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Abstract. For a densely defined, closed, semibounded (hence, symmetric) op-
erator in a Hilbert space, a family of self-adjoint extensions is considered, which

can be viewed as natural generalizations of the classical Krein–von Neumann

extension of a nonnegative symmetric operator. We review various properties
of these so-called Krein-type extensions and we discuss their weak coupling

spectral instability. The abstract results are illustrated for regular Sturm–

Liouville operators and the multidimensional Laplacian on a bounded Lipschitz
domain.

1. Introduction

In this paper we consider a family of self-adjoint extensions of symmetric op-
erators that can be viewed as natural generalizations of the classical Krein–von
Neumann extension of a nonnegative symmetric operator. To set the stage, let S
be a densely defined, closed, symmetric operator in a complex, separable Hilbert
space H and recall that under the nonnegativity assumption

(Sf, f) ≥ 0, f ∈ dom (S), (1.1)

the Krein–von Neumann extension SK is defined as the smallest nonnegative self-
adjoint extension of S; see [62], [63], and Remark 2.9 for more references. Therefore,
SK can be viewed as the counterpart of the Friedrichs extension, which is defined
as the largest nonnegative self-adjoint extension of S. In other words, we have

SK ≤ H ≤ SF (1.2)

in the sense of the corresponding quadratic forms for any other nonnegative self-
adjoint extension H of S or, equivalently, the inequalities

(SF − zI)−1 ≤ (H − zI)−1 ≤ (SK − zI)−1, z < 0, (1.3)

hold for the resolvents. In the context of linear relations SK can also be expressed
as SK = ((S−1)F )

−1. Furthermore, in the special case that S is uniformly positive,
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that is, for some κ > 0, (Sf, f) ≥ κ∥f∥2, f ∈ dom (S), the Krein–von Neumann
extension admits the following simple and more explicit form

SKf = S∗f, dom (SK) = dom (S)
.
+ ker(S∗), (1.4)

where S∗ is the adjoint of the densely defined, closed, symmetric operator S in H.
Inspired by (1.4) one can define a family of extensions SK,x of the densely defined,

closed, symmetric operator S with lower bound κ ∈ R by

SK,xf = S∗f, dom (SK,x) = dom (S)
.
+ ker(S∗ − xI), x < κ. (1.5)

The extensions SK,x are self-adjoint in H and they will be referred to as Krein-type
extensions of S; clearly, in the case κ > 0 and x = 0 this definition reduces to
(1.4), so that SK,0 = SK . The situation becomes more challenging when one tries
to define a Krein-type extension at the lower bound κ: Although the definition
(1.5) is still meaningful it does not lead to a self-adjoint operator in general (since
ker(S∗ − κI) can be trivial) and thus SK,κ needs to be defined differently. In
fact, as for the Krein–von Neumann extension in the general nonnegative case, one
can define SK,κ as the smallest self-adjoint extension of S with lower bound κ.
Equivalenty, one has that SK,κ is the strong resolvent limit of the monotone family
of Krein-type extensions SK,x for x ↑ κ, that is,

SK,κ = sr-limx↑κ SK,x. (1.6)

For a more detailed investigation and spectral analysis of the Krein-type exten-
sions it is natural to employ the concept of boundary triplets and their Weyl (resp.,
Weyl–Titchmarsh) functions. In the present situation, where a symmetric operator
S with lower bound κ ∈ R is given, one can construct a boundary triplet {G,Γ0,Γ1}
such that the Friedrichs extension SF of S is induced by the boundary mapping
Γ0, that is,

SF f = S∗f, dom (SF ) =
{
f ∈ dom (S∗) |Γ0f = 0

}
. (1.7)

If M(z), z ∈ ρ(SF ), denotes the corresponding Weyl–Titchmarsh function, an ana-
lytic (operator-valued) function in G, then it follows that the Krein-type extensions
SK,x for x < κ can also be characterized by

SK,xf = S∗f, dom (SK,x) =
{
f ∈ dom (S∗) |M(x)Γ0f = Γ1f

}
, x < κ, (1.8)

and, if M(κ) denotes the strong resolvent limit of the monotone family M(x) as
x ↑ κ, one also has

SK,κf = S∗f, dom (SK,x) =
{
f ∈ dom (S∗) | {Γ0f,Γ1f} ∈M(κ)

}
, (1.9)

where, in general, M(κ) is a self-adjoint relation in G.
After discussing the general theory of Krein-type extensions in Section 2, we then

turn to a more specific topic afterwards. Following the theme in [15, 16] we are
interested in spectral instability and the weak coupling phenomenon of Krein-type
extensions SK,x for x ≤ κ under relatively compact and relatively form compact
perturbations V . If V ≥ 0 it follows in the case x < κ under mild additional
conditions on the perturbation that SK,x exhibits a spectral instability in the sense
that

σ(SK,x + αV ) ∩ (−∞, x) ̸= ∅ for any α < 0. (1.10)

The situation is much more delicate for x = κ and has been discussed in great detail
in [16] in the case that the deficiency indices of S are (1, 1). However, if one imposes
the additional assumption that κ ∈ σp(SK,κ), then it is easy to see that a spectral
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instability in the sense of (1.10) appears also at κ (see [15]). We also mention in
this context that the classical weak coupling phenomenon for Schrödinger operators
in L2(Rn), n = 1, 2, goes back to Simon [77, 78] and we refer the reader to [16] for
more details and the explicit connection between (1.10) and Simon’s results in the
context of Sturm–Liouville operators with an interface condition. For additional
references regarding the weak coupling phenomenon of Schrödinger operators in
dimensions n = 1, 2, we also refer to [20], [21], [22], [24], [27], [29], [30], [34], [47],
[48], [54], [55], [56], [57], [58], [59], [64], [66], [67], [69], [70], [72], [73, p. 336–338].

The abstract considerations in Section 2 and 3 are then illustrated for the Krein-
type extensions of regular Sturm–Liouville operators in Section 4 and for the Krein-
type extensions of the Laplacian on a bounded Lipschitz domain in Section 5. More
precisely, in Section 4 we consider the Sturm–Liouville differential expression

ℓ =
1

r

[
− d

dt
p
d

dt
+ q

]
(1.11)

on a bounded open interval (a, b), where it is assumed that the coefficients are
real functions on (a, b) such that 1/p, q, r ∈ L1((a, b)) and p(t) > 0, r(t) > 0
for almost all t ∈ (a, b). In this case both endpoints a and b are regular and the
minimal symmetric operator associated to ℓ in the weighted L2-space L2((a, b); rdt)
is bounded from below and has deficiency indices (2, 2). We then characterize the
boundary conditions of the Krein-type extensions SK,x of S and show that they
are spectrally unstable. Similarly, in Section 5 we are interested in the Krein-
type extensions of the Laplacian on a bounded Lipschitz domain Ω ⊂ Rd, d ≥ 2.
Here we make use of results on the Dirichlet and Neumann trace operators on
the maximal domain from [14, 19] and provide explicit boundary conditions of the
Krein-type extensions of the minimal operator S = −∆ ↾H2

0 (Ω); see [13, 14]. In order
to show their spectral instability we proceed slightly differently than for ordinary
differential operators. We find it convenient to first verify spectral instability of
Robin Laplacians in a similar way as in [15] and to then conclude spectral instability

of the Krein-type extension SK,x by using the inequality SK,x ≤ A
(βx)
R , where the

parameter βx in the boundary condition of the Robin Laplacian A
(βx)
R is chosen

such that x coincides with the smallest eigenvalue of A
(βx)
R .

Notation. The inner product in a separable (complex) Hilbert space H is denoted
by ( · , · ) and is assumed to be linear with respect to the first argument; the symbol
I denotes the identity operator in H. If T is a linear operator mapping (a subspace
of) a Hilbert space into another, then dom (T ) and ran (T ) denote the domain and
range of T , respectively. The resolvent set and spectrum of a closed linear operator
T in H are abbreviated by ρ(T ) and σ(T ), respectively. The set of eigenvalues
is denoted by σp(T ) and for a self-adjoint operator T , σd(T ) and σess(T ) denotes
the essential and discrete spectrum, respectively. The Banach space of bounded
(resp., compact) linear operators on H is denoted by B(H) (resp., B∞(H)). For
p ∈ [1,∞), the corresponding ℓp-based trace ideals will be denoted by Bp(H) with
norms abbreviated by ∥ · ∥Bp(H). Finally, Lp

r((a, b)) := Lp((a, b); rdt), p ∈ [1,∞),

represents weighted Lp-spaces with weight 0 ≤ r ∈ L1
loc((a, b)).

2. Abstract Krein-Type Extensions, Boundary Triplets,
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and Weyl–Titchmarsh Functions

In this section we first introduce the notion of abstract Krein-type extensions
of a semibounded symmetric operator in H and provide some properties of these
self-adjoint operators. These extensions can be viewed as natural generalizations
of the classical Krein–von Neumann extension in the nonnegative case. Using the
concept of boundary triplets and Weyl–Titchmarsh functions, we show how the
Krein-type extensions can be related to the values of the corresponding Weyl–
Titchmarsh function in the boundary space G. This observation is particularly
useful in applications to differential operators as it reduces the problem to determine
the Krein-type extensions to the computation of the Weyl–Titchmarsh function.
For most of the statements in this section we provide elementary direct proofs and
refer the reader to [18, Chapter 5] for a slightly more abstract treatment and further
references.

