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Boundary value problems for singular canonical systems of differential equations of the form

Jf ′(t)−H(t)f(t) = λ∆(t)f(t), t ∈ ı, λ ∈ C,

are studied in the associated Hilbert space L2
∆(ı). With the help of a monotonicity principle for

matrix functions their square-integrable solutions are specified. This yields a direct treatment
of defect numbers of the minimal relation and simultaneously makes it possible to assign certain
boundary values to the elements of the maximal relation induced by the system of differential
equations in L2

∆(ı). The investigation of boundary value problems for these systems and their
spectral theory can be carried out by means of abstract boundary triplet techniques. This paper
makes explicit the construction and the properties of boundary triplets and Weyl functions for
singular canonical systems. Furthermore, the Weyl functions are shown to have a property similar
to that of the classical Titchmarsh-Weyl coefficients for singular Sturm-Liouville operators: they
single out the square-integrable solutions of the corresponding homogeneous systems of canonical
differential equations.
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1 Introduction

One of the central objects in the theory of singular Sturm-Liouville differential expressions is the
Titchmarsh-Weyl function m introduced and studied in the classical works of E.C. Titchmarsh [77, 78]
and H. Weyl [79]. If ϕ(·, λ) and ψ(·, λ), λ ∈ C, form a fundamental system of solutions of the differential
equation

−(pu′)′ + qu = λru, 1/p, q, r ∈ L1
loc (0,∞) real, r ≥ 0, (1.1)

and the differential expression is regular at the left endpoint 0 and in the limit-point case at the singular
endpoint +∞, then the Titchmarsh-Weyl function m : C \ R→ C has the property that

ϕ(·, λ) +m(λ)ψ(·, λ) ∈ L2
r(0,∞) (1.2)

for every λ ∈ C \ R. Here L2
r(0,∞) denotes the weighted L2-space consisting of (equivalence classes

of) complex valued measurable functions f on (0,∞) such that |f |2r ∈ L1(0,∞). Roughly speaking
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(1.2) states that the function m singles out the square-integrable solutions of (1.1). This fact has direct
consequences for the differential operators associated with the differential expression (1.1) in L2

r(0,∞):
the minimal symmetric operator has defect numbers (1, 1) and the defect elements are given by (1.2).
There are many other connections between the Titchmarsh-Weyl function m and the corresponding
Sturm-Liouville differential operators. Probably the most important fact is that the spectral properties
of all selfadjoint realizations are completely encoded in m and its behaviour close to the singularities on
the real line.

The present paper is devoted to the study of more general canonical systems of differential equations;
these are systems of the form

Jf ′(t)−H(t)f(t) = λ∆(t)f(t), t ∈ ı, λ ∈ C, (1.3)

where J is a skewadjoint and unitary n × n matrix, and H and ∆ are locally integrable n × n matrix
functions defined on an open interval ı = (a, b) such that H(t) is selfadjoint and ∆(t) ≥ 0. A fundamental
matrix Y (·, λ) of the canonical system (1.3) consists of n linearly independent solutions which are locally
absolutely continuous n×1 vector functions on ı. For each λ ∈ C+ or λ ∈ C− the n×n matrix function

D(·, λ) = Y (·, λ)∗(−iJ)Y (·, λ) (1.4)

associated with a fundamental matrix Y (·, λ) is monotonically nondecreasing or nonincreasing, respec-
tively, on ı. A direct application of the monotonicity principle as given in [3, 4] shows that the limits
D(a, λ) and D(b, λ) exist as selfadjoint relations (multivalued operators) in Cn when t tends to a and
b. The spectra of these selfadjoint relations consist of n eigenvalues on the extended real line. One
of the main ingredients for the theory developed in the present paper is the fact that the eigenspaces
of D(a, λ) and D(b, λ) are intimately connected with the square-integrable solutions of (1.3). Here
square-integrability of a vector function f means that

∫
ı
f(s)∗∆(s)f(s) ds is finite, that is, f belongs to

the Hilbert space L2
∆(ı). If the Sturm-Liouville problem (1.1) is rewritten as a canonical system, then

the function (1.4) is a 2 × 2 matrix function and Weyl’s limit-point and limit-circle classification of a
singular endpoint b reduces to the question whether the limit D(b, λ) is a selfadjoint relation with one-
dimensional multivalued part or whether it is an ordinary 2× 2 matrix, respectively; cf. Example 2.12
and Example 4.22.

Similarly as in Sturm-Liouville theory one associates minimal and maximal operators or, more pre-
cisely, minimal and maximal relations to the canonical system in the Hilbert space L2

∆(ı). The maximal
relation Tmax is the adjoint of the closed symmetric minimal relation Tmin . The minimal relation is
not necessarily densely defined; both Tmin and Tmax are in general multivalued. The number of square-
integrable solutions in the upper- and lower-halfplane coincide with the defect numbers of the minimal
relation. In this sense the extension theory of symmetric relations is the natural framework for bound-
ary value problems involving canonical systems of differential equations. For this purpose the abstract
concept of boundary triplets and their Weyl functions from [22, 23] is used. With the help of a boundary
triplet all selfadjoint extensions of the underlying symmetric operator or relation can be parameterized
efficiently and their spectral properties can be described with the help of the associated Weyl function.

The main aim of the paper is to study the square-integrable solutions of canonical systems and
to define a matrix valued analog M of the Titchmarsh-Weyl coefficient from singular Sturm-Liouville
theory. It will be shown that this function singles out the square-integrable solutions of (1.3) in the
sense that in analogy to (1.2) formulas of the type

γ(λ)η = Y (·, λ)

(
η

M(λ)η

)
, η ∈ Cm, λ ∈ C \ R,

hold, where γ(λ) is a map from Cm into the defect subspace ker (Tmax −λ). To obtain the above result
elements from the maximal relation will be decomposed such that the behaviour at one endpoint of
ı is separated from the behaviour at the other endpoint. By means of this decomposition boundary
values will be assigned to the elements in the maximal relation. This makes it possible to construct
boundary triplets for the maximal relation. It will be shown that the Weyl function corresponding to
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such a boundary triplet singles out precisely the square-integrable solutions of the canonical system; cf.
Section 5 and 6.

The study of square-integrable solutions of canonical systems of differential equations or of related
(systems of) differential equations has a long history. In general two points of view have been developed:
the functional-analytic point of view and the function-theoretic point of view. The functional-analytic
approach was for a long time restricted to the case where Tmin and Tmax are densely defined operators in
the Hilbert space L2

∆(ı); the introduction of linear relations (multivalued operators) meant that this re-
striction need no longer be imposed. The approach to general canonical systems via the extension theory
of linear relations goes back to B.C. Orcutt [63] and I.S. Kac [42, 43]; it was rediscovered and extended
in [52]; see also [15, 24, 25, 32, 51, 76]. The square-integrable solutions have been studied in the works of
F.V. Atkinson [2] and H.-D. Niessen and A. Schneider [60, 71] via monotonicity arguments. Using limit
results for monotone operator functions as given in [3, 4] these arguments can be essentially simplified;
this approach yields limit values which are in general selfadjoint relations in Cn. The application of this
principle makes it possible to obtain easily also some results going back to S.A. Orlov [64]. The con-
nection between the Titchmarsh-Weyl coefficient and the square-integrable solutions was investigated
by D.B. Hinton and A. Schneider [35, 36, 37] in a special case. In the present paper it is shown that
the theory of boundary triplets, including its recent extension to the case of not necessarily equal de-
fect numbers, provides a convenient functional-analytic framework to connect square-integrability with
Weyl functions (or Titchmarsh-Weyl coefficients) in the general case. A function-theoretic approach to
canonical systems can be found in the works of D.B. Hinton and J.K. Shaw [38, 39, 40], V.I. Kogan and
F.S. Rofe-Beketov [47], A.M. Krall [48, 49], H. Langer and R. Mennicken [50], and S.A. Orlov [64].

The class of canonical systems of differential equations contains large classes of linear ordinary differ-
ential equations studied in the literature. There has been an extension of canonical systems to so-called
S-hermitian systems, but H. Langer and R. Mennicken [50] have shown how S-hermitian systems can be
reduced to canonical systems. The class of S-hermitian systems was studied extensively by A. Schnei-
der [71, 72, 73, 74, 75], and by H.-D. Niessen [60, 61, 62]; see also [68, 69, 70] and [56]. In particular,
A. Schneider [72] has shown how large classes of differential expressions can be written in terms of canon-
ical and S-hermitian systems (see also [63]); this includes ordinary differential operators [13, 14, 44, 46]
and pairs of ordinary differential operators [8, 17, 18, 65].

The contents of the paper are now outlined. In Section 2 a number of elementary results concerning
canonical systems is reviewed; proofs are included for completeness. The square-integrable solutions of
the canonical system are considered in Section 3; the main ideas here are a monotonicity principle for
operator functions and a construction of square-integrable solutions of the corresponding inhomogeneous
canonical system. In Section 4 the maximal and minimal relations associated to the canonical system
are constructed in the sense of Orcutt and a decomposition of the maximal relation is proved in terms
of solutions which are square-integrable near the endpoints. Furthermore, special forms of the minimal
and maximal relation are obtained in the case that the endpoints of the interval are quasiregular or in
the limit-point case. Boundary triplets and Weyl functions in the general case of equal defect numbers
are considered in Section 5; special attention is paid to the quasiregular and limit-point case. Section 6
contains the treatment of boundary triplets and Weyl functions for the case of unequal defect numbers.
Finally, the appendix contains a very brief introduction to linear relations in Hilbert spaces making the
paper self-contained.

2 Preliminaries concerning canonical systems

This section provides a short introduction to the theory of canonical systems of differential equations.
Besides some elementary statements on the properties of solutions also the notions of a singular, a
quasiregular, and a regular endpoint are explained, the concept of definiteness of canonical systems is
briefly reviewed and a cut-off technique for solutions is provided. For a more detailed treatment of
canonical systems the reader is referred to, e.g., the monographs [2, 28, 67].
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2.1 Notations

Let ı = (a, b) ⊂ R be an open interval and let n,m ∈ N. The linear space L1
loc (ı) of locally integrable

n×mmatrix functions on ı consists of all measurable n×mmatrix functions F defined almost everywhere
on ı such that for each compact subinterval I ⊂ ı∫

I

|F (s)| ds <∞.

Here |F (s)| denotes a norm of F (s) in Cn×m. A function F ∈ L1
loc (ı) is said to be integrable at the left

endpoint a or integrable at the right endpoint b if for some c ∈ ı∫ c

a

|F (s)| ds <∞ or

∫ b

c

|F (s)| ds <∞,

respectively. In the notation of the function spaces the sizes n and m are suppressed; for instance, the
space of locally integrable functions on ı with values in Cn will be denoted by L1

loc (ı). The space of
locally absolutely continuous functions on ı with values in Cn is denoted by ACloc (ı). It is well known
(see, e.g., [34, Theorem (18.16)]) that a vector function f belongs to ACloc (ı) if and only if there exists
a vector function h ∈ L1

loc (ı) such that for some c ∈ ı

f(t) = f(c) +

∫ t

c

h(s) ds, t ∈ ı.

The derivative h ∈ L1
loc (ı) of the function f ∈ ACloc (ı) will be denoted by f ′.

Let ∆ ∈ L1
loc (ı) be an n × n matrix function such that ∆(t) ≥ 0 for almost every t ∈ ı. Denote

by L2
∆(ı) the linear space of all measurable functions f with values in Cn which are square-integrable

(with respect to ∆), that is,
∫
ı
f(s)∗∆(s)f(s) ds <∞. Here and in the following ψ∗φ denotes the inner

product of φ, ψ ∈ Cn. Note that

(f, g)∆ =

∫
ı

g(s)∗∆(s)f(s) ds, f, g ∈ L2
∆(ı),

defines a semidefinite inner product on L2
∆(ı). The corresponding seminorm will be denoted by ‖ · ‖∆.

Observe that the identity
∫
ı
f(s)∗∆(s)f(s) ds = 0 is equivalent to ∆(t)f(t) = 0 for almost every t ∈ ı.

The space L2
∆,loc (ı) consists of all functions which are square-integrable (with respect to ∆) for each

compact subinterval I ⊂ ı, i.e.,
∫
I
f(s)∗∆(s)f(s) ds < ∞. Note that if f ∈ L2

∆(ı), then ∆f ∈ L1
loc (ı)

as follows from the Cauchy-Schwarz inequality, since ∆ ∈ L1
loc (ı). A function f ∈ L2

∆,loc (ı) is said to

be square-integrable (with respect to ∆) at the left endpoint a or square-integrable (with respect to ∆) at
the right endpoint b if for some c ∈ ı∫ c

a

f(s)∗∆(s)f(s) ds <∞ or

∫ b

c

f(s)∗∆(s)f(s) ds <∞,

respectively. A function f ∈ L2
∆,loc (ı) belongs to L2

∆(ı) if and only if f is square-integrable (with respect

to ∆) at both endpoints of ı.
The space L2

∆(ı) has the following approximation property : each element of the seminormed space
L2

∆(ı) can be approximated by square-integrable functions with compact support. To see this, let Im,
m ∈ N, be a sequence of monotonously increasing compact intervals such that ı = ∪∞m=1Im. For
f ∈ L2

∆(ı) put fm(t) = f(t) for t ∈ Im and fm(t) = 0 elsewhere. Then fm ∈ L2
∆(ı), fm has support in

Im, and

‖f − fm‖2∆ =

∫
ı

(f(s)− fm(s))∗∆(s)(f(s)− fm(s)) ds→ 0, m→∞, (2.1)

as follows from dominated convergence.
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2.2 Canonical systems of differential equations

Let ı = (a, b) ⊂ R be an open, not necessarily bounded, interval and let n ∈ N. Let H and ∆ be n× n
matrix functions defined almost everywhere on ı such that

H,∆ ∈ L1
loc (ı), H(t) = H(t)∗, and ∆(t) ≥ 0, (2.2)

for almost every t ∈ ı. Furthermore, let J be an n× n matrix which satisfies

J∗ = J−1 = −J. (2.3)

An (inhomogeneous) canonical system of order n is a system of (inhomogeneous) differential equations
of the form

Jf ′(t)−H(t)f(t) = λ∆(t)f(t) + ∆(t)g(t), t ∈ ı, λ ∈ C, (2.4)

where g ∈ L2
∆,loc (ı) is a locally square-integrable function with values in Cn. A function f with values

in Cn is said to be a solution of (the inhomogeneous canonical system) (2.4) if f belongs to ACloc (ı)
and the equation (2.4) holds for almost every t ∈ ı. Observe that if f is a solution of (2.4), then f is
also a solution of (2.4) when g ∈ L2

∆,loc (ı) is replaced by g̃ ∈ L2
∆,loc (ı) with ∆(t)(g(t) − g̃(t)) = 0 for

almost every t ∈ ı.
Lemma 2.1 Assume that λ, µ ∈ C and that g, k ∈ L2

∆,loc (ı). Let f, h ∈ ACloc (ı) be solutions of the
inhomogeneous equations

Jf ′(t)−H(t)f(t) = λ∆(t)f(t) + ∆(t)g(t)

and

Jh′(t)−H(t)h(t) = µ∆(t)h(t) + ∆(t)k(t),

respectively. Then for every compact interval [α, β] ⊂ ı:

h(β)∗Jf(β)− h(α)∗Jf(α)−
∫ β

α

(
h(s)∗∆(s)g(s)− k(s)∗∆(s)f(s)

)
ds

= (λ− µ̄)

∫ β

α

h(s)∗∆(s)f(s)ds.

P r o o f. The assumptions that J is skewadjoint and that H(t) and ∆(t) are selfadjoint almost every-
where on ı lead to the equalities

(h∗Jf)′ = h∗(Jf ′)− (Jh′)∗f

= h∗(λ∆f + ∆g +Hf)− (µ∆h+ ∆k +Hh)∗f

= h∗∆g − k∗∆f + (λ− µ̄)h∗∆f,

which are valid almost everywhere on ı. Integration over the interval [α, β] completes the argument.

