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ABSTRACT. For a densely defined, closed, semibounded (hence, symmetric) op-
erator in a Hilbert space, a family of self-adjoint extensions is considered, which
can be viewed as natural generalizations of the classical Krein—von Neumann
extension of a nonnegative symmetric operator. We review various properties
of these so-called Krein-type extensions and we discuss their weak coupling
spectral instability. The abstract results are illustrated for regular Sturm—
Liouville operators and the multidimensional Laplacian on a bounded Lipschitz
domain.

1. INTRODUCTION

In this paper we consider a family of self-adjoint extensions of symmetric op-
erators that can be viewed as natural generalizations of the classical Krein—von
Neumann extension of a nonnegative symmetric operator. To set the stage, let .S
be a densely defined, closed, symmetric operator in a complex, separable Hilbert
space $) and recall that under the nonnegativity assumption

(S5f,f) 20, fedom(S), (1.1)

the Krein—von Neumann extension Sk is defined as the smallest nonnegative self-
adjoint extension of S; see [62], [63], and Remark[2.9]for more references. Therefore,
Sk can be viewed as the counterpart of the Friedrichs extension, which is defined
as the largest nonnegative self-adjoint extension of S. In other words, we have

Sk < H < Sp (1.2)

in the sense of the corresponding quadratic forms for any other nonnegative self-
adjoint extension H of S or, equivalently, the inequalities

(Sp—2I)"P<(H—20)"' < (Skg —2I)"", 2<0, (1.3)

hold for the resolvents. In the context of linear relations Sk can also be expressed
as Sx = ((S71)r)~!. Furthermore, in the special case that S is uniformly positive,
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that is, for some k > 0, (Sf, f) > &|f||?, f € dom (S), the Krein—von Neumann
extension admits the following simple and more explicit form

Sif=5"f dom(Sk)=dom/(S)+ ker(S*), (1.4)

where S* is the adjoint of the densely defined, closed, symmetric operator .S in $).
Inspired by (1.4) one can define a family of extensions Sk ., of the densely defined,
closed, symmetric operator S with lower bound s € R by

Skaf =S*f, dom(Sk,)=dom (S)+ker(S* —zI), z< k. (1.5)

The extensions Sk , are self-adjoint in §) and they will be referred to as Krein-type
extensions of S; clearly, in the case kK > 0 and x = 0 this definition reduces to
(L.4), so that Sko = Sk. The situation becomes more challenging when one tries
to define a Krein-type extension at the lower bound k: Although the definition
is still meaningful it does not lead to a self-adjoint operator in general (since
ker(S* — kI) can be trivial) and thus Sk, needs to be defined differently. In
fact, as for the Krein—von Neumann extension in the general nonnegative case, one
can define Sk , as the smallest self-adjoint extension of S with lower bound k.
Equivalenty, one has that Sk . is the strong resolvent limit of the monotone family
of Krein-type extensions Sk , for « 1 k, that is,

SK,n = Sr'hmxTn SK@». (16)

For a more detailed investigation and spectral analysis of the Krein-type exten-
sions it is natural to employ the concept of boundary triplets and their Weyl (resp.,
Weyl-Titchmarsh) functions. In the present situation, where a symmetric operator
S with lower bound x € R is given, one can construct a boundary triplet {G, ', T'1}
such that the Friedrichs extension Sp of S is induced by the boundary mapping
T'g, that is,

Spf=5"f, dom(Sp)={f€dom(S*)|Tof =0}. (1.7)

If M(z), z € p(SF), denotes the corresponding Weyl-Titchmarsh function, an ana-
lytic (operator-valued) function in G, then it follows that the Krein-type extensions
Sk, for ¢ < k can also be characterized by

Skof =51, dom(SKJ):{fEdom(S*)|M(x)F0f:F1f}, x <k, (L8)

and, if M (k) denotes the strong resolvent limit of the monotone family M (z) as
x 1T K, one also has

Skf=5"f, dom(Ska)={f€dom(S*)|{Tof I1f} € M(x)}, (1.9)

where, in general, M (k) is a self-adjoint relation in G.

After discussing the general theory of Krein-type extensions in Section[2 we then
turn to a more specific topic afterwards. Following the theme in [I5, [16] we are
interested in spectral instability and the weak coupling phenomenon of Krein-type
extensions Sk, for x < k under relatively compact and relatively form compact
perturbations V. If V > 0 it follows in the case z < x under mild additional
conditions on the perturbation that Sk , exhibits a spectral instability in the sense
that

o(Skz+aV)N(—oo,z) #0 for any o < 0. (1.10)
The situation is much more delicate for x = x and has been discussed in great detail
in [16] in the case that the deficiency indices of S are (1, 1). However, if one imposes
the additional assumption that k € 0,(Sk ), then it is easy to see that a spectral
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instability in the sense of appears also at s (see [I5]). We also mention in
this context that the classical weak coupling phenomenon for Schrédinger operators
in L2(R"), n = 1,2, goes back to Simon [77, [78] and we refer the reader to [16] for
more details and the explicit connection between and Simon’s results in the
context of Sturm-Liouville operators with an interface condition. For additional
references regarding the weak coupling phenomenon of Schrodinger operators in
dimensions n = 1,2, we also refer to [20], [21], [22], [24], [27], [29], [30], [34], [47],
ug], (54, 531, 56, 571, [58), (591, [64], (66, [67], [69], [70), [72], [73) p. 336-338].
The abstract considerations in Section Bland Blare then illustrated for the Krein-
type extensions of regular Sturm-Liouville operators in Section[d)and for the Krein-
type extensions of the Laplacian on a bounded Lipschitz domain in Section[5} More
precisely, in Section [l we consider the Sturm-Liouville differential expression

1{dd

- dtpdtqu} (111)

r

on a bounded open interval (a,b), where it is assumed that the coefficients are
real functions on (a,b) such that 1/p,q,r € L'((a,b)) and p(t) > 0, r(t) > 0
for almost all ¢ € (a,b). In this case both endpoints a and b are regular and the
minimal symmetric operator associated to £ in the weighted L2-space L?((a,b);rdt)
is bounded from below and has deficiency indices (2,2). We then characterize the
boundary conditions of the Krein-type extensions Sk, of S and show that they
are spectrally unstable. Similarly, in Section [5| we are interested in the Krein-
type extensions of the Laplacian on a bounded Lipschitz domain Q ¢ R¢, d > 2.
Here we make use of results on the Dirichlet and Neumann trace operators on
the maximal domain from [I4] 9] and provide explicit boundary conditions of the
Krein-type extensions of the minimal operator S = —A | H2(Q)} See [13,14]. In order
to show their spectral instability we proceed slightly differently than for ordinary
differential operators. We find it convenient to first verify spectral instability of
Robin Laplacians in a similar way as in [I5] and to then conclude spectral instability

of the Krein-type extension Sk , by using the inequality Sk, < AS—?”), where the

(Ba)

parameter 3, in the boundary condition of the Robin Laplacian A"’ is chosen

such that x coincides with the smallest eigenvalue of Agw).