2.1. Abstract Krein-type extensions. Throughout this section suppose that S
is a densely defined, closed, symmetric operator in a Hilbert space H, assume that
S is semibounded from below, and that κ ∈ R is the maximal lower bound1

(Sf, f) ≥ κ(f, f), f ∈ dom (S); (2.1)

such an inequality will be denoted by S ≥ κI throughout this paper. For obvious
reasons, the case S = S∗ will be excluded in the following.

Definition 2.1. The family of Krein-type extensions SK,x, x < κ, of S is defined
by

SK,x = S∗ ↾ dom (SK,x), dom (SK,x) = dom (S)
.
+ ker(S∗ − xI), x < κ. (2.2)

One notes that the sum in dom (SK,x) is indeed direct as otherwise x < κ would
be an eigenvalue of S; this is not possible as S ≥ κI. If we agree to denote the

elements f ∈ dom (SK,x) = dom (S)
.
+ker(S∗ − xI) in the form f = fS + fx, where

fS ∈ dom (S), fx ∈ dom (S∗ − xI), and x < κ, then it is clear that

SK,xf = SfS + xfx, f = fS + fx, fS ∈ dom (S), fx ∈ ker(S∗ − xI). (2.3)

Lemma 2.2. For x < κ, the operator SK,x is self-adjoint in H and

σ(SK,x) ∩ (−∞, κ) = {x}. (2.4)

In particular, SK,x is semibounded from below with lower bound x.

Proof. First we show that SK,x is symmetric. For f = fS + fx ∈ dom (SK,x) one
has

Im((SK,xf, f)) = Im
(
(SfS , fS) + (SfS , fx) + (SK,xfx, fS) + (xfx, fx)

)
= Im

(
(SfS , fx) + (SK,xfx, fS)

) (2.5)

and together with (SK,xfx, fS) = (fx, SfS) one concludes that Im((SK,xf, f)) = 0.
Hence, SK,x ⊆ S∗

K,x. In order to verify the inclusion S∗
K,x ⊆ SK,x, consider g ∈

dom (SK,x)
∗. Then

(SK,xf, g) = (SfS + xfx, g) = (fS + fx, S
∗
K,xg) (2.6)

holds for all f = fS + fx ∈ dom (SK,x). As (SfS , g) = (fS , S
∗
K,xg) one obtains

(fx, (S
∗
K,x − xI)g) = 0 (2.7)

1Explicitly, S ≥ κI, but for all ε > 0, S ≱ (κ+ ε)I.
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for all fx ∈ ker(S∗−xI). Therefore, (S∗
K,x−xI)g ∈ (ker(S∗−xI))⊥ = ran (S−xI)

and hence there exists h ∈ dom (S) such that

(S∗
K,x − xI)g = (S − xI)h. (2.8)

It follows that g − h ∈ ker(S∗
K,x − xI) ⊆ ker(S∗ − xI) and we conclude the decom-

position

g = h+ (g − h) ∈ dom (S)
.
+ ker(S∗ − xI) = dom (SK,x). (2.9)

As SK,x is symmetric, it is clear that S∗
K,x is an extension of SK,x and hence

SK,xg = S∗
K,xg. Thus, we have shown the inclusion S∗

K,x ⊆ SK,x, and hence it
follows that SK,x is self-adjoint.

It is clear from the definition of SK,x in (2.2) that x is an eigenvalue with cor-
responding eigenspace ker(S∗ − xI). Since SK,x is self-adjoint, the closed subspace
(ker(S∗ − xI))⊥ = ran (S − xI) reduces SK,x to a self-adjoint operator

S′
K,x = SK,x ↾ ran (S − xI),

dom (S′
K,x) =

(
dom (S)

.
+ ker(S∗ − xI)

)
∩ ran (S − xI),

(2.10)

in ran (S − xI), and we claim that S′
K,x is semibounded from below by κ. In fact,

for h = hS+hx = (S−xI)g ∈ dom (S′
K,x) we have 0 = (hx, h) = (hx, hS)+(hx, hx)

as h ∈ ran (S − xI). Therefore, using S ≥ κI one concludes(
(S′

K,x − κI)h, h
)
=

(
(S − κI)hS , hS

)
+
(
(S − κI)hS , hx

)
+

(
(x− κ)hx, h

)
=

(
(S − κI)hS , hS

)
+
(
hS , (x− κ)hx

)
=

(
(S − κI)hS , hS

)
+ (κ− x)(hx, hx) ≥ 0.

(2.11)

Hence S′
K,x ≥ κI and, in particular, σ(S′

K,x) ⊆ [κ,∞). It follows that

σ(SK,x)\{x} = σ(S′
K,x) ⊆ [κ,∞), (2.12)

implying (2.4). It is also clear that the lower bound of SK,x is x. □

The next proposition shows that SK,x is the smallest semibounded extension of
S with lower bound x.

Proposition 2.3. Let H be a semibounded self-adjoint extension of S and let
x < κ. Then the following are equivalent:

(i) H ≥ xI.

(ii) SK,x ≤ H, that is, (H − ηI)−1 ≤ (SK,x − ηI)−1 for any η < x.

In particular,

SK,x ≤ SK,y, x ≤ y < κ. (2.13)

Proof. The implication (ii)⇒ (i) is clear: In fact, since SK,x ≥ xI, it follows from
SK,x ≤ H that also H ≥ xI; see [18, Lemma 5.2.2, Theorem 5.2.4].

To verify (i)⇒ (ii) it will be shown that([
(SK,x − ηI)−1 − (H − ηI)−1

]
h, h

)
≥ 0, h ∈ H. (2.14)

For this purpose we write h = (S − xI)g + gx with g ∈ dom (S) and gx ∈ ran (S −
xI)⊥ = ker(S∗ − xI). As SK,x and H are both extensions of S one has

(SK,x − ηI)−1(S − ηI)g = g = (H − ηI)−1(S − ηI)g, (2.15)
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and hence the left-hand side of (2.14) simplifies and can be rewritten as([
(SK,x − ηI)−1 − (H − ηI)−1

]
gx, gx

)
=

1

x− η

([
I − (x− η)(H − ηI)−1

]
gx, gx

)
=

1

x− η

([
I − (x− η)(H − ηI)−1

]
gx,

[
I − (x− η)(H − ηI)−1

]
gx
)

+
1

x− η

([
I − (x− η)(H − ηI)−1

]
gx, (x− η)(H − ηI)−1gx

)
.

(2.16)

Thus it suffices to show that the last term satisfies([
I − (x− η)(H − ηI)−1

]
gx, (H − ηI)−1gx

)
≥ 0, gx ∈ ker(S∗ − xI). (2.17)

In fact, as I − (x− η)(H − ηI)−1 = (H − xI)(H − ηI)−1 and H ≥ xI, this is clear.
Thus (2.14) holds and SK,x ≤ H follows. □

Due to the monotonicity of the family of self-adjoint operators SK,x in H observed
in Proposition 2.3 there is a self-adjoint limit SK,κ in H in the strong resolvent sense
as x ↑ κ, that is,

SK,κ = sr-limx↑κ SK,x; (2.18)

see [18, Theorem 5.2.11 and p. 712]. It follows from [18, Corollary 5.2.12 (ii)] that
SK,κ is also an extension of S and from the monotonicity of SK,x one concludes that
SK,κ is bounded from below by κ. Moreover, [18, Corollary 1.9.6 (i)] shows that
SK,κ is the strong graph limit of the family SK,x as x ↑ κ. The next proposition
extends the equivalence in Proposition 2.3 to the limit operator SK,κ and hence the
latter is the smallest semibounded self-adjoint extension of S with lower bound κ.

Proposition 2.4. Let SK,κ be defined as the strong resolvent limit in (2.18) and let
H be a semibounded self-adjoint extension of S. Then the following are equivalent:

(i) H ≥ κI.

(ii) SK,κ ≤ H, that is, (H − ηI)−1 ≤ (SK,κ − ηI)−1 for any η < κ.

Proof. The proof of (ii)⇒ (i) is the same as in Proposition 2.3 and the implication
(i)⇒ (ii) follows from [18, Corollary 5.2.12 (i)] in conjunction with Proposition 2.3.

□

We shall now explore in which way the (formal) Krein-type extension

S∗ ↾
(
dom (S) + ker(S∗ − κI)

)
(2.19)

is related to the self-adjoint operator SK,κ in (2.18); note that the same argument
as in the beginning of the proof of Lemma 2.2 shows that the operator in (2.19) is
symmetric and that the sum of dom (S) and ker(S∗−κI) in (2.19) is not necessarily
direct. The statement in the next lemma is contained in [18, Lemma 5.4.1]; here
we provide a simple direct and self-contained proof.