For λ = µ̄ the formula in Lemma 2.1 reduces to Lagrange’s (or Green’s) formula:

h(β)∗Jf(β)− h(α)∗Jf(α) =

∫ β

α

(
h(s)∗∆(s)g(s)− k(s)∗∆(s)f(s)

)
ds.

The homogeneous canonical system of order n

Jf ′(t)−H(t)f(t) = λ∆(t)f(t), t ∈ ı, λ ∈ C, (2.5)
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has n linearly independent solutions f ∈ ACloc (ı) for every fixed λ ∈ C. A fundamental matrix of the
canonical system (2.4) is an n×n matrix function Y (·, λ) on ı whose columns are formed by the linearly
independent solutions of the homogeneous equation (2.5) and which is fixed by the initial condition

Y (c0, λ) = In (2.6)

for some c0 ∈ ı. If for each λ ∈ C the same initial point c0 ∈ ı is used in (2.6), then the function
λ 7→ Y (t, λ) is entire for each t ∈ ı. The following result is a homogeneous version of Lemma 2.1.

Corollary 2.2 Let Y (·, λ) be a fundamental matrix of the canonical system (2.4). Then for every
compact interval [α, β] ⊂ ı and all λ, µ ∈ C:

Y (β, µ)∗JY (β, λ)− Y (α, µ)∗JY (α, λ) = (λ− µ̄)

∫ β

α

Y (s, µ)∗∆(s)Y (s, λ)ds.

Consequently, any fundamental matrix Y (·, λ) satisfies

Y (t, λ̄)∗JY (t, λ) = J = Y (t, λ)JY (t, λ̄)∗, t ∈ ı, λ ∈ C, (2.7)

so that Y (t, λ) is invertible for all t ∈ ı and

Y (t, λ)−1 = −JY (t, λ̄)∗J,
(
Y (t, λ̄)−1

)∗
= −JY (t, λ)J, t ∈ ı, λ ∈ C. (2.8)

Remark 2.3 The matrices in the canonical system can be transformed by an orthogonal change of
the basis in the following way: Let U be a unitary n×n matrix and define the matrix functions H0 and
∆0 by

H0(t) = UH(t)U∗, ∆0(t) = U∆(t)U∗, t ∈ ı.

Then H0 and ∆0 satisfy the conditions (2.2) and J0 defined by

J0 = UJU∗

satisfies the conditions (2.3). For g ∈ L2
∆,loc (ı) and a solution f of (2.4), define the functions f0(t) =

Uf(t) and g0(t) = Ug(t). Then g0 ∈ L2
∆0,loc (ı) and f0 is a solution of the inhomogeneous equation

J0f
′
0(t)−H0(t)f0(t) = λ∆0(t)f0(t) + ∆0(t)g(t), t ∈ ı.

The preceding remark shows that one can transform the canonical system (2.4) into an equivalent
canonical system by transforming, for instance, J into a specific form. Therefore the following well
known fact is useful.

Lemma 2.4 Let X be a selfadjoint 2m×2m matrix which has m positive and m negative eigenvalues
(counted with multiplicities). Then there exists a (nonunique) invertible 2m× 2m matrix V such that

X = V ∗
(

0 −iIm
iIm 0

)
V.

If, in addition, the matrix X is unitary, then the matrix V is unitary.

In the following the multiplicity of the eigenvalues 1 and −1 of the selfadjoint and unitary matrix
−iJ will be denoted by i+ and i−, respectively, so that n = i+ + i−. If one has a canonical system (2.4)
with n = 2m and i+ = i− = m, then Lemma 2.4 (applied to iJ) implies the existence of a unitary n×n
matrix U such that

J = U∗
(

0 −Im
Im 0

)
U and UJU∗ =

(
0 −Im
Im 0

)
. (2.9)

In these cases the canonical system is equivalent to a so-called Hamiltonian system, see, e.g., [38].
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2.3 Regular, quasiregular and singular endpoints of canonical systems

The following definition gives a classification for the endpoints of the canonical system (2.4).

Definition 2.5 An endpoint of the interval ı is said to be a quasiregular endpoint of the canonical
system (2.4) if the locally integrable functions H and ∆ in (2.2) are integrable up to that endpoint. A
finite quasiregular endpoint is called regular. An endpoint is said to be singular when it is not regular.
The canonical system (2.4) is called regular if both endpoints are regular; otherwise it is called singular.

It will turn out that for a canonical system whose endpoints are regular or quasiregular all solutions of
the homogeneous equation (2.5) are square-integrable, whereas for a general singular system not all such
solutions are necessarily square-integrable. The following result implies that if the inhomogeneous term
g ∈ L2

∆,loc (ı) is square-integrable at a quasiregular endpoint, then every solution of the inhomogeneous
equation has a continuous extension to that endpoint, so that it is square-integrable there.

Proposition 2.6 Assume that the endpoint a or b of the canonical system (2.4) is quasiregular and
that g ∈ L2

∆,loc (ı) is square-integrable (with respect to ∆) at a or b, respectively. Then each solution f

of (2.4) is square-integrable (with respect to ∆) at a or at b, and the limits

f(a) := lim
t↓a

f(t) or f(b) := lim
t↑b

f(t), (2.10)

exist, respectively.
Moreover, for each γ ∈ Cn there exists a unique solution f of (2.4) such that f(a) = γ or f(b) = γ,

respectively.

P r o o f. It suffices to consider the case of the endpoint b. With c ∈ (a, b) fixed, any solution f of
(2.4) satisfies

f(t) = f(c) +

∫ t

c

J−1 (λ∆(s) +H(s)) f(s) ds+

∫ t

c

J−1∆(s)g(s) ds. (2.11)

Note that both integrals on the righthand side exist since (λ∆ + H)f ∈ L1
loc (ı) for any f ∈ ACloc (ı)

and ∆g ∈ L1
loc (ı) for g ∈ L2

∆,loc (ı).
Hence, for t ≥ c, it follows that

|f(t)| ≤
(
|f(c)|+

∫ t

c

|∆(s)g(s)| ds
)

+

∫ t

c

|λ∆(s) +H(s)| |f(s)| ds.

Since the first term on the righthand side is nondecreasing it follows from Gronwall’s inequality (cf. [16,
Chapter 1, Problem 1]) that

|f(t)| ≤
(
|f(c)|+

∫ t

c

|∆(s)g(s)| ds
)
e
∫ t
c
|λ∆(s)+H(s)| ds.

Furthermore, as g is square-integrable (with respect to ∆) at b it follows that ∆g is integrable on
(c, b). Since b is a quasiregular endpoint also λ∆ +H is integrable on (c, b) and hence the solution f is
bounded on (c, b). Then it is clear from (2.11) that the limit f(b) := limt↑b f(t) exists. Moreover, the
local boundedness of the solution shows that∫ b

c

f(s)∗∆(s)f(s) ds ≤M2

∫ b

c

|∆(s)| ds <∞

and hence f is square-integrable with respect to ∆ at b. As a consequence of the existence of the limit
at the endpoint b observe that

f(t) = f(b)−
∫ b

t

J−1 (λ∆(s) +H(s)) f(s) ds−
∫ b

t

J−1∆(s)g(s) ds,

Copyright line will be provided by the publisher



8 J. Behrndt, S. Hassi, H.S.V. de Snoo, and H.L. Wietsma: Singular canonical systems

and thus

|f(t)| ≤

(
|f(b)|+

∫ b

t

|∆(s)g(s)| ds

)
e
∫ b
t
|λ∆(s)+H(s)| ds.

In particular, for solutions f of the corresponding homogeneous equation (2.5) it follows that the map-
ping f 7→ f(b) is injective, and hence surjective. Therefore, for each γ ∈ Cn there exists a unique
solution f of (2.4) such that f(b) = γ.

Note that the condition that g ∈ L2
∆,loc (ı) is square-integrable at some endpoint is only used to

obtain that ∆g ∈ L1
loc (ı) is integrable at that endpoint.

Corollary 2.7 Assume that the endpoints a and b of the canonical system (2.4) are quasiregular and
that g ∈ L2

∆(ı). Then each solution f of (2.4) belongs to L2
∆(ı) and both limits in (2.10) exist.

The next statement is a direct consequence of Proposition 2.6 and identity (2.7).

Corollary 2.8 Assume that the endpoint a or b of the canonical system (2.4) is quasiregular and let
Y (·, λ) be a fundamental matrix of the canonical system (2.4). Then Y (·, λ)φ is square-integrable (with
respect to ∆) at a or b for every φ ∈ Cn and Y (·, λ) admits a unique continuous extension to a or b
such that Y (a, λ) or Y (b, λ) is invertible, respectively. In particular, the point c0 in (2.6) can be chosen
to be a or b, respectively.

2.4 Definiteness of canonical systems

Let  ⊂ ı be a nonempty interval. The canonical system (2.4) is said to be definite on  if for each λ ∈ C
and for each nontrivial solution f of the corresponding homogeneous equation (2.5) on ı the condition

0 <

∫


f(s)∗∆(s)f(s) ds ≤ ∞

holds. If H and ∆ are integrable on  (in particular, if the canonical system is regular on ), then the
above integral is necessarily finite; see Corollary 2.8.

Lemma 2.9 If the canonical system (2.4) is definite on , then it is also definite on every interval ̃
with the property that  ⊂ ̃ ⊂ ı.

P r o o f. Under the assumption of the lemma any nontrivial solution f of (2.5) on ı satisfies

0 <

∫


f(s)∗∆(s)f(s) ds ≤
∫
̃

f(s)∗∆(s)f(s) ds.

Hence, the canonical system is definite on ̃.

An equivalent statement for definiteness on  is that for each λ ∈ C and each solution f of (2.5)∫


f(s)∗∆(s)f(s) ds = 0 implies f(t) = 0, t ∈ .

According to the existence and uniqueness theorem for linear systems of differential equations the
conclusion f(t) = 0, t ∈ , implies that f(t) = 0, t ∈ ı. The next lemma shows that it suffices to check
the definiteness condition for only one λ ∈ C.

Lemma 2.10 The canonical system (2.4) is definite on the interval  ⊂ ı if and only if for some
λ0 ∈ C and for each solution f of Jf ′ −Hf = λ0∆f the condition∫



f(s)∗∆(s)f(s) ds = 0

implies f(t) = 0 for t ∈ , and thus f(t) = 0 for t ∈ ı.
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P r o o f. (⇒) This implication is clear.
(⇐) Choose any λ ∈ C and let f be a solution of Jf ′ − Hf = λ∆f with

∫

f∗(s)∆(s)f(s) ds = 0

or, equivalently, ∆(t)f(t) = 0 for almost all t ∈ . Thus f is also a solution of Jf ′ − Hf = λ0∆f
with

∫

f∗(s)∆(s)f(s) ds = 0. By assumption this implies that f(t) = 0 for t ∈ , and hence for t ∈ ı.

Therefore the canonical system is definite.

It follows from Lemma 2.10 that the canonical system (2.4) is definite on the interval  ⊂ ı if and
only if for each solution f of Jf ′ −Hf = 0 the condition ∆f = 0 on  implies that f(t) = 0 for t ∈ ,
and thus f(t) = 0 for t ∈ ı. In particular, if there exists a nonempty interval  ⊂ ı such that ∆(t) has
full rank n for almost all t ∈ , then the canonical system (2.4) is definite on the interval  ⊂ ı.

The following result will be used frequently in the rest of this paper. It goes back to [62, Hilfsatz (3.1)]
and [47]; for a more abstract treatment see [4]. A short proof is provided for completeness.

Proposition 2.11 The canonical system (2.4) is definite on ı if and only if there exists a compact
interval I ⊂ ı such that the canonical system (2.4) is definite on the interval I.

P r o o f. (⇐) This implication follows from Lemma 2.9.
(⇒) Assume that the canonical system (2.4) is definite on ı. Fix some λ0 ∈ C and introduce for each

compact subinterval  of ı the subset d() of Cn by

d() =

{
φ ∈ Cn : |φ| = 1,

∫


φ∗Y (s, λ0)∗∆(s)Y (s, λ0)φds = 0

}
.

Clearly, d() is compact and  ⊂ ̃ implies d(̃) ⊂ d(). Now choose an increasing sequence of compact
intervals m ⊂ ı, m ∈ N, such that their union equals the interval ı. Then⋂

m∈N
d(m) = ∅. (2.12)

To see this, assume that there exists an element φ ∈ Cn with |φ| = 1, such that∫
m

φ∗Y (s, λ0)∗∆(s)Y (s, λ0)φds = 0

for every m. Then by monotone convergence
∫
ı
φ∗Y (s, λ0)∗∆(s)Y (s, λ0)φds = 0. Since the canonical

system (2.4) is definite, this implies that Y (·, λ)φ = 0, which leads to φ = 0, a contradiction. Therefore,
the identity (2.12) is valid. Since each of the sets d(m) in (2.12) is compact it follows that there exists
a compact interval k such that d(k) = ∅. Hence I = k satisfies the requirements.

Example 2.12 (Weighted Sturm-Liouville equations) Let ı ⊂ R be an open interval. Let 1/p, q, r ∈
L1

loc (ı) be real-valued functions, assume r(t) ≥ 0 for almost all t ∈ ı, and define the 2× 2 matrix J and
the 2× 2 matrix functions H and ∆ by

J =

(
0 −1
1 0

)
, H(t) =

(
−q(t) 0

0 1/p(t)

)
, ∆(t) =

(
r(t) 0

0 0

)
. (2.13)

Let f be a solution of Jf ′ −Hf = 0 which satisfies ∆f = 0, so that in components

−f ′2 + qf1 = 0, f ′1 − (1/p)f2 = 0, rf1 = 0.

Assume that there exists a nonempty interval  ⊂ ı such that r(t) > 0, t ∈ . Then f1(t) = 0 and, hence,
also f2(t) = 0, when t ∈ . Therefore the corresponding system is definite on  and, thus, on ı.

Remark 2.13 The notion of definiteness used in this subsection can be found in [28, p. 249 and
p. 300] and [63, Chapter IV, Definition 1.1]. A stronger form of definiteness is obtained when for all
compact intervals I ⊂ ı the inequality

0 <

∫
I

f(s)∗∆(s)f(s) ds (2.14)
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is satisfied for any nontrivial solution f of (2.5); see [2, p. 253 and p. 289] and [38, 39, 40, 66, 71]. To see
that this kind of definiteness is stronger than the present notion of definiteness consider the following
example. Define the nonnegative locally integrable matrix function ∆ such that ∆(t) is invertible for
t on a compact interval [α, β] ⊂ ı and such that ∆(t) = 0 on the complement. The canonical system
(2.4) is clearly definite on ı whereas (2.14) is not satisfied for any interval contained in the complement
of [α, β].

2.5 Localization of solutions

If the canonical system (2.4) is definite, then a solution of the inhomogeneous canonical system can
be localized at one endpoint, in the sense that it can be made trivial at the other endpoint. First
some preliminary results of general nature for definite canonical systems will be stated. Note, e.g., that
Corollary 2.2 implies that for a canonical system which is definite and whose endpoints a and b are
quasiregular the n× n matrix

Y (b, λ)∗JY (b, λ)− Y (a, λ)∗JY (a, λ)

λ− λ̄
(2.15)

is positive definite for all λ ∈ C \ R.

Lemma 2.14 Let the canonical system (2.4) be definite and assume that its endpoints a and b are
quasiregular. Then for every λ ∈ C \ R the 2n× 2n-matrix(

Y (a, λ) Y (a, λ̄)
Y (b, λ) Y (b, λ̄)

)
(2.16)

is invertible.

