom

(
�

�j

0

) ⊂ dom(S∗), and choose k ∈ dom(Bj ) such that

(S∗ − zIH)h = (Bj − zIH)k. (4.22)
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Since S∗ is an extension of Bj it follows that h − k ∈ ker(S∗ − zIH) and as h ∈ dom
(
�

�j

0

)
and 

k ∈ ker
(
�

�j

0

) ⊂ dom
(
�

�j

0

)
, hence also h − k ∈ dom

(
�

�j

0

)
. Thus,

h = k + (h − k), where k ∈ dom(Bj ), h − k ∈ ker(S∗ − zIH) ∩ dom
(
�

�j

0

)
, (4.23)

and hence the inclusion (⊂) in (4.19) is shown. The fact that the sum in (4.19) is direct follows 
from the assumption z ∈ ρ(Bj ).

(iv) Since �0 : ker(S∗ − zIH) → G, z ∈ ρ(A0), is an isomorphism with respect to the graph norm 
in ker(S∗ − zIH) (which is equivalent to the norm in H), and since dom(�j ) is dense in G we 

conclude that ker(S∗ − zIH) ∩ dom
(
�

�j

0

)
is dense in ker(S∗ − zIH) with respect to the graph 

norm. It follows from (i) and the direct sum decomposition (4.19) that dom
(
�

�j

0

)
is dense in 

dom(S∗) with respect to the graph norm. �
One observes that by Lemma 4.5 the map

�
�j

0 �
(
ker(S∗ − zIH) ∩ dom

(
�

�j

0

)) → G, z ∈ ρ(Bj ), (4.24)

is injective and maps onto the dense subspace ran
(
�

�j

0

)
. Hence, for z ∈ ρ(Bj ) fixed, and every 

ϕ ∈ ran
(
�

�j

0

)
, there exists a unique fz ∈ ker(S∗ − zIH) ∩ dom

(
�

�j

0

)
such that �

�j

0 fz = ϕ. In 
analogy to the γ -field corresponding to {G, �0, �1} we define for z ∈ ρ(Bj ) the map

γ�j
(z)ϕ = fz, dom(γ�j

(z)) = ran
(
�

�j

0

)
, (4.25)

where fz ∈ dom
(
�

�j

0

) ∩ ker(S∗ − zIH) satisfies �
�j

0 fz = ϕ. In the next lemma some important 
properties of the operators γ�j

(z) are collected. The methods in the proof are abstract analogs of 
the computations in Step 4 and Step 5 in the proof of Lemma 3.9.

Lemma 4.6. For all z ∈ ρ(Bj ) the operator γ�j
(z) is densely defined and bounded from G into 

H. Furthermore, the identity

γ�j
(z)ϕ = (

IH + (z − ζ )(Bj − zIH)−1)γ�j
(ζ )ϕ, z, ζ ∈ ρ(Bj ), (4.26)

holds for all ϕ ∈ dom(γ�j
(z)) = dom(γ�j

(ζ )) = ran(�
�j

0 ), and extends by continuity to

γ�j
(z) = (

IH + (z − ζ )(Bj − zIH)−1)γ�j
(ζ ), z, ζ ∈ ρ(Bj ). (4.27)

Proof. First of all it is clear from the definition of γ�j
(z), z ∈ ρ(Bj ), in (4.25) and Lemma 4.5 (ii)

that the operator γ�j
(z) is densely defined in G and maps into H. Next we verify the identity 

(4.26). Thus, let z, ζ ∈ ρ(Bj ) and consider ϕ ∈ dom(γ�j
(z)) = dom(γ�j

(ζ )). Then

fz = γ�j
(z)ϕ ∈ ker(S∗ − zIH) ∩ dom(�

�j

0 ), (4.28)

and
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fζ = γ�j
(ζ )ϕ ∈ ker(S∗ − ζ IH) ∩ dom(�

�j

0 ), (4.29)

and it follows from (4.19) that there exists fj ∈ dom(Bj ) such that

fζ = fj + fz. (4.30)

As fz − fζ = −fj ∈ dom(Bj ) there exists h ∈H such that fz − fζ = (Bj − zIH)−1h. It follows 
that

(z − ζ )fζ = z
(
fz − (Bj − zIH)−1h

) − ζfζ

= S∗(fz − fζ ) − z(Bj − zIH)−1h

= S∗(Bj − zIH)−1h − z(Bj − zIH)−1h

= h,

(4.31)

and this implies

fz = fζ + (Bj − zIH)−1h = (
IH + (z − ζ )(Bj − zIH)−1)fζ . (4.32)

Together with (4.28)–(4.29) we conclude (4.26).
Note that (4.27) follows from (4.26) and the fact that γ�j

(z) and γ�j
(ζ ) are both continuous. 

