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Abstract. Let Hn be a monotone sequence of nonnegative selfadjoint oper-

ators or relations in a Hilbert space. Then there exists a selfadjoint relation
H∞, such that Hn converges to H∞ in the strong resolvent sense. This and

related limit results are explored in detail and new simple proofs are presented.

The corresponding statements for monotone sequences of semibounded closed
forms are established as immediate consequences. Applications and examples,

illustrating the general results, include sequences of multiplication operators,

Sturm-Liouville operators with increasing potentials, forms associated with
Krĕın-Feller differential operators, singular perturbations of nonnegative self-

adjoint operators, and the characterization of the Friedrichs and Krĕın-von

Neumann extensions of a nonnegative operator or relation.

1. Introduction

Let H be a Hilbert space and let B(H) be the space of bounded everywhere de-
fined linear operators on H. The following well-known fact on the strong limit of
a uniformly bounded monotone increasing sequence of bounded nonnegative self-
adjoint operators is one of the fundamental limit results in the theory of linear
operators in Hilbert spaces; cf. [1], [15].

Theorem 1.1. Let Hn ∈ B(H) be a nondecreasing sequence of nonnegative selfad-
joint operators in H and assume that the sequence Hn is uniformly bounded from
above, i.e., Hn ≤ M for some positive constant M and all n ∈ N. Then there exists
a nonnegative selfadjoint operator H∞ ∈ B(H) with H∞ ≤ M and Hn ≤ H∞ for
all n ∈ N such that

lim
n→∞

Hnh = H∞h, h ∈ H.(1.1)

If there is no uniform upper bound, then the convergence in (1.1) has to be
replaced by strong resolvent convergence and the strong resolvent limit H∞ will
in general be an unbounded nonnegative selfadjoint operator or a linear relation
(multivalued operator).

Theorem 1.2. Let Hn ∈ B(H) be a nondecreasing sequence of nonnegative selfad-
joint operators in H. Then there exists a nonnegative selfadjoint relation H∞ with
Hn ≤ H∞ such that

lim
n→∞

(Hn − λ)−1h = (H∞ − λ)−1h, h ∈ H, λ ∈ C\R.(1.2)
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Furthermore, {h ∈ H : limn→∞(Hnh, h) < ∞} is equal to the domain of the square
root of H∞; it is dense if and only if H∞ is an operator.

Simple examples show that H∞ in Theorem 1.2 is in general an unbounded
operator or a linear relation. If, e.g., H is a nonnegative unbounded selfadjoint
operator in H with a spectral decomposition H =

∫∞
0

t dE(t) and the sequence
Hn is defined by Hn =

∫ n

0
t dE(t), n ∈ N, then Hn converges to the selfadjoint

limit H∞ = H in the strong resolvent sense. As a further example, consider a
nonnegative selfadjoint operator H ∈ B(H) and let P be a nontrivial orthogonal
projection. Then the sequence Hn ∈ B(H) defined by Hn = H + nP , n ∈ N, is
increasing, and converges in strong resolvent sense to the orthogonal sum

H∞ = (I − P )H¹ ker P ⊕ {{0, h} : h ∈ ran P}.(1.3)

For applications in mathematical physics it is necessary to allow the operators
Hn in the sequence to be unbounded operators themselves, e.g., when consider-
ing sequences of differential operators and singular perturbations of unbounded
operators; cf. [2], [14]. In this situation it is convenient to deal also with the
corresponding sequence of densely defined closed nonnegative forms

tn[h, k] = (H
1
2
n h, H

1
2
n k), dom tn = domH

1
2
n , n ∈ N,

and the corresponding limit form t∞.

Theorem 1.3. Let Hn be a nondecreasing sequence of nonnegative selfadjoint op-
erators in H and let tn be the corresponding closed nonnegative forms. Then there
exists a nonnegative selfadjoint relation H∞ with Hn ≤ H∞ such that (1.2) holds.
Furthermore, H∞ is the representing relation for the closed nonnegative form

t∞[h, k] = lim
n→∞

tn[h, k], h, k ∈ dom t∞ =

{
h ∈

∞⋂
n=1

dom tn : lim
n→∞

tn[h] < ∞

}
,

and H∞ is an operator if and only if t∞ is densely defined.

A version of this theorem was given by T. Kato [13, Chapter VIII, Theo-
rem 3.13a]: if tn is a nondecreasing sequence of closed forms which are semibounded
from below, then the pointwise limit t∞ defines a closed form which is semibounded
from below. Under the extra assumption that t∞ is densely defined, which implies
that all tn are densely defined, the rest of the theorem in [13] is proved in the semi-
bounded case. Similar results, even without Kato’s density condition, were stated
by B. Simon [16], [17] (see also [14]) and by V.A. Derkach and M.M. Malamud [7],
[8].

In the present paper the general limit results are stated for a sequence of nonde-
creasing semibounded selfadjoint relations, see Theorems 3.1 and 3.5. The proofs
presented here are particularly simple; ’improper extensions’ of forms and Helly
type arguments are not needed. The convergence theorems for forms are obtained
immediately from the general limit results for semibounded selfadjoint relations,
see Theorem 4.2. The closedness of the limit form is a direct consequence. Theo-
rems 3.5 and 4.2 contain all the results in Theorems 1.2 and 1.3. One further essen-
tial advantage when dealing with linear relations is that results for nonincreasing
sequences of nonnegative selfadjoint operators and relations can be obtained from
previous results by taking formal inverses, see Theorem 3.7. This procedure also
leads to a corresponding result for a nonincreasing sequence of nonnegative forms,
see Theorem 4.3.
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The abstract results on limits of monotone sequences of operators, relations, and
forms are illustrated with a number of examples and applications in Sections 3 - 5.
These include nondecreasing sequences of multiplication operators, Sturm-Liouville
operators with increasing potentials, forms associated with Krĕın-Feller differential
operators, singular perturbations of unbounded nonnegative selfadjoint operators,
and the characterization of the Friedrichs and the Krĕın-von Neumann extensions of
a nonnegative operator or relation originally going back to T. Ando and K. Nishio
[3]. Furthermore, already the finite-dimensional version of the main result (Corol-
lary 3.6) has an important consequence in the spectral theory of singular canonical
differential equations: it can be used to determine the number of square-integrable
solutions of such a system; cf. [4].

2. Preliminaries

2.1. Linear relations. A linear relation H in a Hilbert space H is a linear subspace
H of the product space H × H, which is said to be closed if its graph is closed as
a subset of H × H. The domain, range, kernel, and multivalued part of H are
denoted by domH, ran H, ker H, and mul H, respectively. If mulH = {0}, then H
is (the graph of) a linear operator. The inverse of H is defined by H−1 = {{f ′, f} :
{f, f ′} ∈ H}. The relation H − λ, λ ∈ C, is defined as H − λ = { {h, h′ − λh} :
{h, h′} ∈ H }. The resolvent set ρ(H) and the spectrum σ(H) (in C) of H are
defined by

ρ(H) = {λ ∈ C : (H − λ)−1 ∈ B(H) } and σ(H) = C \ ρ(H).

It is known that the resolvent set is an open subset of C. The resolvent operator
(H − λ)−1 of a closed relation H satisfies the resolvent identity and, moreover,

ker(H − λ)−1 = mul H, λ ∈ ρ(H).(2.1)

The adjoint H∗ of H is the closed linear relation defined by

H∗ = { {k, k′} ∈ H× H : (h′, k) = (h, k′), {h, h′} ∈ H }.