P r o o f. It follows from Corollaries 2.2 and 2.8 that(
Y (a, λ)∗ Y (b, λ)∗

Y (a, λ̄)∗ Y (b, λ̄)∗

)(
−J 0
0 J

)(
Y (a, λ) Y (a, λ̄)
Y (b, λ) Y (b, λ̄)

)
= (λ− λ̄)

∫ b

a

(
Y (s, λ)∗∆(s)Y (s, λ) 0

0 −Y (s, λ̄)∗∆(s)Y (s, λ̄)

)
ds.

By definiteness (see Lemma 2.10) the matrix on the righthand side is invertible, which implies the
invertibility of the matrix in (2.16) for λ ∈ C \ R.

Lemma 2.14 yields the following two results.

Corollary 2.15 Let the canonical system (2.4) be definite and assume that its endpoints a and b
are quasiregular. Then for all γa, γb ∈ Cn and every λ ∈ C \ R there exist solutions fλ ∈ L2

∆(ı) and
fλ̄ ∈ L2

∆(ı) of the homogeneous equation (2.5) for λ and λ̄, respectively, such that

fλ(a) + fλ̄(a) = γa, fλ(b) + fλ̄(b) = γb.

Observe that the function f = fλ + fλ̄ with fλ, fλ̄ ∈ L2
∆(ı) as in Corollary 2.15 is a solution of the

equation

Jf ′ −Hf = λ∆f + ∆g, where g = λ̄fλ̄ − λfλ̄.

This implies the following statement; cf. [63, Chapter II, Proposition 2.7].

Corollary 2.16 Let the canonical system (2.4) be definite and assume that its endpoints a and b are
quasiregular. Then for all γa, γb ∈ Cn there exist an element g ∈ L2

∆(ı) and a solution f ∈ L2
∆(ı) of

(2.4) which satisfies the boundary conditions

f(a) = γa, f(b) = γb.
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In the next proposition it is shown that the solutions of the inhomogeneous equation can be modified in
a neighbourhood of one of the endpoints. This fact, which is essentially a consequence of Proposition 2.11
and Corollary 2.16, will be used in Section 4.3.

Proposition 2.17 Let the canonical system (2.4) be definite and let [α, β] ⊂ ı be a compact interval
on which it is definite as well; cf. Proposition 2.11. Let g ∈ L2

∆,loc (ı) and let f ∈ ACloc (ı) be a solution

of the inhomogeneous equation (2.4). Then there exist functions fa ∈ ACloc (ı) and ga ∈ L2
∆,loc (ı)

satisfying

Jf ′a(t)−H(t)fa(t) = λ∆(t)fa(t) + ∆(t)ga(t)

such that

fa(t) =

{
f(t), t ∈ (a, α],

0, t ∈ [β, b),
ga(t) =

{
g(t), t ∈ (a, α],

0, t ∈ [β, b).

Similarly, there exist functions fb ∈ ACloc (ı) and gb ∈ L2
∆,loc (ı) satisfying

Jf ′b(t)−H(t)fb(t) = λ∆(t)fb(t) + ∆(t)gb(t)

such that

fb(t) =

{
0, t ∈ (a, α],

f(t), t ∈ [β, b),
gb(t) =

{
0, t ∈ (a, α],

g(t), t ∈ [β, b).

P r o o f. Note first that by Proposition 2.11 there exists a compact interval [α, β] ⊂ ı such that the
canonical system (2.4) is definite on [α, β]. In particular, the points α and β are regular endpoints for
the canonical system (2.4) restricted to (α, β). Hence Corollary 2.16 implies that for f(α) ∈ Cn there
exists a function k ∈ L2

∆(α, β) and a function h ∈ ACloc (α, β) satisfying

Jh′(t)−H(t)h(t) = λ∆(t)h(t) + ∆(t)k(t), h(α) = f(α), h(β) = 0,

on (α, β). Hence the functions fa and ga defined by

fa(t) =


f(t), t ∈ (a, α],

h(t), t ∈ (α, β),

0, t ∈ [β, b),

ga(t) =


g(t), t ∈ (a, α],

k(t), t ∈ (α, β),

0, t ∈ [β, b),

satisfy the asserted properties. A similar argument shows the existence of the functions fb and gb with
the asserted properties.

In particular, when f is a solution of the homogeneous system (2.5), then f can be localized as
indicated above. The following restatement of this fact in terms of matrix functions (groupings of
column vector functions) is useful.

Corollary 2.18 Let the canonical system (2.4) be definite, let [α, β] ⊂ ı be a compact interval on
which it is definite as well; cf. Proposition 2.11, and let Y (·, λ) be a corresponding fundamental matrix.
Then there exist an n × n matrix function Ya(·, λ) ∈ ACloc (ı) and an n × n matrix function Za(·, λ)
whose columns belong to L2

∆(ı), satisfying

JY ′a(t, λ)φ−H(t)Ya(t, λ)φ = λ∆(t)Ya(t, λ)φ+ ∆(t)Za(t, λ)φ, φ ∈ Cn,

such that

Ya(t, λ) =

{
Y (t, λ), t ∈ (a, α],

0, t ∈ [β, b),
Za(t, λ) =

{
0, t ∈ (a, α],

0, t ∈ [β, b).
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Similarly, there exist an n × n matrix function Yb(·, λ) ∈ ACloc (ı) and an n × n matrix function
Zb(·, λ) whose columns belong to L2

∆(ı), satisfying

JY ′b (t, λ)φ−H(t)Yb(t, λ)φ = λ∆(t)Yb(t, λ)φ+ ∆(t)Zb(t, λ)φ, φ ∈ Cn,

such that

Yb(t, λ) =

{
0, t ∈ (a, α],

Y (t, λ), t ∈ [β, b),
Zb(t, λ) =

{
0, t ∈ (a, α],

0, t ∈ [β, b).

With φ ∈ Cn, observe that the function Ya(·, λ)φ belongs to L2
∆(ı) if and only if Y (·, λ)φ is square-

integrable at a, and, likewise, that the function Yb(·, λ)φ belongs to L2
∆(ı) if and only if Y (·, λ)φ is

square-integrable at b.

3 Square-integrable solutions of singular canonical systems

This section is concerned with the square-integrability of the solutions of the homogeneous canonical
system (2.5). These solutions are studied in terms of a monotone matrix function on ı which by the
monotonicity principle as given in [3] admits limits at the endpoints of ı in the sense of linear relations
(multivalued operators). The number of square-integrable solutions at the endpoints coincides with the
multiplicity of the finite eigenvalues of the limits. One of the advantages of this abstract geometric
approach is that it provides a very simple interpretation of the constructions from [2, Chapter 9] and
[60, 71].

3.1 Monotonicity properties

For a fundamental matrix Y (·, λ) of the canonical system (2.4) introduce the n × n matrix function
D(·, λ) on ı by

D(t, λ) = Y (t, λ)∗(−iJ)Y (t, λ), t ∈ ı, λ ∈ C. (3.1)

Observe that the function t 7→ D(t, λ), t ∈ ı, is locally absolutely continuous for every λ ∈ C. Moreover,
for all t ∈ ı and λ ∈ C the matrix D(t, λ) is selfadjoint and invertible, and the identities (2.8) imply

D(t, λ)−1 = JD(t, λ̄)J∗, t ∈ ı, λ ∈ C. (3.2)

Furthermore, it follows from Corollary 2.2 that

D(β, λ)−D(α, λ) = 2 Imλ

∫ β

α

Y (s, λ)∗∆(s)Y (s, λ) ds, λ ∈ C, (3.3)

holds for any compact interval [α, β] ⊂ ı. Hence the matrix function D(·, λ) is constant for λ ∈ R, and
only the case λ ∈ C \ R will be of interest in the following. The statements in the next proposition are
direct consequences of (3.1), (3.3) and the fact that Y (t, λ) is invertible for all t ∈ ı.

Proposition 3.1 For λ ∈ C+ or λ ∈ C− the n × n matrix function D(·, λ) is nondecreasing or
nonincreasing on ı, respectively, and the numbers of positive and negative eigenvalues of D(t, λ), t ∈ ı,
coincide with the multiplicities i+ and i− of the eigenvalues 1 and −1 of −iJ , respectively.

The monotonicity of the functions D(·, λ) means that for each φ ∈ Cn the limit as t → a or t → b
of φ∗D(t, λ)φ exists as a real number or as ±∞. Therefore, it is natural to define domains associated
with the endpoint a by

D(a, λ) =
{
φ ∈ Cn : lim

t↓a
φ∗D(t, λ)φ > −∞

}
, λ ∈ C+

D(a, λ) =
{
φ ∈ Cn : lim

t↓a
φ∗D(t, λ)φ <∞

}
, λ ∈ C−,

(3.4)
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and with the endpoint b by

D(b, λ) =
{
φ ∈ Cn : lim

t↑b
φ∗D(t, λ)φ <∞

}
, λ ∈ C+,

D(b, λ) =
{
φ ∈ Cn : lim

t↑b
φ∗D(t, λ)φ > −∞

}
, λ ∈ C−.

(3.5)

The following theorem, which is an immediate consequence of [3, Theorem 3.1 and Corollary 3.6],
explains the limits of the function D(·, λ) in terms of linear relations (in the sense of multivalued
operators) which are selfadjoint; see also Appendix A for a short introduction to the theory of linear
relations.

Theorem 3.2 For every λ ∈ C \ R there exist selfadjoint relations D(a, λ) and D(b, λ) in Cn which
are the limits of D(·, λ) in the resolvent sense, i.e.,

(D(a, λ)− µ)−1 = lim
t↓a

(D(t, λ)− µ)−1, (D(b, λ)− µ)−1 = lim
t↑b

(D(t, λ)− µ)−1,

for every µ ∈ C \ R. In terms of these limits the space Cn allows the orthogonal decompositions:

Cn =

{
domD(a, λ)⊕mulD(a, λ) = D(a, λ)⊕mulD(a, λ),

domD(b, λ)⊕mulD(a, λ) = D(b, λ)⊕mulD(b, λ).

The graphs of the selfadjoint limit relations D(a, λ) and D(b, λ) decompose accordingly:

D(a, λ) = D(a, λ)s ⊕̂
(
{0} ×mulD(a, λ)

)
,

D(b, λ) = D(b, λ)s ⊕̂
(
{0} ×mulD(b, λ)

)
,

where D(a, λ)s and D(b, λ)s are (the graphs of) selfadjoint operators in D(a, λ) and D(b, λ), respectively,
and ⊕̂ denotes the orthogonal sum of subspaces in Cn × Cn. Moreover,

D(a, λ)sφ = lim
t↓a

D(t, λ)φ, φ ∈ D(a, λ),

D(b, λ)sφ = lim
t↑b

D(t, λ)φ, φ ∈ D(b, λ).
(3.6)

The monotonicity of the n × n matrix function D(·, λ) implies that the limit relations D(a, λ) and
D(b, λ) from Theorem 3.2 satisfy for t ∈ ı the inequalities

(ψ, φ) ≤ (D(t, λ)φ, φ) for all {φ, ψ} ∈ D(a, λ), λ ∈ C+,

(D(t, λ)φ, φ) ≤ (ψ, φ) for all {φ, ψ} ∈ D(a, λ), λ ∈ C−,
(3.7)

and

(D(t, λ)φ, φ) ≤ (ψ, φ) for all {φ, ψ} ∈ D(b, λ), λ ∈ C+,

(ψ, φ) ≤ (D(t, λ)φ, φ) for all {φ, ψ} ∈ D(b, λ), λ ∈ C−.
(3.8)

For φ ∈ domD(a, λ) = D(a, λ) the inequalities (3.7) reduce to

(D(a, λ)sφ, φ) ≤ (D(t, λ)φ, φ), λ ∈ C+,

(D(t, λ)φ, φ) ≤ (D(a, λ)sφ, φ), λ ∈ C−,
(3.9)

and, analogously, for φ ∈ domD(b, λ) = D(b, λ) the inequalities (3.8) reduce to

(D(t, λ)φ, φ) ≤ (D(b, λ)sφ, φ), λ ∈ C+,

(D(b, λ)sφ, φ) ≤ (D(t, λ)φ, φ), λ ∈ C−.
(3.10)
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In particular, if mulD(a, λ) = mulD(b, λ) = {0}, then the inequalities

D(a, λ) ≤ D(t, λ) ≤ D(b, λ), λ ∈ C+,

D(a, λ) ≥ D(t, λ) ≥ D(b, λ), λ ∈ C−,
(3.11)

hold for t ∈ ı.
Using the limit relations from Theorem 3.2, the identity (3.2) can be extended to the endpoints of

the interval ı.

Corollary 3.3 The limit relations D(a, λ) and D(b, λ) satisfy

D(a, λ)−1 = JD(a, λ̄)J∗, D(b, λ)−1 = JD(b, λ̄)J∗, λ ∈ C \ R.

P r o o f. It suffices to show that the limit values of D(t, λ)−1 coincide with the selfadjoint relations
D(a, λ)−1 and D(b, λ)−1, respectively. Let A be the resolvent limit of D(t, λ)−1 as t tends to a. Then
by (A.1):

(A− ζ)−1 = lim
t↓a

(D(t, λ)−1 − ζ)−1 = lim
t↓a

(
− 1

ζ2

(
D(t, λ)− 1

ζ

)−1

− 1

ζ

)

= − 1

ζ2

(
D(a, λ)− 1

ζ

)−1

− 1

ζ
,

for ζ ∈ C \ R. Hence using (A.1) once more, the above identity shows that the limit A satisfies
A = D(a, λ)−1. For the endpoint b a similar argument can be used.

Remark 3.4 Any two fundamental matrices Y1(·, λ) and Y2(·, λ) of the canonical system (2.4) are
related via

Y1(·, λ) = Y2(·, λ)X(λ), where X(λ) = Y2(c, λ)−1Y1(c, λ)

and c is an arbitrary point in ı. This implies that their associated matrix functions D1(·, λ) and
D2(·, λ) in (3.1) are connected via D1(·, λ) = X∗(λ)D2(·, λ)X(λ), where X(λ) invertible. This identity
is preserved in the limits t→ a and t→ b. Therefore, the dimensions of the eigenspaces corresponding
to the positive, negative, zero, and infinite eigenvalues of the selfadjoint relations D(a, λ) and D(b, λ)
do not depend on the chosen fundamental matrix Y (·, λ).

3.2 Decompositions in terms of the eigenspaces of the limit relations

Denote the eigenspaces of the selfadjoint relation D(a, λ) in Cn corresponding to the positive, negative,
zero, and infinite eigenvalues by

A+(λ), A−(λ), A0(λ), A∞(λ),

and denote the corresponding dimensions by

a+(λ), a−(λ), a0(λ), a∞(λ).

Likewise, denote the eigenspaces of the selfadjoint relation D(b, λ) in Cn corresponding to the positive,
negative, zero, and infinite eigenvalues by

B+(λ), B−(λ), B0(λ), B∞(λ),

and denote the corresponding dimensions by

b+(λ), b−(λ), b0(λ), b∞(λ).

Then the spaces D(a, λ) and D(b, λ) allow the decompositions:

D(a, λ) = A+(λ)⊕A−(λ)⊕A0(λ),

D(b, λ) = B+(λ)⊕B−(λ)⊕B0(λ),
(3.12)
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and, moreover,

D(a, λ) ∩D(b, λ) = A∞(λ)⊥ ∩B∞(λ)⊥ =
(
A∞(λ) + B∞(λ)

)⊥
. (3.13)

Furthermore, the identities

A+(λ) = JA+(λ̄), A−(λ) = JA−(λ̄), A∞(λ) = JA0(λ̄),

B+(λ) = JB+(λ̄), B−(λ) = JB−(λ̄), B∞(λ) = JB0(λ̄),
(3.14)

follow from Corollary 3.3.
The next lemma shows how the dimensions of the eigenspaces of D(a, λ) and D(b, λ) are related to

the numbers i+ and i− of positive and negative eigenvalues of the matrix D(t, λ), t ∈ ı. The results in
the following lemma can be derived from the continuous dependence of the eigenvalues of D(t, λ) on t;
cf. [62, 71] and [3, 4] for a general approach. If, e.g., λ ∈ C+ and t tends to b, then roughly speaking
some of the positive eigenvalues of D(t, λ) can move to +∞ and some of the negative eigenvalues can
move to 0. If t tends to a or λ ∈ C− similar phenomena occur.