In order to show the continuity of γ�j
(z), z ∈ ρ(Bj ), it suffices to check that γ�j

(z)∗ ∈ B(H, G)

since this yields γ�j
(z) = γ�j

(z)∗∗ ∈ B(G, H). Fix z ∈ ρ(Bj ) and recall from Lemma 4.2 that 
B∗

j = S∗ � ker(�1 − �∗
j�0) and z ∈ ρ(B∗

j ). Let ϕ ∈ dom(γ�j
(z)),

fz = γ�j
(z)ϕ ∈ ker(S∗ − zIH) ∩ dom(�

�j

0 ) (4.33)

and h ∈H, and choose g ∈ dom(B∗
j ) such that h = (B∗

j − zIH)g. Then one computes

(γ�j
(z)ϕ,h)H = (

fz, (B
∗
j − zIH)g

)
H

= (fz,B
∗
j g)H − (zfz, g)H

= (fz, S
∗g)H − (S∗fz, g)H

= (�0fz,�1g)G − (�1fz,�0g)G
= (�0fz,�

∗
j�0g)G − (�1fz,�0g)G

= (
�1fz − �j�0fz,−�0g

)
G

= (
�

�j

0 fz,−�0g
)
G

= (
ϕ,−�0(B

∗
j − zIH)−1h

)
G,

(4.34)

and concludes γ�j
(z)∗h = −�0(B

∗
j − zIH)−1h, h ∈ H. In particular, since the adjoint operator 

γ�j
(z)∗ is closed and defined on the whole space H it follows that γ�j

(z)∗ ∈ B(H, G). This 
completes the proof of Lemma 4.6. �
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With the preparations in Lemma 4.5 and Lemma 4.6 we will now verify condition (iii) in 
Hypothesis 2.4 for the functions �j −M(·), j = 1, 2. The proof of Proposition 4.7 is an abstract 
variant of the considerations in Step 6 and 7 in the proof of Lemma 3.9.

Proposition 4.7. Let {G, �0, �1} be the boundary triple in Lemma 4.2 with A0 = S∗ � ker(�0)

and corresponding Weyl–Titchmarsh function M(·), and let �j ∈ C(G), j = 1, 2, be densely 
defined closed operators such that (4.3) holds. Assume that

z0 ∈ σd(Bj ) ∪ ρ(Bj ), j = 1,2, and z0 ∈ σd(A0) ∪ ρ(A0). (4.35)

Then there exists ε0 > 0 such that both functions �j −M(·), j = 1, 2, satisfy Hypothesis 2.4 (iii)
with D = D(z0; ε0) and D0 = {z0}, that is, the functions(

�j − M(·))−1 : D(z0; ε0)\{z0} → B(G), z 
→ (
�j − M(z)

)−1 (4.36)

are analytic on D(z0; ε0)\{z0} and finitely meromorphic on D(z0; ε0).

Proof. Choose ε0 > 0 as in the proof of Theorem 4.3, so that the punctured disc D(z0; ε0)\{z0}
is contained in the set ρ(Bj ) ∩ ρ(A0), j = 1, 2. Let z ∈ D(z0; ε0)\{z0} and fix ζ ∈ ρ(Bj ).

Consider the map �
�j

0 in (4.18), let γ�j
(z) be as in (4.25) and let ϕ ∈ ran

(
�

�j

0

)
. Then

fz = γ�j
(z)ϕ ∈ ker(S∗ − zIH) ∩ dom

(
�

�j

0

)
(4.37)

satisfies �
�j

0 fz = ϕ and since M(z)�0fz = �1fz (see Definition A.2) one finds

−(
�j − M(z)

)
�0fz = −�j�0fz + �1fz = �

�j

0 fz = ϕ, (4.38)

which implies (
�j − M(z)

)−1
ϕ = −�0fz; (4.39)

recall that (�j − M(z))−1 ∈ B(G) for z ∈ D(z0; ε0)\{z0} by Theorem A.5 (i).
Similarly, as ζ ∈ ρ(B∗

j ) and B∗
j = S∗ � ker(�1 − �∗

j�0) the same argument as in the proof of 
Lemma 4.5 (ii) shows that the range of

�
�∗

j

0 = �1 − �∗
j�0, dom

(
�

�∗
j

0

) = {f ∈ dom(S∗) |�0f ∈ dom(�∗
j )}, (4.40)

is dense in G. The direct sum decomposition

dom
(
�

�∗
j

0

) = dom(B∗
j ) +̇ (

ker(S∗ − ζ IH) ∩ dom
(
�

�∗
j

0

))
(4.41)

and dom(B∗
j ) = ker

(
�

�∗
j

0

)
imply that for all ψ ∈ ran

(
�

�∗
j

0

)
there exists a unique

g ∈ ker
(
S∗ − ζ IH

) ∩ dom
(
�

�∗
j
)

such that �
�∗

j
g = ψ. (4.42)
ζ 0 0 ζ
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As in Lemma 4.6 one verifies that the map γ�∗
j
(ζ ) : G → H, ψ 
→ gζ is densely defined and 