The following identities are useful:

(dom H)⊥ = mul H∗, (ran H)⊥ = ker H∗.(2.2)

A relation H is said to be symmetric or selfadjoint if H ⊂ H∗ or H = H∗, respec-
tively. If the relation H is selfadjoint, it follows from (2.2) that (mulH)⊥ = dom H,
where dom H stands for the closure of domH in H. Hence, a selfadjoint relation H
in H can be decomposed as a componentwise orthogonal sum

H = Hs ⊕Hmul,(2.3)

where Hs = {{f, f ′} ∈ H : f ′ ∈ dom H} is a selfadjoint operator in the Hilbert
space dom H and Hmul = {0} ×mul H is a selfadjoint relation in the Hilbert space
mul H. Clearly, dom Hs = domH and ρ(Hs) = ρ(H). Moreover,

‖(H − λ)−1‖ ≤ 1
|Im λ|

, λ ∈ C \ R.(2.4)

The resolvent of a selfadjoint relation H has the representation

(H − λ)−1 =
∫

R

dE(t)
t− λ

, λ ∈ ρ(H),(2.5)
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where E(t) is the orthogonal sum of the spectral family of Hs in H ª mul H and
the null operator in mul H; cf. (2.1). Note that Hs =

∫
R t dE(t).

2.2. Nonnegative selfadjoint relations. A linear relation H in H is said to be
nonnegative, denoted by H ≥ 0, if (f ′, f) ≥ 0 for all {f, f ′} ∈ H. If the relation H
is selfadjoint, then H ≥ 0 if and only if Hs ≥ 0, so that

H ≥ 0 if and only if σ(H) ⊂ [0,∞).(2.6)

If H = H∗ ≥ 0, then H has a unique nonnegative selfadjoint square root H
1
2 in the

sense of relations:

H
1
2 = (Hs)

1
2 ⊕Hmul ,

where (Hs)
1
2 is the nonnegative square root of the densely defined nonnegative

selfadjoint operator Hs in the Hilbert space dom H = Hªmul H. Thus H
1
2 and H

have the same multivalued part and (H
1
2 )s = (Hs)

1
2 . Moreover, equivalent are:

dom H closed; domH
1
2 closed; domH = domH

1
2 ,(2.7)

with similar statements for the ranges since H−1 is also a nonnegative selfadjoint
relation. If H = H∗ ≥ 0, then the following identity is not difficult to check

(H−1 + x)−1 =
1
x
− 1

x2

(
H +

1
x

)−1

, x > 0.(2.8)

Here each resolvent operator belongs to B(H) by (2.6).

Proposition 2.1. Let H be a nonnegative selfadjoint relation in a Hilbert space
H. Then for h ∈ H and x > 0,

lim
x↓0

(
(H−1 + x)−1h, h

)
=
{
‖(H 1

2 )sh‖2, h ∈ dom H
1
2 ,

∞, otherwise.
(2.9)

Proof. Let P be the orthogonal projection from H onto dom H. Then it follows
from (2.1) and (2.8) that for each x > 0 and h ∈ H:

(
(H−1 + x)−1h, h

)
=

1
x
‖(I − P )h‖2 +

1
x
‖Ph‖2 − 1

x2

((
H +

1
x

)−1

Ph, Ph

)
.

Let E(t) be the spectral family belonging to H, so that Hs =
∫∞
0

t dE(t). Then
the above formula can be rewritten as

(
(H−1 + x)−1h, h

)
=

1
x
‖(I − P )h‖2 +

∫ ∞

0

t

xt + 1
d(E(t)Ph, Ph), x > 0.

(2.10)

By the nonnegativity of the terms the limit as x ↓ 0 is finite if and only if the
limit of each of the terms on the righthand side of (2.10) is finite. The first limit is
finite if and only if (I −P )h = 0, i.e., if h ∈ dom H. By the monotone convergence
theorem the limit of the second term is equal to

∫∞
0

t d(E(t)h, h), which is finite
and equal to ‖(H 1

2 )sh‖2 if and only if h ∈ dom H
1
2 .
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2.3. Ordering of nonnegative and semibounded selfadjoint relations. Let
H1 and H2 be nonnegative selfadjoint relations in H. Then H1 and H2 are said to
satisfy the inequality H1 ≥ H2, if

0 ≤ (H1 + x)−1 ≤ (H2 + x)−1 for some x > 0.(2.11)

In order to translate this definition in terms of square roots of the nonnegative
selfadjoint relations, observe that if H = H∗ ≥ 0 then for each x > 0,

dom (H + x)
1
2 = domH

1
2 .(2.12)

Since dom H is a core for H
1
2
s it follows that

‖(Hs + x)
1
2 h‖2 = ‖(H 1

2 )sh‖2 + x‖h‖2, h ∈ dom H
1
2 , x > 0.(2.13)

The next result extends well-known facts for densely defined nonnegative selfadjoint
operators; cf. [13, Ch. VI, §2.6]. A simple, but detailed, proof is given in [10,
Lemma 3.2, 3.3].

Proposition 2.2. Let H1 and H2 be nonnegative selfadjoint relations. The follow-
ing statements are equivalent:

(i) H1 ≥ H2;
(ii) H−1

2 ≥ H−1
1 ;

(iii) (H1 + x)−1 ≤ (H2 + x)−1 for every x > 0;

(iv) dom H
1
2
1 ⊂ dom H

1
2
2 and ‖(H

1
2
1 )sh‖ ≥ ‖(H

1
2
2 )sh‖ for all h ∈ dom H

1
2
1 .

A linear relation H in H is said to be semibounded from below if there exists
γ ∈ R such that H−γ is nonnegative, i.e., (h′, h) ≥ γ(h, h) for all {h, h′} ∈ H. The
supremum of all such γ is called the lower bound of H. Let H1 and H2 be selfadjoint
relations in H which are semibounded from below by γ1 and γ2, respectively. Then
H1 and H2 are said to satisfy the inequality H1 ≥ H2, if

0 ≤ (H1 + x)−1 ≤ (H2 + x)−1 for some x > −γj , j = 1, 2.(2.14)

Clearly with y ∈ R, Hj +y is semibounded from below by γj +y and, in particular,
by y − x if x > −γj . Hence, (2.14) is equivalent to

0 ≤ ((H1 + y) + (x− y))−1 ≤ (H2 + y + (x− y))−1,

which shows the following basic shifting property: H1 ≥ H2 if and only if H1 + y ≥
H2 + y for some or, equivalently, for all y ∈ R. If in the present definition H2 is the
zero operator on H, the inequality (2.14) means that 0 ≤ x(H1 + x)−1 ≤ I, x > 0,
reflecting nonnegativity of H1. With obvious modifications Proposition 2.2 remains
true for semibounded selfadjoint relations. This implies immediately, for instance,
the transitivity property for the ordering: H1 ≥ H2 and H2 ≥ H3 ⇒ H1 ≥ H3.

2.4. Convergence of selfadjoint relations. Let Hn be a sequence of linear rela-
tions in a Hilbert space H. The strong graph limit of the sequence Hn is the relation
which consists of all {h, h′} ∈ H×H for which there exists a sequence {hn, h′n} ∈ Hn

such that {hn, h′n} → {h, h′} in H × H. Clearly, if Γ is the strong graph limit of
the sequence Hn, then Γ−1 is the strong graph limit of the sequence H−1

n . The
following result goes back to [14, Theorem VIII.26] for the operator case.

Proposition 2.3. Let Hn and H∞ be selfadjoint relations in a Hilbert space H.
Then the sequence Hn converges to H∞ in the strong resolvent sense

(Hn − λ)−1h → (H∞ − λ)−1h, h ∈ H,
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for some, and hence for all, λ ∈ C \ R, if and only if H∞ is the strong graph limit
of the sequence Hn.

Proof. (⇒) Assume that Hn converges to H∞ in the strong resolvent sense for
some λ ∈ C \ R, and let Γ be the strong graph limit of the sequence Hn. Let
{h, h′} ∈ H∞, then the sequence{

(Hn − λ)−1(h′ − λh), (I + λ(Hn − λ)−1)(h′ − λh)
}
∈ Hn

converges to{
(H∞ − λ)−1(h′ − λh), (I + λ(H∞ − λ)−1)(h′ − λh)

}
= {h, h′}.