Lemma 3.5 The following identities hold:

a+(λ) + a0(λ) = i+ = b+(λ) + b∞(λ),

a−(λ) + a∞(λ) = i− = b−(λ) + b0(λ),
λ ∈ C+,

and

a+(λ) + a∞(λ) = i+ = b+(λ) + b0(λ),

a−(λ) + a0(λ) = i− = b−(λ) + b∞(λ),
λ ∈ C−.

In particular,

a+(λ), b+(λ) ≤ i+, a−(λ), b−(λ) ≤ i−, λ ∈ C \ R.

Remark 3.6 Equality may happen in the last inequalities in Lemma 3.5. If the endpoint a is
quasiregular, see Definition 2.5, then it follows from the definition in (3.1) and Corollary 2.8 that
a0(λ) = a∞(λ) = 0 and hence a+(λ) = i+, a−(λ) = i−. Likewise, if the endpoint b is quasiregular, then
b0(λ) = b∞(λ) = 0 and b+(λ) = i+, b−(λ) = i−.

Lemma 3.5 yields the following formulas for the dimensions of the spaces D(a, λ) and D(b, λ):

dimD(a, λ) =

{
i+ + a−(λ), λ ∈ C+,

i− + a+(λ), λ ∈ C−,
(3.15)

and

dimD(b, λ) =

{
i− + b+(λ), λ ∈ C+,

i+ + b−(λ), λ ∈ C−.
(3.16)

In particular, (3.15) and (3.16) imply the lower bounds for the dimensions of the spaces D(a, λ) and
D(b, λ) from [2, Theorem 9.11.1].

Under an additional condition Lemma 3.5 leads to a direct sum decomposition of Cn in terms of the
eigenspaces of D(a, λ) and D(b, λ).

Proposition 3.7 Let λ ∈ C+ be fixed. Then the following statements are equivalent:

(i) A0(λ) ∩B0(λ) = {0};

(ii) A∞(λ̄) ∩B∞(λ̄) = {0};
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(iii) Cn = (A+(λ)⊕A0(λ)) + (B−(λ)⊕B0(λ)), direct sums;

(iv) Cn = (A−(λ)⊕A∞(λ)) + (B+(λ)⊕B∞(λ)), direct sums.

Let λ ∈ C− be fixed. Then the following statements are equivalent:

(i)′ A0(λ) ∩B0(λ) = {0};

(ii)′ A∞(λ̄) ∩B∞(λ̄) = {0};

(iii)′ Cn = (A−(λ)⊕A0(λ)) + (B+(λ)⊕B0(λ)), direct sums;

(iv)′ Cn = (A+(λ)⊕A∞(λ)) + (B−(λ)⊕B∞(λ)), direct sums.

P r o o f. Only the statements for λ ∈ C+ will be proved. A similar reasoning applies for λ ∈ C−.
(i) ⇔ (ii) This equivalence follows from (3.14).
(i) ⇒ (iv) Assume that φ ∈ Cn is orthogonal to the set on the righthand side of (iv), that is,

φ ∈
(
A−(λ)⊕A∞(λ)

)⊥ ∩ (B+(λ)⊕B∞(λ)
)⊥

=
(
A+(λ)⊕A0(λ)

)
∩
(
B−(λ)⊕B0(λ)

)
and hence (D(b, λ)sφ, φ) ≤ 0 ≤ (D(a, λ)sφ, φ). On the other hand, for λ ∈ C+ the function D(·, λ) is
monotonically increasing,

(D(a, λ)sφ, φ) ≤ (D(t, λ)φ, φ) ≤ (D(b, λ)sφ, φ), t ∈ ı;

cf. (3.9) and (3.10). Hence (D(a, λ)sφ, φ) = 0 = (D(b, λ)sφ, φ), so that φ ∈ A0(λ) ∩B0(λ) and assump-
tion (i) implies φ = 0. This shows that Cn can be written as in (iv). The fact that the sum is direct
follows from a dimension argument, see Lemma 3.5.

(iv) ⇒ (iii) It follows from (iv) that (A+(λ)⊕A0(λ)) ∩ (B−(λ)⊕B0(λ)) is trivial, hence the sum in
(iii) is direct. Lemma 3.5 and a dimension argument imply (iii).

(iii) ⇒ (i) If (i) would not be true, then the sum in (iii) would not be direct.

Now assume that for some λ ∈ C+ the condition

A0(λ) ∩B0(λ) = {0} = A0(λ̄) ∩B0(λ̄) (3.17)

holds. Then by Proposition 3.7 there exist (not necessarily orthogonal) projections Pa(λ), Pb(λ), Pa(λ̄),
and Pb(λ̄) with

Pa(λ) + Pb(λ) = I = Pa(λ̄) + Pb(λ̄), (3.18)

such that the following identities hold:

ranPa(λ) = A+(λ)⊕A0(λ) = ker Pb(λ),

ker Pa(λ) = B−(λ)⊕B0(λ) = ranPb(λ),
(3.19)

and

ranPa(λ̄) = A−(λ̄)⊕A0(λ̄) = ker Pb(λ̄),

ker Pa(λ̄) = B+(λ̄)⊕B0(λ̄) = ranPb(λ̄).
(3.20)

Lemma 3.8 Assume that the condition (3.17) holds for some µ ∈ C+ (instead of λ) and let Pa(λ)
and Pb(λ) be the projections in Cn defined in (3.19) and (3.20) for λ ∈ {µ, µ̄}. Then for λ ∈ {µ, µ̄} the
following hold:

(i) Pa(λ)∗D(t, λ)Pa(λ)/Imλ ≥ 0 and Pb(λ)∗D(t, λ)Pb(λ)/Imλ ≤ 0 for all t ∈ ı;

(ii) Pa(λ̄)∗JPa(λ) = 0 and Pb(λ̄)∗JPb(λ) = 0;
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(iii) JPa(λ) = Pb(λ̄)∗J and JPb(λ) = Pa(λ̄)∗J ;

(iv) Pb(λ)JPa(λ̄)∗ + Pa(λ)JPb(λ̄)∗ = J .

P r o o f. Only the statements for λ ∈ C+ will be proved. A similar reasoning applies for λ ∈ C−.
(i) The inequality (3.11) yields(

D(t, λ)Pa(λ)φ, Pa(λ)φ
)
≥
(
D(a, λ)sPa(λ)φ, Pa(λ)φ

)
, t ∈ ı, φ ∈ Cn.

Since Pa(λ)φ ∈ A+(λ)⊕A0(λ), it follows that the term on the righthand side is nonnegative. A similar
argument applies for the endpoint is b.

(ii) If φ, ψ ∈ Cn, then

JPa(λ)φ ∈ J
(
A+(λ)⊕A0(λ)

)
= A+(λ̄)⊕A∞(λ̄) and Pa(λ̄)ψ ∈ A−(λ̄)⊕A0(λ̄)

by (3.19), (3.14), and (3.20). Now the first statement follows from the identity

(Pa(λ̄)∗JPa(λ)φ, ψ) = (JPa(λ)φ, Pa(λ̄)ψ) = 0

and a similar argument for the endpoint b yields the second statement.
(iii) It suffices to show the first identity, which follows from (ii):

JPa(λ) =
(
Pa(λ̄)∗ + Pb(λ̄)∗

)
JPa(λ) = Pb(λ̄)∗JPa(λ) = Pb(λ̄)∗J(Pa(λ) + Pb(λ)) = Pb(λ̄)∗J.

(iv) This follows from (iii)(
Pb(λ)JPa(λ̄)∗ + Pa(λ)JPb(λ̄)∗

)
J = Pb(λ)JJPb(λ) + Pa(λ)JJPa(λ)

= − (Pb(λ) + Pa(λ)) = −I.

This completes the proof of the proposition.

3.3 Square-integrable solutions of the homogeneous and inhomogeneous equation

The square-integrability of the solutions of the canonical system (2.4) is intimately related to the limit
relations D(a, λ) and D(b, λ) and their domains D(a, λ) and D(b, λ). In fact, it follows from (3.3), (3.4),
and (3.5) that

D(a, λ) =

{
φ ∈ Cn :

∫ c

a

φ∗Y (s, λ)∗∆(s)Y (s, λ)φds <∞
}
,

D(b, λ) =

{
φ ∈ Cn :

∫ b

c

φ∗Y (s, λ)∗∆(s)Y (s, λ)φds <∞
}
,

(3.21)

and these equalities do not depend on the choice of c ∈ ı. Hence, φ ∈ D(a, λ) or φ ∈ D(b, λ) if and only
if Y (·, λ)φ is a solution of (2.5) which is square-integrable at a or b, respectively. Therefore, the number
of linearly independent solutions which are square-integrable at a or b coincides with the dimension of
D(a, λ) or D(b, λ), respectively. In particular, the number of linearly independent solutions of (2.5) which
are square-integrable on ı coincides with the dimension of D(a, λ)∩D(b, λ). Under the assumption (3.17)
this dimension will be specified in Theorem 3.10 below. Incidentally, the usual condition of definiteness
of the canonical system implies condition (3.17).

Lemma 3.9 Assume that the canonical system (2.4) is definite on ı. Then the condition (3.17) is
satisfied for all λ ∈ C+.

P r o o f. Let λ ∈ C+ and let φ ∈ A0(λ) ∩B0(λ). Then

(D(a, λ)sφ, φ) = 0 = (D(b, λ)sφ, φ)
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and, hence, the monotonicity of D(·, λ) implies (D(t, λ)φ, φ) = 0 for t ∈ ı. Therefore, (3.3) and (3.21)
yield ∫

ı

φ∗Y (s, λ)∗∆(s)Y (s, λ)φds = 0.

Since the canonical system is assumed to be definite this implies φ = 0 and hence A0(λ)∩B0(λ) = {0}.
The same argument also shows that A0(λ̄) ∩B0(λ̄) = {0} holds.

Theorem 3.10 Assume that the condition (3.17) holds for some λ ∈ C+. Then the numbers of
linearly independent solutions of (2.5) which are square-integrable (with respect to ∆) at both endpoints
a and b are given by

dim
(
D(a, λ) ∩D(b, λ)

)
= a−(λ) + b+(λ),

dim
(
D(a, λ̄) ∩D(b, λ̄)

)
= a+(λ̄) + b−(λ̄).

(3.22)

In particular, if the canonical system (2.4) is definite on ı, then (3.22) holds for all λ ∈ C+.

P r o o f. In order to prove the first identity in (3.22) observe that for λ̄ ∈ C− the second equation
in (3.17) together with Proposition 3.7 (i)′-(ii)′ imply dim (A∞(λ) + B∞(λ)) = a∞(λ) + b∞(λ). Hence
(3.13) yields

dim
(
D(a, λ) ∩D(b, λ)

)
= dim

((
A∞(λ) + B∞(λ)

)⊥)
= n− a∞(λ)− b∞(λ).

Since n = i+ + i− the first identity in (3.22) follows from Lemma 3.5. The second identity in (3.22)
follows in the same way with the help of the first equation in (3.17) and Proposition 3.7 (i)-(ii).

Assume that the condition (3.17) holds for some µ ∈ C+ (instead of λ), or, more specifically, that
the canonical system (2.4) is definite on ı, and let λ ∈ {µ, µ̄}. Then the projections Pa(λ) and Pb(λ)
in (3.18)-(3.20) lead to solutions of (2.5) which are square-integrable near the endpoints: for each c ∈ ı
one has Pa(λ)φ ∈ D(a, λ) and Pb(λ)φ ∈ D(b, λ), so that

Y (·, λ)Pa(λ)φ ∈ L2
∆(a, c) and Y (·, λ)Pb(λ)φ ∈ L2

∆(c, b), φ ∈ Cn. (3.23)

These functions provide i+ or i− square-integrable solutions at a and i− or i+ square-integrable solutions
at b if λ ∈ C+ or λ ∈ C−, respectively; see Lemma 3.5, (3.19) and (3.20).

For a function g ∈ L2
∆(ı) define the function G(λ)g, λ ∈ {µ, µ̄}, by

(G(λ)g)(t) = Y (t, λ)Pa(λ)J

∫ b

t

Pb(λ̄)∗Y (s, λ̄)∗∆(s)g(s) ds

− Y (t, λ)Pb(λ)J

∫ t

a

Pa(λ̄)∗Y (s, λ̄)∗∆(s)g(s) ds.

(3.24)

It follows from (3.23) that the integrals, and hence the function G(λ)g is well defined for λ ∈ {µ, µ̄}. In
the next proposition it is shown that the constructions in [60, 71] given for a definite canonical system
remain valid under the weaker geometric condition (3.17). Since this proposition is fundamental for the
rest of the paper a full proof is included for the convenience of the reader.

Proposition 3.11 Assume that the condition (3.17) holds for some µ ∈ C+ (instead of λ) and let
g, k ∈ L2

∆(ı). Then for λ ∈ {µ, µ̄}

(i) G(λ)g ∈ ACloc (ı) is a solutions of (2.4);

(ii) G(λ)g ∈ L2
∆(ı) and ‖G(λ)g‖∆ ≤ (1/|Imλ|)‖g‖∆;

(iii) (G(λ)g, k)∆ = (g,G(λ̄)k)∆.
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In particular, if the canonical system (2.4) is definite on ı, then the preceding statements hold for all
λ ∈ C \ R.

P r o o f. The following notation will be useful in this proof: for a compact interval I ⊂ ı let

(f, g)∆,I =

∫
I

g(s)∗∆(s)f(s) ds, f, g ∈ L2
∆,loc (ı),

and denote the corresponding seminorm by ‖ · ‖∆,I .
Step 1. For any g ∈ L2

∆(ı) the integrands in the definition of G(λ)g are square-integrable near the
respective endpoints, so that the function G(λ)g belongs to ACloc (ı). The function G(λ)g can be written
as (G(λ)g)(t) = Y (t, λ)(F(λ)g)(t), where the function F(λ)g is defined by

(F(λ)g)(t) = Pa(λ)J

∫ b

t

Pb(λ̄)∗Y (s, λ̄)∗∆(s)g(s) ds

− Pb(λ)J

∫ t

a

Pa(λ̄)∗Y (s, λ̄)∗∆(s)g(s) ds.