bounded, and, in particular, the adjoint operator is bounded, that is, (γ�∗
j
(ζ ))∗ ∈ B(H, G). The 

same argument as in (4.38) shows that(
�∗

j − M(ζ)
)−1

ψ = −�0gζ (4.43)

and a straightforward calculation using (4.39), (4.43), (4.18), (4.40) yields

(
(�j − M(z))−1ϕ,ψ

)
G − (

(�j − M(ζ))−1ϕ,ψ
)
G

= (
(�j − M(z))−1ϕ,ψ

)
G − (

ϕ, (�∗
j − M(ζ))−1ψ

)
G

= (−�0fz,�
�∗

j

0 gζ )G − (�
�j

0 fz,−�0gζ )G

= (−�0fz, (�1 − �∗
j�0)gζ

)
G − (

(�1 − �j�0)fz,−�0gζ

)
G

= (�1fz,�0gζ )G − (�0fz,�1gζ )G

= (S∗fz, gζ )H − (fz, S
∗gζ )H

= (zfz, gζ )H − (fz, ζgζ )H

= (z − ζ )(γ�j
(z)ϕ, γ�∗

j
(ζ )ψ)H.

(4.44)

Hence

(�j − M(z))−1ϕ − (�j − M(ζ))−1ϕ = (z − ζ )
(
γ�∗

j
(ζ )

)∗
γ�j

(z)ϕ (4.45)

holds for all ϕ ∈ ran
(
�

�j

0

)
and with the help of the identities (4.26) and (4.27) in Lemma 4.6 one 

obtains

(�j − M(z))−1

= (�j − M(ζ))−1 + (z − ζ )
(
γ�∗

j
(ζ )

)∗(
IH + (z − ζ )(Bj − zIH)−1)γ�j

(ζ )
(4.46)

for all z ∈ D(z0; ε0)\{z0}. Since z0 ∈ σd(Bj ) ∪ ρ(Bj ) the B(H)-valued map z 
→ (Bj − zIH)−1

is analytic on D(z0; ε0)\{z0} and finitely meromorphic on D(z0; ε0) by Example 2.2. As the 
operators γ�j

(ζ ) and (γ�∗
j
(ζ ))∗ are bounded it follows from Example 2.3 that the same is true 

for the map

z 
→ (
γ�∗

j
(ζ )

)∗
(Bj − zIH)−1γ�j

(ζ ). (4.47)

Hence it follows that also the map z 
→ (�j −M(z))−1 is analytic on D(z0; ε0)\{z0} and finitely 
meromorphic on D(z0; ε0). This completes the proof of Proposition 4.7. �
Remark 4.8. Assume that the closed operators �j , j = 1, 2, in (4.3) are bounded; this happens if 
and only if dom(S∗) = dom(Bj ) + dom(A0) holds (see (A.8)). In this case some of the previous 

considerations in Lemma 4.5 and Lemma 4.6 slightly simplify. In particular, the map �
�j in 
0
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(4.18) is defined on dom(S∗) and maps onto G. As a consequence, the operators γ�j
(z), z ∈

ρ(Bj ), are defined on G and the identities (4.26) and (4.27) are the same.

Remark 4.9. A typical situation in which the closed operators �j , j = 1, 2, in (4.3) are un-
bounded is the following: Suppose that the deficiency indices of S are infinite and that the 
resolvent difference

(Bj − zIH)−1 − (A0 − zIH)−1, z ∈ ρ(A0) ∩ ρ(Bj ), (4.48)

is a compact operator. Then G is an infinite dimensional Hilbert space and it follows from [22, 
Theorem 2] that the closed operator �j in G has a compact resolvent, and hence is unbounded.
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Appendix A. Boundary triples, Weyl–Titchmarsh functions, and abstract Donoghue-type 
M-functions

The aim of this appendix is to give a brief introduction to boundary triples and their Weyl–
Titchmarsh functions, and to establish the connection to abstract Donoghue-type M-functions 
that were studied, for instance, in [25,27,28,31,32,43,44], and [45]. In addition, we refer the 
reader to [1,2,9–16,18,20–23,37,38,48–60], for more details, applications, and references on 
boundary triples and their Weyl–Titchmarsh functions.

Let H be a separable complex Hilbert space, let S be a densely defined closed symmetric 
operator in H and let S∗ be the adjoint of S. The notion of boundary triple (or boundary value 
space) appeared first in [17] and [42].

Definition A.1. A triple {G, �0, �1} is called a boundary triple for S∗ if G is a Hilbert space and 
�0, �1 : dom(S∗) → G are linear operators such that

(S∗f,g)H − (f,S∗g)H = (�1f,�0g)G − (�0f,�1g)G (A.1)

holds for all f, g ∈ dom(S∗) and the map � = [�0

�1

] : dom(S∗) → G × G is onto.