Lemma 2.5. Let SK,κ be defined as the strong resolvent limit in (2.18). Then

S∗ ↾
(
dom (S) + ker(S∗ − κI)

)
⊂ SK,κ (2.20)

and

ker(SK,κ − κI) = ker(S∗ − κI). (2.21)
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Proof. Recall first that the limit SK,κ is a self-adjoint extension of S and hence it
follows that ker(SK,κ − κI) ⊂ ker(S∗ − κI). It will be shown in the following that
there is equality, which also implies that (2.20) is valid. The proof is based on an
adaption of the procedure in [18, Lemma 1.4.10]. Define for each h ∈ H the element
hx ∈ H, x < κ, by

hx = (I + (x− κ)(SK,κ − xI)−1)h. (2.22)

For all φ ∈ dom (SK,κ) one sees that

(hx, (SK,κ − xI)φ) = (h, (SK,κ − κI)φ). (2.23)

In particular, this holds for all φ ∈ dom (S); thus if h ∈ ker(S∗−κI) it follows that
hx ∈ ker(S∗ − xI).

Now assume in (2.22) that h ∈ ker(S∗ − κI) ⊖ ker(SK,κ − κI). Therefore, by
what has been shown above hx ∈ ker(S∗ − xI) and, since h ⊥ ker(SK,κ − κI), it
follows that

(x− κ)(SK,κ − xI)−1h −→
x↑κ

0 strongly. (2.24)

To see (2.24), let ESK,κ
(λ), λ ∈ R, be the spectral family corresponding to SK,κ.

Then one has

∥(x− κ)(SK,κ − xI)−1h∥2 =

∫ ∞

κ

(
κ− x

λ− x

)2

d(ESK,κ
(λ)h, h) −→

x↑κ
(Pκh, h), (2.25)

where Pκ is the orthogonal projection onto ker(SK,κ − κI). Hence, (2.24) is clear.
Therefore, from (2.22) and (2.24) one obtains hx → h in H as x → κ and, conse-
quently, {hx, xhx} → {h, κh} in H × H as x → κ. Since SK,κ is the limit of SK,x,
x < κ, in the strong graph sense, it follows that h ∈ ker(SK,κ − κI). The condition
h ⊥ ker(SK,κ − κI) thus leads to h = 0. Therefore ker(S∗ − κI) = ker(SK,κ − κI)
has been shown and the inclusion (2.20) is established. □

The following result from [18, Corollary 5.4.5] shows in which situations there is
equality in (2.20).

Proposition 2.6. Let SK,κ be defined as the strong resolvent limit in (2.18). Then

S∗ ↾
(
dom (S) + ker(S∗ − κI)

)
= SK,κ (2.26)

if and only if

ran (S − κI) = ran (S − κI) ∩ ran (S∗ − κI). (2.27)

In particular, if ran (S − κI) is closed, then (2.26) holds.

Proof. Let us consider the symmetric operator

H = S∗ ↾
(
dom (S) + ker(S∗ − κI)

)
(2.28)

and determine its adjoint H∗ and ran (H∗ − κI). Note first, that S ⊂ H implies
H∗ ⊂ S∗ and hence g ∈ dom (H∗) ⊂ dom (S∗) if and only if

(Hh, g) = (h, S∗g) (2.29)

holds for all h ∈ dom (H) = dom (S) + ker(S∗ − κI); in this case it is clear that
H∗g = S∗g. Now decompose h = hS+hκ with hS ∈ dom (S) and hκ ∈ ker(S∗−κI).
Using (ShS , g) = (hS , S

∗g) it follows that (2.29) reduces to (κhκ, g) = (hκ, S
∗g).

Thus, g ∈ dom (H∗) if and only if (hκ, (S
∗ − κI)g) = 0 for all hκ ∈ ker(S∗ − κI),

and hence we conclude that H∗ is the restriction of S∗ to all g ∈ dom (S∗) for which

(S∗ − κI)g ∈ (ker(S∗ − κI))⊥ = ran (S − κI). (2.30)
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Therefore, we have

ran (H∗ − κI) = ran (S − κI) ∩ ran (S∗ − κI). (2.31)

Now it will be shown that (2.26) and (2.27) are equivalent. In fact, if (2.26)
holds, then H = SK,κ is self-adjoint and (2.31) takes the form

ran (H − κI) = ran (S − κI) ∩ ran (S∗ − κI). (2.32)

It is clear that ran (H − κI) = ran (S − κI), and hence (2.27) follows. Conversely,
if (2.27) holds, then ran (H − κI) = ran (S − κI) implies (2.32) and therefore
ran (H − κI) = ran (H∗ − κI) by (2.31). We claim that this implies H = H∗. In
fact, H ⊂ H∗ is clear and to see the inclusion H∗ ⊂ H consider some f ∈ dom (H∗).
By assumption (H∗ − κI)f = (H − κI)h for some h ∈ dom (H) and this yields
f − h ∈ ker(H∗ − κI) ⊂ ker(S∗ − κI), which then gives

f = h+ (f − h) ∈ dom (S) + ker(S∗ − κI), (2.33)

so that f ∈ dom (H). Eventually, as H ⊂ SK,κ by Lemma 2.5 and both operators
are self-adjoint we conclude (2.26). □

According to [83, Satz 10.22 (b)] the restriction of S− κI onto (ker(S− κI))⊥ ∩
dom (S) is boundedly invertible if there exists a self-adjoint extension H of S such
that κ ̸∈ σess(H). Thus, ran (S−κI) is closed in this situation and Proposition 2.6
leads to the following statement.

Corollary 2.7. If there exists a self-adjoint extension H of S such that one has
κ ̸∈ σess(H), then (2.26) holds.

Under the assumptions (2.34) in the next corollary one has that the extension
S∗ ↾ (dom (S) + ker(S∗ − κI)) of S is self-adjoint and hence equal to SK,κ by
Lemma 2.5.

Corollary 2.8. If S has deficiency indices (r, r) with r ∈ N, while

dim(ker(S − κI)) = 0 and dim(ker(S∗ − κI)) = r, (2.34)

then (2.26) holds.

Remark 2.9. The classical Krein–von Neumann extension of a nonnegative sym-
metric operator is defined as the smallest nonnegative self-adjoint extension. There-
fore, in the present situation, if κ ≥ 0 then SK,0 is the Krein–von Neumann exten-
sion of S by Proposition 2.3 and Proposition 2.4. In the case κ > 0 one has

SK,0 = S∗ ↾ dom (SK,0), dom (SK,0) = dom (S)
.
+ ker(S∗), (2.35)

and in the case κ = 0 the Krein–von Neumann extension of S can be obtained via
the strong resolvent limit SK,0 = sr-limx↑0 SK,x; see (2.18). For some contributions
dealing with Krein–von Neumann extensions and related issues we refer the reader,
for instance, to [1, Sect. 109], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [18,
Sect. 5.4], [23], [25], [26], [28, Part III], [31], [32, Sect. 3.3], [38], [39, App. D.3],
[42], [43], [44], [45], [46], [61, Ch. 3], [62], [63], [68], [71], [74, Sects. 13.3, 14.8], [75],
[76], [79], [80], [81], and the references cited therein. ⋄
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2.2. Boundary triplets and Weyl–Titchmarsh functions. Let S be a densely
defined, closed, symmetric operator in a Hilbert space H. In the following we recall
the notion of boundary triplets and Weyl–Titchmarsh functions very briefly. For
our purposes the characterization (2.38) of all self-adjoint extensions of S via self-
adjoint operators and relations in the boundary space is particularly important.
We refer the reader to the monograph [18] for more details and further references.

Definition 2.10. A triplet {G,Γ0,Γ1} is called a boundary triplet for S∗ if G is a
Hilbert space and the linear mappings Γ0,Γ1 : dom (S∗) → G satisfy the abstract
Green identity

(S∗f, g)− (f, S∗g) = (Γ1f,Γ0g)− (Γ0f,Γ1g), f, g ∈ dom (S∗), (2.36)

and (Γ0,Γ1)
⊤ : dom (S∗) → G × G is onto.