(3.25)

Therefore, it is clear that

(G(λ)g)′(t) = Y ′(t, λ)(F(λ)g)(t) + Y (t, λ)(F(λ)g)′(t). (3.26)

Observe that with (3.25), Lemma 3.8 (iv), and the identity (2.7)

Y (t, λ)(F(λ)g)′(t) = −Y (t, λ)
[
Pa(λ)JPb(λ̄)∗ + Pb(λ)JPa(λ̄)∗

]
Y (t, λ̄)∗∆(t)g(t)

= −Y (t, λ)JY (t, λ̄)∗∆(t)g(t) = −J∆(t)g(t).
(3.27)

Hence, due to (3.26) and (3.27), and the definition of Y (·, λ), it follows that

J(G(λ)g)′ −H(G(λ)g) =
[
JY ′(·, λ)−HY (·, λ)

]
(F(λ)g) + ∆g

= λ∆Y (·, λ)F(λ)g + ∆g = λ∆(G(λ)g) + ∆g,

which completes the proof of (i).
Step 2. Assume that g ∈ L2

∆(ı) has compact support and let I = [α, β] ⊂ ı be any compact interval
containing the support of g. By Step 1 the function G(λ)g is a solution of (2.4). Hence, it follows from
Lemma 2.1 (with µ = λ) that

(λ− λ̄)‖G(λ)g‖2∆,I = (G(λ)g, g)∆,I − (g,G(λ)g)∆,I

+ (G(λ)g)(β)∗J(G(λ)g)(β)− (G(λ)g)(α)∗J(G(λ)g)(α).
(3.28)

From the definition of G(λ)g in (3.24) one obtains that

(G(λ)g)(α) = Y (α, λ)Pa(λ)γα, (G(λ)g)(β) = Y (β, λ)Pb(λ)γβ ,

for some γα, γβ ∈ Cn. Therefore, it follows from Lemma 3.8 (i) that

(G(λ)g)(α)∗J(G(λ)g)(α)

λ− λ̄
= γ∗αPa(λ)∗

D(α, λ)

2Imλ
Pa(λ)γα ≥ 0

and

(G(λ)g)(β)∗J(G(λ)g)(β)

λ− λ̄
= γ∗βPb(λ)∗

D(β, λ)

2Imλ
Pb(λ)γβ ≤ 0

hold. It follows from (3.28) and these inequalities that

‖G(λ)g‖2∆,I ≤
(G(λ)g, g)∆,I − (g,G(λ)g)∆,I

λ− λ̄
≤ 1

|Imλ|
‖G(λ)g‖∆,I‖g‖∆,I ,
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which leads to

‖G(λ)g‖∆,I ≤
1

|Imλ|
‖g‖∆,I .

Observe that ‖g‖∆,I = ‖g‖∆ since g has support in I. Hence

‖G(λ)g‖∆,I ≤
1

|Imλ|
‖g‖∆

holds for any compact interval I containing the support of g. Let Im be a monotonically increasing
sequence of compact intervals such that their union equals ı. Then the monotone convergence theorem
implies

‖G(λ)g‖∆ ≤
1

|Imλ|
‖g‖∆ (3.29)

for all g ∈ L2
∆(ı) with compact support. In particular, G(λ)g ∈ L2

∆(ı).
Step 3. Let g ∈ L2

∆(ı) and let Im be a monotonically increasing sequence of compact intervals such
that their union equals ı. Denote by gm ∈ L2

∆(ı) the function that equals g on Im and is 0 outside Im.
It follows from the Cauchy-Schwarz inequality and (2.1) that for each fixed t ∈ ı∫ b

t

Pb(λ̄)∗Y (s, λ̄)∗∆(s)gm(s) ds →
∫ b

t

Pb(λ̄)∗Y (s, λ̄)∗∆(s)g(s) ds

and ∫ t

a

Pa(λ̄)∗Y (s, λ̄)∗∆(s)gm(s) ds →
∫ t

a

Pa(λ̄)∗Y (s, λ̄)∗∆(s)g(s) ds

as m→∞. Therefore (G(λ)gm)(t) tends to (G(λ)g)(t) for each fixed t ∈ ı. Hence for almost every t ∈ ı

(G(λ)gm)(t)∗∆(t)(G(λ)gm)(t)→ (G(λ)g)(t)∗∆(t)(G(λ)g)(t). (3.30)

It follows from (3.29) in Step 2 that∫
ı

(G(λ)gm)(s)∗∆(s)(G(λ)gm)(s) ds ≤ 1

|Imλ|

∫
ı

gm(s)∗∆(s)gm(s) ds

≤ 1

|Imλ|

∫
ı

g(s)∗∆(s)g(s) ds <∞
(3.31)

for all m ∈ N. Since the functions (G(λ)gm)∗∆(G(λ)gm) are nonnegative, it follows from (3.30) and
(3.31) in connection with [34, Fatou’s Lemma (12.23)] that∫

ı

(G(λ)g)(s)∗∆(s)(G(λ)g)(s) ds ≤ 1

|Imλ|

∫
ı

g(s)∗∆(s)g(s) ds (<∞).

Hence it has been shown that for every g ∈ L2
∆(ı) and λ ∈ C \ R the function G(λ)g belongs to L2

∆(ı)
and that

‖G(λ)g‖∆ ≤
1

|Imλ|
‖g‖∆. (3.32)

This completes the proof of (ii).
Step 4. Finally, let the functions g, k ∈ L2

∆(ı) have compact support in I = [α, β] ⊂ ı. Since the
functions G(λ)g and G(λ̄)k are solutions of the inhomogeneous canonical system (2.4) for g and k with
λ and λ̄, respectively, it follows from Lemma 2.1 (with µ = λ̄) that

(G(λ)g, k)∆,I − (g,G(λ̄)k)∆,I = (G(λ̄)k)(α)∗JG(λ)g(α)− (G(λ̄)k)(β)∗JG(λ)g(β). (3.33)
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From the definition of G(λ)g in (3.24) one obtains that

(G(λ)g)(α) = Y (α, λ)Pa(λ)γg,α, (G(λ)g)(β) = Y (β, λ)Pb(λ)γg,β ,

(G(λ̄)k)(α) = Y (α, λ̄)Pa(λ̄)γk,α, (G(λ̄)k)(β) = Y (β, λ̄)Pb(λ̄)γk,β ,

where γg,α, γg,β , γk,α, γk,β ∈ Cn. Therefore (2.7) and Lemma 3.8 (ii) imply that

(G(λ̄)k)(α)∗JG(λ)g(α) = 0, (G(λ̄)k)(β)∗JG(λ)g(β) = 0.

It follows from these identities and (3.33) that

(G(λ)g, k)∆,I = (g,G(λ̄)k)∆,I

for all functions g, k ∈ L2
∆(ı) with compact support on I = [α, β] ⊂ ı. Therefore

(G(λ)g, k)∆ = (g,G(λ̄)k)∆ (3.34)

for all functions g, k ∈ L2
∆(ı) with compact support. Now let g, k be any functions in L2

∆(ı) and
approximate them by square-integrable functions with compact support. Then it follows from the
approximation property (2.1), (3.32), and (3.34) that (G(λ)g, k)∆ = (g,G(λ̄)k)∆. This completes the
proof of (iii).

4 Maximal and minimal relations for singular canonical system

In this section the maximal and minimal relation associated with the definite canonical system (2.4)
in the Hilbert space L2

∆(ı) are investigated. This approach to canonical systems via linear relations
goes back to [63], see also [42, 43] and [32, 52, 76]. It is shown that the minimal relation is closed
and symmetric, and that its adjoint is the maximal relation. Hence the defect numbers of the minimal
relation are constant in the upper halfplane and in the lower halfplane, which is equivalent to the number
of square-integrable solutions of (2.5) being constant in each halfplane. Furthermore, the technique from
Section 2.5 is applied to obtain a decomposition of the maximal relation in terms of cut-off solutions
of the homogeneous equation (2.5) which is inspired by the treatment in [35]. If, in addition, the
endpoints of ı are quasiregular or in the limit-point case (see Definition 4.18) this yields special forms
of the maximal and minimal relations, and their defect spaces. It is stressed that from now on the
canonical system is assumed to be definite.

4.1 Maximal and minimal relations associated to singular canonical systems

The semidefinite space L2
∆(ı) as considered in the previous sections gives rise to the Hilbert space L2

∆(ı)
which consists of the equivalence classes of elements from L2

∆(ı) with respect to the seminorm. The
induced scalar product in L2

∆(ı) is also denoted by (·, ·)∆. For more information concerning these spaces,
see, e.g., [41, 54] and the expositions in [1, Sections 1.4 and 8.6] and [26, p.1350].

In the Hilbert space L2
∆(ı) the canonical system (2.4) induces the maximal relation Tmax , defined by

Tmax =
{
{f, g} ∈ L2

∆(ı)× L2
∆(ı) : Jf ′ −Hf = ∆g

}
. (4.1)

The corresponding minimal relation Tmin is defined in terms of Tmax in (4.1) by

Tmin = T ∗max (4.2)

and coincides with the closure of T0 := { {f, g} ∈ Tmax : f has compact support }; cf. Proposition 4.23.
The definition of Tmax needs to be explained: an element {f, g} ∈ L2

∆(ı)×L2
∆(ı) belongs to Tmax if the

equivalence class f contains a locally absolutely continuous representative f̃ such that the inhomogeneous

equation Jf̃ ′(t)−H(t)f̃(t) = ∆(t)g̃(t) is satisfied for almost every t ∈ ı. Here g̃ is any representative of
g ∈ L2

∆(ı) (observe that ∆g̃ is independent of the representative of g).
Due to the standing assumption that the canonical system (2.4) is definite, the following useful

property holds. A proof is included for completeness; cf. [63, p. 83]
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Lemma 4.1 If {f, g} ∈ Tmax , then the equivalence class f has a unique locally absolutely continuous
representative.

P r o o f. Let {f, g} ∈ Tmax and let f̃1 and f̃2 be locally absolutely continuous representatives of f .

Then J(f̃1 − f̃2)′ −H(f̃1 − f̃2) = 0 holds and∫
ı

(f̃1 − f̃2)(s)∗∆(s)(f̃1 − f̃2)(s) ds = 0.

Therefore, by Lemma 2.10 it follows that f̃1(t) = f̃2(t) for all t ∈ ı.

The eigenspace of Tmax at λ ∈ C is denoted by Nλ(Tmax ) = ker (Tmax − λ). With Nλ(Tmax ) one
associates the subspace

N̂λ(Tmax ) =
{
{fλ, λfλ} : fλ ∈ Nλ(Tmax )

}
, λ ∈ C.

If {fλ, λfλ} ∈ N̂λ(Tmax ), then by definition there exists a unique representative f̃λ ∈ ACloc (ı) of fλ
such that Jf̃ ′λ − Hf̃λ = λ∆f̃λ. In other words, f̃λ is a square-integrable solution of the homogeneous
equation (2.5). Conversely, every square-integrable solution of the homogeneous equation (2.5) is the
unique representative in ACloc (ı) of its equivalence class. Therefore, the eigenspace Nλ(Tmax ) of Tmax

is made up of the (equivalence classes of) square-integrable solutions of the homogeneous equation (2.5):

Nλ(Tmax ) =
{
Y (·, λ)φ : φ ∈ D(a, λ) ∩D(b, λ)

}
; (4.3)

cf. (3.21) and Theorem 3.10. Clearly, the preceding identity shows that

dimNλ(Tmax ) ≤ n. (4.4)

In particular, the eigenspace Nλ(Tmax ) and, hence, also the space N̂λ(Tmax ) is closed for every λ ∈ C.
Note that by Lemma 3.9 the condition (3.17) holds for all λ ∈ C+ since the canonical system is

assumed to be definite. Hence by Proposition 3.11 the operator G(λ) in (3.24) which yields a solution
of (2.4) in the seminormed space L2

∆(ı) is defined for all λ ∈ C \ R. In order to show the connection
between the minimal and maximal relation, the operator G(λ) will be lifted to an operator on the Hilbert
space L2

∆(ı). Therefore let g ∈ L2
∆(ı) and let g̃ ∈ L2

∆(ı) be an element in the equivalence class g. Then
G(λ)g̃ belongs to ACloc (ı) ∩ L2

∆(ı) and satisfies

J(G(λ)g̃)′ −H(G(λ)g̃) = λ∆(G(λ)g̃) + ∆g̃ (4.5)

for all λ ∈ C \ R. The definition of the operator G(λ) in (3.24) implies that G(λ)g̃ remains the same

when g̃ ∈ L2
∆(ı) is replaced by h̃ ∈ L2

∆(ı) which is in the same equivalence class; since then ∆(g̃− h̃) = 0.
Denote by f the equivalence class in L2

∆(ı) to which G(λ)g̃ ∈ L2
∆(ı) belongs and set

G(λ)g := f. (4.6)

Clearly, this procedure defines an operator G(λ) in L2
∆(ı). Moreover, by (4.5) and Lemma 4.1 G(λ)g̃ is

the unique representative of G(λ)g that belongs to ACloc (ı). Hence the following result is obtained by
reformulating Proposition 3.11 into the context of the Hilbert space L2

∆(ı). Observe that the definiteness
of the canonical system implies that the statements in Proposition 3.11 hold for all λ ∈ C \ R.

Proposition 4.2 Let G(λ) be the linear mapping in L2
∆(ı) defined in (4.6) for λ ∈ C \ R. Then

G(λ) is a bounded everywhere defined operator in L2
∆(ı), G(λ)∗ = G(λ̄), and

{G(λ)g, (I + λG(λ))g} ∈ Tmax , g ∈ L2
∆(ı).

As a consequence of the preceding preparations, the abstract result in Proposition A.2 implies that
the maximal relation Tmax is closed, that the minimal relation Tmin is symmetric and that the identity
T ∗min = Tmax holds. This leads to a von Neumann decomposition of the maximal relation in terms of
the minimal relation and the defect subspaces of the maximal relation; cf. [60] for the corresponding
decomposition of the domains.
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Theorem 4.3 The minimal relation Tmin is a closed symmetric relation in L2
∆(ı) and T ∗min = Tmax

holds. Moreover, Tmax has the following componentwise sum decomposition:

Tmax = Tmin +̂ N̂λ(Tmax ) +̂ N̂λ̄(Tmax ), λ ∈ C \ R, direct sums.

P r o o f. Since the eigenspace Nλ(Tmax ) is closed, it follows from Proposition 4.2 that the operator
G(λ) in (4.6) satisfies the assumptions of Proposition A.2. Hence, the relation Tmax is closed and the
adjoint of Tmin = T ∗max coincides with Tmax . The asserted decomposition of Tmax is therefore just the
von Neumann decomposition for T ∗min = Tmax ; cf. Proposition A.1.

Example 4.4 (Weighted Sturm-Liouville equations) Let 1/p, q, r ∈ L1
loc (ı) be real-valued functions

and assume that there exists an interval  ⊂ ı such that r(t) > 0 for t ∈ . Then the associated canonical
system with n = 2 and with J , H, and ∆ defined by (2.13) is definite; cf. Example 2.12. Define the
space L2

r(ı) of all measurable functions ϕ for which∫
ı

ϕ(s)∗r(s)ϕ(s) ds <∞.

The corresponding semi-inner product is denoted by (·, ·)r and the corresponding Hilbert space of

equivalence classes of elements from L2
r(ı) is denoted by L2

r(ı). For f̃ ∈ L2
∆(ı) write

f̃(t) =

(
f̃1(t)

f̃2(t)

)
;

then it is clear that

(f̃ , f̃)∆ =

∫
ı

(
f̃1(s)∗ f̃2(s)∗

)(r(s) 0
0 0

)(
f̃1(s)

f̃2(s)

)
ds = (f̃1, f̃1)r.

Hence the mapping R taking f̃ ∈ L2
∆(ı) to f̃1 ∈ L2

r(ı) is an isometry in the sense of the semi-inner
products. It is clear that this mapping is onto, since each function in L2

r(ı) can be seen as the first
component of an element in L2

∆(ı) with the understanding that the second component can be any
measurable function. Furthermore, it is clear that R induces an isometry, again denoted by R, from
L2

∆(ı) onto L2
r(ı).

In the Hilbert space L2
r(ı) define the maximal relation Tmax as follows:

Tmax =
{
{F,G} ∈ L2

r(ı)× L2
r(ı) : −(pF ′)′ + qF = rG

}
,

in the sense that there exist representatives F̃ and G̃ ∈ L2
r(ı) of F and G, respectively, such that

F̃ ∈ ACloc (ı), pF̃ ′ ∈ ACloc (ı), and

−(pF̃ ′)′ + qF̃ = rG̃.

It is clear that if {f, g} ∈ Tmax , then there exist representatives f̃ , g̃ ∈ L2
∆(ı) with f̃ ∈ ACloc (ı), such

that

Jf̃ ′ −Hf̃ = ∆g̃,

which leads to the equations

−f̃ ′2 + qf̃1 = rg̃1 and f̃ ′1 − (1/p)f̃2 = 0.