We note that a boundary triple for S∗ exists if and only if the deficiency indices of S coincide, 
or, equivalently, if S admits self-adjoint extensions in H. A boundary triple (if it exists) is not 
unique (except in the trivial case S = S∗). Assume in the following that {G, �0, �1} is a boundary 
triple for S∗. Then

S = S∗ � ker(�) = S∗ � (ker(�0) ∩ ker(�1)) (A.2)
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holds and the maps �0, �1 : dom(S∗) → G are continuous with respect to the graph norm of 
S∗. A key feature of a boundary triple is that all closed extensions of S can be parametrized 
in an efficient way. More precisely, there is a one-to-one correspondence between the closed 
extensions A� ⊂ S∗ of S and the closed linear subspaces (relations) � ⊂ G × G given by

� 
→ A� = S∗ � {f ∈ dom(S∗) | {�0f,�1f } ∈ �}. (A.3)

We refer the reader to [6] for the notion, basic operations, and properties of linear relations. In 
the case where � in (A.3) is (the graph of) an operator, the extension A� is given by

A� = S∗ � ker(�1 − ��0). (A.4)

A particularly convenient feature is that the adjoint of A� in (A.3)–(A.4) is given by the extension 
that corresponds to the parameter �∗, that is, the identity

(A�)∗ = A�∗ (A.5)

holds; here the adjoint of linear relation � is defined in the same manner as the adjoint of a 
densely defined operator. It follows, in particular, that A� is self-adjoint in H if and only if the 
parameter � is self-adjoint in G. In the following the self-adjoint extension

A0 = S∗ � ker(�0) (A.6)

of S will play the role of a fixed extension. One notes that A0 corresponds to the subspace 
�0 = {0} ×G in (A.3); in addition, one observes that the index 0 corresponds to the subspace �0
and not to the zero operator in G.

For our purposes it is convenient to have criteria available which ensure that � in (A.3)–(A.4)
is a (bounded) operator. We recall from [22,23] that � is a closed operator if and only A� and 
A0 are disjoint, that is,

S = A� ∩ A0, (A.7)

and that � ∈ B(G) if and only if A� and A0 are disjoint and

dom(S∗) = dom(A�) +̇dom(A0) (A.8)

holds.
Next we recall the definition of the γ -field and Weyl–Titchmarsh function corresponding to a 

boundary triple {G, �0, �1}. For this purpose consider the self-adjoint operator A0 = S∗ � ker(�0)

and note that for any z ∈ ρ(A0) the direct sum decomposition

dom(S∗) = dom(A0) +̇ ker(S∗ − zIH) = ker(�0) +̇ ker(S∗ − zIH) (A.9)

holds. This implies, in particular, that the restriction of the boundary map �0 onto ker(S∗ − zIH)

is injective for all z ∈ ρ(A0). Moreover, the surjectivity of � : dom(S∗) → G ×G and (A.9) yield 
that the restriction �0 � ker(S∗ −zIH) maps onto G and hence the inverse (�0 � ker(S∗ −zIH))−1

is a bounded operator defined on G. This observation shows that the γ -field and Weyl–Titchmarsh 
function in the next definition are well-defined and their values are bounded operators for all 
z ∈ ρ(A0).
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Definition A.2. Let {G, �0, �1} be a boundary triple for S∗ and let A0 = S∗ � ker(�0). The γ -field 
γ (·) corresponding to {G, �0, �1} is defined by

γ : ρ(A0) → B(G,H), z 
→ γ (z) = (�0 � ker(S∗ − zIH))−1, (A.10)

and the Weyl–Titchmarsh function M(·) corresponding to {G, �0, �1} is defined by

M : ρ(A0) → B(G), z 
→ M(z) = �1(�0 � ker(S∗ − zIH))−1. (A.11)

In the following let γ (·) and M(·) be the γ -field and Weyl–Titchmarsh function correspond-
ing to a boundary triple {G, �0, �1} for S∗. We recall some important properties of the functions 
γ (·) and M(·) which can be found, for instance, in [10,18,22,23]. First of all we note that γ (·)
and M(·) are both analytic operator functions on ρ(A0) with values in B(G, H) and B(G), re-
spectively. The adjoint of γ (z) is a bounded operator from H into G of the form

γ (z)∗ = �1(A0 − zIH)−1 ∈ B(H,G). (A.12)

Furthermore, the important identities

γ (z) = (
IH + (z − ζ )(A0 − zIH)−1)γ (ζ ) (A.13)

and

M(z) − M(ζ)∗ = (z − ζ )γ (ζ )∗γ (z) (A.14)

hold for all z, ζ ∈ ρ(A0). A combination of (A.13) and (A.14) shows

M(z) = M(ζ)∗ + (z − ζ )γ (ζ )∗
(
IH + (z − ζ )(A0 − zIH)−1)γ (ζ )

= M(ζ)∗ + (z − ζ )γ (ζ )∗γ (ζ ) + (z − ζ )(z − ζ )γ (ζ )∗(A0 − zIH)−1γ (ζ ).
(A.15)