We recall that a boundary triplet exists if and only if the deficiency indices of
S coincide, that is, if and only if S admits self-adjoint extensions in H, and that
a boundary triplet is not unique (if S ̸= S∗). Assuming that a boundary triplet
{G,Γ0,Γ1} for S∗ is given, one infers

dom (S) = ker(Γ0) ∩ ker(Γ1) (2.37)

and the mapping (Γ0,Γ1)
⊤ : dom (S∗) → G×G is continuous if dom (S∗) is equipped

with the graph norm (and the product Hilbert space G×G carries the natural norm).
Furthermore, there is a one-to-one correspondence between the self-adjoint relations
in G and the self-adjoint extensions AΘ of S in H given by

Θ 7→ AΘ, dom (AΘ) =
{
f ∈ dom (S∗) | {Γ0f,Γ1f} ∈ Θ

}
, (2.38)

and in the special case that Θ is (the graph of) a self-adjoint operator in G one has
dom (AΘ) = ker(Γ1 −ΘΓ0). It follows that

B0 := S∗ ↾ ker(Γ0) (2.39)

is a self-adjoint extension of S in H and the domain decomposition

dom (S∗) = dom (B0)
.
+ ker(S∗ − zI) = ker(Γ0)

.
+ ker(S∗ − zI) (2.40)

holds for z ∈ ρ(B0). This decomposition also implies that for any z ∈ ρ(B0) the
operators

γ(z)Γ0fz = fz and M(z)Γ0fz = Γ1fz, fz ∈ ker(S∗ − zI), (2.41)

are well defined. It turns out that γ(z) = (Γ0 ↾ ker(S∗ − zI))−1, z ∈ ρ(B0), is a
bounded and everywhere defined operator from G to H and that the identities

γ(z) =
(
1 + (z − z′)(B0 − zI)−1

)
γ(z′), z, z′ ∈ ρ(B0), (2.42)

and

γ(z)∗ = Γ1(B0 − z̄I)−1, z ∈ ρ(B0), (2.43)

hold. Moreover,

M(z) = Γ1γ(z), z ∈ ρ(B0), (2.44)

is a bounded and everywhere defined operator in G and the function z 7→M(z) is an
(operator-valued) Nevanlinna–Herglotz (resp., Riesz–Herglotz) function on ρ(B0).
In particular, for x ∈ ρ(B0) ∩ R one has self-adjointness, M(x) = M(x)∗, and if
B0 is semibounded from below by κ, then x 7→ M(x) is a monotone increasing
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(operator-valued) function on (−∞, κ), and hence there exists a self-adjoint limit
M(κ) in G in the strong resolvent sense as x ↑ κ,

M(κ) = sr-limx↑κM(x), (2.45)

see [18, Theorem 5.2.11]. Here the limit M(κ) can be multivalued and is therefore
regarded as a self-adjoint relation in G. In the same way as for SK,κ, one also has
that M(κ) is the strong graph limit of the family M(x) as x ↑ κ.

We assume from now on that the densely defined, closed, symmetric operator S
is semibounded from below with the lower bound κ ∈ R. In the next lemma we
identify the self-adjoint parameters in G that correspond to the self-adjoint Krein-
type extensions SK,x, x < κ, in (2.2).

Lemma 2.11. Let {G,Γ0,Γ1} be a boundary triplet for S∗, let B0 = S∗ ↾ ker(Γ0),
and suppose that M is the corresponding Weyl–Titchmarsh function. Then for
x < κ such that x ∈ ρ(B0) one has

SK,x = AM(x) (2.46)

and, in particular, if B0 is the Friedrichs extension of S, then (2.46) holds for all
x < κ.

Proof. One notes that SK,x, x < κ, is a self-adjoint extension of S by Lemma 2.2
and for x ∈ ρ(B0)∩R the extension AM(x) = S∗ ↾ ker(Γ1 −M(x)Γ0) is self-adjoint
by (2.38) and the fact that M(x) is a self-adjoint operator in G. Hence, it suffices
to check that SK,x ⊆ AM(x). For this purpose consider f = fS + fx ∈ dom (SK,x)
and note that Γ0fS = Γ1fS = 0 by (2.37) as fS ∈ dom (S). Therefore,

(Γ1 −M(x)Γ0)f = Γ1fx −M(x)Γ0fx = 0 (2.47)

by the definition of M(x). Thus, dom (SK,x) ⊆ dom (AM(x)) and hence (2.46)
follows. □

Next it will be shown that (2.46) extends to the limits SK,κ and M(κ). To show
this, we shall use that SK,κ is the strong graph limit of SK,x andM(κ) is the strong
graph limit of M(x) as x ↑ κ.

Proposition 2.12. Let {G,Γ0,Γ1} be a boundary triplet for S∗ with corresponding
Weyl–Titchmarsh function M and assume that the self-adjoint extension B0 = S∗ ↾
ker(Γ0) is bounded from below by κ. Then

SK,κ = AM(κ), (2.48)

in particular, if B0 is the Friedrichs extension of S then (2.48) holds.

Proof. First, we recall that SK,κ in (2.18) is a self-adjoint extension of S. Further-
more, M(κ) in (2.45) is a self-adjoint relation in G and hence

AM(κ) = S∗ ↾ dom (AM(κ)),

dom (AM(κ)) = {f ∈ dom (S∗) | {Γ0f,Γ1f} ∈M(κ)},
(2.49)

is also a self-adjoint extension of S. We will verify the inclusion SK,κ ⊆ AM(κ),
which then implies the equality (2.48) as both SK,κ and AM(κ) are self-adjoint. For
this purpose we shall use that SK,κ is the strong graph limit of the family SK,x

as x ↑ κ. Consider f ∈ dom (SK,κ) and choose a sequence fxn
∈ dom (SK,xn

) as
xn ↑ κ such that fxn

→ f and SK,xn
fxn

→ SK,κf . We note that SK,xn
= AM(xn)

by (2.46), and hence (Γ1 −M(xn)Γ0)fxn
= 0. Since (Γ0,Γ1)

⊤ : dom (S∗) → G × G
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is continuous with respect to the graph norm and M(κ) is the strong graph limit
of M(xn) as xn ↑ κ one concludes

{Γ0f,Γ1f} = lim
n→∞

{Γ0fxn
,Γ1fxn

} = lim
n→∞

{Γ0fxn
,M(xn)Γ0fxn

} ∈M(κ), (2.50)

that is, f ∈ dom (AM(κ)). It follows that SK,κ ⊆ AM(κ) and hence (2.48) holds. □

In the case where the strong resolvent limit SK,κ of SK,x as x ↑ κ has the form
(2.26), it turns out that the strong resolvent limit M(κ) of M(x) as x ↑ κ has a
particular simple structure, and vice versa.

Lemma 2.13. Let {G,Γ0,Γ1} be a boundary triplet for S∗ with corresponding
Weyl–Titchmarsh function M and assume that the self-adjoint extension B0 =
S∗ ↾ ker(Γ0) is bounded from below by κ. Then SK,κ in (2.18) has the form

SK,κ = S∗ ↾
(
dom (S) + ker(S∗ − κI)

)
(2.51)

if and only if M(κ) in (2.45) has the form

M(κ) =
{
{Γ0fκ,Γ1fκ} | fκ ∈ ker(S∗ − κI)

}
. (2.52)

In particular, if κ ̸∈ σess(B0), then (2.52) holds.

Proof. According to Proposition 2.12 one has SK,κ = AM(κ) and, as SK,κ is self-
adjoint in H, it follows from (2.38) that

M(κ) =
{
{Γ0f,Γ1f} | f ∈ dom (SK,κ)

}
. (2.53)

Therefore, if (2.51) holds, then (2.37) implies that the right-hand side in (2.53)
coincides with the right-hand side in (2.52). Conversely, if the self-adjoint relation
M(κ) in (2.45) has the form (2.52), then one obtains{

{Γ0fκ,Γ1fκ} | fκ ∈ ker(S∗ − κI)
}
=

{
{Γ0f,Γ1f} | f ∈ dom (SK,κ)

}
(2.54)

by (2.53). Thus, for f ∈ dom (SK,κ) there exists fκ ∈ ker(S∗ − κI) such that
{Γ0f,Γ1f} = {Γ0fκ,Γ1fκ} and hence (2.37) implies f − fκ ∈ dom (S), so that
f = (f − fκ) + fκ ∈ dom (S) + ker(S∗ − κI). Hence, we have shown the inclusion
⊆ in (2.51); the inclusion ⊇ is clear from Lemma 2.5.

Finally, if κ ̸∈ σess(B0), then Corollary 2.7 shows that SK,κ has the form (2.51)
and hence (2.52) holds. □

In the next corollary the special nonnegative situation is considered and the
classical Krein–von Neumann extension is identified.

Corollary 2.14. Let {G,Γ0,Γ1} be a boundary triplet for S∗ with corresponding
Weyl–Titchmarsh function M and assume that S and the self-adjoint extension
B0 = S∗ ↾ ker(Γ0) are both nonnegative, that is, κ ≥ 0. Then the Krein–von
Neumann extension SK,0 of S satisfies

SK,0 = AM(0). (2.55)

In the special case κ > 0 one has AM(0) = S∗ ↾ ker(Γ1 −M(0)Γ0).
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3. Relatively Form Compact Perturbations and Spectral Instability

Let again S be a densely defined, closed, symmetric operator in H which is
semibounded from below with lower bound κ. In this section we shall study per-
turbations of the Krein-type extension SK,x of S and we recall a recent result from
[16] on the instability of the lower bound x ≤ κ under arbitrary small negative
perturbations αV .

Hypothesis 3.1. We shall assume that V ≥ 0 is self-adjoint in H and relatively
form compact with respect to SK,x, that is, for some ν0 < x ≤ κ,

dom
(
(SK,x−ν0I)1/2

)
⊆ dom

(
V 1/2

)
and V 1/2(SK,x−ν0I)−1/2 ∈ B∞(H). (3.1)

We note that if (3.1) holds for some ν0 < x, then (3.1) holds for all z ∈ ρ(SK,x).