Notation. The inner product in a separable (complex) Hilbert space §) is denoted
by (-, -) and is assumed to be linear with respect to the first argument; the symbol
I denotes the identity operator in $. If T' is a linear operator mapping (a subspace
of) a Hilbert space into another, then dom (7') and ran (T") denote the domain and
range of T', respectively. The resolvent set and spectrum of a closed linear operator
T in $ are abbreviated by p(T) and o(T), respectively. The set of eigenvalues
is denoted by 0, (T") and for a self-adjoint operator T, o4(T") and o.ss(T") denotes
the essential and discrete spectrum, respectively. The Banach space of bounded
(resp., compact) linear operators on § is denoted by B() (resp., Boo($))). For
p € [1,00), the corresponding ¢P-based trace ideals will be denoted by B,($)) with
norms abbreviated by || - ||5,(5). Finally, L2((a,b)) := LP((a,b);rdt), p € [1,00),
represents weighted LP-spaces with weight 0 <r € L ((a,b)).

loc

2. ABSTRACT KREIN-TYPE EXTENSIONS, BOUNDARY TRIPLETS,
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AND WEYL-TITCHMARSH FUNCTIONS

In this section we first introduce the notion of abstract Krein-type extensions
of a semibounded symmetric operator in §) and provide some properties of these
self-adjoint operators. These extensions can be viewed as natural generalizations
of the classical Krein—von Neumann extension in the nonnegative case. Using the
concept of boundary triplets and Weyl-Titchmarsh functions, we show how the
Krein-type extensions can be related to the values of the corresponding Weyl-
Titchmarsh function in the boundary space G. This observation is particularly
useful in applications to differential operators as it reduces the problem to determine
the Krein-type extensions to the computation of the Weyl-Titchmarsh function.
For most of the statements in this section we provide elementary direct proofs and
refer the reader to [I8], Chapter 5] for a slightly more abstract treatment and further
references.

2.1. Abstract Krein-type extensions. Throughout this section suppose that .S
is a densely defined, closed, symmetric operator in a Hilbert space §), assume that
S is semibounded from below, and that & € R is the maximal lower bound]]

(Sf,f) 2 k(f,f), [ e€dom(S); (2.1)

such an inequality will be denoted by S > kI throughout this paper. For obvious
reasons, the case S = S* will be excluded in the following.

Definition 2.1. The family of Krein-type extensions Sk 5, * < K, of S is defined
by
Sk =S* [ dom (Sk), dom(Sk,)=dom(S)+ker(S* —=I), =< (2.2)

One notes that the sum in dom (Sk ) is indeed direct as otherwise < k would
be an eigenvalue of S; this is not possible as S > kI. If we agree to denote the

elements f € dom (Sk ;) = dom (S) +ker(S* — zI) in the form f = fg + f,, where
fs € dom (9), fy € dom (S* — zI), and = < &, then it is clear that

Skof=8Sfs+xfe, f=fs+ fo, fs €dom(S), fs € ker(S* — xI). (2.3)
Lemma 2.2. For xz < &, the operator Sk, is self-adjoint in $ and

0(Sk.z) N (=00, k) = {x}. (2.4)

In particular, Sk . is semibounded from below with lower bound x.
Proof. First we show that Sk, is symmetric. For f = fs + f, € dom (Sk ;) one
has

Im((Sk.af, f)) =Im((Sfs, fs) + (Sfs, fo) + (Sk.afor f5) + (@ fe, f2))

=Im((Sfs, fz) + (Sk,afe: fs))

and together with (Sk o fz, fs) = (fz, Sfs) one concludes that Im((Sk .. f, f)) = 0.
Hence, Sk, C Sk .. In order to verify the inclusion Sy , C Sk, consider g €
dom (Sk 5)*. Then

(2.5)

(SK,zfa g) = (SfS +‘Tf:t’g) = (fS + fra S;(,xg) (26)
holds for all f = fs + f, € dom (Sk ). As (Sfs,9) = (fs, Sk ,g) one obtains
(fz: (Sk o —2l)g) =0 (2.7)

IExplicitly, S > w1, but for all € > 0, S # (k + )1
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for all f, € ker(S* —xI). Therefore, (Sk , —xI)g € (ker(S* —zI))* = ran (S —zI)
and hence there exists h € dom (S) such that
(Sk o —xI)g= (S —axl)h. (2.8)

It follows that g — h € ker(S% , — xI) C ker(S* — zI) and we conclude the decom-
position

g=nh+(g—h) e dom(S)+ker(S* — 2I) = dom (Sg ). (2.9)
As Sk is symmetric, it is clear that S}, is an extension of Sk, and hence
Sk,z9 = Sk ,9- Thus, we have shown the inclusion Sk € Sk, and hence it
follows that S K.« is self-adjoint.

It is clear from the definition of Sk, in (2.2) that z is an eigenvalue with cor-
responding eigenspace ker(S* — zI). Since Sk, is self-adjoint, the closed subspace
(ker(S* — 1))t =ran (S — x1) reduces Sk, to a self-adjoint operator

S}(’I = Sk [ran (S — ),

. (2.10)
dom (S% ) = (dom (S) + ker(S* — zI)) Nran (S — 1),

in ran (S — 21), and we claim that S}, is semibounded from below by «. In fact,
for h =hg+h, = (S—al)g € dom (S}{w) we have 0 = (hy, h) = (hy, hs)+ (ha, ha )
as h € ran (S — zI). Therefore, using S > kI one concludes
((Sk.o — £D)h,h) = ((S — kI)hs, hs) + ((S = kI)hg, he) + ((z — K)ha, h)
= ((8 = kI)hs,hs) + (hs, (x — K)ha) (2.11)
= ((S = kD)hs,hs) + (k — ) (ha, hy) > 0
Hence Sk, > I and, in particular, o(S% ) C [k, 00). It follows that

o(Ske)\{z} = 0(Sk ) C [k, 00), (2.12)
implying (2.4). It is also clear that the lower bound of Sk  is . O

The next proposition shows that Sk , is the smallest semibounded extension of
S with lower bound z.

Proposition 2.3. Let H be a semibounded self-adjoint extension of S and let
x < k. Then the following are equivalent:

(i) H>zl.

(i) Sk < H, that is, (H—nI)"" < (Sko—nl)~t for anyn < x.
In particular,

SKJ < SK,y, Tz <y <K (2.13)
Proof. The implication (ii) = (4) is clear: In fact, since Sk, > zI, it follows from
Sk.» < H that also H > zI; see [I8, Lemma 5.2.2, Theorem 5.2.4].
To verify (i) = (i4) it will be shown that

([((Ske —nI)™" = (H—nI)"']h,h) >0, heES$H. (2.14)

For this purpose we write h = (S — zI)g + g, with g € dom (S) and g, € ran (S —
xI)t = ker(S* — zI). As Sk, and H are both extensions of S one has

(Ske—nI) (S —nl)g=g=(H—nl)""(S—nl)g, (2.15)
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and hence the left-hand side of (2.14]) simplifies and can be rewritten as
([(Skw —nD) ™" = (H = nI)"] 90, 92)

= (= == D) M ges)
2.16
= (- ) g - -0 O
+ Iin([f— (@ =m(H = D)~ ] ga; (@ = n)(H = nl)~"gs).

Thus it suffices to show that the last term satisfies
([I —(x—n)(H - nI)_l]gw, (H - 77])_1%) >0, g, €ker(S*—al). (2.17)

In fact, as I — (x —n)(H —nI)~' = (H —2I)(H —nI)~! and H > x1, this is clear.
Thus ([2.14) holds and Sk, < H follows. O

Due to the monotonicity of the family of self-adjoint operators Sk , in ) observed
in Proposition@ there is a self-adjoint limit Sk, in £ in the strong resolvent sense
as x T k, that is,

Sk = st-limgr. Sk 3 (2.18)
see [I8, Theorem 5.2.11 and p. 712]. It follows from [I8, Corollary 5.2.12 (i%)] that
Sk is also an extension of S and from the monotonicity of Sk , one concludes that
Sk, is bounded from below by k. Moreover, [I8, Corollary 1.9.6 (7)] shows that
Sk, is the strong graph limit of the family Sk . as 1 x. The next proposition
extends the equivalence in Proposition @ to the limit operator Sk , and hence the
latter is the smallest semibounded self-adjoint extension of S with lower bound k.