One observes that (A.14) implies

M(z)∗ = M(z), z ∈ ρ(A0), (A.16)

d

dz
M(z) = γ (z)∗γ (z), z ∈ ρ(A0), (A.17)

and that

Im(M(z)) = 1

2i

(
M(z) − M(z)∗

) = (Im(z))γ (z)∗γ (z) ∈ B(G) (A.18)

is a uniformly positive (resp., uniformly negative) operator for z ∈C
+ (resp., z ∈ C

−). Therefore, 
the Weyl–Titchmarsh function M(·) is a B(G)-valued Riesz–Herglotz or Nevanlinna function 
(see [22,31,40,45]), which, in addition, is uniformly strict (cf. [20]). In particular, there exists a 
self-adjoint operator α ∈ B(G) and a non-decreasing self-adjoint operator map t 
→ �(t) ∈ B(G)

on R such that M(·) admits the integral representation
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M(z) = α +
ˆ

R

d�(t)

(
1

t − z
− t

1 + t2

)
, z ∈ ρ(A0), (A.19)

where 
´
R

d�(t)(1 + t2)−1 ∈ B(G).
The next lemma follows from (A.15) and the fact that the resolvent of A0 and its derivatives 

are finitely meromorphic at a discrete eigenvalue z0 of A0 (cf. Examples 2.2 and 2.3).

Lemma A.3. Let {G, �0, �1} be a boundary triple for S∗ with A0 = S∗ � ker(�0), and let M(·) be 
the corresponding Weyl–Titchmarsh function. If z0 ∈ σd(A0) ∪ ρ(A0) then M and its derivatives 
M(l)(·), l ∈ N, are finitely meromorphic at z0.

In the next proposition we provide a particular boundary triple for S∗ such that the corre-
sponding Weyl–Titchmarsh function coincides with the abstract Donoghue-type M-function that 
was studied, for instance, in [27,28,31]. The construction in Proposition A.4 can be found, for 
instance, in [19, Proposition 4.1]. For the convenience of the reader we provide a short proof.

Proposition A.4. Let S be a densely defined closed symmetric operator in H with equal defi-
ciency indices, fix a self-adjoint extension A of S in H and decompose the elements f ∈ dom(S∗)
according to the direct sum decomposition

dom(S∗) = dom(A) +̇Ni , Ni = ker(S∗ − iIH), (A.20)

in the form f = fA +fi , fA ∈ dom(A), fi ∈Ni . Let PNi
: H →Ni be the orthogonal projection 

onto Ni and let ιNi
: Ni →H be the canonical embedding of Ni into H.

Then {Ni , �0, �1}, where the boundary maps �0, �1 : dom(S∗) → Ni are defined by

�0f = fi and �1f = PNi
(A + iIH)fA + ifi, (A.21)

is a boundary triple for S∗ with A0 = S∗ � ker(�0) = A and the corresponding Weyl–Titchmarsh 
function M(·) is given by

M(z) = zINi
+ (z2 + 1)PNi

(A − zIH)−1ιNi
, z ∈ ρ(A). (A.22)

Proof. Let f, g ∈ dom(S∗) be decomposed in the form f = fA + fi and g = gA + gi , 
where fA, gA ∈ dom(A) and fi, gi ∈ Ni . Since A is self-adjoint in H we have (AfA, gA)H =
(fA, AgA)H and it follows that

(S∗f,g)H − (f,S∗g)H

= (
AfA + ifi, gA + gi

)
H

− (
fA + fi,AgA + igi

)
H

= (
AfA + ifi, gi

)
H

+ (ifi, gA)H − (
fi,AgA + igi

)
H

− (fA, igi)H

= (
(A + iIH)fA + ifi, gi

)
H

− (
fi, (A + iIH)gA + igi

)
H

.

(A.23)

Moreover, it follows from the definition of the boundary maps in (A.21) that
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(�1f,�0g)Ni
− (�0f,�1g)Ni

= (
PNi

(A + iIH)fA + ifi, gi

)
Ni

− (
fi,PNi

(A + iIH)gA + igi

)
Ni

= (
(A + iIH)fA + ifi, gi

)
H

− (
fi, (A + iIH)gA + igi

)
H

.

(A.24)

Therefore, by combining (A.23) and (A.24) we conclude

(S∗f,g)H − (f,S∗g)H = (�1f,�0g)Ni
− (�0f,�1g)Ni

, (A.25)

and hence the abstract Green’s identity (A.1) in Definition A.1 is satisfied.
Next we verify that the map

� =
[

�0

�1

]
: dom(S∗) → G × G (A.26)

is surjective. To see this consider ϕ, ψ ∈ Ni , choose fA ∈ dom(A) such that

(A + iIH)fA = ψ − iϕ, (A.27)

and let f = fA + ϕ ∈ dom(S∗). It follows from (A.21) that

�0f = ϕ and �1f = PNi
(A + iIH)fA + iϕ = ψ. (A.28)

Hence the map in (A.26) is onto and it follows that {Ni , �0, �1} is a boundary triple for S∗. It is 
clear from the construction that A0 = S∗ � ker(�0) = A holds.