In fact, (SK,x− zI)1/2 is a normal operator in H defined via the functional calculus
of the self-adjoint operator SK,x, see, for instance, [74, Chapter 5.3]. Therefore,
one has

dom
(
(SK,x − ν0I)

1/2
)
= dom

(
(SK,x − zI)1/2

)
, z ∈ ρ(SK,x), (3.2)

and for z ∈ ρ(SK,x) it is clear that

V 1/2(SK,x − zI)−1/2

=
[
V 1/2(SK,x − ν0I)

−1/2
][
(SK,x − ν0I)

1/2(SK,x − zI)−1/2
]
∈ B∞(H)

(3.3)

as (SK,x − ν0I)
1/2(SK,x − zI)−1/2 ∈ B(H). In addition, one observes that(

(SK,x − zI)−1/2V 1/2
)∗

= V 1/2(SK,x − z̄I)−1/2 ∈ B∞(H), (3.4)

and hence
(SK,x − zI)−1/2V 1/2 ∈ B∞(H), z ∈ ρ(SK,x). (3.5)

Next we define the Birman–Schwinger operator family by

K(z) := V 1/2(SK,x − zI)−1V 1/2, z ∈ ρ(SK,x), (3.6)

which will play an important role in the following considerations. One observes
that by (3.1) and (3.4),

K(z) = V 1/2(SK,x − zI)−1/2(SK,x − zI)−1/2V 1/2 ∈ B∞(H) (3.7)

for all z ∈ ρ(SK,x). We also note that for ν < ν′ < x one has 0 ≤ K(ν) ≤ K(ν′)
and

lim
ν↓−∞

∥K(ν)∥B(H) = 0; (3.8)

see [16, Lemma 3.4]. In particular, it follows from (3.8) that for any α ∈ R\{0}
there exists να ≤ x such that −1/α ∈ ρ(K(ν)) for all ν < να.

It follows that under Hypothesis 3.1, Hypothesis 2.1 in [35] is satisfied, in par-
ticular, this permits one to define a self-adjoint operator Tx(α), α ∈ R\{0}, in H
via its resolvent as in [35, Theorem 2.3], [52, 60]; the operator Tx(α) in the next
proposition is then referred to as a relatively form compact perturbation of the
Krein-type extension SK,x, where x ≤ κ.

Proposition 3.2. Let x ≤ κ, α ∈ R\{0}, and assume Hypothesis 3.1. Then there
exists a self-adjoint operator Tx(α) in H such that

(Tx(α)− zI)−1 (3.9)

= (SK,x − zI)−1 − α(SK,x − zI)−1V 1/2[I + αK(z)]−1V 1/2(SK,x − zI)−1
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for all z ∈ {ζ ∈ ρ(SK,x) |−1/α ∈ ρ(K(ζ))}, and Tx(α) is a semibounded, self-adjoint
extension of the symmetric operator SK,x + αV defined on the (not necessarily
dense ) set dom (SK,x) ∩ dom (V ).

It follows, in particular, that[
(Tx(α)− zI)−1 − (SK,x − zI)−1

]
∈ B∞(H) (3.10)

and hence σess(Tx(α)) = σess(SK,x). Furthermore, one has

(i) If α ∈ (0,∞), then Tx(α) ≥ xI and, in particular, σ(Tx(α))∩(−∞, x) = ∅.
(ii) If α ∈ (−∞, 0), then σ(Tx(α)) ∩ (−∞, x) is either empty or consists of

discrete eigenvalues.

Remark 3.3. In the case that V ≥ 0 is self-adjoint in H and relatively compact
with respect to SK,x, that is, for some ν0 < x ≤ κ,

dom (SK,x − ν0I) ⊆ dom (V ) and V (SK,x − ν0I)
−1 ∈ B∞(H), (3.11)

it follows that V is also relatively form compact with respect to SK,x, see, for
instance, [36, Theorem 3.5 (i)]. In this situation the semibounded self-adjoint op-
erator Tx(α) in Proposition 3.2 has the form

Tx(α) = SK,x + αV, dom (Tx(α)) = dom (SK,x). (3.12)

⋄

Next, consider the interesting case α < 0 in the situation x < κ, where one
automatically has ker(SK,x − xI) = ker(S∗ − xI) ̸= {0} (see Definition 2.1) and in
the case x = κ, where it is assumed that ker(SK,κ−κI) = ker(S∗−κI) ̸= {0}. The
next theorem is a variant of [15, Theorem 2.2] and [16, Theorem 3.9].

Theorem 3.4. Let x ≤ κ, assume Hypothesis 3.1, and denote by Tx(α) the rel-
atively form compact perturbation of the Krein-type extension SK,x in Proposi-
tion 3.2. Then the following assertions hold:

(i) If x < κ and ker(SK,x − xI) ̸⊆ ker(V ), then

σ(Tx(α)) ∩ (−∞, x) ̸= ∅ for any α < 0. (3.13)

If, in addition, V is relatively compact with respect to SK,x, then Tx(α) =
SK,x + αV and

σ(SK,x + αV ) ∩ (−∞, x) ̸= ∅ for any α < 0. (3.14)

(ii) If x = κ, ker(SK,κ − κI) ̸= {0}, and ker(SK,κ − κI) ̸⊆ ker(V ), then

σ(Tκ(α)) ∩ (−∞, κ) ̸= ∅ for any α < 0. (3.15)

If, in addition, V is relatively compact with respect to SK,κ, then Tκ(α) =
SK,κ + αV and

σ(SK,κ + αV ) ∩ (−∞, κ) ̸= ∅ for any α < 0. (3.16)

In the case that S has finite deficiency indices and x < κ, it is clear that x
is an isolated eigenvalue of finite multiplicity of SK,x. In this case the spectral
instability would already follow from well-known results in asymptotic perturbation
theory, see, for instance, [51, Theorem 8] or [53, Theorem VIII.4.9], see also [15,
Remark 3.2].
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4. Regular Sturm–Liouville Operators

In this section we consider a Sturm–Liouville differential expression of the form

ℓ =
1

r

[
− d

dt
p
d

dt
+ q

]
(4.1)

on a compact interval [a, b] ⊂ R, where it is assumed that the coefficients p, q, and
r are a.e. real-valued functions on (a, b) which satisfy the conditions{

p(t) > 0, r(t) > 0 for a.e. t ∈ (a, b),

1/p, q, r ∈ L1((a, b)).
(4.2)

The nonnegative function r will serve as a weight function and the corresponding
Hilbert space L2((a, b); rdt) is denoted by L2

r((a, b)) in the following. The minimal
operator corresponding to ℓ in L2

r((a, b)) is then given by

Sf = ℓf,

f ∈ dom (S) =
{
g ∈ Dmax

∣∣ g(a) = (pg′)(a) = g(b) = (pg′)(b) = 0
}
,

(4.3)

where

Dmax =
{
g ∈ L2

r((a, b))
∣∣ g, pg′ ∈ AC([a, b]); ℓg ∈ L2

r((a, b))
}

(4.4)

is the usual maximal domain and AC([a, b]) denotes the space of absolutely contin-
uous functions on [a, b]. One recalls that g ∈ AC([a, b]) if and only if there exists
h ∈ L1((a, b)) such that

g(y)− g(x) =

∫ y

x

h(s) ds, a ≤ x ≤ y ≤ b; (4.5)

in this case g is differentiable almost everywhere on (a, b) and g′ = h a.e. on (a, b).
The minimal operator S is a densely defined, closed, symmetric operator in

L2
r((a, b)) with deficiency indices (2, 2), semibounded from below with lower bound

κ ∈ R, and its adjoint coincides with the maximal operator

S∗f = ℓf, f ∈ dom (S∗) = Dmax. (4.6)

For z ∈ C we will fix the solutions u1( · , z) and u2( · , z) of ℓu = zu by the
conditions

u1(a, z) = (pu′2)(a, z) = 1 and u2(a, z) = (pu′1)(a, z) = 0. (4.7)

Since ℓ is a regular Sturm–Liouville expression the solutions u1( · , z) and u2( · , z)
belong to the space L2

r((a, b)) and hence

ker(S∗ − zI) = lin.span {u1( · , z), u2( · , z)}. (4.8)

In the next proposition we provide a possible choice for a boundary triplet such
that B0 is the Friedrichs extension, B0 = SF , of S; the proof is straightforward and
can be found, for instance, in [18, Proposition 6.3.1].