Proposition 2.4. Let Sk . be defined as the strong resolvent limit in (2.18) and let
H be a semibounded self-adjoint extension of S. Then the following are equivalent:
(i) H > kl.
(i1) Sk.x < H, that is, (H —nI)™' < (Sk.,. —nI)~! for any n < k.
Proof. The proof of (ii) = (i) is the same as in Proposition [2.3| and the implication

(i) = (ii) follows from [I8] Corollary 5.2.12 (i)] in conjunction with Proposition [2.3]
t

We shall now explore in which way the (formal) Krein-type extension
S* | (dom (S) + ker(S* — kI)) (2.19)

is related to the self-adjoint operator Sk , in ; note that the same argument
as in the beginning of the proof of Lemma shows that the operator in is
symmetric and that the sum of dom (S) and ker(S* —«xI) in is not necessarily
direct. The statement in the next lemma is contained in [I8, Lemma 5.4.1]; here
we provide a simple direct and self-contained proof.

Lemma 2.5. Let Sk, be defined as the strong resolvent limit in (2.18]). Then
S* | (dom (S) + ker(S* — kI)) C Sk (2.20)

and
ker(Sk  — kI) = ker(S* — kI). (2.21)
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Proof. Recall first that the limit Sk , is a self-adjoint extension of S and hence it
follows that ker(Sk ., — xI) C ker(S* — xI). It will be shown in the following that
there is equality, which also implies that is valid. The proof is based on an
adaption of the procedure in [I8, Lemma 1.4.10]. Define for each h € $) the element
hy € 9, ¢ < K, by

he = (I + (2 — K)(Sk.. — 1)~ 1)h. (2.22)
For all ¢ € dom (Sk ;) one sees that
(ha, (Skn — 21)@) = (h, Sk — KI)gp). (2.23)

In particular, this holds for all ¢ € dom (5); thus if h € ker(S* — k1) it follows that
hy € ker(S* — zI).

Now assume in that h € ker(S* — kI) © ker(Sk,, — kI). Therefore, by
what has been shown above h, € ker(S* — «I) and, since h L ker(Sgk , — kI), it
follows that

(x — K&)(Sk.x —xI)"'h T> 0 strongly. (2.24)

To see (2.24), let Es, . (A), A € R, be the spectral family corresponding to Sk .
Then one has

(@ — ) Sk — 21) " h]? = /

K

o 2

(“ - g”) d(Es,, .(\h,h) — (Peh, ), (2.25)

A—x ! Tk

where P, is the orthogonal projection onto ker(Sg . — «I). Hence, is clear.
Therefore, from and one obtains h, — h in $) as * — k and, conse-
quently, {hy,zh,} — {h,kh} in $ X H as ¢ — k. Since Sk, is the limit of Sk 4,
x < K, in the strong graph sense, it follows that h € ker(Sk . — xI). The condition
h L ker(Sgk,, — <I) thus leads to h = 0. Therefore ker(S* — xI) = ker(Sk . — kI)

has been shown and the inclusion (2.20)) is established. O
The following result from [I8, Corollary 5.4.5] shows in which situations there is
equality in ([2.20).
Proposition 2.6. Let Sk, be defined as the strong resolvent limit in (2.18). Then
S* I (dom (S) + ker(S* — kI)) = Sk (2.26)
if and only if
ran (S — kI) =ran (S — kI) Nran (S* — &I). (2.27)

In particular, if ran (S — kI) is closed, then (2.26]) holds.
Proof. Let us consider the symmetric operator

H = S* | (dom (S) + ker(S* — &I)) (2.28)
and determine its adjoint H* and ran (H* — xI). Note first, that S C H implies
H* C S* and hence g € dom (H*) C dom (S*) if and only if

(Hh,g) = (h,S"g) (2.29)

holds for all h € dom (H) = dom (S) + ker(S* — kI); in this case it is clear that
H*g = S*g. Now decompose h = hg+h,, with hg € dom (S) and h,, € ker(S*—xI).
Using (Shg,g) = (hg,S*g) it follows that (2.29) reduces to (kh.,g) = (hx, S*g).

Thus, g € dom (H*) if and only if (h., (S* — kI)g) = 0 for all h, € ker(S* — &I),
and hence we conclude that H* is the restriction of S* to all g € dom (S*) for which

(S* — wl)g € (ker(S* — kI))* =ran (S — &I). (2.30)
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Therefore, we have
ran (H* — kI) =ran (S — xI) Nran (S* — kI). (2.31)

Now it will be shown that (2.26) and (2.27) are equivalent. In fact, if (2.26))
holds, then H = Sk is self-adjoint and (2.31) takes the form

ran (H — kI) = ran (S — xI) Nran (S™ — kI). (2.32)

It is clear that ran (H — xI) = ran (S — xI), and hence follows. Conversely,
if holds, then ran (H — xI) = ran(S — xI) implies and therefore
ran (H — kI) = ran (H* — kI) by (2.31). We claim that this implies H = H*. In
fact, H C H* is clear and to see the inclusion H* C H consider some f € dom (H*).
By assumption (H* — kI)f = (H — kI)h for some h € dom (H) and this yields
f—heker(H* — kI) C ker(S* — k1), which then gives

f=h+(f—h)edom(S)+ker(S* — sI), (2.33)

so that f € dom (H). Eventually, as H C Sk . by Lemma and both operators
are self-adjoint we conclude (2.26)). O

According to [83] Satz 10.22 (b)] the restriction of S — xI onto (ker(S — xI))+ N
dom () is boundedly invertible if there exists a self-adjoint extension H of S such
that £ & oess(H). Thus, ran (S — «I) is closed in this situation and Proposition [2.6]
leads to the following statement.

Corollary 2.7. If there exists a self-adjoint extension H of S such that one has

Kk & 0ess(H), then (2.26)) holds.

Under the assumptions ([2.34) in the next corollary one has that the extension
S* 1 (dom (S) + ker(S* — kI)) of S is self-adjoint and hence equal to Sk . by
Lemma 2.51

Corollary 2.8. If S has deficiency indices (r,r) with r € N, while
dim(ker(S — «I)) =0 and dim(ker(S* —xI)) =r, (2.34)
then (2.26) holds.

Remark 2.9. The classical Krein—von Neumann extension of a nonnegative sym-
metric operator is defined as the smallest nonnegative self-adjoint extension. There-
fore, in the present situation, if £ > 0 then Sk o is the Krein—von Neumann exten-
sion of S by Proposition 2.3 and Proposition 2.4} In the case x > 0 one has

Sko=5* | dom (Sk), dom (Sko)=dom (S)+ker(S*), (2.35)

and in the case Kk = 0 the Krein—von Neumann extension of S can be obtained via
the strong resolvent limit Sk o = sr-limyo Sk o; see (2.18]). For some contributions
dealing with Krein—von Neumann extensions and related issues we refer the reader,

for instance, to [I, Sect. 109], [2], [3], [, [E], [6], [7], [8], [9], [10], [I1], [12], [I8,
Sect. 5.4], [23], [25], [26], [28, Part III], [31], [32, Sect. 3.3], [38], [39, App. D.3],

[42], [43], [44], [45], [6], [61L Ch. 3], [62], [63], [68], [71], [74, Sects. 13.3, 14.8], [75],
[76], [79], [80], [81], and the references cited therein. o
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2.2. Boundary triplets and Weyl-Titchmarsh functions. Let S be a densely
defined, closed, symmetric operator in a Hilbert space $. In the following we recall
the notion of boundary triplets and Weyl-Titchmarsh functions very briefly. For
our purposes the characterization of all self-adjoint extensions of S via self-
adjoint operators and relations in the boundary space is particularly important.
We refer the reader to the monograph [I8] for more details and further references.

Definition 2.10. A triplet {G,Ty,T'1} is called a boundary triplet for S* if G is a
Hilbert space and the linear mappings T'g,I'; : dom (S*) — G satisfy the abstract
Green identity

(S*fvg)_(faS*g) = (Flfvrog)_(rofvrlg)a fvgedom(S*)v (236)

and (To,T1)" : dom (S*) — G x G is onto.
We recall that a boundary triplet exists if and only if the deficiency indices of
S coincide, that is, if and only if S admits self-adjoint extensions in ), and that
a boundary triplet is not unique (if S # S*). Assuming that a boundary triplet

{G,Ty,T'1} for S* is given, one infers

dom (S) = ker(T'g) Nker(T'y) (2.37)
and the mapping (I'g,T'1) T : dom (S*) — G x§G is continuous if dom (S*) is equipped
with the graph norm (and the product Hilbert space G x G carries the natural norm).