It remains to show that the Weyl–Titchmarsh function corresponding to the boundary triple 
{Ni , �0, �1} has the asserted form. For this consider first fi ∈ Ni and note that for f = fi the 
abstract boundary values in (A.21) are given by

�0fi = fi and �1fi = ifi . (A.29)

Therefore, Definition A.2 implies

γ (i) : Ni →H, fi 
→ γ (i)fi = fi, (A.30)

that is, γ (i) is the canonical embedding of Ni into H,

γ (i) = ιNi
, (A.31)

and γ (i)∗ : H → Ni is the orthogonal projection onto Ni , that is, γ (i)∗ = PNi
. Furthermore, 

Definition A.2 also implies

M(i) : G → G, fi 
→ M(i)fi = ifi, (A.32)

that is, M(i) = iINi
. Next, it follows from (A.15) with ζ = i that

M(z) = zINi
+ (z2 + 1)PNi

(A − zIH)−1ιNi
(A.33)

holds for all z ∈ ρ(A), completing the proof of Proposition A.4. �
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Finally, we recall a useful version of Krein’s resolvent formula for the resolvents of the closed 
extensions A� in (A.3)–(A.4), which also provides a correspondence between the spectrum of 
A� inside the set ρ(A0) and the spectrum of � − M(·).

Theorem A.5. Let {G, �0, �1} be a boundary triple for S∗ with A0 = S∗ � ker(�0), and let γ (·)
and M(·) be the corresponding γ -field and Weyl–Titchmarsh function, respectively. Let A� ⊂
S∗ be a closed extension of S which corresponds to a closed operator or subspace � as in 
(A.3)–(A.4). Then the following assertions hold for all z ∈ ρ(A0):

(i) z ∈ ρ(A�) if and only if 0 ∈ ρ(� − M(z)).

(ii) z ∈ σj (A�) if and only if 0 ∈ σj (� − M(z)), j ∈ {p, c, r}.
(iii) for all z ∈ ρ(A�) ∩ ρ(A0),

(A� − zIH)−1 = (A0 − zIH)−1 + γ (z)
(
� − M(z)

)−1
γ (z)∗. (A.34)

References

[1] D. Alpay, J. Behrndt, Generalized Q-functions and Dirichlet-to-Neumann maps for elliptic differential operators, J. 
Funct. Anal. 257 (2009) 1666–1694.

[2] W.O. Amrein, D.B. Pearson, M operators: a generalization of Weyl–Titchmarsh theory, J. Comput. Appl. Math. 171 
(2004) 1–26.

[3] W. Arendt, A.F.M. ter Elst, The Dirichlet-to-Neumann operator on rough domains, J. Differential Equations 251 
(2011) 2100–2124.

[4] W. Arendt, A.F.M. ter Elst, J.B. Kennedy, M. Sauter, The Dirichlet-to-Neumann operator via hidden compactness, 
J. Funct. Anal. 266 (2014) 1757–1786.

[5] W. Arendt, R. Mazzeo, Friedlander’s eigenvalue inequalities and the Dirichlet-to-Neumann semigroup, Commun. 
Pure Appl. Anal. 11 (2012) 2201–2212.

[6] R. Arens, Operational calculus of linear relations, Pacific J. Math. 11 (1961) 9–23.
[7] J. Behrndt, F. Gesztesy, H. Holden, R. Nichols, On the index of meromorphic operator-valued functions and some 

applications, in: J. Dittrich, H. Kovarik, A. Laptev (Eds.), Functional Analysis and Operator Theory for Quantum 
Physics, EMS Publishing House, EMS, ETH–Zürich, Switzerland, in press, arXiv:1512.06962.

[8] J. Behrndt, F. Gesztesy, T. Micheler, M. Mitrea, Sharp boundary trace theory and Schrödinger operators on bounded 
Lipschitz domains, in preparation.

[9] J. Behrndt, M. Langer, Boundary value problems for elliptic partial differential operators on bounded domains, J. 
Funct. Anal. 243 (2007) 536–565.

[10] J. Behrndt, M. Langer, Elliptic operators, Dirichlet-to-Neumann maps and quasi boundary triples, in: S. Hassi, 
H.S.V. de Snoo, F.H. Safraniec (Eds.), Operator Methods for Boundary Value Problems, in: London Math. Soc. 
Lecture Note Series, vol. 404, Cambridge University Press, Cambridge, 2012, pp. 121–160.

[11] J. Behrndt, T. Micheler, Elliptic differential operators on Lipschitz domains and abstract boundary value problems, 
J. Funct. Anal. 267 (2014) 3657–3709.

[12] J. Behrndt, J. Rohleder, Spectral analysis of selfadjoint elliptic differential operators, Dirichlet-to-Neumann maps, 
and abstract Weyl functions, Adv. Math. 285 (2015) 1301–1338.