Proposition 4.1. Consider the regular Sturm–Liouville expression in (4.1) and let
S be the corresponding minimal operator in L2

r((a, b)). Then {C2,Γ0,Γ1}, where

Γ0f =

(
f(a)
f(b)

)
and Γ1f =

(
(pf ′)(a)
−(pf ′)(b)

)
, f ∈ Dmax, (4.9)

is a boundary triplet for S∗ such that

B0f = ℓf, f ∈ dom (B0) =
{
g ∈ Dmax | g(a) = g(b) = 0

}
, (4.10)
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coincides with the Friedrichs extension of S, B0 = SF , and the corresponding Weyl–
Titchmarsh function M is given by

M(z) =
1

u2(b, z)

(
−u1(b, z) 1

1 −(pu′2)(b, z)

)
, z ∈ ρ(B0). (4.11)

One notes that the resolvent of B0 is a compact operator in L2
r((a, b)) and that

κ = min (σ(B0)) is a simple eigenvalue with corresponding eigenfunction u2( · , κ).
For our further discussion one observes that for

fz = c1u1( · , z) + c2u2( · , z) ∈ ker(S∗ − zI), c1, c2 ∈ C, (4.12)

one has

Γ0fz =

(
c1

c1u1(b, z) + c2u2(b, z)

)
and Γ1fz =

(
c2

−c1(pu′1)(b, z)− c2(pu
′
2)(b, z)

)
,

(4.13)
and taking the constancy of the Wronskian of u1 and u2 into account,

W (u1(·, z), u2(·, z))(b) = u1(b, z)(pu
′
2)(b, z)− u2(b, z)(pu

′
1)(b, z) = 1, (4.14)

it follows that

M(z) =
{
{Γ0fz,Γ1fz}

∣∣ fz ∈ ker(S∗ − zI)
}
, z ∈ ρ(B0), (4.15)

takes on the form (4.11). To find the strong resolvent limit of M(x) as x ↑ κ we
use Lemma 2.13, which together with (4.13) yields

M(κ) =

{{(
c1

c1u1(b, κ)

)
,

(
c2

−c1(pu′1)(b, κ)− c2(pu
′
2)(b, κ)

)} ∣∣∣∣∣ c1, c2 ∈ C

}
,

(4.16)
which, in general, is a multivalued operator.

Next, we shall specify the operator domains of the Krein-type extensions SK,x,
x ≤ κ, using the general results from Section 2. First, one notes that

dom (SK,x) = dom (S)
.
+ ker(S∗ − xI), x ≤ κ, (4.17)

by (2.2) and Corollary 2.7; here, for x = κ, the sum is indeed direct as ker(S−κI) =
{0}. The next corollary is a consequence of Lemma 2.11, equations (4.11) and
(2.38), and Proposition 2.12.

Corollary 4.2. The Krein-type extensions SK,x, x < κ, of the minimal regular
Sturm–Liouville operator S in L2

r((a, b)) are of the form

SK,xf = ℓf, (4.18)

f ∈ dom (SK,x) =

{
g ∈ Dmax

∣∣∣∣ g(b) = u1(b, x)g(a) + u2(b, x)(pg
′)(a),

(pg′)(b) = (pu′1)(b, x)g(a) + (pu′2)(b, x)(pg
′)(a)

}
,

and for x = κ one has

SK,κf = ℓf, (4.19)

f ∈ dom (SK,κ) =

{
g ∈ Dmax

∣∣∣∣ g(b) = u1(b, κ)g(a),
(pg′)(b) = (pu′1)(b, κ)g(a) + (pu′2)(b, κ)(pg

′)(a)

}
.

Proof. For x < κ it follows that f ∈ dom (SK,x) if and only if Γ1f = M(x)Γ0f ,
that is,

u2(b, x)(pf
′)(a) = −u1(b, x)f(a) + f(b),

−u2(b, x)(pf ′)(b) = f(a)− (pu′2)(b, x)f(b).
(4.20)
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Substituting f(b) = u2(b, x)(pf
′)(a)+u1(b, x)f(a) in the second equation and using

1−u1(b, x)(pu′2)(b, x) = −u2(b, x)(pu′1)(b, x) leads to (4.18). For x = κ one obtains
(4.19) from (4.16). □

It is easy to see that both solutions u1( · , x) and u2( · , x) of ℓu = xu satisfy the
boundary conditions in (4.18), and in the same way both solutions u1( · , κ) and
u2( · , κ) of ℓu = κu satisfy the boundary conditions in (4.19). One also notes that
in the underlying regular case, under the standard assumptions (4.2), one has for
ν0 < x,

dom
(
(SK,x−ν0I)1/2

)
=

{
g ∈ L2

r((a, b))
∣∣ g ∈ AC([a, b]),

√
pg′ ∈ L2((a, b))

}
, (4.21)

see, for instance, [18, Section 6.8].

Example 4.3. Assume that p = r = 1 and q = 0. Then the Sturm–Liouville
differential expression in (4.1) reduces to the unperturbed Schrödinger differential
expression ℓ = −d2/dt2 and one obtains explicitly

u1(t, z) =


cos[

√
z (t− a)], z > 0,

1, z = 0,

cosh[
√
−z (t− a)], z < 0,

u2(t, z) =


sin[

√
z (t−a)]√
z

, z > 0,

t− a, z = 0,
sinh[

√
−z (t−a)]√
−z

, z < 0,

t ∈ [a, b], (4.22)

and the eigenvalues of

B0f = −f ′′, f ∈ dom (B0) = {g ∈ Dmax | g(a) = g(b) = 0}, (4.23)

are given by

σ(B0) = σd(B0) =

{
(kπ)2

(b− a)2

}
k∈N

. (4.24)

In particular, the lower bound of B0 and the minimal operator S is κ = π2/(b−a)2
and one obtains the explicit form of the Krein-type extensions for x ≤ π2/(b− a)2

of S from (4.18) and (4.19). We also note that the usual Krein–von Neumann
extension SK = S0 of S is given by

S0f = −f ′′,
f ∈ dom (S0) = {g ∈ Dmax | (b− a)g′(a) = g(b)− g(a) = (b− a)g′(b)},

(4.25)

and that the Krein-type extension at κ = π2/(b− a)2 is given by

Sπ2/(b−a)2f = −f ′′,
f ∈ dom

(
Sπ2/(b−a)2

)
= {g ∈ Dmax | g(a) + g(b) = 0 = g′(a) + g′(b)}.

(4.26)

Below we shall consider relatively form compact perturbations of the Krein-type
extensions SK,x, x ≤ κ, and apply Theorem 3.4. The next preparatory lemma will
ensure that the assumption ker(SK,x − xI) ̸⊆ ker(V ) is satisfied. The lemma is
stated in a slightly more general form for locally integrable functions V .

Lemma 4.4. Let x ≤ κ and assume that V ∈ L1
loc((a, b))\{0}. Then there exists

f ∈ ker(SK,x − xI) such that V f ̸= 0.

Proof. Consider the solution u2( · , x) ∈ ker(SK,x −xI) from (4.7) and observe that
in the case x < κ there exists some ϑ ∈ R such that

u2(a, x) = 0 and ϑu2(b, x) = (pu′2)(b, x), (4.27)
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and hence u2( · , x) is an eigenfunction corresponding to the eigenvalue x of a semi-
bounded self-adjoint extension of S with separated boundary conditions of the form
(4.27). Therefore, the Sturm Oscillation Theorem (see, e.g., [39, Theorem 8.2.4])
implies that u2( · , x) has at most finitely many zeros in (a, b) and thus V u2( · , x) ̸= 0
as otherwise V = 0. The same argument shows that in the case x = κ the function
u2( · , κ) has no zeros in (a, b) and hence V u2( · , κ) ̸= 0 as otherwise V = 0. □

As a consequence of Lemma 4.4 and Theorem 3.4 we conclude spectral insta-
bility of the Krein-type extensions SK,x, x ≤ κ, in the next corollary (see also
Remark 3.3).

Corollary 4.5. Let x ≤ κ and assume that 0 ≤ V ∈ L1
loc((a, b))\{0} is such that

V is a relatively form compact perturbation of SK,x. Then

σ(Tx(α)) ∩ (−∞, x) ̸= ∅ for any α < 0. (4.28)

In particular, if V ̸= 0 is a relatively compact perturbation of SK,x, then Tx(α) =
SK,x + αV and

σ(SK,x + αV ) ∩ (−∞, x) ̸= ∅ for any α < 0. (4.29)

A concrete realization of Corollary 4.5 is presented in the following theorem.
First, we recall that the space Ls

r((a, b)), s ∈ [1,∞), consists of all complex-valued
measurable functions f on (a, b) that satisfy∫ b

a

|f(t)|s r(t)dt <∞. (4.30)

Theorem 4.6. Assume that (4.2) holds, let x ≤ κ, and suppose that 0 ≤ V ∈
L1
loc((a, b))\{0}. If V ∈ L1

r((a, b)), then

σ(Tx(α)) ∩ (−∞, x) ̸= ∅ for any α < 0. (4.31)

In particular, if V ∈ L2
r((a, b)), then Tx(α) = SK,x + αV and

σ(SK,x + αV ) ∩ (−∞, x) ̸= ∅ for any α < 0. (4.32)

Proof. We start by verifying that V ∈ L1
r((a, b)) is relatively form compact with

respect to SK,x. Indeed, for m ∈ N let

Vm(x) =

{
V (x) if V (x) ≤ m,

0 if V (x) > m,
(4.33)

and note that V 1/2, V
1/2
m ∈ L2

r((a, b)) (see (4.30)). Moreover,∥∥V 1/2 − V 1/2
m

∥∥
L2

r((a,b))
→ 0, m→ ∞, (4.34)

and since V
1/2
m is bounded and (SK,x − ν0I)

−1/2, ν0 < x, is a compact operator

in L2
r((a, b)) it is clear that V

1/2
m (SK,x − ν0I)

−1/2 is also compact in L2
r((a, b)).