Furthermore, there is a one-to-one correspondence between the self-adjoint relations
in G and the self-adjoint extensions Ag of S in § given by

O Ag, dom(Ae) = {f € dom (S*)[{Tof,I'1f} € O}, (2.38)

and in the special case that © is (the graph of) a self-adjoint operator in G one has
dom (Ag) = ker(I';y — OTy). It follows that

BO =5 [ker(I‘O) (239)
is a self-adjoint extension of S in $) and the domain decomposition
dom (5*) = dom (By) + ker(S* — 2I) = ker(I'y) + ker(S* — zI) (2.40)

holds for z € p(Bp). This decomposition also implies that for any z € p(By) the
operators

¥(2)Tof. = f. and M(2)Tof. =T1f., f.€ker(S* —zI), (2.41)
are well defined. It turns out that v(z) = (I'g | ker(S* — 2I))~1, 2 € p(By), is a
bounded and everywhere defined operator from G to $) and that the identities
v(z) = (1 +(z—2")(Bo — zI)_l)v(z’), z,2" € p(By), (2.42)
and
1(2)" =T1(Bo - 2I)™",  z € p(By), (2.43)
hold. Moreover,
M(z) =T1v(2), =z € p(Bo), (2.44)

is a bounded and everywhere defined operator in G and the function z — M (z) is an
(operator-valued) Nevanlinna—Herglotz (resp., Riesz—Herglotz) function on p(By).
In particular, for z € p(By) NR one has self-adjointness, M(z) = M(z)*, and if
By is semibounded from below by k, then x — M (z) is a monotone increasing
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(operator-valued) function on (—oo, k), and hence there exists a self-adjoint limit
M (k) in G in the strong resolvent sense as = 71 &,

M (k) = sr-limg4, M(z), (2.45)

see [I8, Theorem 5.2.11]. Here the limit M (k) can be multivalued and is therefore
regarded as a self-adjoint relation in G. In the same way as for Sk ., one also has
that M (k) is the strong graph limit of the family M (z) as x 1 k.

We assume from now on that the densely defined, closed, symmetric operator S
is semibounded from below with the lower bound £ € R. In the next lemma we
identify the self-adjoint parameters in G that correspond to the self-adjoint Krein-
type extensions Sk ., * < K, in .

Lemma 2.11. Let {G,Ty,T'1} be a boundary triplet for S*, let By = S* | ker(T'g),
and suppose that M is the corresponding Weyl-Titchmarsh function. Then for
x < K such that © € p(By) one has

Ska =AM (2.46)

and, in particular, if By is the Friedrichs extension of S, then (2.46) holds for all
r < K.

Proof. One notes that Sk ,, * < K, is a self-adjoint extension of S by Lemma
and for x € p(Bo) NR the extension Aps,y) = S* [ ker(I'y — M (x)Ip) is self-adjoint
by and the fact that M(z) is a self-adjoint operator in G. Hence, it suffices
to check that Sk . € Aps(y). For this purpose consider f = fs + f, € dom (Sk )
and note that I'gfg = I'1 fs = 0 by as fs € dom (S). Therefore,

(T4 — M(@)To)f =T+ fo — M(z)Tofs = 0 (2.47)
by the definition of M(z). Thus, dom (Sk,.) € dom (Ap;(,)) and hence ({2.46)
d

follows.

Next it will be shown that (2.46]) extends to the limits Sk ., and M (k). To show
this, we shall use that Sk . is the strong graph limit of Sk, and M (k) is the strong
graph limit of M(z) as = 1 k.

Proposition 2.12. Let {G,Ty,T'1} be a boundary triplet for S* with corresponding
Weyl-Titchmarsh function M and assume that the self-adjoint extension By = S* |
ker(Tg) is bounded from below by k. Then

Sk = AM(x) (2.48)
in particular, if By is the Friedrichs extension of S then holds.
Proof. First, we recall that Sk . in is a self-adjoint extension of S. Further-
more, M (k) in is a self-adjoint relation in G and hence
App(ry = 8™ | dom (Apz(n)),
dom (A (x)) = {f € dom (5*) [{T'of, T1f} € M(x)},

is also a self-adjoint extension of S. We will verify the inclusion Sk, € Ans(x),
which then implies the equality as both Sk ,, and Ay, are self-adjoint. For
this purpose we shall use that Sk , is the strong graph limit of the family Sk ,
as ¢ 1 k. Consider f € dom (Sk ) and choose a sequence f,, € dom (Sk s, ) as
xn T K such that f, — f and Sk s, fz, — Sk xf. We note that Sk ., = Anr(a,)
by (2.46)), and hence (I'y — M (2,,)[') f5, = 0. Since (I'9,'1) " : dom (5*) = G x G

(2.49)
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is continuous with respect to the graph norm and M (k) is the strong graph limit
of M(z,) as x, 1 k one concludes

{F()f, Flf} = nh_{I;O{FOfJ?n7F1f:I?n} = nh_)rgo{Fszny M(:I;n)Fszn} € M(H)v (250)

that is, f € dom (Apz(,)). It follows that Sk . C Ap(.) and hence (2.48) holds. [

In the case where the strong resolvent limit Sk . of Sk as 1 & has the form
(2.26]), it turns out that the strong resolvent limit M (k) of M(z) as « 1 « has a
particular simple structure, and vice versa.

Lemma 2.13. Let {G,I'o,T'1} be a boundary triplet for S* with corresponding
Weyl-Titchmarsh function M and assume that the self-adjoint extension By =
S* | ker(Ty) is bounded from below by k. Then Sk . in (2.18)) has the form

Sk =5 (dom (S) + ker(S* — kI)) (2.51)
if and only if M (k) in has the form
M(k) = {{Tofs. T1fu} | fi € ker(S* —&I)}. (2.52)

In particular, if k € 0ess(Bo), then (2.52) holds.

Proof. According to Proposition [2.12| one has Sk ., = Ap(x) and, as Sk . is self-
adjoint in £, it follows from ([2.38) that

M(k) = {{Tof,T1f}|f € dom (Sk.x)}- (2.53)

Therefore, if (2.51)) holds, then (2.37)) implies that the right-hand side in (2.53))
coincides with the right-hand side in (2.52)). Conversely, if the self-adjoint relation

M (k) in has the form (2.52), then one obtains
{{Tofu; Tifu} | fr € ker(S* — wI)} = {{Tof,T1f}| f € dom (Sk.)}  (2:54)

by ([2.53). Thus, for f € dom (Sk,.) there exists f, € ker(S* — xI) such that
{Tof, T1f} = {Tofx,T1fx} and hence implies f — f; € dom(S), so that
f=(—fs)+ fs € dom(S) + ker(S* — kI). Hence, we have shown the inclusion
Cin ; the inclusion D is clear from Lemma

Finally, if k & 0ess(Bo), then Corollary shows that Sk , has the form

and hence (2.52) holds. O

In the next corollary the special nonnegative situation is considered and the
classical Krein—von Neumann extension is identified.

Corollary 2.14. Let {G,T'4,I'1} be a boundary triplet for S* with corresponding
Weyl-Titchmarsh function M and assume that S and the self-adjoint extension
By = S* | ker(Ty) are both nonnegative, that is, k > 0. Then the Krein—von
Neumann extension Sk o of S satisfies

S0 = An(o)- (2.55)

In the special case k > 0 one has Apy = S* [ ker(I'y — M(0)Ty).
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3. RELATIVELY FORM COMPACT PERTURBATIONS AND SPECTRAL INSTABILITY

Let again S be a densely defined, closed, symmetric operator in §) which is
semibounded from below with lower bound k. In this section we shall study per-
turbations of the Krein-type extension Sk , of S and we recall a recent result from
[16] on the instability of the lower bound z < k under arbitrary small negative
perturbations aV.