Hence, the pair {f̃1, g̃1} in L2
r(ı)× L2

r(ı) generates an element in Tmax and, moreover, each element in
Tmax is obtained in this way. Hence the mapping {f, g} 7→ {Rf,Rg} takes Tmax bijectively onto Tmax .
In particular, R maps ker (Tmax − λ) one-to-one onto ker (Tmax − λ). Since the functions p, q, and r
are real it follows that the defect numbers are equal; cf. also [52] for more general considerations.
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Remark 4.5 In the rest of this paper the distinction between equivalence classes and their rep-
resentatives will not be made explicit as long as no confusion arises. In particular, to all elements
{f, g} ∈ Tmax one can associate unique boundary values, in the extended complex plane, by means of
the limits at the boundary points of the unique locally absolutely continuous representative of f , see
Lemma 4.1.

4.2 Defect numbers of the minimal relation

Since Tmin is symmetric, it follows from the general theory of linear relations that the defect numbers
of Tmin are constant in the upper halfplane and in the lower halfplane; see Appendix A. Hence

n+(Tmin ) = dimNλ(Tmax ), λ ∈ C−,
n−(Tmin ) = dimNλ(Tmax ), λ ∈ C+.

On the other hand, it follows from (4.3) and Theorem 3.10 that

dimNλ(Tmax ) =

{
a−(λ) + b+(λ), λ ∈ C+,

a+(λ) + b−(λ), λ ∈ C−,
(4.7)

where a±(λ) and b±(λ) are the dimensions of the eigenspaces of the limit relations D(a, λ) and D(b, λ)
corresponding to the positive and negative eigenvalues; cf. Section 3.2. The preceding observations lead
to the following proposition.

Proposition 4.6 The following statements hold:

(i) a−(λ) + b+(λ) is constant for λ ∈ C+;

(ii) a+(λ) + b−(λ) is constant for λ ∈ C−.

The above proposition is based on the connection of the numbers a+(λ), a−(λ), b+(λ), b−(λ) (which
have been defined strictly in terms of the canonical system) to the defect numbers of a symmetric
relation in a Hilbert space; a different proof of Proposition 4.6 can be found in [47]. In addition, the
following proposition gives similar results concerning the dimensions of the individual eigenspaces of the
limit relations D(a, λ) and D(b, λ). These results can be seen as consequences of Proposition 4.6 and
hence are based on general principles, see [3, 4] or [64, 71] for a different point of view. Statement (ii)
of Proposition 4.7 is known as Weyl’s first theorem; cf. [33, Chapter 13].

Proposition 4.7 The following statements hold:

(i) a+(λ), a−(λ), b+(λ), and b−(λ) are constant for λ ∈ C \ R;

(ii) a0(λ), a∞(λ), b0(λ), and b∞(λ) are constant for λ ∈ C+ and λ ∈ C−;

(iii) a0(λ) = a∞(λ̄) and b0(λ) = b∞(λ̄) for λ ∈ C \ R.

P r o o f. Since the canonical system (2.4) is assumed to be definite on ı, it follows from Proposi-
tion 2.11 that there exists a compact interval [c, d] ⊂ ı such that the canonical system is definite on the
interval [c, d]. Hence the canonical system is also definite on the interval (a, d] and on the interval [c, b);
cf. Lemma 2.9.

(i) As the canonical system is definite on (a, d], Proposition 4.6 may be applied when the underlying
interval is (a, d). This leads to

a−(λ) + d+(λ) constant for λ ∈ C+,

a+(λ) + d−(λ) constant for λ ∈ C−,

with an obvious interpretation of the quantities d+(λ) and d−(λ). Since d is a regular endpoint for the
interval (a, d), one has d+(λ) = i+ and d−(λ) = i−; see Remark 3.6. Hence a−(λ) is constant on C+

and a+(λ) is constant on C−. Consequently, (3.14) implies that a−(λ) and a+(λ) are constant on C \ R.
Similar arguments show that b+(λ) and b−(λ) are also constant on C \ R.

(ii) & (iii) These statements follow from (i) and Lemma 3.5.
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Proposition 4.7 leads to the following definition.

Definition 4.8 The quantities a+(λ), a−(λ), b+(λ), and b−(λ) (being independent of λ ∈ C \ R)
will be written as

a+, a−, b+, and b−,

respectively, in the rest of the paper.

Consequently, the defect numbers of Tmin , see (4.7), can be written as

n+(Tmin ) = a+ + b−, n−(Tmin ) = a− + b+, (4.8)

so that, in particular, by the von Neumann decomposition in Theorem 4.3

dim
(
Tmax /Tmin

)
= n+(Tmin ) + n−(Tmin ) = a+ + a− + b+ + b−. (4.9)

4.3 The Lagrange identity and decompositions via localized solutions

In the following it is convenient to make use of the notation

〈{f, g}, {h, k}〉∆ := (g, h)∆ − (f, k)∆, {f, g}, {h, k} ∈ Tmax .

With this notation an element {f, g} belongs to Tmin if and only if

〈{f, g}, {h, k}〉∆ = 0

for all {h, k} ∈ Tmax ; cf. (A.2).

Lemma 4.9 For {f, g}, {h, k} ∈ Tmax the limits

[f, h](a) := lim
t↓a

h(t)∗Jf(t), [f, h](b) := lim
t↑b

h(t)∗Jf(t) (4.10)

exist and the Lagrange identity

〈{f, g}, {h, k}〉∆ = [f, h](b)− [f, h](a) (4.11)

holds.

P r o o f. Let I = [α, β] ⊂ ı be any compact interval. Then for {f, g}, {h, k} ∈ Tmax one has by
Lemma 2.1 ∫ β

α

h(s)∗∆(s)g(s) ds−
∫ β

α

k(s)∗∆(s)f(s) ds = h(β)∗Jf(β)− h(α)∗Jf(α).

Since f, g, h, k ∈ L2
∆(ı) the limits as α→ a and β → b in (4.10) exist and the identity (4.11) follows.

The next proposition provides a characterization of the minimal relation.

Proposition 4.10 The minimal relation Tmin admits the representation

Tmin =
{
{f, g} ∈ Tmax : [f, h](a) = 0 = [f, h](b) for all h ∈ domTmax

}
.

P r o o f. Note first that Tmin ⊂ T ∗min = Tmax implies {f, g} ∈ Tmin if and only if {f, g} ∈ Tmax and
(g, h)∆ = (f, k)∆ for all {h, k} ∈ Tmax. Hence Lemma 4.9 implies

Tmin =
{
{f, g} ∈ Tmax : [f, h](a) = [f, h](b) for all h ∈ domTmax

}
. (4.12)

It remains to show that an element {f, g} from the righthand side of (4.12) satisfies

[f, h](a) = 0 and [f, h](b) = 0 for all h ∈ domTmax .
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To see this, let {h, k} ∈ Tmax be arbitrary, then by Proposition 2.17 there exists an element {ha, ka} ∈
Tmax such that ha coincides with h in a neighborhood of a and ha is zero in a neighborhood of b.
Consequently, by (4.12),

[f, h](a) = [f, ha](a) = [f, ha](b) = 0.

A similar argument shows [f, h](b) = 0 for all {h, k} ∈ Tmax .

Instead of the von Neumann decomposition of Tmax in Theorem 4.3 the following decomposition of
Tmax in terms of localized versions of the fundamental solutions, see Definition 4.11 below, will be the
starting point for the construction of boundary triplets for the maximal relation in Section 5. For this
purpose denote by A(λ) and B(λ) the eigenspaces of the nonzero finite eigenvalues of the selfadjoint
limit relations D(a, λ) and D(b, λ), respectively, i.e.

A(λ) = A+(λ)⊕A−(λ), B(λ) = B+(λ)⊕B−(λ), λ ∈ C \ R. (4.13)

Recall that the dimensions of A±(λ) and B±(λ) do not depend on λ ∈ C \ R, and that they are denoted
by a± and b±; cf. Definition 4.8. This implies

dimA(λ) = a+ + a−, dimB(λ) = b+ + b−, λ ∈ C \ R. (4.14)

The cut-off functions Ya(·, λ) and Yb(·, λ) from Corollary 2.18 lead to the following definition.

Definition 4.11 Let [α, β] be a compact interval on which the canonical system is definite and let
Ya(·, λ), Yb(·, λ), Za(·, λ), and Zb(·, λ) be the corresponding n×n matrix functions from Corollary 2.18.
Define Ya(·, λ)φa and Yb(·, λ)φb for φa ∈ A(λ) and φb ∈ B(λ) by

Ya(·, λ)φa :=
{
Ya(·, λ)φa, λYa(·, λ)φa + Za(·, λ)φa

}
,

Yb(·, λ)φb :=
{
Yb(·, λ)φb, λYb(·, λ)φb + Zb(·, λ)φb

}
,

where A(λ) and B(λ) are as in (4.13).

Note that the functions Ya(·, λ)φa and Yb(·, λ)φb in Definition 4.11 satisfy

Ya(t, λ)φa =

{
{Y (t, λ)φa, λY (t, λ)φa}, a < t ≤ α,
{0, 0}, β ≤ t < b,

(4.15)

and

Yb(t, λ)φb =

{
{0, 0}, a < t ≤ α,
{Y (t, λ)φb, λY (t, λ)φb}, β ≤ t < b.

(4.16)

Theorem 4.12 For λ ∈ C \ R the maximal relation Tmax has the following componentwise sum
decomposition:

Tmax = Tmin +̂
{
Ya(·, λ)φa : φa ∈ A(λ)

}
+̂
{
Yb(·, λ)φb : φb ∈ B(λ)

}
, (4.17)

where the sums are direct and A(λ), B(λ) are as in (4.13).

P r o o f. In order to show that the righthand side in (4.17) is contained in Tmax note first Tmin ⊂ Tmax

by Theorem 4.3. Moreover, since φa ∈ A(λ) and φb ∈ B(λ), the equations (4.15) and (4.16) imply
Ya(t, λ)φa,Yb(t, λ)φb ∈ L2

∆(ı)×L2
∆(ı), see (3.21) and (3.12). Consequently, Ya(t, λ)φa,Yb(t, λ)φb ∈ Tmax

for all φa ∈ A(λ) and φb ∈ B(λ), see Definition 4.11 and Corollary 2.18. Therefore the righthand side
in (4.17) is contained in Tmax .

For the reverse inclusion in (4.17) it will be shown that the righthand side is an extension of Tmin of
dimension dimA(λ) + dimB(λ) = a+ + a−+ b+ + b−; cf. (4.9). For this it is sufficient to verify that an
element

{f(λ), g(λ)} = Ya(·, λ)φa + Yb(·, λ)φb, φa ∈ A(λ), φb ∈ B(λ), (4.18)
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(which is in Tmax by the above discussion) belongs to Tmin if and only if φa = 0 and φb = 0. Suppose
that {f(λ), g(λ)} ∈ Tmin . Then, by Proposition 4.10

[f(λ), h(λ)](a) = 0 = [f(λ), h(λ)](b) for all h(λ) ∈ domTmax .

In particular, for arbitrary ψa ∈ A(λ), ψb ∈ B(λ), and {h(λ), k(λ)} = Ya(·, λ)ψa + Yb(·, λ)ψb ∈ Tmax

one obtaines from (4.10), (4.15), and (3.1)

0 = [f(λ), h(λ)](a) = lim
t↓a

ψ∗aY (t, λ)∗JY (t, λ)φa = i lim
t↓a

ψ∗aD(t, λ)φa = iψ∗aD(a, λ)sφa, (4.19)

where D(a, λ)s is the selfadjoint operator from Theorem 3.2 acting in D(a, λ) = A+(λ)⊕A−(λ)⊕A0(λ).
As A0(λ) = ker D(a, λ)s and (4.19) holds for all ψa ∈ A(λ) one concludes φa = 0. A similar argument
for the endpoint b shows φb = 0 and hence the element (4.18) is in Tmin if and only if φa = 0 and φb = 0.
This completes the proof of Theorem 4.12.

Note that the above decomposition of Tmax is not in terms of its eigenspaces and, moreover, that
the localized version of the fundamental solution Ya(·, λ) and Yb(·, λ) can be constructed from different
fundamental matrices Y1(·, λ) and Y2(·, λ).

The next statement can be obtained with the same arguments as in the proof of Theorem 4.12. It
shows, in particular, how φa and φb in (4.17) can be obtained in terms of the elements in Tmax .

Corollary 4.13 Let λ ∈ C \ R and decompose {f, g} according to Theorem 4.12 in the form

{f, g} = {f0, g0}+ Ya(·, λ)φa + Yb(·, λ)φb,

with {f0, g0} ∈ Tmin , φa ∈ A(λ), and φb ∈ B(λ). Then

(D(a, λ)sφa, χa) = −i
[
f, Y (·, λ)χa

]
(a), (D(b, λ)sφb, χb) = −i

[
f, Y (·, λ)χb

]
(b)

hold for all χa ∈ A(λ) and χb ∈ B(λ).

4.4 Quasiregular endpoints and singular endpoints in the limit-point case

The maximal and minimal relations Tmax and Tmin have special properties when one or both of the
endpoints of the interval ı on which the canonical system (2.4) is considered are quasiregular or in the
limit-point case; cf. Definitions 2.5 and 4.18.

Recall from Remark 3.6 that if the endpoint a is quasiregular, then a+ = i+ and a− = i−, and

A0(λ) = A∞(λ) = {0}, A+(λ)⊕A−(λ) = Cn, λ ∈ C \ R. (4.20)

Similarly, if the endpoint b is quasiregular, then b+ = i+ and b− = i−, and

B0(λ) = B∞(λ) = {0}, B+(λ)⊕B−(λ) = Cn, λ ∈ C \ R. (4.21)

In the case of a quasiregular endpoint Tmax and Tmin take a special form. The following proposition
shows these forms in the case that the endpoint a is quasiregular; if the endpoint b is quasiregular similar
results hold.

Proposition 4.14 Assume that the endpoint a is quasiregular. Then for λ ∈ C \ R the maximal
relation Tmax has the componentwise sum decomposition

Tmax = Tmin +̂
{
Ya(·, λ)φa : φa ∈ Cn

}
+̂
{
Yb(·, λ)φb : φb ∈ B(λ)

}
,

where the sums are direct. Moreover, the minimal relation admits the representation

Tmin =
{
{f, g} ∈ Tmax : f(a) = 0, [f, h](b) = 0 for all h ∈ domTmax

}
.

In particular, the mapping {f, g} 7→ f(a) is well defined on Tmax and maps onto Cn.
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P r o o f. The form of Tmax is a consequence of Theorem 4.12 and (4.20). Since a is quasiregular, it
follows that f(a) exists for every {f, g} ∈ Tmax by Proposition 2.6, see Remark 4.5. Hence the mapping
{f, g} 7→ f(a) is well defined on Tmax . It is surjective since Ya(·, λ)φa ∈ Tmax , φa ∈ Cn, is mapped to
Y (a, λ)φa and Y (a, λ) is invertible. Finally, for f ∈ domTmin and Ya(·, λ)φa ∈ Tmax it follows from
Definition 4.11 and Proposition 4.10 that

0 = [f, Ya(·, λ)φa](a) = φ∗aY (a, λ)∗Jf(a), φa ∈ Cn.

Since Y (a, λ) is invertible one concludes f(a) = 0 and hence Tmin has the indicated form.

Observe, that if in Proposition 4.14 {f, g} ∈ Tmax is decomposed as

{f, g} = {f0, g0}+ Ya(·, λ)φa + Yb(·, λ)φb (4.22)

with {f0, g0} ∈ Tmin , φa ∈ Cn, and φb ∈ B(λ), then φa = Y (a, λ)−1f(a).
The following simple lemma is inspired by [35, Section 4].

Lemma 4.15 Let the endpoint a be quasiregular. Then the defect numbers are given by

n+(Tmin ) = i+ + b− and n−(Tmin ) = i− + b+.