Hence {h, h′} ∈ Γ and consequently H∞ ⊂ Γ. Conversely, let {h, h′} ∈ Γ and let
{hn, h′n} ∈ Hn be such that {hn, h′n} → {h, h′}. Then

(H∞ − λ)−1(h′n − λhn)− hn

= (H∞ − λ)−1(h′n − λhn)− (Hn − λ)−1(h′n − λhn)
=
[
(H∞ − λ)−1 − (Hn − λ)−1

](
(h′n − λhn)− (h′ − λh)

)
+
[
(H∞ − λ)−1 − (Hn − λ)−1

]
(h′ − λh),

and the terms on the righthand side tend to 0 as n →∞ due to the uniform bound
given in (2.4) and the strong resolvent convergence. Hence,

(H∞ − λ)−1(h′ − λh) = h,

so that {h, h′} ∈ H∞. This shows that Γ ⊂ H∞.
(⇐) Let H∞ be the strong graph limit of the sequence Hn and let λ ∈ C \ R.

Let h ∈ H, then, since H∞ is selfadjoint, there is an element {f, f ′} ∈ H∞ with
f ′ − λf = h, so that (H∞ − λ)−1h = f . By the assumption there exists a sequence
{fn, f ′n} ∈ Hn converging to {f, f ′}. Therefore,

(Hn − λ)−1h− (H∞ − λ)−1h

= (Hn − λ)−1
(
(f ′ − λf)− (f ′n − λfn)

)
+ (Hn − λ)−1(f ′n − λfn)− (H∞ − λ)−1(f ′ − λf)

= (Hn − λ)−1
(
(f ′ − λf)− (f ′n − λfn)

)
+ fn − f.

Here the righthand side tends to 0 as n → ∞ due to the uniform bound given in
(2.4).

The following version of Proposition 2.3 for semibounded selfadjoint relations is
useful.

Proposition 2.4. Let Hn and H∞ be selfadjoint relations in a Hilbert space H
semibounded from below by some common constant µ ∈ R. Then the sequence Hn

converges to H∞ in the strong resolvent sense if and only if

(Hn + y)−1h → (H∞ + y)−1h, h ∈ H,

for some, and hence for all, y > −µ. Furthermore, these statements are equivalent
to

((Hn − µ)−1 + x)−1h → ((H∞ − µ)−1 + x)−1h, h ∈ H,

for some, and hence for all, x > 0.
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Proof. A slight modification of the proof of Proposition 2.3 shows that H∞ is the
graph limit of the sequence Hn if and only if (Hn + y)−1h → (H∞ + y)−1h, h ∈ H,
for some, and hence for all, y > −µ. Hence, the first part follows from Proposition
2.3. The second part is an immediate consequence of (2.8).

3. Monotone sequences of semibounded selfadjoint operators and
relations

3.1. Nondecreasing sequences of nonnegative selfadjoint operators and
relations. The situation of a nondecreasing sequence of nonnegative selfadjoint
operators or relations is described in the following theorem.

Theorem 3.1. Let Hn be a nondecreasing sequence of nonnegative selfadjoint op-
erators or relations in a Hilbert space H. Then there exists a nonnegative selfadjoint
relation H∞ with Hn ≤ H∞, such that H∞ is the limit of the sequence Hn in the
strong resolvent sense. Furthermore,

dom H
1
2∞ =

{
h ∈

∞⋂
n=1

dom H
1
2
n : lim

n→∞
‖(H

1
2
n )sh‖ < ∞

}
(3.1)

and

‖(H
1
2∞)sh‖ = lim

n→∞
‖(H

1
2
n )sh‖, h ∈ dom H

1
2∞.(3.2)

If, in particular, the sequence Hn in Theorem 3.1 consists of nonnegative self-
adjoint operators, then (H

1
2
n )s in (3.1) and (3.2) can be replaced by H

1
2
n and the

theorem is equivalent to Theorem 1.3. If, moreover, Hn ∈ B(H), then Theorem 3.1
contains Theorem 1.2.

The existence of the strong resolvent limit H∞ in Theorem 3.1 is easily derived
from the basic limit Theorem 1.1, while the proof of the formulas (3.1) and (3.2)
is based on the following elementary lemma about the interchange of “space and
time” limits for monotone sequences of real functions; also a proof of this lemma is
included to emphasize the simplicity of the full proof.

Lemma 3.2. Let fn be a nondecreasing sequence of nonincreasing functions de-
fined on some open interval (a, b) and let fn(a) = limx↓a fn(x) be finite. Assume
that for all x ∈ (a, b) the limit f∞(x) = limn→∞ fn(x) is also finite. Then the limit
function f∞ is nonincreasing on (a, b) and at the endpoint a one has the equality

lim
x↓a

f∞(x) = lim
n→∞

fn(a).(3.3)

In particular, both limits in (3.3) are finite or infinite simultaneously.

Proof. Clearly, f∞ is nonincreasing and f∞(x) ≥ fn(x) for all x ∈ (a, b), n ∈
N. Hence, limx↓a f∞(x) ≥ limn→∞ fn(a). If limx↓a f∞(x) > limn→∞ fn(a), then
f∞(x) > δ + limn→∞ fn(a) ≥ δ + limn→∞ fn(x) = δ + f∞(x) for some x ∈ (a, b)
and δ > 0; a contradiction which proves (3.3).

Proof of Theorem 3.1. By assumption Hn ≤ Hm for m ≥ n. Therefore,

0 ≤ (Hm + x)−1 ≤ (Hn + x)−1, x > 0.(3.4)

It follows from the analog of Theorem 1.1, when applied to the nonincreasing se-
quence (Hn +x)−1 ≥ 0, that for any fixed x > 0 there exists a nonnegative operator
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Lx ∈ B(H), such that (Hn +x)−1h → Lxh, h ∈ H. Define the closed linear relation
H∞ by

H∞ = { {Lxh, (I − xLx)h} : h ∈ H }, x > 0,(3.5)

so that Lx = (H∞ + x)−1 ≥ 0. Then H∞ is selfadjoint, H∞ + x ≥ 0, and moreover
−x ∈ ρ(H∞). Therefore, by Proposition 2.4 the sequence Hn converges to H∞ in
the strong resolvent sense. The inequalities 0 ≤ (H∞ + x)−1 ≤ (Hn + x)−1 ≤ 1/x
mean that 0 ≤ Hn ≤ H∞. Since H∞ is also the strong graph limit of the sequence
Hn (see Proposition 2.3), it is clear that the definition of H∞ in (3.5) does not
actually depend on x > 0.

It remains to prove (3.1) and (3.2). Since Hn converges to H∞ in the strong
resolvent sense it follows from Proposition 2.4 that(

(Hn + I)−1 + x)−1h, h
)
→
(
(H∞ + I)−1 + x)−1h, h

)
, h ∈ H, x > 0.(3.6)

Now, with h ∈ H fixed, define the functions fn and f∞ on (0,∞) by

fn(x) =
(
((Hn + I)−1 + x)−1h, h

)
, f∞(x) =

(
((H∞ + I)−1 + x)−1h, h

)
.(3.7)

Clearly, each of the functions fn and f∞ is continuous and nonincreasing for x > 0.
Furthermore, the sequence fn is monotonically nondecreasing with f∞ as pointwise
limit. By applying Proposition 2.1, (2.12), and (2.13) one gets for n ∈ N ∪ {∞}

fn(0) = lim
x↓0

(
((Hn + I)−1 + x)−1h, h

)
=

{
‖(H

1
2
n )sh‖2 + ‖h‖2, h ∈ dom H

1
2
n ,

∞, otherwise.

(3.8)

Hence, h ∈
⋂∞

n=1 dom H
1
2
n if and only if fn(0) in (3.8) is finite for every n ∈ N.

Therefore, by Lemma 3.2, h belongs to the righthand side of (3.1) if and only if

f∞(0) = lim
n→∞

fn(0)(3.9)

is finite, which means that h ∈ dom H
1
2∞; see (3.8) with n = ∞. This proves (3.1)

and, finally, (3.2) follows from (3.8) and (3.9). ¤

3.2. Some properties of the limit relation H∞. The limit H∞ of a sequence
of operators Hn in Theorem 3.1 need not be bounded and it can be multivalued.
However, the limit H∞ may have an operator part (H∞)s which is bounded even
if each Hn is unbounded; see Example 3.4 below.