Hypothesis 3.1. We shall assume that V' > 0 is self-adjoint in $) and relatively
form compact with respect to Sk , that is, for some 1y < z < &,
dom ((SK,I—VOI)UQ) C dom (Vl/z) and ‘/1/2(5}(,95—1/01)_1/2 € B(9). (3.1)

We note that if (3.1)) holds for some vy < z, then (3.1)) holds for all z € p(Sk z).
In fact, (Sk . — 2I)/? is a normal operator in ) defined via the functional calculus
of the self-adjoint operator Sk ., see, for instance, [74, Chapter 5.3]. Therefore,
one has

dom ((Sk,» — VOI)l/Q) = dom ((Sk,» — zI)l/z), z € p(Skz), (3.2)
and for z € p(Sk ) it is clear that
VI/Q(SKJ; _ ZI)_1/2

= [V1/2(SK’I — VOI)*l/Q} [(SK@ — VOI)l/z(SK@ — zI)*l/ﬂ € B (H) (3:3)
as (Sk.z — vol)V/?(Sk . — 1)1/ € B($). In addition, one observes that
((Sg,e — 21) Y2V = VI2(Sy , — 21) 72 € Boo (9), (3.4)
and hence
(Skx—2I)"V2V12 € B (9), 2 € p(Skz). (3.5)
Next we define the Birman—Schwinger operator family by
K(z):=VVY2(Sk, —2zI)"'V1/2 2z € p(Sk.), (3.6)

which will play an important role in the following considerations. One observes
that by (3.1]) and (3.4]),
K(2) = VY*(Skp — 21)"Y23(Sk e — 2I)~1/2V1/2 € B () (3.7)

for all z € p(Sk ;). We also note that for v < v/ < z one has 0 < K(v) < K(v')
and

A K (v)lls) = 0; (3.8)

see [16, Lemma 3.4]. In particular, it follows from that for any o € R\{0}
there exists v, < x such that —1/a € p(K(v)) for all v < v,.

It follows that under Hypothesis Hypothesis 2.1 in [35] is satisfied, in par-
ticular, this permits one to define a self-adjoint operator T, (a), o € R\{0}, in $
via its resolvent as in [35, Theorem 2.3], [62, 60]; the operator Ty () in the next
proposition is then referred to as a relatively form compact perturbation of the

Krein-type extension Sk ,, where z < k.

Proposition 3.2. Let v < k, o € R\{0}, and assume Hypothesis . Then there
exists a self-adjoint operator T,,(a) in $ such that

(Ty(a) = 2I)~" (3.9)
= (Sko—2I)" =Sk — 2) V2T + aK(2)] ' VY2(Sk ., — 21) 7}
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forallz € {¢ € p(Sk.z)|—1/a € p(K(C))}, and Ty () is a semibounded, self-adjoint
extension of the symmetric operator Sk, + oV defined on the (not necessarily
dense) set dom (Sk ;) Ndom (V).

It follows, in particular, that
[(Tp(e) —2I) ™" = (Sko—2I) '] € Boo($) (3.10)
and hence 0g5(Ty(0)) = Oess(Sk o). Furthermore, one has
(1) If @ € (0,00), then T, () > xI and, in particular, o(T,(a)) N (=00, z) = 0.
(15) If @ € (—00,0), then o(T,(r)) N (—o0, ) is either empty or consists of
discrete eigenvalues.

Remark 3.3. In the case that V' > 0 is self-adjoint in $ and relatively compact
with respect to Sk ,, that is, for some vy < z < &,

dom (Sko —1voI) Cdom (V) and V(Sks — vol)™' € Boo($), (3.11)

it follows that V' is also relatively form compact with respect to Sk ., see, for
instance, [36, Theorem 3.5 (i)]. In this situation the semibounded self-adjoint op-
erator T, («) in Proposition has the form

Ty(a) = Sk +aV, dom(Ty(a)) =dom (Sk ). (3.12)

Next, consider the interesting case a < 0 in the situation x < k, where one
automatically has ker(Sk , — «I) = ker(S* — ) # {0} (see Definition and in
the case © = k, where it is assumed that ker(Sg . — kI) = ker(S* —I) # {0}. The
next theorem is a variant of [15, Theorem 2.2] and [16, Theorem 3.9].

Theorem 3.4. Let x < Kk, assume Hypothesis and denote by T,(«) the rel-
atively form compact perturbation of the Krein-type extension Sk in Proposi-
tion|3.4 Then the following assertions hold:

(i) If v < Kk and ker(Sk o — xI) € ker(V), then

o(Ty(a)) N (—o0,z) # 0 for any « <O0. (3.13)

If, in addition, V is relatively compact with respect to Sk 5, then Ty(a) =
Sk +aV and

0(Ske+aV)N(—oo,z) #0 forany a <0. (3.14)

(i7) If ¢ = K, ker(Sk,x — KI) # {0}, and ker(Sk x — kI) € ker(V), then

o(Te(a)) N (—o0,k) #O for any a < 0. (3.15)

If, in addition, V is relatively compact with respect to Sk ., then T(o) =
Sk +aV and

o(Sk.x +aV)N(—oo,k) #0 for any a <O0. (3.16)

In the case that S has finite deficiency indices and x < k, it is clear that «
is an isolated eigenvalue of finite multiplicity of Sk .. In this case the spectral
instability would already follow from well-known results in asymptotic perturbation
theory, see, for instance, [5I, Theorem 8] or [63] Theorem VIII.4.9], see also [I5]
Remark 3.2].
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4. REGULAR STURM-LIOUVILLE OPERATORS

In this section we consider a Sturm—Liouville differential expression of the form

1 d d
- [_dtpdt + (I} (4.1)

on a compact interval [a,b] C R, where it is assumed that the coefficients p, ¢, and
r are a.e. real-valued functions on (a, b) which satisfy the conditions

{p(t) >0, r(t) >0 for a.e. t € (a,b),

r

1/p,q,r € L'((a,b)). (4.2)

The nonnegative function r will serve as a weight function and the corresponding
Hilbert space L%((a,b);rdt) is denoted by L2((a,b)) in the following. The minimal
operator corresponding to £ in L2((a,b)) is then given by

Sf=1"Lf,
f € dom (8) = {g € Drnaa | 9(a) = (pg')(a) = g(b) = (pg')(b) = 0},

where

(4.3)

Dinaz = {9 € L}((a,b)) | g, pg’ € AC([a,b)); Lg € L ((a,b))} (4.4)
is the usual maximal domain and AC/([a, b]) denotes the space of absolutely contin-
uous functions on [a,b]. One recalls that g € AC([a,b]) if and only if there exists
h € L'((a,b)) such that

o) —9() = [ Hs)ds, a<w<y<h (4.5)

in this case g is differentiable almost everywhere on (a,b) and ¢’ = h a.e. on (a, b).
The minimal operator S is a densely defined, closed, symmetric operator in
L?((a,b)) with deficiency indices (2,2), semibounded from below with lower bound
k € R, and its adjoint coincides with the maximal operator
S*f=Lf, fedom(S*) =D (4.6)
For z € C we will fix the solutions u(-,z) and wus(-,2) of fu = zu by the
conditions
u(a, z) = (puh)(a,z) =1 and wuz(a,z) = (pu})(a,z) = 0. (4.7)
Since £ is a regular Sturm-Liouville expression the solutions u;( -, z) and ua( -, 2)
belong to the space L2((a,b)) and hence
ker(S* — zI) = lin.span {u1 (-, 2), uz2( -, 2)}. (4.8)

In the next proposition we provide a possible choice for a boundary triplet such
that By is the Friedrichs extension, By = S, of S; the proof is straightforward and
can be found, for instance, in [I8, Proposition 6.3.1].