It follows from (4.21) that the functions in dom
(
(SK,x − ν0I)

1/2
)
are absolutely

continuous on [a, b] (see [18, Lemma 6.8.1]) and hence bounded. Therefore, for
f ∈ L2

r((a, b)) we have g = (SK,x − ν0I)
−1/2f ∈ L∞((a, b)) ⊂ dom

(
V 1/2

)
and∥∥V 1/2(SK,x − ν0I)

−1/2f − V 1/2
m (SK,x − ν0I)

−1/2f
∥∥
L2

r((a,b))

≤
∥∥V 1/2 − V 1/2

m

∥∥
L2

r((a,b))
∥g∥L∞((a,b)).

(4.35)
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Thus, V 1/2(SK,x−ν0I)−1/2 ∈ B
(
L2
r((a, b))

)
by the closed graph theorem as (SK,x−

ν0I)
−1/2 ∈ B

(
L2
r((a, b))

)
and V 1/2 is self-adjoint and hence closed, implying closed-

ness of V 1/2(SK,x − ν0I)
−1/2.

Next, we use the second representation theorem to express the densely defined,
semibounded, closed sesquilinear form tx[·, ·] associated to SK,x by

tx[h, k] =
(
(SK,x − ν0)

1/2h, (SK,x − ν0)
1/2k

)
L2

r((a,b))
+ ν0(h, k)L2

r((a,b))
(4.36)

for h, k ∈ dom (tx) = dom ((SK,x − ν0I)
1/2). Making use of [18, Corollary 6.8.6]

(with some ε > 0 and Cε > 0) one estimates for g = (SK,x − ν0I)
−1/2f ∈ dom (tx),

∥g∥2L∞((a,b)) ≤ Cε∥g∥2L2
r((a,b))

+ εtx[g, g]

= Cε

∥∥(SK,x − ν0I)
−1/2f

∥∥2
L2

r((a,b))

+ ε
(
∥f∥2L2

r((a,b))
+ ν0

∥∥(SK,x − ν0I)
−1/2f

∥∥2
L2

r((a,b))

)
≤ C ′

ε∥f∥2L2
r((a,b))

(4.37)

with some C ′
ε > 0. One then concludes from (4.35) that∥∥V 1/2(SK,x − ν0I)

−1/2f − V 1/2
m (SK,x − ν0I)

−1/2f
∥∥
L2

r((a,b))

≤
√
C ′

ε

∥∥V 1/2 − V 1/2
m

∥∥
L2

r((a,b))
∥f∥L2

r((a,b))
(4.38)

and it follows that the compact operators V
1/2
m (SK,x−ν0I)−1/2 converge uniformly

to V 1/2(SK,x−ν0I)−1/2 in the unit ball of L2
r((a, b)) and hence V

1/2
m (SK,x−ν0I)−1/2

converge in operator norm to V 1/2(SK,x−ν0I)−1/2, as m→ ∞, implying the latter
is compact. Thus, V is relatively form compact with respect to SK,x. Therefore,
(4.31) follows from Corollary 4.5.

The same argument as above shows that V ∈ L2
r((a, b)) is relatively compact

with respect to SK,x, and hence (4.32) follows from Corollary 4.5. □

Remark 4.7. A different Hilbert–Schmidt-type argument shows that for any self-

adjoint realization S̃ of the regular Sturm-Liouville expression ℓ in (4.1) and ν̃0 <

min
(
σ
(
S̃
))

one has V 1/2
(
S̃ − ν̃0I

)−1/2 ∈ B4

(
L2
r((a, b))

)
, and, with some extra

effort, this can be improved to V 1/2
(
S̃− ν̃0I

)−1/2 ∈ B2

(
L2
r((a, b))

)
; these facts will

be discussed elsewhere [17]. ⋄

5. Krein-type extensions of the Laplacian
on a bounded Lipschitz domain

Let Ω ⊂ Rn, n ≥ 2, be a bounded Lipschitz domain and let ν be the unit normal
vector field pointing outwards on ∂Ω. We denote the L2-based Sobolev spaces on
Ω by Hs(Ω), s ≥ 0. The minimal operator corresponding to −∆ in L2(Ω) is given
by

Sf = −∆f, f ∈ dom (S) = H2
0 (Ω) = C∞

0 (Ω)
∥·∥H2(Ω) . (5.1)

Then S is a densely defined, closed, symmetric operator in L2(Ω), with infinite de-
ficiency indices, semibounded from below with positive lower bound κ that satisfies
the Berezin-Li-Yau estimate [65] (see also [33])

κ ≥ n

n+ 2
4π[Γ((n+ 2)/2)/|Ω|]2/n > 0. (5.2)
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The adjoint of S coincides with the maximal operator

S∗f = −∆f, f ∈ dom (S∗) = Dmax =
{
g ∈ L2(Ω)

∣∣∆g ∈ L2(Ω)
}
. (5.3)

In the following we shall use that the Dirichlet trace mapping C∞(Ω) ∋ f 7→ f |∂Ω
extends by continuity to a continuous surjective mapping

τD :
{
f ∈ H3/2(Ω)

∣∣∆f ∈ L2(Ω)
}
→ H1(∂Ω), (5.4)

where H1(∂Ω) denotes the first order L2-based Sobolev space on ∂Ω, and that
the Neumann trace mapping C∞(Ω) ∋ f 7→ ν · ∇f |∂Ω extends by continuity to a
continuous surjective mapping

τN :
{
f ∈ H3/2(Ω)

∣∣∆f ∈ L2(Ω)
}
→ L2(∂Ω); (5.5)

see, for instance, [14, 38]. (As usual in the Lipschitz context, L2(∂Ω) is equipped
with the standard surface measure dn−1σ.)

For our purpose the self-adjoint Dirichlet and Neumann realization of the Lapla-
cian are particularly important; they are given by

ADf = −∆f, f ∈ dom (AD) =
{
g ∈ H3/2(Ω)

∣∣∆g ∈ L2(Ω), τDg = 0
}
, (5.6)

and

ANf = −∆f, f ∈ dom (AN ) =
{
g ∈ H3/2(Ω)

∣∣∆g ∈ L2(Ω), τNg = 0
}
, (5.7)

see [49, 50] and also [14, 37]. One notes that AD coincides with the Friedrichs
extension of S and hence has lower bound κ > 0; see (5.2). Both self-adjoint
operators AD and AN have compact resolvents and hence their spectra are purely
discrete. Furthermore, for β ∈ R we shall make use of the Robin Laplacian

A
(β)
R f = −∆f, f ∈ dom

(
A

(β)
R

)
=

{
g ∈ H3/2(Ω)

∣∣∆g ∈ L2(Ω), τNg = βτDg
}
,

(5.8)
which is a semibounded self-adjoint extension of S with compact resolvent and
coincides with AN if β = 0 and with AD if (formally) β = ∞. The smallest

eigenvalue of A
(β)
R is simple and will be denoted by µ(β). It is important to note

that for any x < κ there exists βx ∈ R such that x = µ(βx).
For later purposes we first provide a result on the spectral instability of the

Robin Laplacian A
(β)
R ; see [15, Corollary 3.1 and Remark 3.3]. Here we make use of

[15, Theorem 2.2] and we mention that asymptotic perturbation theory could also
be applied (see [51, Theorem 8] or [53, Theorem VIII.4.9]).

Theorem 5.1. Assume that 0 ≤ V ∈ Lp(Ω)\{0} with p ≥ 2 if n = 2 and p > 2n/3

if n ≥ 3, and let β ∈ R. Then V is a relatively compact perturbation of A
(β)
R , for

all α ∈ R the operator

(A
(β)
R + αV )f = −∆f + αV f, dom (A

(β)
R + αV ) = dom (A

(β)
R ), (5.9)

is self-adjoint in L2(Ω), and

σ(A
(β)
R + αV ) ∩ (−∞, µ(β)) ̸= ∅ for any α < 0. (5.10)

Proof. First, we verify that V is a relatively compact perturbation of A
(β)
R , so that

Hypothesis 3.1 is satisfied (see Remark 3.3). In fact, for λ < µ(β) one observes

that (A
(β)
R − λ)−1 : L2(Ω) → H3/2(Ω) is closed and everywhere defined, and hence

bounded. For ε > 0 sufficiently small we also have that

V : H3/2−ε(Ω) → L2(Ω) (5.11)
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is bounded (see, e.g., the proof of [15, Corollary 3.1]) and since the embedding
H3/2(Ω) ↪→ H3/2−ε(Ω) is compact, one concludes that

V
(
A

(β)
R − λI

)−1
: L2(Ω) → L2(Ω) (5.12)

is compact, that is, V is relatively compact with respect to A
(β)
R . Next, we note

that the condition

ker
(
A

(β)
R − µ(β)I

)
̸⊆ ker(V ) (5.13)

is satisfied. In fact, it is no restriction to assume that the eigenfunction fµ(β) cor-
responding to the simple eigenvalue µ(β) is nonnegative (namely an eigenfunction
fµ(β) can be assumed to be real and then also |fµ(β)| is an eigenfunction) and now
a consequence of the Harnack inequality stated in [40, Corollary 8.21] implies that
|fµ(β)| does not vanish inside Ω. Thus the same is true for fµ(β) and hence (5.13)
holds as otherwise V = 0. Thus, the assertion follows from [15, Theorem 2.2]. □