Proposition 3.3. Let Hn be a nondecreasing sequence of nonnegative selfadjoint
operators in a Hilbert space H converging to the selfadjoint relation H∞ as in The-
orem 3.1. Then:

(i) if for some M ≥ 0 and every 0 < ε < 1 there exists nε ∈ N, such that
(M + ε, M + ε−1) ⊂ ρ(Hn) for all n ≥ nε, then ‖(H∞)s‖ ≤ M holds;

(ii) if the operators Hn are unbounded and the operator part (H∞)s of H∞ is
bounded, then mul H∞ is infinite-dimensional.

Proof. (i) Let M ≥ 0 satisfy the given condition. As H∞ is a nonnegative relation
it suffices to show that (M,∞) ⊂ ρ(H∞) for some M ≥ 0, since then σ((H∞)s) ⊂
[0, M ] and ‖(H∞)s‖ ≤ M . Suppose that (M,∞) 6⊂ ρ(H∞). Then choose some
µ ∈ (M,∞) ∩ σ(H∞). It follows from [13, Theorem VIII.1.14] that every open
interval around µ contains a point of σ(Hn) for sufficiently large n. Then there exists
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0 < ε < 1, such that µ ∈ (M + ε, M + ε−1) and hence (M + ε, M + ε−1) 6⊂ ρ(Hn)
for all sufficiently large n, a contradiction.

(ii) Let (H∞)s be bounded. Then Hn ≤ H∞ and Proposition 2.2 imply that

dom H∞ = domH∞ = domH
1
2∞ ⊂ dom H

1
2
n .(3.10)

If, moreover, mul H∞ is finite-dimensional, then the set on the lefthand side of
(3.10) has finite codimension in H, due to (2.2). As the set on the righthand side

of (3.10) is dense in H this implies that dom H
1
2
n = H and hence H

1
2
n and Hn are

bounded, a contradiction.

The converse assertion in Proposition 3.3 (i) is in general not true; an extreme
situation appears in the next example, which also illustrates Proposition 3.3 (ii).

Example 3.4. Let ∆ ⊂ R be an interval and let Vn : ∆ → R be a nondecreasing
sequence of measurable nonnegative functions. Then the multiplication operators

Hnh = Vnh, dom Hn =
{

h ∈ L2(∆) : Vnh ∈ L2(∆)
}
,

form a nondecreasing sequence of nonnegative selfadjoint operators in L2(∆). Let

δ :=
{

t ∈ ∆ : lim
n→∞

Vn(t) < ∞
}

and denote the pointwise limit of Vn on δ by Vδ. Let Hδ be the corresponding
multiplication operator in L2(δ), i.e.,

Hδh = Vδh, dom Hδ =
{

h ∈ L2(δ) : Vδh ∈ L2(δ)
}
.

Then the sequence Hn converges in the strong resolvent sense to the nonnegative
selfadjoint relation H∞ given by

H∞ = Hδ ⊕
{
{0, h} : h ∈ L2(δc)

}
, δc := ∆\δ,

with respect to the space decomposition L2(∆) = L2(δ)⊕ L2(δc). In fact,

(H∞ + x)−1 = (Hδ + x)−1 ⊕
{
{h, 0} : h ∈ L2(δc)

}
, x > 0,

which implies

‖(H∞ + x)−1h− (Hn + x)−1h‖2

=
∫

δ

∣∣((Vδ(t) + x)−1 − (Vn(t) + x)−1
)
h(t)

∣∣2 dt +
∫

δc

∣∣(Vn(t) + x)−1h(t)
∣∣2 dt

for all h ∈ L2(∆). Since limn→∞ Vn(t) = Vδ(t), t ∈ δ, the first integral on the
righthand side tends to 0 for n →∞ and, since limn→∞(Vn(t) + x)−1 = 0, t ∈ δc,
also the second integral tends to zero by the monotone convergence theorem.

Now consider the multiplication operators Hn on L2(0,∞) determined by

Vn(t) = nt, t ∈ [0,∞), n ∈ N.

Here limn→∞ Vn(t) = ∞ for all t > 0, and hence δ = {0} and L2(δc) = L2(0,∞).
Consequently,

σ(Hn) = [0,∞) for all n ∈ N, σ((H∞)s) = ∅,
i.e., the constant spectrum σ(Hn) = [0,∞) disappears in the limit from the finite
complex plane and formally ∞ is the only spectral point of H∞. If H is an arbi-
trary bounded (or unbounded) nonnegative selfadjoint operator on a Hilbert space
H, then the sequence H ⊕ Hn in H ⊕ L2(0,∞) converses in the strong resolvent
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sense to H∞ = H⊕ ({0}×L2(0,∞)), where H = (H∞)s. Hence, a sequence of un-
bounded selfadjoint operators may converge to a selfadjoint relation with a bounded
(or unbounded) operator part.

Assertions (i) and (ii) in Proposition 3.3 also hold if the sequence consists of
selfadjoint relations. In fact, if Hn is a nondecreasing sequence of nonnegative
selfadjoint relations with unbounded operators parts, Hn converges to H∞ and the
operator part of H∞ is bounded, then mulH∞ªmul Hn is infinite-dimensional for
every n.

3.3. Nondecreasing sequences of semibounded selfadjoint operators or
relations. The next theorem is an immediate extension of Theorem 3.1 to the
semibounded situation; for this purpose note that with a lower bound γ,

((H∞ − γ)
1
2 )s = ((H∞ − γ)s)

1
2 = ((H∞)s − γ)

1
2 .

Theorem 3.5. Let Hn be a nondecreasing sequence of selfadjoint relations bounded
from below by γ in a Hilbert space H. Then there exists a selfadjoint relation H∞
bounded from below by γ ≤ Hn ≤ H∞, such that H∞ is the limit of the sequence
Hn in the strong resolvent sense. Furthermore,

dom (H∞ − γ)
1
2 =

{
h ∈

∞⋂
n=1

dom (Hn − γ)
1
2 : lim

n→∞
‖((Hn)s − γ)

1
2 h‖ < ∞

}(3.11)

and

‖((H∞)s − γ)
1
2 h‖2 = lim

n→∞
‖((Hn)s − γ)

1
2 h‖2, h ∈ dom (H∞ − γ)

1
2 .(3.12)

If Hn is a nondecreasing sequence of bounded selfadjoint operators bounded from
below by γ in a Hilbert space H, then (3.11) and (3.12) are simplified as follows:

dom (H∞ − γ)
1
2 = {h ∈ H : lim

n→∞
(Hnh, h) < ∞}

and

‖((H∞)s − γ)
1
2 h‖2 = lim

n→∞
(Hnh, h)− γ‖h‖2, h ∈ dom (H∞ − γ)

1
2 .

Moreover, if the operator part (H∞)s is bounded, then

((H∞)sh, h) = lim
n→∞

(Hnh, h), h ∈ dom H∞.

Next a finite-dimensional version of Theorem 3.5 is given. The last statement of
the following result also contains the converse of Proposition 3.3 (i). It holds in
the finite-dimensional case, since strong convergence of operators is in that case
equivalent to convergence in the operator norm.

Corollary 3.6. If Hn is a nondecreasing sequence of symmetric matrices in a
finite-dimensional Hilbert space H and if γ is the smallest eigenvalue of H1, then

(Hn + x)−1 → (H∞ + x)−1, x > −γ.

Furthermore, dom H∞ = {h ∈ H : limn→∞(Hnh, h) < ∞} and

((H∞)sh, h) = lim
n→∞

(Hnh, h), h ∈ dom H∞.

Moreover, for every 0 < ε < 1 there exists nε ∈ N such that

(‖(H∞)s‖+ ε, ‖(H∞)s‖+ ε−1) ⊂ ρ(Hn), n ≥ nε.
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For an application of Corollary 3.6 in the spectral theory of singular canonical
differential equations see [4].

3.4. Nonincreasing sequences of nonnegative selfadjoint operators or re-
lations. Since the strong resolvent convergence of the sequence Hn is equivalent
to the strong resolvent convergence of the sequence of inverses H−1

n (see Proposi-
tion 2.4), Theorem 3.1 can be translated into a result for nonincreasing sequences
of nonnegative selfadjoint relations, giving a description in terms of ranges instead
of domains.