Proposition 4.1. Consider the reqular Sturm—Liouville expression in (4.1)) and let
S be the corresponding minimal operator in L2((a,b)). Then {C?,To,T1}, where

rof@?;))) and r1f<_(1(’g}),§c(2)>, f € Dinaa, (4.9)

is a boundary triplet for S* such that
Bof =Lf, f€dom(By)={g € Dmas|g(a) = g(b) =0}, (4.10)
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coincides with the Friedrichs extension of S, By = Sg, and the corresponding Weyl-
Titchmarsh function M is given by

1 —uy (b, 2) 1 )

M(z)= ’ , 2z € p(Bp). 4.11

( ) UQ(b, Z) < 1 —(pué)(b,z) P( O) ( )

One notes that the resolvent of By is a compact operator in L2((a, b)) and that

k = min (0(Bp)) is a simple eigenvalue with corresponding eigenfunction us( -, ).
For our further discussion one observes that for

fo=crur(-,2) + coua(-, 2) € ker(S* — zI), ¢1,c2 €C, (4.12)
one has
Cc1 C2
Lof. = d I'if. = ;
of (clul(b, z) 4 coug(b, z)) an of (cl (puy) (b, z) — ca(pub)(b, z))
(4.13)

and taking the constancy of the Wronskian of u; and us into account,
W (ur (-, 2), uz(, 2))(b) = ur (b, 2) (pu3) (b, 2) — ua(b, 2)(puy) (b, 2) =1, (4.14)
it follows that
M(z) = {{I‘sz,Flfz} | f- € ker(S* — zI)}, z € p(By), (4.15)

takes on the form (4.11). To find the strong resolvent limit of M (z) as = T k we
use Lemma which together with (4.13]) yields

M (k) = {{ (Clufg@ H)) ’ (cl(pull)(b, n)ci ca(puy) (b, H)) }

which, in general, is a multivalued operator.
Next, we shall specify the operator domains of the Krein-type extensions Sk ,
z < K, using the general results from Section 2] First, one notes that
dom (Sk.,) = dom (S) + ker(S* — 2I), = <k, (4.17)
by (2.2) and Corollary 2.7} here, for z = x, the sum is indeed direct as ker(S—xI) =
{0}. The next corollary is a consequence of Lemma equations (4.11) and
(2.38]), and Proposition m

Corollary 4.2. The Krein-type extensions Sk o, * < Kk, of the minimal regular
Sturm—Liouville operator S in L2((a,b)) are of the form

Skl =1L]f, (4.18)

fedom(Skz) = {g € Dimaz

Cl,CQEC s

(4.16)

(pg')(b) = (pu

and for x = Kk one has

Skwf =1f, (4.19)

_ g(b) = u1(b, k)g(a),
f € dom (Sie) = {9 € Doz | (pg/) (8) = (puss) (b, w)g(a) + (pa) b, n)(pg'><a>} ‘
Proof. For x < k it follows that f € dom (Sk.) if and only if T'yf = M (z)[of,
that is,

u2(b’ x)(pf’)(a) = _ul(b’ .’L')f((l) + f(b)’

—us(b,x)(pf")(b) = f(a) — (puy)(b,x) f(b). (4.20)
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Substituting f(b) = ua(b, z)(pf’)(a)+u1(b, z) f(a) in the second equation and using
1—wup (b, x)(pub)(b,x) = —ua(b, z)(puy) (b, z) leads to (4.18). For = k one obtains
[E19) from (£.16). O
It is easy to see that both solutions u (-, x) and us( -, x) of fu = zu satisfy the
boundary conditions in (4.18), and in the same way both solutions u (-, k) and
us( -, k) of fu = ku satisfy the boundary conditions in (4.19). One also notes that
in the underlying regular case, under the standard assumptions (4.2)), one has for
v <z,
dom ((Sk.—woI)'/?) = {g € L}((a,b)) | g € AC([a,b]),\/pg' € L*((a,b))}, (4.21)
see, for instance, [I8, Section 6.8].

Example 4.3. Assume that p = » = 1 and ¢ = 0. Then the Sturm-Liouville
differential expression in (4.1)) reduces to the unperturbed Schrédinger differential

expression ¢ = —d?/dt? and one obtains explicitly
sin[\/z (t—a)]
cos[y/z (t — a)], z >0, 7 z >0,
ui(t,z) =<1, z2=0, wua(t,z)=<(t—a, z=0,
coshly/—z (t —a)], 2<0, sinh[V=z(t=a)l =, ¢

VA
tela,b), (4.22)

and the eigenvalues of
Bof =—f", fedom(By)=1{g € Dmaz|gla) = g(b) =0}, (4.23)

are given by

o(Bo) = 0a(Bo) = {(Ifm;)z }k . (4.24)

In particular, the lower bound of By and the minimal operator S is k = 72/(b—a)?
and one obtains the explicit form of the Krein-type extensions for z < 72/(b — a)?
of S from and (4.19). We also note that the usual Krein-von Neumann
extension Sk = Sy of S is given by

SOf: - 1/7

(4.25)
f € dom (Sp) = {g € Dimaa | (b = a)g'(a) = g(b) — g(a) = (b—a)g'(b)},
and that the Krein-type extension at k = 72/(b — a)? is given by
Sr2 a2 f = —f",
(4.26)

f € dom (Sﬂ.z/(b,a)2> = {g € Dz \g(a) + g(b) =0= g,(a> + g,(b)}'

Below we shall consider relatively form compact perturbations of the Krein-type
extensions Sk ,, * < K, and apply Theorem @ The next preparatory lemma will
ensure that the assumption ker(Sk , — xI) € ker(V) is satisfied. The lemma is
stated in a slightly more general form for locally integrable functions V.

Lemma 4.4. Let x < k and assume that V € L}, ((a,b))\{0}. Then there exists
f € ker(Sk, —xI) such that V f # 0.

Proof. Consider the solution us( -, x) € ker(Sk,, —xI) from (4.7)) and observe that
in the case z < x there exists some ¢ € R such that

uz(a,r) =0 and Jua(b,z) = (pub)(b, ), (4.27)
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and hence ug( -, z) is an eigenfunction corresponding to the eigenvalue x of a semi-
bounded self-adjoint extension of S with separated boundary conditions of the form
(4.27). Therefore, the Sturm Oscillation Theorem (see, e.g., [39, Theorem 8.2.4])
implies that us( -, 2) has at most finitely many zeros in (a, b) and thus Vus(-,z) # 0
as otherwise V' = 0. The same argument shows that in the case x = k the function
us( -, k) has no zeros in (a,b) and hence Vua( -, k) # 0 as otherwise V = 0. O

As a consequence of Lemma [4.4] and Theorem we conclude spectral insta-
bility of the Krein-type extensions Sk ., * < k, in the next corollary (see also

Remark .
Corollary 4.5. Let x < r and assume that 0 <V € L} ((a,b))\{0} is such that

loc
V' is a relatively form compact perturbation of Sk 5. Then

o(Ty(a)) N (=o0,2) #0 for any « < 0. (4.28)

In particular, if V # 0 is a relatively compact perturbation of Sk ., then Ty(o) =
Sk +aV and

oSk +aV)N(—oo,z) #0 for any o <O0. (4.29)

A concrete realization of Corollary [4.7] is presented in the following theorem.
First, we recall that the space L:((a,b)), s € [1,00), consists of all complex-valued
measurable functions f on (a,b) that satisfy

b
/ [f(@®)]% r(t)dt < oco. (4.30)