Next, we recall the definition of the Dirichlet-to-Neumann map and an extension
of the Dirichlet and Neumann trace operators (5.4) and (5.5) to the maximal do-
main; see [14, 19] for more details. For z ∈ ρ(AD) the Dirichlet-to-Neumann map
is defined as

D(z) : H1(∂Ω) → L2(∂Ω), τDfz 7→ τNfz, (5.14)

where fz ∈ H3/2(Ω) is such that −∆fz = zfz. In order to extend the Dirichlet and
Neumann trace operators to the maximal domain dom (S∗) = Dmax consider the
spaces

GD(∂Ω) :=
{
τDf

∣∣ f ∈ dom (AN )
}

and GN (∂Ω) :=
{
τNf

∣∣ f ∈ dom (AD)
}
,

(5.15)
and equip these spaces with the scalar products

(φ,ψ)GD(∂Ω) := (Σ−1/2φ,Σ−1/2ψ)L2(∂Ω), Σ = Im (D(i)−1),

(φ,ψ)GN (∂Ω) := (Λ−1/2φ,Λ−1/2ψ)L2(∂Ω), Λ = −Im (D(i)).
(5.16)

The corresponding dual spaces of antilinear continuous functionals are denoted by
GD(∂Ω)′ and GN (∂Ω)′, respectively, and consequently one obtains Gelfand triplets
{GD(∂Ω), L2(∂Ω),GD(∂Ω)′} and {GN (∂Ω), L2(∂Ω),GN (∂Ω)′}. We shall also use
that there are isometric isomorphisms ι+ : GN (∂Ω) → L2(∂Ω) and ι− : GN (∂Ω)′ →
L2(∂Ω) such that

⟨φ,ψ⟩GN (∂Ω)′×GN (∂Ω) = (ι−φ, ι+ψ)L2(∂Ω), φ ∈ GN (∂Ω)′, ψ ∈ GN (∂Ω); (5.17)

we note that ι+ = Λ−1/2 and ι− is the extension of Λ1/2 onto GN (∂Ω)′. It was
shown in [14, 19] that the Dirichlet and Neumann trace operators in (5.4) and (5.5)
admit unique extensions to continuous surjective operators

τ̃D : Dmax → GN (∂Ω)′ and τ̃N : Dmax → GD(∂Ω)′, (5.18)

where Dmax = dom (S∗) is equipped with the graph norm. Furthermore,

ker(τ̃D) = ker(τD) = dom (AD) and ker(τ̃N ) = ker(τN ) = dom (AN ). (5.19)

With the extended Dirichlet and Neumann trace operators one also extends the
Dirichlet-to-Neumann map D(z), z ∈ ρ(AD), to a bounded operator

D̃(z) : GN (∂Ω)′ → GD(∂Ω)′, τ̃Dfz 7→ τ̃Nfz, (5.20)



KREIN-TYPE EXTENSIONS AND SPECTRAL INSTABILITY 21

where fz ∈ ker(S∗ − zI). The next result can be found in [19], see also [18,
Theorem 8.7.6]. For this fix η < κ and recall the domain decomposition

Dmax = dom (S∗) = dom (AD)
.
+ ker(S∗ − ηI); (5.21)

see (2.40). We will also use that the extended Dirichlet-to-Neumann map D̃(·) has
the remarkable regularization property

ran
(
D̃(η)− D̃(z)

)
⊆ GN (∂Ω), z ∈ ρ(AD). (5.22)

Theorem 5.2. Consider the Laplacian on a bounded Lipschitz domain Ω ⊂ Rn, fix
η < κ, and decompose f ∈ dom (S∗) according to (5.21) in the form f = fD + fη,
where fD ∈ dom (AD) and fη ∈ ker(S∗ − ηI). Then {L2(∂Ω),Γ0,Γ1}, where

Γ0f = ι−τ̃Df and Γ1f = −ι+τNfD, f = fD + fη ∈ Dmax, (5.23)

is a boundary triplet for S∗ such that

B0f = −∆f, f ∈ dom (B0) = {g ∈ Dmax | τ̃Dg = 0}, (5.24)

coincides with the Friedrichs extension AD of S and the corresponding Weyl–
Titchmarsh function M is given by

M(z) = ι+
(
D̃(η)− D̃(z)

)
ι−1
− , z ∈ ρ(B0). (5.25)

We note that the resolvent of B0 is a compact operator in L2(Ω) and that the
lower bound κ = min (σ(B0)) is a simple eigenvalue. In order to determine the
boundary conditions of the Krein-type extensions SK,x for x < κ we use Lemma 2.11
and observe that Γ1f −M(x)Γ0f = 0 holds for f ∈ Dmax if and only if

τNfD +
(
D̃(η)− D̃(x)

)
τ̃Df = 0, f ∈ Dmax, (5.26)

holds. Since f = fD + fη and fD ∈ ker(τ̃D) we have D̃(η)τ̃Df = D̃(η)τ̃Dfη = τ̃Nfη
and hence (5.26) takes the form

τNfD + τ̃Nfη − D̃(x)τ̃Df = 0, f ∈ Dmax, (5.27)

which implies that the Krein-type extensions SK,x, x < κ, of S are given by

SK,xf = −∆f, f ∈ dom (SK,x) =
{
g ∈ Dmax

∣∣ τ̃Ng = D̃(x)τ̃Dg
}

(5.28)

and, in particular, the classical Krein–von Neumann extension has the form

S0f = −∆f, f ∈ dom (S0) =
{
g ∈ Dmax

∣∣ τ̃Ng = D̃(0)τ̃Dg
}
; (5.29)

such types of descriptions go back already to Vĭsik [82] and Grubb [41] and were
obtained for the Laplacian on Lipschitz domains in [13, 14].

In the final theorem of this section we now show that the Krein-type extensions
SK,x, x ≤ κ, are spectrally unstable.

Theorem 5.3. Let x ≤ κ and assume that 0 ≤ V ∈ L∞(Ω)\{0}. Then for all
α ∈ R, the operator

(SK,x + αV )f = −∆f + αV f, dom (SK,x + αV ) = dom (SK,x), (5.30)

is self-adjoint in L2(Ω) and

σ(SK,x + αV ) ∩ (−∞, x) ̸= ∅ for any α < 0. (5.31)
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Proof. First, one observes that V ∈ L∞(Ω) is a self-adjoint bounded multiplication
operator in L2(Ω) and hence SK,x + αV , x ≤ κ, is self-adjoint in L2(Ω) for all
α ∈ R.

In order to show (5.31) for x < κ we choose βx ∈ R such that the smallest

eigenvalue µ(βx) of the Robin Laplacian A
(βx)
R in (5.8) satisfies

x = µ(βx). (5.32)

As A
(βx)
R is a semibounded self-adjoint extension of S and A

(βx)
R ≥ xI it follows

from Proposition 2.3 that SK,x ≤ A
(βx)
R . Furthermore, from Theorem 5.1 we see

that

σ(A
(βx)
R + αV ) ∩ (−∞, x) ̸= ∅ for any α < 0, (5.33)

and hence minσ(A
(βx)
R + αV ) < x for any α < 0. The inequality SK,x ≤ A

(βx)
R

yields SK,x + αV ≤ A
(βx)
R + αV and, in particular,

minσ(SK,x + αV ) ≤ minσ(A
(βx)
R + αV )) < x (5.34)

for any α < 0. This implies (5.31) for x < κ.
It remains to discuss the case x = κ. Using Lemma 2.13 one observes that

M(κ) = {{Γ0fκ,Γ1fκ} | fκ ∈ ker(S∗ − κI)}, (5.35)

and if we define the Cauchy data (Dirichlet-to-Neumann relation) at κ by

D̃(κ) = {{τ̃Dfκ, τ̃Nfκ} | fκ ∈ ker(S∗ − κI)}, (5.36)

then it turns out that the Krein-type extension SK,κ of S is given by

SK,κf = −∆f, f ∈ dom (SK,κ) =
{
g ∈ Dmax

∣∣ {τ̃Dg, τ̃Ng} ∈ D̃(κ)
}
. (5.37)

We consider the Friedrich extension AD and note that ker(AD) ̸= {0} as the lower
bound κ is a simple eigenvalue. The same arguments as in the proof of [15, Corol-
lary 3.1] and Theorem 5.1 show that V is a relatively compact perturbation of AD

and hence [15, Theorem 2.2] implies

σ(AD + αV ) ∩ (−∞, κ) ̸= ∅ for any α < 0. (5.38)

As above we have SK,κ ≤ AD (see Proposition 2.3) and thus SK,κ+αV ≤ AD+αV .
Together with (5.38) this implies (5.31) for x = κ. □

Remark 5.4. We note that in the proof of Theorem 5.3 the multiplication operator

αV ∈ L∞(Ω) is a relatively compact perturbation of the Robin Laplacian A
(βx)
R ,

x < κ, by Theorem 5.1, but in general only a bounded additive perturbation of the
Krein-type extension SK,x. ⋄
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