Theorem 3.7. Let Hn be a nonincreasing sequence of nonnegative selfadjoint op-
erators or relations in a Hilbert space H. Then there exists a nonnegative selfadjoint
relation H∞ with H∞ ≤ Hn, such that H∞ is the limit of the sequence Hn in the
strong resolvent sense. Furthermore,

ran H
1
2∞ =

{
h ∈

∞⋂
n=1

ran H
1
2
n : lim

n→∞
‖(H− 1

2
n )sh‖ < ∞

}
(3.13)

and

‖(H− 1
2∞ )sh‖ = lim

n→∞
‖(H− 1

2
n )sh‖, h ∈ ran H

1
2∞.(3.14)

Proof. The sequence H−1
n is nondecreasing, so by Theorem 3.1 there exists a non-

negative selfadjoint relation, say, H−1
∞ , such that H−1

∞ is the limit of the sequence
H−1

n in the strong resolvent sense and H−1
n ≤ H−1

∞ . Then H∞ ≤ Hn and H∞ is
the strong resolvent limit of the sequence Hn by Proposition 2.4. The rest of the
statements is a direct translation of similar statements in Theorem 3.1.

4. Monotone sequences of semibounded closed forms

4.1. Semibounded forms. Let t = t[·, ·] be a symmetric form in the Hilbert space
H with domain dom t. The notation t[h] will be used to denote t[h, h], h ∈ dom t.
The symmetric form t is said to be semibounded from below, in short semibounded,
if there exists γ ∈ R such that t[h] ≥ γ‖h‖2 for all h ∈ dom t; cf. [13]. The inclusion
t1 ⊂ t2 for semibounded forms t1 and t2 is defined by

dom t1 ⊂ dom t2, t1[h] = t2[h], h ∈ dom t1.

The semibounded form t is closed if

hn → h, t[hn − hm] → 0, hn ∈ dom t, h ∈ H, m, n →∞,(4.1)

imply that h ∈ dom t and t[hn − h] → 0. The semibounded form t is closable if it
has a closed extension; in this case the closure of t is the smallest closed extension
of t. The inequality t1 ≥ t2 for semibounded forms t1 and t2 is defined by

dom t1 ⊂ dom t2, t1[h] ≥ t2[h], h ∈ dom t1.(4.2)

In particular, t1 ⊂ t2 implies t1 ≥ t2. If the forms t1 and t2 are closable, the
inequality t1 ≥ t2 is preserved by their closures.

There is a one-to-one correspondence between all closed semibounded (nonneg-
ative) forms t in H and all semibounded (nonnegative, respectively) selfadjoint
relations H in H via dom H ⊂ dom t and

t[h, k] = (Hsh, k), h ∈ dom H, k ∈ dom t.(4.3)
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This one-to-one correspondence can also be expressed as follows

t[h, k] = (h′, k), {h, h′} ∈ H, k ∈ dom t,(4.4)

since (h′, k) = (h′, Pk) = (Hsh, k), where P is the orthogonal projection from H

onto dom t = (mul H)⊥. Let the closed form t be bounded from below by γ and let
the semibounded selfadjoint relation H be connected to t via (4.3) or (4.4), then it
follows from (2.12), (2.13) that dom t = dom (Hs − γ)

1
2 and

t[h, k] = ((Hs − γ)
1
2 h, (Hs − γ)

1
2 k) + γ(h, k), h, k ∈ dom t.(4.5)

The formulas (4.4), (4.5) are analogs of Kato’s representation theorems for, in
general, nondensely defined closed semibounded forms; cf. [10]. In the case of
nonnegative relations and forms the following result, which is a generalization of
[13, Theorem VI.2.21], can be found in [10, Theorem 4.3]. It is immediate to obtain
the result in the present context.

Theorem 4.1. Let t1 and t2 be closed semibounded forms and let H1 and H2 be
the corresponding semibounded selfadjoint relations. Then

t1 ≥ t2 if and only if H1 ≥ H2.(4.6)

4.2. Nondecreasing sequences of semibounded closed forms. Theorem 4.1
makes it possible to translate Theorem 3.5 to the context of a nondecreasing se-
quence of semibounded closed forms.

Theorem 4.2. Let tn be a nondecreasing sequence of closed forms bounded from
below by γ in a Hilbert space H. Then there exists a closed form t∞ bounded from
below by γ, such that

dom t∞ =

{
h ∈

∞⋂
n=1

dom tn : lim
n→∞

tn[h] < ∞

}
(4.7)

and

t∞[h, k] = lim
n→∞

tn[h, k], h, k ∈ dom t∞.(4.8)

Moreover, the representing relations Hn of the forms tn converge in the strong
resolvent sense to the representing relation H∞ of the form t∞.

Proof. Let Hn and H∞ be the semibounded selfadjoint relations in H associated
to tn and t∞, respectively; see (4.4), (4.5). Then by Theorem 4.1 Hn defines a
nondecreasing sequence of selfadjoint relations bounded from below by γ. By The-
orem 3.5 the strong resolvent limit of the sequence Hn is a semibounded selfadjoint
relation H∞ such that γ ≤ Hn ≤ H∞. It is clear from (4.5) and the formulas (3.11)
and (3.12) in Theorem 3.5 (by polarization) that the limit form t∞ defined in (4.7),
(4.8) is the closed semibounded form corresponding to the semibounded selfadjoint
relation H∞.

Theorem 3.5 and Theorem 4.2 show that for nondecreasing sequences of semi-
bounded selfadjoint relations Hn the strong resolvent convergence is equivalent to
the pointwise convergence of the associated closed forms tn. It is clear from Ex-
ample 3.4 which involves a multivalued limit relation H∞ that the limit form t∞
in (4.8) need not be densely defined, even if tn is a sequence of densely defined
or bounded everywhere defined forms. This phenomenon can appear also in con-
crete applications, like boundary value problems for differential operators; see e.g.
Krĕın-Feller differential operators treated below in Section 5.2.
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4.3. Nonincreasing sequences of nonnegative closed forms. Theorem 3.7
can be translated directly into a statement for nonincreasing sequences of nonnega-
tive closed forms, yielding a description of the range ran H

1
2∞. Here also descriptions

of dom H
1
2∞ and of the form t∞ associated to the limit H∞ are given in the case of

nonincreasing sequences Hn. Recall that any form t has a regular part treg, which
is the largest closable form majorized by t; i.e., if t̃ is a closable form with t̃ ≤ t,
then t̃ ≤ treg. The regular part of a form has a monotonicity property: if s ≤ t,
then sreg ≤ treg; cf. [17], see also [11]. The following result goes back to Simon [17],
see also [14]. Again, the present version allows nondensely defined forms.

Theorem 4.3. Let tn be a nonincreasing sequence of closed nonnegative forms in
a Hilbert space H with corresponding nonnegative selfadjoint relations Hn and let
t∞ be the closed nonnegative form corresponding to the strong resolvent limit H∞
of the sequence Hn. Moreover, let the form t be defined by

dom t =
∞⋃

n=1

dom tn, t[h, k] = lim
n→∞

tn[h, k], h, k ∈ dom t.

Then the form t is related to the form t∞ via

t∞ = clos treg.(4.9)

In particular, the form t is not necessarily closable: t is closable if and only if
t ⊂ t∞, and t is closed if and only if t = t∞.

Proof. It follows from Theorem 3.7 that t∞ ≤ tn. Now the definition of the form
t implies that t∞ ≤ t, since dom tn ⊂ dom t∞ for all n ∈ N and t∞[h, h] ≤
inf tn[h, h] = limn→∞ tn[h] for all h ∈ dom t∞. The form t∞ is closed, so the
inequality t∞ ≤ t leads to t∞ ≤ treg (due to the monotonicity property of the
regular part) and, since inequalities are preserved by closures, this yields

t∞ ≤ clos treg.