Theorem 4.6. Assume that (4.2) holds, let x < k, and suppose that 0 < V €

Lioe((a,0)\{0}. If V € Ly((a,b)), then
o(Ty(a)) N (=00, z) #0 for any « < 0. (4.31)
In particular, if V € L%((a,b)), then Ty(a) = Sk + oV and
oSk +aV)N(—oo,z) #0 for any o < 0. (4.32)

Proof. We start by verifying that V € Ll((a,b)) is relatively form compact with
respect to Sk .. Indeed, for m € N let

) V(z) ifV(z) <m,
V(@) = {O if Vi(x) >m, (4.33)

and note that V1/2,Viy/? € L?((a,b)) (see (4.30))). Moreover,

VY2 - v =0, m— oo, (4.34)

HL;{((a,b))
and since Vﬂl/2 is bounded and (Sk , — VOI)*l/z, vy < x, is a compact operator
in L2((a,b)) it is clear that Vi/*(Sk.. — vol)~1/2 is also compact in L2((a,b)).
It follows from (£21)) that the functions in dom ((Sk ., — voI)!/?) are absolutely
continuous on [a,b] (see [I8 Lemma 6.8.1]) and hence bounded. Therefore, for
f € L2((a,b)) we have g = (S, — vol)"Y?f € L*((a,b)) C dom (V1/2) and
||V1/2(SK o= v D) V2 VY2 (S, — VOI)A/QJCH .

’ m ' L2((a,b)) (4.35)

< |vi/E- VT}I/Q||L$((a,b))||g||L°°((avb))'
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Thus, V¥/2(Sk , —voI) ™42 € B(L2((a,b))) by the closed graph theorem as (S, —
vol)~1/2 € B(L?((a,b))) and V''/2 is self-adjoint and hence closed, implying closed-
ness of V'/2(Sy , — voI)~4/2.

Next, we use the second representation theorem to express the densely defined,
semibounded, closed sesquilinear form t,[-, -] associated to Sk, by

tz[ha k] = ((SK,az - VO)I/zhv (SK,ac - VO)I/Qk)Lg((a,b)) + VO(ha k)Lﬁ((a,b)) (436)

for h,k € dom (t,) = dom ((Sk.. — voI)'/?). Making use of [I8, Corollary 6.8.6]
(with some £ > 0 and C. > 0) one estimates for g = (S, — voI)"*/2f € dom (t,),
19117 o ((a,)) < CE”Q”%%((a,b)) + etz [g, g]

= Ce[|(S.o — vol) 12 f] 2La<<a,b>)

_ 2
+ 5(||f||2Lg((a,b)) + VOH(SK,r —vol) 1/2fHL$((a,b)))
< CUFIZ2((a))
with some C? > 0. One then concludes from (4.35) that
VY2 (S — v0D) 2 = V(S 10D

< \/UéHVl/2 - V7}1/2||L3((a,b)) ”f”LE((a,b)) (4.38)

and it follows that the compact operators VT}/ 2(5 K,z — Vol )_1/ 2 converge uniformly
to V/2(Sk.o—voI)~Y/2 in the unit ball of L2((a, b)) and hence Vi ?(Sk.o —voI)~1/2
converge in operator norm to Vl/z(SK,gC - I/OI)*l/?, as m — oo, implying the latter
is compact. Thus, V is relatively form compact with respect to Sk ;. Therefore,

(4.31) follows from Corollary

The same argument as above shows that V € L2((a,b)) is relatively compact
with respect to Sk s, and hence (4.32)) follows from Corollary O

(4.37)

Remark 4.7. A different Hilbert—Schmidt-type argument shows that for any self-
adjoint realization S of the regular Sturm-Liouville expression £ in (4.1]) and 7y <

min (0(S)) one has V1/2(S — 501)71/2 € By(L3((a,b))), and, with some extra

effort, this can be improved to V1/2 (5— 170[)_1/2 € By (L%((a,b))); these facts will
be discussed elsewhere [17]. o

5. KREIN-TYPE EXTENSIONS OF THE LAPLACIAN
ON A BOUNDED LIPSCHITZ DOMAIN

Let 2 C R™, n > 2, be a bounded Lipschitz domain and let v be the unit normal
vector field pointing outwards on 9). We denote the L?-based Sobolev spaces on
Q by H*(Q2), s > 0. The minimal operator corresponding to —A in L?(Q) is given
by

Sf=—Af, fedom(S)=HQ) =0x@) @, (5.1)
Then S is a densely defined, closed, symmetric operator in L?(£2), with infinite de-
ficiency indices, semibounded from below with positive lower bound x that satisfies
the Berezin-Li-Yau estimate [65] (see also [33])

n
K>

SAm(l((n + 2)/2)/1Q>/™ > 0. (5.2)
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The adjoint of S coincides with the maximal operator
S*f=—Af, fedom(S*)="Dua ={g€L*(Q)]AgeL*(Q)}.  (53)

In the following we shall use that the Dirichlet trace mapping C*°(Q) > f — flaq
extends by continuity to a continuous surjective mapping

o {f € H(Q)|Af € L*(Q)} — H'(09), (5.4)

where H'(09) denotes the first order L?-based Sobolev space on 99, and that
the Neumann trace mapping C*°(Q2) > f — v - Vf|sq extends by continuity to a
continuous surjective mapping

v {f € H*(Q)|Af € L*(Q)} — L*(9Q); (5.5)

see, for instance, [14] [38]. (As usual in the Lipschitz context, L?(99) is equipped
with the standard surface measure d"~'o.)

For our purpose the self-adjoint Dirichlet and Neumann realization of the Lapla-
cian are particularly important; they are given by

Apf=-Af, fedom(Ap)={ge H*?*(Q)|Age L*(Q), 7pg =0}, (5.6)
and

Anf=-Af, fedom(Ay)={ge H¥*(Q)|Age L*(Q), 7ng=0}, (5.7)
see [49 50] and also [14} B7]. One notes that Ap coincides with the Friedrichs
extension of S and hence has lower bound x > 0; see (5.2]). Both self-adjoint

operators Ap and Ay have compact resolvents and hence their spectra are purely
discrete. Furthermore, for 8 € R we shall make use of the Robin Laplacian

AV p=-Af, fedom(AY) ={ge H¥*Q)|Ag e L*(Q), Tvg = BTpg},
(5.8)
which is a semibounded self-adjoint extension of S with compact resolvent and
coincides with Ay if 8 = 0 and with Ap if (formally) 8 = oco. The smallest
eigenvalue of Agg) is simple and will be denoted by u(8). It is important to note
that for any = < k there exists 8, € R such that x = u(8;).

For later purposes we first provide a result on the spectral instability of the
Robin Laplacian A%a); see [I5], Corollary 3.1 and Remark 3.3]. Here we make use of
[15, Theorem 2.2] and we mention that asymptotic perturbation theory could also
be applied (see [51, Theorem 8] or [53, Theorem VIII.4.9]).