[13] J.F. Brasche, M.M. Malamud, H. Neidhardt, Weyl function and spectral properties of self-adjoint extensions, Inte-
gral Equations Operator Theory 43 (2002) 264–289.

[14] B.M. Brown, G. Grubb, I.G. Wood, M-functions for closed extensions of adjoint pairs of operators with applications 
to elliptic boundary problems, Math. Nachr. 282 (2009) 314–347.

[15] B.M. Brown, M. Marletta, S. Naboko, I. Wood, Boundary triples and M-functions for non-selfadjoint operators, 
with applications to elliptic PDEs and block operator matrices, J. Lond. Math. Soc. (2) 77 (2008) 700–718.

[16] B.M. Brown, M. Marletta, S. Naboko, I. Wood, An abstract inverse problem for boundary triples with an application 
to the Friedrichs model, arXiv:1404.6820.

[17] V.M. Bruk, A certain class of boundary value problems with a spectral parameter in the boundary condition, Math. 
USSR-Sb. 29 (1976) 186–192.

http://refhub.elsevier.com/S0022-0396(16)30126-7/bib41423039s1
http://refhub.elsevier.com/S0022-0396(16)30126-7/bib41423039s1
http://refhub.elsevier.com/S0022-0396(16)30126-7/bib41503034s1
http://refhub.elsevier.com/S0022-0396(16)30126-7/bib41503034s1
http://refhub.elsevier.com/S0022-0396(16)30126-7/bib41453131s1
http://refhub.elsevier.com/S0022-0396(16)30126-7/bib41453131s1
http://refhub.elsevier.com/S0022-0396(16)30126-7/bib41454B533134s1
http://refhub.elsevier.com/S0022-0396(16)30126-7/bib41454B533134s1
http://refhub.elsevier.com/S0022-0396(16)30126-7/bib414D3132s1
http://refhub.elsevier.com/S0022-0396(16)30126-7/bib414D3132s1
http://refhub.elsevier.com/S0022-0396(16)30126-7/bib413631s1
http://refhub.elsevier.com/S0022-0396(16)30126-7/bib4247484E3136s1
http://refhub.elsevier.com/S0022-0396(16)30126-7/bib4247484E3136s1
http://refhub.elsevier.com/S0022-0396(16)30126-7/bib4247484E3136s1
http://refhub.elsevier.com/S0022-0396(16)30126-7/bib424C3037s1
http://refhub.elsevier.com/S0022-0396(16)30126-7/bib424C3037s1
http://refhub.elsevier.com/S0022-0396(16)30126-7/bib424C3132s1
http://refhub.elsevier.com/S0022-0396(16)30126-7/bib424C3132s1
http://refhub.elsevier.com/S0022-0396(16)30126-7/bib424C3132s1
http://refhub.elsevier.com/S0022-0396(16)30126-7/bib424D3134s1
http://refhub.elsevier.com/S0022-0396(16)30126-7/bib424D3134s1
http://refhub.elsevier.com/S0022-0396(16)30126-7/bib4252313561s1
http://refhub.elsevier.com/S0022-0396(16)30126-7/bib4252313561s1
http://refhub.elsevier.com/S0022-0396(16)30126-7/bib424D4E3032s1
http://refhub.elsevier.com/S0022-0396(16)30126-7/bib424D4E3032s1
http://refhub.elsevier.com/S0022-0396(16)30126-7/bib4247573039s1
http://refhub.elsevier.com/S0022-0396(16)30126-7/bib4247573039s1
http://refhub.elsevier.com/S0022-0396(16)30126-7/bib424D4E573038s1
http://refhub.elsevier.com/S0022-0396(16)30126-7/bib424D4E573038s1
http://refhub.elsevier.com/S0022-0396(16)30126-7/bib424E4D573134s1
http://refhub.elsevier.com/S0022-0396(16)30126-7/bib424E4D573134s1
http://refhub.elsevier.com/S0022-0396(16)30126-7/bib42723736s1
http://refhub.elsevier.com/S0022-0396(16)30126-7/bib42723736s1


3586 J. Behrndt et al. / J. Differential Equations 261 (2016) 3551–3587
[18] J. Brüning, V. Geyler, K. Pankrashkin, Spectra of self-adjoint extensions and applications to solvable Schrödinger 
operators, Rev. Math. Phys. 20 (2008) 1–70.

[19] V.A. Derkach, On Weyl function and generalized resolvents of a Hermitian operator in a Krein space, Integral 
Equations Operator Theory 23 (1995) 387–415.

[20] V.A. Derkach, S. Hassi, M.M. Malamud, H.S.V. de Snoo, Boundary relations and their Weyl families, Trans. Amer. 
Math. Soc. 358 (2006) 5351–5400.

[21] V.A. Derkach, S. Hassi, M.M. Malamud, H.S.V. de Snoo, Boundary relations and generalized resolvents of sym-
metric operators, Russ. J. Math. Phys. 16 (2009) 17–60.