To obtain the reverse inequality, observe that t ≤ tn. As above this implies treg ≤ tn
and clos treg ≤ tn. Taking limits leads to

clos treg ≤ t∞.

Thus (4.9) is shown to hold. If t ⊂ t∞, then, clearly, t is closable; if t is closable,
then t = treg ⊂ clos treg = t∞. Likewise, if t = t∞, then t is closed; if t is closed,
then t = clos treg = t∞.

Theorem 4.3 shows that for nonincreasing sequences of nonnegative selfadjoint
relations Hn the strong resolvent convergence and the pointwise convergence of the
associated closed forms tn may yield, in general, different limit forms t∞ and t; see
(4.9). This is illustrated by the following two examples.

Example 4.4. In the Hilbert space H = L2[0, 1] the operators Hn defined by

Hn = −D2, dom Hn =
{

h ∈ W 2
2 [0, 1] : Dh(0) =

1
n

h(0), h(1) = 0
}

are selfadjoint and nonnegative. Here W k
2 [0, 1] denotes the usual Sobolev space of

kth order. The corresponding nonnegative closed forms tn are given by

tn[h] =
∫ 1

0

|Dh(t)|2 dt +
1
n
|h(0)|2, h ∈ dom tn,
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dom tn = {h ∈ W 1
2 [0, 1] : h(1) = 0 }.

The sequence of operators Hn or, equivalently, the sequence of forms tn is nonin-
creasing. By Theorem 3.7 there is a nonnegative selfadjoint limit H∞ and it can be
identified as the selfadjoint realization corresponding to the boundary conditions

Dh(0) = 0, h(1) = 0.

Therefore, the corresponding form t∞ is given by

t∞[h] =
∫ 1

0

|Dh(t)|2 dt, dom t∞ = {h ∈ W 1
2 [0, 1] : h(1) = 0 }.

Since all Hn are uniformly bounded away from 0, Theorem 3.7 shows that ran H∞ =
H. Of course, this is also clear by direct inspection.

According to Theorem 4.3 the nonincreasing sequence of nonnegative closed forms
tn gives rise to the following limit t:

t[h] =
∫ 1

0

|Dh(t)|2 dt, dom t = {h ∈ W 1
2 [0, 1] : h(1) = 0 }.

Therefore, t is a closed form and t = t∞ by Theorem 4.3, or by direct comparison.

Example 4.5. Consider a slight modification of the previous differential operators;
cf. [14, Ch. VI, Example 3.10]. Let Hn be the nonnegative selfadjoint operator in
H = L2[0, 1] defined by

Hn = − 1
n

D2, dom Hn =
{

h ∈ W 2
2 [0, 1] : Dh(0) = nh(0), h(1) = 0

}
.

The corresponding closed form tn is given by

tn[h] =
1
n

∫ 1

0

|Dh(t)|2 dt + |h(0)|2, h ∈ dom tn,

dom tn = {h ∈ W 1
2 [0, 1] : h(1) = 0 }.

The sequence Hn is nonincreasing and by Theorem 3.7 it has a nonnegative selfad-
joint limit H∞. In order to determine this limit, observe that ran Hn = H and that
(1/n)H−1

n converges strongly to the resolvent R of the selfadjoint operator −D2 in
L2[0, 1] with the boundary conditions h(0) = h(1) = 0. According to Theorem 3.7

ran H
1
2∞ =

{
h ∈ H : lim

n→∞
‖H− 1

2
n h‖ = lim

n→∞
(H−1

n h, h)
1
2 < ∞

}
= {0},

since (Rh, h) > 0 for any nontrivial h ∈ H. Hence ran H∞ ⊂ ran H
1
2∞ = {0}, so

that H∞ = H× {0} (cf. (2.7)). Therefore, t∞ is the zero form on dom t∞ = H.
As described in Theorem 4.3 the nonincreasing sequence of nonnegative closed

forms tn gives rise to the following limit form t:

t[h] = |h(0)|2, dom t = {h ∈ W 1
2 [0, 1] : h(1) = 0 }.

The form t is not closable; in fact, t is singular. In other words, if s is a nonnegative
form which is majorized by t and by the inner product in H = L2[0, 1], then s = 0,
see, e.g. [11]. To see this, let h ∈ dom t, and decompose h = h1 + h2, where
h1, h2 ∈ dom t with h1(0) = 0 and h2(0) = h(0). By Cauchy-Schwarz’s inequality
s[h] = s[h2] ≤ ‖h2‖2, which can be made arbitrarily small. This shows that s = 0.
Since t is singular, treg = 0 (on dom t) and, therefore, by Theorem 4.3, t∞ =
clos treg = 0 with dom t∞ = H.
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5. Applications to differential operators, singular perturbations,
and nonnegative extensions

5.1. Sturm-Liouville operators with increasing potentials. Let (a, b) ⊂ R
be a bounded interval and let Vn : (a, b) → R be a nondecreasing sequence of
nonnegative bounded continuous functions. It will be assumed that the pointwise
limit of the sequence Vn is finite on some interval (α, β) ⊂ (a, b) and infinite on the
intervals (a, α] and [β, b), i.e.,

(α, β) =
{

t ∈ (a, b) : lim
n→∞

Vn(t) ∈ R
}
.

Denote by V : (α, β) → R the pointwise limit of Vn on (α, β). Note that V is
bounded on any closed subset of (α, β) and hence V ∈ L1

loc(α, β).
In [13, Examples VI.1.36 and VI.2.16] it is shown that the nonnegative forms

tn[h, k] =
∫ b

a

(
Dh(t)Dk(t) + Vn(t)h(t)k(t)

)
dt,

dom tn =
{

h ∈ L2(a, b) : h ∈ AC(a, b), Dh ∈ L2(a, b), h(a) = h(b) = 0
}

,

are closed and densely defined. Moreover, the associated nonnegative selfadjoint
operators Hn are given by

Hnh = −D2h + Vnh,

dom Hn =
{

h ∈ L2(a, b) : h, Dh ∈ AC(a, b), D2h ∈ L2(a, b), h(a) = h(b) = 0
}
.

Note that the domains dom tn and dom Hn do not depend on n ∈ N.
The sequence tn is nondecreasing and therefore, by Theorem 4.2, there exists a

limit form t∞ which is closed, nonnegative, such that

t∞[h] = lim
n→∞

tn[h], dom t∞ =
{

h ∈ dom t1 : lim
n→∞

tn[h] < ∞
}

.

Observe that by the monotone convergence theorem

lim
n→∞

∫ b

a

Vn(t)|h(t)|2 dt =
∫ b

a

lim
n→∞

Vn(t)|h(t)|2 dt, h ∈ dom tn.

This limit is finite if and only if h vanishes on (a, α] ∪ [β, b) =: (α, β)c and∫ β

α

V (t)|h(t)|2 dt < ∞.

Therefore the domain of t∞ is given by

dom t∞ =

{
h ∈ L2(a, b) :

h ∈ AC(a, b), Dh ∈ L2(a, b)
h(a) = h(b) = 0, h|(α,β)c = 0,

∫ β

α

V |h|2 dt < ∞

}
.

Since h ∈ dom t∞ vanishes on (α, β)c it follows that Dh|(a,α)∪(β,b) = 0. Hence,

t∞[h, k] = lim
n→∞

tn[h, k] =
∫ β

α

(
Dh(t)Dk(t) + V (t)h(t)k(t)

)
dt, h, k ∈ dom t∞.
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Furthermore, dom t∞ is dense in L2(α, β) and the same arguments as in [13, Ch.
VI, §4.1] show that the nonnegative selfadjoint operator T∞ associated with the
restriction of t∞ to L2(α, β) is

T∞h = −D2h + V h, h ∈ dom T∞,

dom T∞ =

{
h ∈ L2(α, β) :

h, Dh ∈ AC(α, β), h(α) = h(β) = 0
Dh ∈ L2(α, β),−D2h + V h ∈ L2(α, β),

∫ β

α

V |h|2 dt < ∞

}
.