In particular, if the defect numbers coincide, then b+ = b− if and only if i+ = i−, in which case
n = 2i+ = 2i−.

P r o o f. The quasiregularity of a yields a+ = i+ and a− = i−, see Remark 3.6. Hence the first
statement follows directly from (4.8). The other statements are clear.

The preceding result shows that if at least one of the endpoints of the interval ı is quasiregular, then
i+ ≤ n+(Tmin ) ≤ n and i− ≤ n−(Tmin ) ≤ n, which implies that

n ≤ n+(Tmin ) + n−(Tmin ) ≤ 2n.

The above simple inequality goes back to Atkinson; cf. [2, Theorem 9.11.1] and also [59].

Proposition 4.16 Let the endpoints a and b be quasiregular. Then the defect numbers are equal and
n+(Tmax ) = n−(Tmax ) = n = i+ + i− holds. Then for λ ∈ C \ R the maximal relation Tmax has the
componentwise sum decomposition

Tmax = Tmin +̂
{
Ya(·, λ)φa : φa ∈ Cn

}
+̂
{
Yb(·, λ)φb : φb ∈ Cn

}
,

where the sums are direct. Moreover, the minimal relation Tmin is given by

Tmin =
{
{f, g} ∈ Tmax : f(a) = f(b) = 0

}
and the space Nλ(Tmax), characterized in (4.3), has the form

Nλ(Tmax ) = {Y (·, λ)φ : φ ∈ Cn }, λ ∈ C \ R.

In particular, the mapping {f, g} 7→ {f(a), f(b)} is well defined on Tmax and maps onto C2n.

P r o o f. The statements concerning the defect numbers are immediate consequences of Lemma 4.15
and Remark 3.6. The characterization of Tmax and Tmin are obtained from Theorem 4.12 and Propo-
sition 4.14 (applied to a and b). Since a and b are quasiregular, it follows from (4.20) and (4.21) that
D(a, λ) = Cn = D(b, λ), see (3.12). Hence D(a, λ) ∩D(b, λ) = Cn, which together with (4.3) leads to
the given form of Nλ(Tmax ). The statement concerning the mapping {f, g} 7→ {f(a), f(b)} follows from
similar arguments as in Proposition 4.14.

Remark 4.17 Canonical systems (2.4) having maximal defect numbers (n, n) have been called
quasiregular canonical systems in [52]. These systems can be characterized by means of a trace condition,
see [52, Theorem 5.16].
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As the complete opposite of a quasiregular endpoint the concept of an endpoint in the limit-point
case is introduced in the next definition. In Example 4.22 below the connection to Weyl’s limit-circle
and limit-point classification for the special case of Sturm-Liouville differential expression is explained.

Definition 4.18 The endpoint a or b of the interval ı is said to be in the limit-point case if

a+ = a− = 0 or b+ = b− = 0,

respectively.

Observe that a is in the limit-point case if and only if

A+(λ) = A−(λ) = {0}, A0(λ)⊕A∞(λ) = Cn, λ ∈ C±. (4.23)

Likewise, b is in the limit-point case if and only if

B+(λ) = B−(λ) = {0}, B0(λ)⊕B∞(λ) = Cn, λ ∈ C±. (4.24)

If an endpoint is in the limit-point case, Tmax and Tmin take a special form. The following proposition
shows these forms in the case that the endpoint b is in the limit-point case, if a is in the limit-point case
a similar result holds.

Proposition 4.19 Assume that the endpoint b is in the limit-point case. Then for λ ∈ C \ R the
maximal relation Tmax has the componentwise sum decomposition

Tmax = Tmin +̂ {Ya(·, λ)φa : φa ∈ A(λ) },

where the sum is direct. Moreover, the minimal relation admits the representation

Tmin =
{
{f, g} ∈ Tmax : [f, h](a) = 0 for all h ∈ domTmax

}
.

P r o o f. If b is in the limit-point case, then B(λ) = {0}, see (4.13) and (4.24). Hence the represen-
tation of Tmax follows from Theorem 4.12. Now {f, g} ∈ Tmax belongs to Tmin if and only if for all
{h, k} ∈ Tmin and φa ∈ A(λ)

0 = 〈{f, g}, {h, k}+ Ya(·, λ)φa〉∆ = 〈{f, g},Ya(·, λ)φa〉∆ = −[f, Y (·, λ)φa](a),

which implies the representation for Tmin .

Since Tmax = T ∗min , see Theorem 4.3, the above statement has the following consequence.

Corollary 4.20 The following are equivalent:

(i) both endpoints a and b are in the limit-point case;

(ii) Tmin = Tmax , in which case Tmin = Tmax is selfadjoint.

Finally, consider the case that one endpoint is quasiregular and one endpoint is in the limit-point
case; cf. Proposition 4.14 and 4.19.

Proposition 4.21 Let the endpoint a be quasiregular and let the endpoint b be in the limit-point case.
Assume that the defect numbers are equal or, equivalently, that i+ = i−, in which case n = 2i+ = 2i−.
Then for λ ∈ C \ R the maximal relation Tmax has the componentwise sum decomposition

Tmax = Tmin +̂ {Ya(·, λ)φa : φa ∈ Cn },

where the sums are direct. Moreover, the minimal relation admits the representation

Tmin =
{
{f, g} ∈ Tmax : f(a) = 0

}
,

and the space Nλ(Tmax), characterized in (4.3), is given by

Nλ(Tmax ) = {Y (·, λ)φ : φ ∈ B0(λ) }, λ ∈ C \ R,

where dimB0(λ) = i+ = i−.
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P r o o f. The statement about the defect numbers follows directly from Lemma 4.15 and Defini-
tion 4.18. The expression for Tmin follows from the formulas for Tmin in Propositions 4.14 and 4.19.
Furthermore, as a is quasiregular and b is in the limit-point case D(a, λ) = Cn and D(b, λ) = B0(λ); see
(3.12), (4.20) and (4.24). Hence

D(a, λ) ∩D(b, λ) = Cn ∩B0(λ) = B0(λ),

which together with (4.3) gives the stated expression for Nλ(Tmax ). For dimB0(λ), see Lemma 3.5.

Example 4.22 (Weighted Sturm-Liouville equations) Assume that the endpoint a for the weighted
Sturm-Liouville equation in Examples 2.12 and 4.4 is quasiregular. Since the corresponding matrix J
has the form

J =

(
0 −1
1 0

)
,

it is clear that i+ = i−= 1, so that a+ = a−= 1; cf. Remark 3.6. Since the defect numbers are equal
(see Example 4.4) it follows from Lemma 4.15 that b+ = b−. Since b+ + b− ≤ 2 there are two cases:

(i) b+ = b− = 0;

(ii) b+ = b− = 1.

In particular, the defect numbers are either 1 or 2, see Lemma 4.15. The first case corresponds to the
usual limit-point case since the defect numbers are (1, 1), i.e., for every λ ∈ C \ R there exists (up to
scalar multiples) one solution of the homogeneous equation which is square-integrable at the singular
endpoint b, see [77, 78, 79] and e.g., [16, 33, 59]. The second case is the limit-circle case since the defect
numbers are (2, 2); it corresponds to a 2×2 canonical system whose H and ∆ are integrable on ı; cf. [27].

4.5 An alternative characterization of the minimal relation

Recall that by Proposition 4.10 the minimal Tmin consists, roughly speaking, of all elements {f, g} ∈
Tmax of which the first component vanishes at the endpoints of ı. Let T0 be the restriction of the
maximal relation Tmax to the elements where there first component has compact support in ı,

T0 :=
{
{f, g} ∈ Tmax : f has compact support

}
.

More precisely, an element {f, g} ∈ L2
∆(ı) × L2

∆(ı) belongs to T0 if and only if the equivalence class

f contains a locally absolutely continuous representative f̃ with compact support such that the inho-

mogeneous equation Jf̃ ′(t) − H(t)f̃(t) = ∆(t)g̃(t) is satisfied for almost every t ∈ ı. Here g̃ is any
representative of g ∈ L2

∆(ı).
The following proposition offers a different characterization of the minimal relation Tmin which is of

independent interest; cf. [63, Chapter IV, Theorem 2.5].

Proposition 4.23 The minimal relation Tmin is the closure of T0 in L2
∆(ı).

P r o o f. Observe first that the inclusion T0 ⊂ Tmin follows immediately from Proposition 4.10. There-
fore Theorem 4.3 implies that T0 ⊂ Tmin = T ∗max , which leads to

Tmax = T ∗min ⊂ T ∗0 .

Hence to prove the proposition it suffices to show that T ∗0 ⊂ Tmax .
For this, let {f, g} ∈ T ∗0 so that f, g ∈ L2

∆(ı). Then there exists a locally absolutely continuous
function ϕ ∈ ACloc (ı) which is a solution of

Jϕ′(t)−H(t)ϕ(t) = ∆(t)g(t), t ∈ ı; (4.25)

cf. [16, Chapter 3, Problem 1]. Now let [α, β] ⊂ ı be an arbitrary compact interval which contains a
compact subinterval I on which the canonical system is definite; cf. Proposition 2.11. Since the system
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is also definite on  := (α, β) the maximal and minimal relation Tmax () and Tmin () associated to the
restricted system are well defined and have the properties shown in the previous subsections. Then it
is clear that (the restriction of) {ϕ, g} belongs to Tmax () as ϕ, g ∈ L2

∆(). Now let {h, k} ∈ T0 and
assume that the support of h is contained in . Note that, in particular, it follows that ∆k = 0 outside
the compact interval [α, β]. Therefore, as {f, g} ∈ T ∗0 it follows∫ β

α

h(s)∗∆(s)g(s) ds =

∫ β

α

k(s)∗∆(s)f(s) ds.

However, {ϕ, g} ∈ Tmax () also implies that∫ β

α

h(s)∗∆(s)g(s) ds =

∫ β

α

k(s)∗∆(s)ϕ(s) ds,

since (the restriction of) {h, k} is an element in Tmin (); cf. Proposition 4.10. Combining these identities
shows that ∫ β

α

k(s)∗∆(s)(f(s)− ϕ(s)) ds = 0. (4.26)

A construction as in Proposition 2.17 shows that each element in Tmin () can be seen as a restriction of
an element in T0 whose first component has support in . Therefore it follows that (4.26) holds for all
k ∈ ranTmin (), so that by Theorem 4.3 (applied to the interval ), f−ϕ ∈ (ranTmin ())⊥ = ker Tmax ().
Hence, there exists a constant c and a measurable function ω on  for which

f(t)− ϕ(t) = Y (t, 0)c + ω(t) and ∆(t)ω(t) = 0 (4.27)

for almost all t ∈ . Since the canonical system is definite on every interval  which contains I, see
Proposition 2.11, it follows that the constant c in (4.27) does not depend on the choice of the interval
, i.e., c = c. To see this, let ̃ ⊂ ı be an interval that contains  and let c̃ and ω̃ be such that

f(t)− ϕ(t) = Y (t, 0)c̃ + ω̃(t) and ∆(t)ω̃(t) = 0

for almost all t ∈ ̃. Hence Y (·, 0)c− Y (·, 0)c̃ is a solution on  of the homogeneous equation for which

∆
(
Y (·, 0)c − Y (·, 0)c̃

)
= ∆(ω̃ − ω) = ∆ω̃ −∆ω = 0.

Thus, by definiteness ω̃ = ω and hence c = c̃.
Therefore, for any interval  ⊂ ı which contains a compact interval I as in Proposition 2.11, it follows

that the function

f − ϕ− Y (·, 0)c (4.28)

is a null-function with respect to ∆ on the interval . Hence the function in (4.28) is a null-function with
respect to ∆ on the interval ı. Now the function ϕ+ Y (·, 0)c solves the equation (4.25) and it belongs
to the same equivalence class as f . Since by assumption f ∈ L2

∆(ı) it follows that {f, g} ∈ Tmax . Hence
T ∗0 ⊂ Tmax .

5 Boundary triplets and Weyl functions for singular canonical systems with
equal defect numbers

Boundary triplets and their associated Weyl functions provide an efficient abstract tool for the descrip-
tion of the spectral properties of the closed extensions of a symmetric operator or relation with equal
defect numbers, see, e.g., [11, 22, 23, 29, 45] and Section 5.1 below for a brief summary. Furthermore,
the reader is referred to [5, 6, 7, 9, 10, 12, 20, 21, 30, 53, 55] for some recent extensions and applications
of the concept of boundary triplets and their Weyl functions.
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The aim of this section is to show how boundary triplets for singular canonical systems with equal
defect numbers can be chosen and to interpret the corresponding Weyl function as an analytic object that
specifies the square-integrable solutions of the underlying homogeneous canonical differential equation.
Besides the general singular case also the quasiregular and limit-point case is discussed in detail. As in
Section 4 the canonical system is assumed to be definite in the following.

5.1 Boundary triplets in the case of equal defect numbers

In this subsection S stands for a closed symmetric relation with equal, not necessarily finite, defect
numbers n±(S) = dim ker (S∗ ± i) in a Hilbert space (H, (·, ·)H). The following definitions and basic
facts can be found in, e.g., [22, Section 2], [23, Section 1], [29, Chapter 3].

Definition 5.1 A boundary triplet {H,Γ0,Γ1} for the adjoint relation S∗ consists of an auxiliary
Hilbert space (H, (·, ·)H) and two mappings Γ0,Γ1 : S∗ → H such that the abstract Lagrange or Green’s
identity

(f ′, g)H − (f, g′)H = (Γ1f̂ ,Γ0ĝ)H − (Γ0f̂ ,Γ1ĝ)H (5.1)

holds for all f̂ = {f, f ′}, ĝ = {g, g′} ∈ S∗ and the mapping Γ : f̂ → {Γ0f̂ ,Γ1f̂} from S∗ to H ×H is
surjective.

If {H,Γ0,Γ1} is a boundary triplet for S∗, then n±(S) = dimH and S = ker Γ; cf. [23, Proposi-
tion 1.4]. Moreover, the relations A0 and A1 defined by

A0 = ker Γ0, A1 = ker Γ1, (5.2)

are selfadjoint extensions of S such that

A0 ∩A1 = S, A0 +̂ A1 = S∗, (5.3)

where the last sum is componentwise. Conversely, for any two selfadjoint extensions A0 and A1 of S
with the properties (5.3) there exists a boundary triplet {H,Γ0,Γ1} for S∗ such that (5.2) holds; cf.
[23, Proposition 1.3]. In particular, a boundary triplet is not unique if the defect numbers n±(S) of S
are not equal to zero.

Let {H,Γ0,Γ1} be a boundary triplet for S∗ with fixed selfadjoint extension A0 = ker Γ0 of S. For
λ ∈ ρ(A0) the decomposition

S∗ = A0 +̂ N̂λ(S∗), direct sum, (5.4)

holds, where the eigenspace N̂λ(S∗) is defined by

N̂λ(S∗) =
{
{fλ, λfλ} : fλ ∈ Nλ(S∗)

}
, Nλ(S∗) = ker (S∗ − λ). (5.5)

Definition 5.2 Let {H,Γ0,Γ1} be a boundary triplet for S∗ with A0 = ker Γ0. The associated
γ-field is defined by

γ(λ) =
{
{Γ0f̂λ, fλ} : f̂λ ∈ N̂λ(S∗)

}
, λ ∈ ρ(A0),

and the associated Weyl function is defined by

M(λ) =
{
{Γ0f̂λ,Γ1f̂λ} : f̂λ ∈ N̂λ(S∗)

}
, λ ∈ ρ(A0).