Theorem 5.1. Assume that 0 <V € LP(Q)\{0} withp > 2 ifn=2 andp > 2n/3

ifn >3, and let B € R. Then V is a relatively compact perturbation of Agf), for
all o € R the operator

(AD L aV)f = —Af+aVf, dom (AP +aV) = dom (4D), (5.9)
is self-adjoint in L?(Q2), and
U(Agzﬁ) +aV) N (=00, u(B)) #0 for any a < 0. (5.10)

Proof. First, we verify that V is a relatively compact perturbation of Ag), so that
Hypothesis is satisfied (see Remark . In fact, for A < p(B) one observes
that (Ag) — A1 L2(Q) — H3/?(Q) is closed and everywhere defined, and hence
bounded. For ¢ > 0 sufficiently small we also have that

vV H3?275(Q) - L2(Q) (5.11)
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is bounded (see, e.g., the proof of [I5, Corollary 3.1]) and since the embedding
H3/%(Q) — H3/?7%(Q) is compact, one concludes that

-1

V(AY —aD T L2(Q) - L2(Q) (5.12)

is compact, that is, V is relatively compact with respect to Ag). Next, we note
that the condition

ker (A — u(B)I) € ker(V) (5.13)

is satisfied. In fact, it is no restriction to assume that the eigenfunction f,, gy cor-
responding to the simple eigenvalue p(3) is nonnegative (namely an eigenfunction
fu(s) can be assumed to be real and then also [f, ()| is an eigenfunction) and now
a consequence of the Harnack inequality stated in [40, Corollary 8.21] implies that
| fu(s)| does not vanish inside 2. Thus the same is true for f,g) and hence
holds as otherwise V' = 0. Thus, the assertion follows from [I5, Theorem 2.2]. O

Next, we recall the definition of the Dirichlet-to-Neumann map and an extension
of the Dirichlet and Neumann trace operators and to the maximal do-
main; see [I4] [19] for more details. For z € p(Ap) the Dirichlet-to-Neumann map
is defined as

D(z): H'(8Q) — L*(8Q), 71pf. — TN/, (5.14)

where f, € H3/2(Q) is such that —Af, = zf.. In order to extend the Dirichlet and
Neumann trace operators to the maximal domain dom (S*) = D,y consider the
spaces

Gp(09) :=={rpf|f €dom(Ax)} and Gn(09Q):={rnf]|[f € dom(Ap)},
(5.15)
and equip these spaces with the scalar products

(0. V)gpon) == (E 20, 57 Y2Y) 1290y, T =Im(D(i)™),
(0. )gn09) = (A2, A7) 1250y, A= —Im(D(i)).

The corresponding dual spaces of antilinear continuous functionals are denoted by
Gp(09) and G (09Q)', respectively, and consequently one obtains Gelfand triplets
{Gp(09), L2(09),Gp(09)'} and {Gn(09), L2(09Q),Gn(09)'}. We shall also use
that there are isometric isomorphisms ¢ : Gy (9Q) — L?(99) and ¢ : Gy (9Q)" —
L?(09) such that

(s V) gx (09) xgn(09) = (=@, 14) 1200y, € GN(OQ), ¥ € Gn(0);  (5.17)

we note that ., = A~'/? and ._ is the extension of A'/? onto Gy (9Q). It was
shown in [I4} [T9] that the Dirichlet and Neumann trace operators in ([5.4) and (5.5))
admit unique extensions to continuous surjective operators

FD : Draz — QN(GQ)' and ?N Doz — gD(ﬁQ)’, (518)

(5.16)

where D,,q, = dom (S5*) is equipped with the graph norm. Furthermore,
ker(7p) = ker(tp) =dom (Ap) and ker(7n) = ker(ry) = dom (An). (5.19)

With the extended Dirichlet and Neumann trace operators one also extends the
Dirichlet-to-Neumann map D(z), z € p(Ap), to a bounded operator

D(2) : Gn(8Q) = Gp (89, Fpfs = Tn S, (5.20)
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where f, € ker(S* — zI). The next result can be found in [19], see also [I8]
Theorem 8.7.6]. For this fix n < k and recall the domain decomposition

Dinaz = dom (S*) = dom (Ap) + ker(S* — nl); (5.21)

see (2.40). We will also use that the extended Dirichlet-to-Neumann map D(-) has
the remarkable regularization property

ran (D(n) — D(z)) C Gn(09), =z € p(Ap). (5.22)

Theorem 5.2. Consider the Laplacian on a bounded Lipschitz domain Q C R™, fix
n < k, and decompose f € dom (S*) according to (5.21)) in the form f = fp + f,,
where fp € dom (Ap) and f, € ker(S* —nI). Then {L*(952),T¢,T'1}, where

of=v_mpf and Tif=—wy7nfp, [f=fp+ fy€ DPnaa, (5.23)
is a boundary triplet for S* such that
Byf = -Af, fe€dom(By) ={9g € Daz|Tng = 0}, (5.24)

coincides with the Friedrichs extension Ap of S and the corresponding Weyl—
Titchmarsh function M is given by

M(2) = 14 (D(n) — D(2))e=", 2 € p(By). (5.25)

We note that the resolvent of By is a compact operator in L?(2) and that the
lower bound k = min (0(By)) is a simple eigenvalue. In order to determine the
boundary conditions of the Krein-type extensions Sk  for z < k we use Lemma
and observe that T’y f — M (z)Tof = 0 holds for f € D4, if and only if

~fp+ (D(n) = D(«))7pf =0, f € Dy, (5.26)

bolds. Since f = fp + f, and fp € ker(7p) we have D(n)7p f = D(n)7p fo = 7 fy
and hence ([5.26) takes the form

™~ fp + ;an - D(IZ?)?D]C =0, f € Dmax, (527)

which implies that the Krein-type extensions Sk ., * < &, of S are given by
Skaf =—Af, f€dom(Sk.)=1{9 € Duaz|7ng = D(2)7pg} (5.28)

and, in particular, the classical Krein—von Neumann extension has the form
Sof = —Af, f€dom(Sy) = {g € Diaz | Tvg = D(0)7ng}; (5.29)

such types of descriptions go back already to Visik [82] and Grubb [41] and were
obtained for the Laplacian on Lipschitz domains in [13, [14].

In the final theorem of this section we now show that the Krein-type extensions
Sk,z, © < K, are spectrally unstable.

Theorem 5.3. Let © < k and assume that 0 < V € L*(Q)\{0}. Then for all
a € R, the operator

(Skoe+aV)f==Af+aVf, dom(Sk.+aV)=dom(Skz), (5.30)
is self-adjoint in L?(Q?) and
0(Sk.e+aV)N(—oo,z) #0 for any o < 0. (5.31)
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Proof. First, one observes that V € L*°() is a self-adjoint bounded multiplication
operator in L?(Q) and hence Sk, + aV, @ < k, is self-adjoint in L?*(Q) for all
a e R.

In order to show (5.31) for x < k we choose 3, € R such that the smallest

eigenvalue p(3,) of the Robin Laplacian Ag’s) in (5.8) satisfies
x = u(Bz). (5.32)

As Agw) is a semibounded self-adjoint extension of S and Ag””) > zI it follows

from Proposition that Sk, < A%Bm). Furthermore, from Theorem we see
that

o(AF) +aV) N (~00,2) £ 0 for any a <0, (5:33)

and hence min O'(AS?I) +aV) < z for any @ < 0. The inequality Sk, < Agz)

yields Sk, +aV < Agm) + oV and, in particular,
mino(Sk s +aV) < min J(Agf’) +aV)) <z (5.34)

for any o < 0. This implies (5.31) for z < k.
It remains to discuss the case x = k. Using Lemma [2.13| one observes that

M(k) ={{Tofu,T1fc}| fx € ker(S™ — xI)}, (5.35)
and if we define the Cauchy data (Dirichlet-to-Neumann relation) at x by
l~)(f<;) ={{Tpfs, N[} | [« € ker(S* — kI)}, (5.36)

then it turns out that the Krein-type extension Sk, of S is given by

SKﬁf = *Af, f € dom (SK,I-{) - {g S Dmam | {?Dg??Ng} S E(H)} (537)

We consider the Friedrich extension Ap and note that ker(Ap) # {0} as the lower
bound & is a simple eigenvalue. The same arguments as in the proof of [I5, Corol-
lary 3.1] and Theorem show that V is a relatively compact perturbation of Ap
and hence [I5, Theorem 2.2] implies

o(Ap +aV)N(—oo,k) #( for any o < 0. (5.38)

As above we have Sk, < Ap (see Proposition and thus Sk . +aV < Ap+aV.
Together with (5.38)) this implies (5.31)) for z = k. O

Remark 5.4. We note that in the proof of Theorem [5.3]the multiplication operator
aV € L™(Q) is a relatively compact perturbation of the Robin Laplacian Aggg”),
x < K, by Theorem but in general only a bounded additive perturbation of the

Krein-type extension Sk ;. o
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