Hence, with respect to the decomposition L2(a, b) = L2(α, β) ⊕ L2((a, α) ∪ (β, b))
the nonnegative selfadjoint relation H∞ associated with t∞ has the representation

H∞ = T∞ ⊕
{
{0, h} : h ∈ L2((a, α) ∪ (β, b))

}
,

and, in particular, T∞ = (H∞)s. It is emphasized that the selfadjoint operators
Hn converge in the strong resolvent sense to H∞, not to its operator part T∞; cf.
[17, Theorem 5.1].

5.2. Krĕın-Feller operators. A sequence of Krĕın-Feller differential operators is
considered which gives rise to a nondensely defined limit form; see [12].

Let m : [a, b] → R be a left-continuous strictly increasing function and assume
that

m(a) < lim
t↓a

m(t).(5.1)

Let L2
m[a, b] be the space of all (equivalence classes of) functions which are mea-

surable and square-integrable with respect to the Lebesgue-Stieltjes measure dm
induced by the function m. The space L2

m[a, b] equipped with the scalar product
(h, k) =

∫
[a,b]

hk dm, h, k ∈ L2
m[a, b], is a Hilbert space. Note that due to (5.1)

the characteristic function 1{a} of the set {a} spans a one-dimensional subspace in
L2

m[a, b], i.e., 0 6= 1{a} ∈ L2
m[a, b]. By means of the function m define a nondecreas-

ing sequence of nonnegative forms by

tn[h, k] =
∫

[a,b]

(Dh)(x)(Dk)(x) dx + nh(a)k(a), h, k ∈ dom tn,

dom tn =
{

h ∈ L2
m[a, b] : h ∈ AC[a, b], Dh ∈ L2[a, b], h(b) = 0

}
.

It can be shown that the forms tn are closed and densely defined in L2
m[a, b]. By

Theorem 4.2 there exists a limit form t∞ which is closed, nonnegative, and given
by

t∞[h, k] =
∫

[a,b]

(Dh)(x)(Dk)(x) dx, h, k ∈ dom t∞,

dom t∞ =
{

h ∈ L2
m[a, b] : h ∈ AC[a, b], Dh ∈ L2[a, b], h(a) = 0, h(b) = 0

}
.

The domain dom t∞ is not dense in L2
m[a, b]; in fact, its orthogonal complement is

spanned by the characteristic function 1{a}.
Let Hn, n ∈ N, and H∞ be defined by

Hn = { {h, k} ∈ L2
m[a, b]× L2

m[a, b] : h ∈ AC[a, b],

Dh(x)−Dh(a) =
∫

[a,x]

k(t) dm(t), Dh(a) = nh(a), h(b) = 0 },
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and
H∞ = { {h, k} ∈ L2

m[a, b]× L2
m[a, b] : h ∈ AC[a, b],

Dh(x)−Dh(a) =
∫

[a,x]

k(t) dm(t), h(a) = 0, h(b) = 0 }.

Then Hn is the graph of a nonnegative selfadjoint operator and H∞ is a nonnegative
selfadjoint relation with mul H∞ = span {1{a}}. The sequence Hn converges to H∞
in the strong resolvent sense. It can be shown that the forms associated to Hn and
H∞ are given by tn and t∞, respectively.

5.3. Form-bounded perturbations of selfadjoint operators. Let H be a non-
negative selfadjoint operator and let H+1(H) ⊂ H ⊂ H−1(H) be the rigged space
associated with H. Here H+1(H) stands for dom H

1
2 equipped with the graph topol-

ogy of H
1
2 and H−1(H) is the associated dual space. Recall that H can be continued

to a bounded operator H̃ : H+1(H) → H−1(H). Then V+ := H̃ + I = (H + I)∼

maps H+1(H) isometrically onto H−1(H); it is called the Riesz operator.
Let H be an auxiliary Hilbert space and let G : H → H−1(H) be a bounded

operator with kerG = {0} and, for simplicity, assume that ran G is a closed subspace
in H−1(H). Then G admits a bounded dual mapping G+ from H+1(H) into H with
a closed range. Indeed, if G∗ : H−1(H) → H is the usual Hilbert space adjoint,
then G+ = G∗V+ : H+1(H) → H satisfies

(f, Gh) = (V+f, Gh)−1 = (G∗V+f, h)H = (G+f, h)H, f ∈ H+1(H), h ∈ H,

(5.2)

where (·, ·) stands for the duality in H+1(H) × H−1(H) as the continuation of the
original inner product (·, ·)H. Now, consider so-called form-bounded perturbations
of H of the form

Hn = H + n GG+, n ∈ N,(5.3)

so the perturbation is allowed to be infinite-dimensional; cf. [2]. Here the operator
GG+ : H+1(H) → H−1(H) is bounded with ran GG+ = ranG. Note, however,
that the perturbation GG+ is in general an unbounded operator with respect to
the original Hilbert space topology on H. The precise interpretation of Hn in (5.3)
is as the unique nonnegative selfadjoint operator that is associated with the closed
nonnegative form tn defined by

tn[f, g] = (H
1
2 f, H

1
2 g)H + n (G+f, G+g)H, f, g ∈ dom tn = domH

1
2 .(5.4)

To see that the form tn is closed, assume that fk → f ∈ H, tn[fk − fl] → 0 for
fk, fl ∈ dom tn. Then f ∈ dom H

1
2 and ‖H 1

2 (fk − f)‖H → 0 and by continuity of
G+ also ‖G+(fk − f)‖H → 0, which proves the claim.

By Theorem 4.2 the nondecreasing sequence gives rise to a “limit perturbation”
H∞ which corresponds to the closed form t∞ = limn→∞ tn. The next result gives
an expression for H∞.

Proposition 5.1. The strong resolvent limit H∞ of the nondecreasing sequence of
nonnegative selfadjoint operators Hn in (5.3) is the selfadjoint relation given by

H∞ = R∗R, R = {{f, H
1
2 f} : f ∈ dom H

1
2 ∩ ker G+}

and it corresponds to the closed form

t∞[f ] = ‖Rf‖2, f ∈ dom t∞ = domH
1
2 ∩ ker G+.
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Proof. The closed forms tn associated with Hn in (5.4) satisfy dom tn = dom H
1
2

and

tn[f ] = ‖H 1
2 f‖2H + n ‖G+f‖2H.(5.5)

Hence, limn→∞ tn[f ] < ∞ if and only if f ∈ dom H
1
2 ∩ ker G+, in which case

limn→∞ tn[f ] = ‖H 1
2 f‖2H = ‖Rf‖2H. By Theorem 4.2, the limit t∞ coincides with

the closed form associated with the strong resolvent limit H∞ of the operators Hn.
Since the form t∞ is closed precisely when R is closed, R∗R is a selfadjoint relation
which by uniqueness coincides with the representing relation H∞.

The selfadjoint operators Hn can be interpreted as extensions of the following
restriction of H:

A = H¹ ker G+, dom A = domH ∩ ker G+;(5.6)

cf. (5.3). Clearly, A is a nonnegative operator in H. The operator A is closed in H,
since kerG+ is closed in H+1(H). Indeed, if fn ∈ dom A and fn → f , Afn → f ′,
then f ∈ dom H and

‖H 1
2 (fn − f)‖2H = (H(fn − f), fn − f)H → 0,

which implies that fn → f in the topology of H+1(H) and thus fn → f ∈ ker G+

as fn ∈ ker G+. The Friedrichs extension AF of A is defined as the selfadjoint
relation associated to the closure of the nonnegative form (A·, ·) on dom A via
(4.3) or (4.4). Note that AF has a multivalued part if and only if A is not densely
defined. Observe that the limit relation H∞ in Proposition 5.1 is also a nonnegative
selfadjoint extension of A. The connection between H∞ and AF will be further
specified.