[22] V.A. Derkach, M.M. Malamud, Generalized resolvents and the boundary value problems for Hermitian operators 
with gaps, J. Funct. Anal. 95 (1991) 1–95.

[23] V.A. Derkach, M.M. Malamud, The extension theory of Hermitian operators and the moment problem, J. Math. Sci. 
73 (1995) 141–242.

[24] V.A. Derkach, M.M. Malamud, E.R. Tsekanovskii, Sectorial extensions of a positive operator, and the characteristic 
function, Sov. Math., Dokl. 37 (1988) 106–110.

[25] W.F. Donoghue, On the perturbation of spectra, Comm. Pure Appl. Math. 18 (1965) 559–579.
[26] F. Gesztesy, H. Holden, R. Nichols, On factorizations of analytic operator-valued functions and eigenvalue multi-

plicity questions, Integral Equations Operator Theory 82 (2015) 61–94;
F. Gesztesy, H. Holden, R. Nichols, Erratum, Integral Equations Operator Theory 85 (2016) 301–302.

[27] F. Gesztesy, N.J. Kalton, K.A. Makarov, E. Tsekanovskii, Some applications of operator-valued Herglotz functions, 
in: D. Alpay, V. Vinnikov (Eds.), Operator Theory, System Theory and Related Topics. The Moshe Livšic Anniver-
sary Volume, in: Oper. Theory Adv. Appl., vol. 123, Birkhäuser, Basel, 2001, pp. 271–321.

[28] F. Gesztesy, K.A. Makarov, E. Tsekanovskii, An addendum to Krein’s formula, J. Math. Anal. Appl. 222 (1998) 
594–606.

[29] F. Gesztesy, M. Mitrea, Generalized Robin boundary conditions, Robin-to-Dirichlet maps, and Krein-type resolvent 
formulas for Schrödinger operators on bounded Lipschitz domains, in: D. Mitrea, M. Mitrea (Eds.), Perspectives in 
Partial Differential Equations, Harmonic Analysis and Applications: A Volume in Honor of Vladimir G. Maz’ya’s 
70th Birthday, in: Proceedings of Symposia in Pure Mathematics, vol. 79, Amer. Math. Soc., Providence, RI, 2008, 
pp. 105–173.

[30] F. Gesztesy, M. Mitrea, Self-adjoint extensions of the Laplacian and Krein-type resolvent formulas in nonsmooth 
domains, J. Anal. Math. 113 (2011) 53–172.

[31] F. Gesztesy, S.N. Naboko, R. Weikard, M. Zinchenko, Donoghue-type m-functions for Schrödinger operators with 
operator-valued potentials, arXiv:1506.06324, J. Anal. Math. (2016), in press.

[32] F. Gesztesy, E. Tsekanovskii, On matrix-valued Herglotz functions, Math. Nachr. 218 (2000) 61–138.
[33] I. Gohberg, S. Goldberg, M.A. Kaashoek, Classes of Linear Operators, Vol. I, Operator Theory: Advances and 

Applications, vol. 49, Birkhäuser, Basel, 1990.
[34] I. Gohberg, M.G. Kreı̆n, Introduction to the Theory of Linear Nonselfadjoint Operators, Transl. Math. Monogr., 

vol. 18, Amer. Math. Soc., Providence, RI, 1969.
[35] I. Gohberg, J. Leiterer, Holomorphic Operator Functions of One Variable and Applications, Operator Theory: Ad-

vances and Applications, vol. 192, Birkhäuser, Basel, 2009.
[36] I.C. Gohberg, E.I. Sigal, An operator generalizations of the logarithmic residue theorem and the theorem of Rouché, 

Math. USSR-Sb. 13 (1971) 603–625.
[37] V.I. Gorbachuk, M.L. Gorbachuk, Boundary Value Problems for Operator Differential Equations, Kluwer Academic 

Publishers, Dordrecht, 1991.
[38] S. Hassi, M.M. Malamud, V. Mogilevskii, Unitary equivalence of proper extensions of a symmetric operator and 

the Weyl function, Integral Equations Operator Theory 77 (2013) 449–487.
[39] D. Jerison, C. Kenig, The inhomogeneous Dirichlet problem in Lipschitz domains, J. Funct. Anal. 130 (1995) 

161–219.
[40] I.S. Kac, M.G. Krein, R-functions – analytic functions mapping the upper halfplane into itself, Supplement to the 

Russian edition of F.V. Atkinson, Discrete and continuous boundary problems, Mir, Moscow 1968; Engl. transl. in 
Amer. Math. Soc. Transl. Ser. 2 103 (1974) 1–18.

[41] T. Kato, Perturbation Theory for Linear Operators, corr. printing of the 2nd ed., Springer, Berlin, 1980.
[42] A.N. Kochubei, Extensions of symmetric operators and symmetric binary relations, Math. Notes 17 (1975) 25–28.
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