Theorem 5.2. Let A be defined by (5.6), let H̃ : H+1(H) → H−1(H) be the rigged
space continuation of H, and let H∞ be as in Proposition 5.1. Moreover, let L =
ran (H̃ + I)−1G and let closL be the closure of L in the original topology of H.
Then:

(i) A is densely defined if and only if closL ∩ dom H = {0};
(ii) H∞ = AF if and only if closL ∩ ker G+ = {0};
(iii) if L is closed in H, i.e., L = closL, then H∞ = AF ;
(iv) if, in particular, L = closL ⊂ dom H, then

H∞ = AF = A +̂ ({0} × ran G).(5.7)

In (5.7) the operator part of H∞ is given by (H∞)s = (I − P )A, where P is the
orthogonal projection onto ran G.

Proof. (i) Let f ∈ dom A and h ∈ H. Then (5.2) yields

0 = (G+f, h)H = (f, Gh) = ((A + I)f, (H̃ + I)−1Gh)H,

which shows that ran (A+I) ⊂ L⊥. The converse inclusion is obtained by reversing
the given steps and using ran (H + I) = H; here the orthogonal complement is with
respect to the original inner product on H. Hence

ker(A∗ + I) = closL,(5.8)

see (2.2). Recall that every selfadjoint extension Ã of A satisfies

ker(A∗ − λ) ∩ dom Ã = (Ã− λ)−1(mul A∗), λ ∈ ρ(Ã),(5.9)
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(see e.g. [6, Proposition 4.20]). Since H is an operator extension of A, this yields

closL ∩ dom H = {0} if and only if mul A∗ = {0},

which is equivalent to dom A = H.
(ii) Recall that H∞ = AF if and only if

ker(A∗ + I) ∩ dom H
1
2∞ = {0},(5.10)

see [10, Proposition 2.4]. Hence, the assertion follows from (5.8) and the description

of dom H
1
2∞ = dom t∞ in Proposition 5.1.

(iii) Let L be closed and assume that f ∈ L ∩ ker G+. Then there exists h ∈ H
such that f = (H̃ + I)−1Gh and

0 = G+f = G+(H̃ + I)−1Gh = G∗Gh,

since G+ = G∗V+. Because kerG = {0}, this implies that h = 0 and f = 0. Hence,
L ∩ ker G+ = {0} and the statement follows from (ii).

(iv) Assume that L = ker(A∗ + I) ⊂ dom H. Then H∞ = AF , ran G ⊂ H, and
L = ran (H + I)−1G. Moreover, (5.9) shows that

L = ker(A∗ + I) ∩ dom H = (H + I)−1(mul A∗),

and, hence, ranG = mul A∗. Now it is easy to check that

A∗ = H +̂ N̂−1(A∗) = H +̂ ({0} × ran G),

cf. (5.14) for the definition of N̂−1(A∗). In this case, dom A∗ = domH,

dom H∞ = domAF = domA∗ ∩ dom H
1
2∞ = domH ∩ ker G+ = domA,

and thus formula (5.7) follows.
Note that mul H∞ = ran G and, therefore, the selfadjoint operator part of H∞

in (5.7) is given by (H∞)s = (I − P )A.

Note that L in Theorem 5.2 is automatically closed in H, if it is finite-dimensional,
so that, the singular perturbations in (5.3) are of finite rank (cf. Section 5.2). It is
also closed in H if, for instance, the unperturbed operator H in (5.3) is bounded,
in which case the rigging collapses: H+1(H) = H = H−1(H) and the corresponding
topologies are equal. In this case Theorem 5.2 (iv) gives the precise meaning for
the limit (1.3) described in the example in the introduction; an infinite-dimensional
perturbation is obtained also via multiplication operators in Example 3.4 and po-
tentials in Section 5.1. In the case that ranG is infinite-dimensional, L need not
be a closed subspace of H and it may happen that A is not densely defined even if
ran G ∩ H = {0}.

5.4. Limit characterization of the Friedrichs and Krĕın-von Neumann ex-
tensions of a nonnegative relation. As an application of the monotone conver-
gence theorems the Friedrichs and Krĕın-von Neumann extensions of a nonnegative
relation A in a Hilbert space H are characterized as the strong resolvent limits of a
sequence of semibounded selfadjoint extensions of A. Recall that the Friedrichs ex-
tension AF and the Krĕın-von Neumann extension AK are nonnegative selfadjoint
extensions of A having the following extremality property:

AK ≤ Ã ≤ AF(5.11)
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for every nonnegative selfadjoint extension Ã of A. Note that, together with A,
also A−1 is a nonnegative relation. Using (5.11) and the equivalence of (i) and (ii)
in Proposition 2.2, it follows that

(A−1)K = (AF )−1, (A−1)F = (AK)−1.(5.12)

If, in particular, the lower bound of A is positive, then AK = A +̂ (ker A∗ × {0}),
and, similarly, if A is a bounded operator, then AF = A +̂ ({0} × mul A∗). In
addition,

(A− x)F = AF − x, (A− x)K ≤ AK − x, x < 0.(5.13)

By means of the defect spaces N̂x(A∗) = { {fx, xfx} : fx ∈ ker(A∗− x)} define the
extensions Ax of A by

Ax = A +̂ N̂x(A∗), x < 0.(5.14)

Clearly, Ax is selfadjoint and bounded from below by x, i.e., Ax − x ≥ 0. Since
A ≥ 0 and x < 0, A− x has a positive lower bound and hence

(A− x)K = (A− x) +̂ (ker(A− x)∗ × {0}) = (A− x)0 = Ax − x, x < 0.(5.15)

If x1 ≤ x2(< 0) then Ax1 −x1 ≥ 0 and Ax2 −x1 ≥ 0 are both selfadjoint extensions
of A− x1 ≥ 0. Thus, (5.11) and (5.15) yield

Ax1 − x1 = (A− x1)K ≤ Ax2 − x1.

This shows that Ax is nondecreasing with respect to x < 0:

Ax1 ≤ Ax2 , x1 ≤ x2 < 0.(5.16)

The following result in the case that the Friedrichs and the Krĕın-von Neumann
extensions exist as densely defined selfadjoint operators goes back to [3]; see [8]
for the case when A is not necessarily a densely defined operator, and [9] for the
general case. The present proof is based on a direct application of Theorem 3.5.

Proposition 5.3. Let A be a nonnegative relation in a Hilbert space H. Then
the strong resolvent limits of the selfadjoint extensions Ax in (5.14) as x ↑ 0 and
x ↓ −∞ are the Krĕın-von Neumann extension AK and the Friedrichs extension
AF of A, respectively:

(AK − λ)−1h = lim
x↑0

(Ax − λ)−1h, (AF − λ)−1h = lim
x↓−∞

(Ax − λ)−1h, h ∈ H.

Proof. First the statement concerning the limit with x → 0 is shown. By Theo-
rem 3.5 and monotonicity of Ax the strong resolvent limit of Ax as x ↑ 0 exists and
is a nonnegative selfadjoint relation, since Ax has a lower bound x → 0; denote this
limit by A0. Now A0 is the strong graph limit of Ax as x ↑ 0. Since A ⊂ Ax for
all x < 0, this implies that A ⊂ A0. Thus A0 is a nonnegative selfadjoint exten-
sion of A and, hence, AK ≤ A0 by (5.11). It follows from (5.15) and (5.13) that
Ax ≤ AK for all x < 0. Hence, by Proposition 2.2 (AK + I)−1 ≤ (Ax + I)−1 for all
−1 < x < 0. Letting x → 0 one gets the inequality (AK + I)−1 ≤ (A0 + I)−1, i.e.,
A0 ≤ AK . Therefore, A0 = AK .

For the assertion concerning the limit when x ↓ −∞, observe that A−1 is also a
closed nonnegative relation and that (Ax)−1 = (A−1)1/x, x < 0. Therefore,

lim
x↓−∞

((Ax)−1 − λ)−1h = lim
y↑0

((A−1)y − λ)−1h = ((A−1)K − λ)−1h, h ∈ H,
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by the first part of the proof. Hence, by Proposition 2.4 and (5.12) Ax tends in the
strong resolvent sense to ((A−1)K)−1 = AF as x ↓ −∞.

Note that the relations Ax as x → −∞ do not have a common lower bound and
hence Theorem 3.7 can not be applied directly to Ax with x → −∞ to obtain the
limit description for the Friedrichs extension AF .
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