Denote by π1 the orthogonal projection in H ⊕ H onto the first component. The following result
follows from the decomposition (5.4) and the properties of the boundary mappings; it will be used
frequently in this section. The linear space of bounded everywhere defined operators from H to H (from
H to H) is denoted by B(H,H) (B(H), respectively); cf. Appendix A.
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Proposition 5.3 The restriction Γ0 �N̂λ(S∗), λ ∈ ρ(A0), of the mapping Γ0 to N̂λ(S∗) is a bijective
mapping onto H. In particular, the values of γ(λ) are in B(H,H) and are given by

γ(λ) = π1

(
Γ0 �N̂λ(S∗)

)−1
, λ ∈ ρ(A0).

The values M(λ) of the Weyl function M are in B(H) and are given by

M(λ) = Γ1

(
Γ0 �N̂λ(S∗)

)−1
, λ ∈ ρ(A0).

Let {H,Γ0,Γ1} be a boundary triplet for S∗ with associated γ-field γ and Weyl function M . Then
the γ-field satisfies the identity

γ(λ) = (I + (λ− µ)(A0 − λ)−1)γ(µ), λ, µ ∈ ρ(A0), (5.6)

which shows that γ is a holomorphic function on ρ(A0). The Weyl function and the γ-field are related
via the identity

M(λ)−M(µ)∗ = (λ− µ̄)γ(µ)∗γ(λ), λ, µ ∈ ρ(A0). (5.7)

In particular, since γ(λ) is injective and maps onto Nλ(S∗), (5.7) shows that M is a Nevanlinna function
with the additional property 0 ∈ ρ(ImM(λ)) for all λ ∈ C \ R.

Remark 5.4 The γ-field and Weyl function are defined on the set ρ(A0) which contains C \ R.
However, due to the holomorphy of the functions γ and M it is sufficient (and in the case of canonical
systems in the present paper more convenient) to consider only the values γ(λ) and M(λ) for λ ∈ C \ R.

Boundary triplets are particularly convenient for the parametrization and description of the extensions
H of S which satisfy S ⊂ H ⊂ S∗. In fact, the mapping

Θ 7→ AΘ :=
{
f̂ ∈ S∗ : {Γ0f̂ ,Γ1f̂} ∈ Θ

}
= ker (Γ1 −ΘΓ0) (5.8)

establishes a bijective correspondence between the closed linear relations Θ in H and the closed exten-
sions AΘ ⊂ S∗ of S. Furthermore, AΘ∗ = (AΘ)∗ holds and, in particular, the closed extension AΘ of S
in (5.8) is symmetric or selfadjoint if and only if the relation Θ is symmetric or selfadjoint, respectively.
Note that the sum and product in the expression Γ1−ΘΓ0 in (5.8) are understood in the sense of linear
relations if Θ is multivalued.

Let Θ be a closed relation in H and let AΘ be the corresponding extension of S in (5.8). With
the help of the Weyl function the spectral properties of AΘ can be described. For instance, a point
λ ∈ ρ(A0) belongs to ρ(AΘ) if and only if 0 ∈ ρ(Θ −M(λ)), and similar correspondences hold for the
spectral subsets of AΘ; see [23, Proposition 1.6]. Furthermore, for all λ ∈ ρ(A0)∩ρ(AΘ) Krĕın’s formula
for the resolvents for the canonical extensions of S holds,

(AΘ − λ)−1 = (A0 − λ)−1 − γ(λ)
(
M(λ)−Θ

)−1
γ(λ̄)∗.

A relation Θ in H is selfadjoint if and only if there exists a Nevanlinna pair {Φ,Ψ}, i.e.,

Φ,Ψ ∈ B(H), ΦΨ∗ = ΨΦ∗, and 0 ∈ ρ(Ψ± iΦ), (5.9)

such that Θ can be written in the form

Θ =
{
{h, h′} ∈ H ×H : Φh+ Ψh′ = 0

}
=
{
{Ψ∗k,−Φ∗k} : k ∈ H

}
. (5.10)

In the case n = dimH < ∞ the condition 0 ∈ ρ(Ψ ± iΦ) in (5.9) can be replaced by the equivalent
condition that the rank of the n × 2n matrix [Φ ; Ψ] is maximal. In terms of this parametrization one
has

AΘ =
{
f̂ ∈ S∗ : ΦΓ0f̂ + ΨΓ1f̂ = 0

}
= ker (ΦΓ0 + ΨΓ1), (5.11)
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and Krĕın’s formula reads as

(AΘ − λ)−1 = (A0 − λ)−1 − γ(λ)Ψ∗
(
M(λ)Ψ∗ + Φ∗

)−1
γ(λ̄)∗

for all λ ∈ ρ(AΘ) ∩ ρ(A0).
All possible boundary triplets associated to the relation S∗ can be described as follows; cf. [23,

Proposition 1.7]. For a given boundary triplet {H,Γ0,Γ1} for S∗, a Hilbert space H′, and an operator
matrix W = (Wij)

1
i,j=0 ∈ B(H ×H,H′ ×H′), with the properties

W

(
0 −iIH′

iIH′ 0

)
W ∗ =

(
0 −iIH
iIH 0

)
(5.12)

and

W ∗
(

0 −iIH
iIH 0

)
W =

(
0 −iIH′

iIH′ 0

)
, (5.13)

the triplet {H′,ΓW0 ,ΓW1 } defined by(
ΓW0 {f, g}
ΓW1 {f, g}

)
=

(
W00 W01

W10 W11

)(
Γ0{f, g}
Γ1{f, g}

)
, {f, g} ∈ S∗, (5.14)

is also a boundary triplet for S∗. Conversely, for each pair of boundary triplets {H,Γ0,Γ1} and
{H′,Γ′0,Γ′1} for S∗ there exists an operator W with the above mentioned properties such that Γ′0 = ΓW0
and Γ′1 = ΓW1 hold.

If {HW ,ΓW0 ,ΓW1 } is a boundary triplet for S∗ which is connected with the boundary triplet {H,Γ0,Γ1}
via (5.14), then the corresponding γ-field γW and Weyl function MW satisfy the identities

γW (λ) = γ(λ)
(
W00 +W01M(λ)

)−1
, (5.15)

and

MW (λ) =
(
W10 +W11M(λ)

)(
W00 +W01M(λ)

)−1
, (5.16)

for all λ ∈ ρ(A0) ∩ ρ(AW0 ), where AW0 = ker ΓW0 .

Example 5.5 Obviously the operator matrix

W =

(
0 IH
−IH 0

)
satisfies (5.12) and (5.13). The corresponding boundary triplet {H,ΓW0 ,ΓW1 } via (5.14) is given by

ΓW0 {f, g} = Γ1{f, g}, ΓW1 {f, g} = −Γ0{f, g},

and the associated γ-field and Weyl function are given by

γW (λ) = γ(λ)M(λ)−1, MW (λ) = −M(λ)−1, λ ∈ ρ(A0) ∩ ρ(A1).

In the next subsections the following notation is useful: for a vector φ ∈ H×H the first component
in H× {0} and second component in {0} ×H is denoted by φ0 and φ1, respectively, sometimes also by
[φ]0 and [φ]1, respectively. In particular, the following notation will be used:

φ =

(
φ0

φ1

)
=

(
[φ]0
[φ]1

)
and φ = {φ0, φ1} = {[φ]0, [φ]1}. (5.17)
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5.2 Canonical systems with quasiregular endpoints

In this subsection the abstract concepts of boundary triplets and their Weyl functions are illustrated
for the canonical system (2.4) in the case that both its endpoints are quasiregular. Then the defect
numbers of the associated symmetric minimal relation Tmin from Section 4.1 are maximal, i.e., equal to
n, and each element f in the domain of the associated maximal relation Tmax admits boundary values
f(a), f(b) ∈ Cn at the endpoints of the interval ı; cf. Propositions 4.16.

In the next theorem a boundary triplet for Tmax is given and its corresponding γ-field and Weyl
function are obtained.

Theorem 5.6 Assume that a and b are quasiregular endpoints for the canonical system (2.4). Then
{Cn,Γ0,Γ1} with

Γ0{f, g} :=
1√
2

(f(a) + f(b)), Γ1{f, g} := − J√
2

(f(a)− f(b)),

is a boundary triplet for Tmax . Moreover, the γ-field γ and the Weyl function M associated to {Cn,Γ0,Γ1}
have the form

γ(λ) =
√

2Y (·, λ)
(
Y (a, λ) + Y (b, λ)

)−1
, λ ∈ C \ R,

and

M(λ) = −J
(
Y (a, λ)− Y (b, λ)

)(
Y (a, λ) + Y (b, λ)

)−1
, λ ∈ C \ R.

P r o o f. Since the endpoints a and b are quasiregular, the Lagrange identity (4.11) reduces to〈
{f, g}, {h, k}

〉
∆

= h(b)∗Jf(b)− h(a)∗Jf(a), {f, g}, {h, k} ∈ Tmax .

Now a straightforward calculation shows that the boundary mappings Γ0 and Γ1 satisfy the abstract
Lagrange identity (5.1). The surjectivity of the mapping Γ = (Γ0,Γ1)> : Tmax → Cn ×Cn follows from
Proposition 4.16. Hence {Cn,Γ0,Γ1} is a boundary triplet for Tmax .

To obtain the expressions for the associated γ-field and Weyl function recall that

Nλ(Tmax) = {Y (·, λ)φ : φ ∈ Cn }, λ ∈ C \ R,

see Proposition 4.16. Hence for f̂λ = {Y (·, λ)φ, λY (·, λ)φ}, φ ∈ Cn, one has

Γ0f̂λ =
1√
2

(Y (a, λ) + Y (b, λ))φ, Γ1f̂λ = − J√
2

(Y (a, λ)− Y (b, λ))φ,

which leads to

γ(λ) =

{{
1√
2

(Y (a, λ) + Y (b, λ))φ, Y (·, λ)φ

}
: φ ∈ Cn

}
and

M(λ) =

{{
1√
2

(Y (a, λ) + Y (b, λ))φ,− J√
2

(Y (a, λ)− Y (b, λ))φ

}
: φ ∈ Cn

}
,

see Definition 5.2. These identities together with Proposition 5.3 yield the formulas for the γ-field and
the Weyl function.

Let {Cn,Γ0,Γ1} be the boundary triplet for Tmax from Theorem 5.6. Then the selfadjoint relations
A0 = ker Γ0 and A1 = ker Γ1 are given by

Ai = ker Γi =
{
{f, g} ∈ Tmax : f(a) = (−1)i+1f(b)

}
, i = 0, 1.

All other selfadjoint extensions of Tmin in L2
∆(ı) can be described via (5.8) or (5.11) with the help of

selfadjoint relations Θ in Cn or Nevanlinna pairs {Φ,Ψ} in Cn. The next corollary is a direct consequence
of Theorem 5.6 and (5.11).
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Corollary 5.7 Assume that a and b are quasiregular endpoints for the canonical system (2.4) and
let Θ be a selfadjoint relation in Cn represented by a Nevanlinna pair {Φ,Ψ} of n × n matrices in the
form (5.10). Then

AΘ =
{
{f, g} ∈ Tmax : Φ(f(a) + f(b)) = ΨJ(f(a)− f(b))

}
(5.18)

is a selfadjoint realization of the canonical system (2.4) in L2
∆(ı), and conversely, each selfadjoint

realization of the canonical system can be written in the form (5.18).

The selfadjoint relation AΘ in (5.18) can also be written as

AΘ =
{
{f, g} ∈ Tmax : Uf(a) + V f(b) = 0

}
,

where U = Φ−ΨJ and V = Φ + ΨJ are n× n matrices satisfying

UJU∗ = V JV ∗, rank [U ;V ] = n,

see [28, p. 250], [63, Chapter II, Theorem 2.9]. Note that the γ-field and Weyl function in Theorem 5.6
are connected by

γ(λ) =
√

2Y (·, λ)
(
Y (a, λ)− Y (b, λ)

)−1
JM(λ), λ ∈ C \ R,

and that the invertibility of the matrices Y (a, λ) ± Y (b, λ) follows also from (2.15). Formulas for the
Weyl function M as in Theorem 5.6 can be found in the literature; cf. [51] where the notion of Q-
function is used. However, other forms may occur due to a different choice of the boundary triplet. One
special case of interest may be mentioned in particular, namely when n = 2m and J is of the form

J =

(
0 −Im
Im 0

)
. (5.19)

Decompose the vectors φ ∈ Cn = Cm×Cm into two components [φ]0, [φ]1 ∈ Cm as in (5.17) and let the
fundamental matrix be decomposed accordingly into m×m block form:

Y (·, λ) =

(
Y00(·, λ) Y01(·, λ)
Y10(·, λ) Y11(·, λ)

)
.

In order to apply the abstract transformation results from Section 5.1, define the 4m × 4m matrix W
by

W =
1√
2


Im 0 0 −Im
Im 0 0 Im
0 Im Im 0
0 −Im Im 0

 , (5.20)

so that W satisfies (5.12) and (5.13). Let {Cn,Γ0,Γ1} be the boundary triplet in Theorem 5.6. If this
boundary triplet is transformed by (5.14), where W is as in (5.20), then the following result is obtained.

Corollary 5.8 Assume that a and b are quasiregular endpoints for the canonical system (2.4) and
that J is of the form (5.19). Then {C2m,Γ0,Γ1} with

Γ0{f, g} :=

(
[f(a)]0
[f(b)]0

)
, Γ1{f, g} :=

(
[f(a)]1
−[f(b)]1

)
,

is a boundary triplet for Tmax . Moreover, the γ-field γ and the Weyl function M associated to {C2m,Γ0,Γ1}
have the form

γ(λ) = Y (·, λ)

(
Y00(a, λ) Y01(a, λ)
Y00(b, λ) Y01(b, λ)

)−1

, λ ∈ C \ R,

and

M(λ) =

(
Y10(a, λ) Y11(a, λ)
−Y10(b, λ) −Y11(b, λ)

)(
Y00(a, λ) Y01(a, λ)
Y00(b, λ) Y01(b, λ)

)−1

, λ ∈ C \ R.
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The above corollary is specialized after fixing a selfadjoint boundary condition at the endpoint b. For
this let {Φ,Ψ} be a Nevanlinna pair of m×m matrices, define the relation T ′max by

T ′max =
{
{f, g} ∈ Tmax : Φ[f(b)]0 + Ψ[f(b)]1 = 0

}
,

and the linear relation T ′min by

T ′min =
{
{f, g} ∈ Tmax : f(a) = 0, Φ[f(b)]0 + Ψ[f(b)]1 = 0

}
.

Then T ′min is closed and symmetric with defect numbers (m,m) and its adjoint is given by T ′max, see
[19]. Here T ′max can be interpreted as a restriction of Tmax by means of a selfadjoint boundary condition
at the endpoint b. The defect subspaces of T ′max have the form

Nλ(T ′max ) =
{
Y (·, λ)φ : Φ[Y (b, λ)φ]0 + Ψ[Y (b, λ)φ]1 = 0, φ ∈ C2m

}
for λ ∈ C \ R. Note that the condition Φ[Y (b, λ)φ]0 + Ψ[Y (b, λ)φ]1 = 0 is equivalent to(

ΦY01(b, λ) + ΨY11(b, λ)
)
φ1 = −

(
ΦY00(b, λ) + ΨY10(b, λ)

)
φ0. (5.21)

Corollary 5.9 Assume that a and b are quasiregular endpoints for the canonical system (2.4) and
that J is of the form (5.19). Then {Cm,Γ′0,Γ′1} with

Γ′0{f, g} := [f(a)]0, Γ′1{f, g} := [f(a)]1,

is a boundary triplet for T ′max . If, in addition, the fundamental matrix is chosen such that Y (a, λ) = I,
then the γ-field γ′ and the Weyl function M ′ associated to {Cm,Γ′0,Γ′1} have the form

γ′(λ) =
{
{φ0, Y (·, λ)φ} : Φ[Y (b, λ)φ]0 + Ψ[Y (b, λ)φ]1 = 0, φ ∈ C2m

}
, λ ∈ C \ R,

and

M ′(λ) =
{
{φ0, φ1} : Φ[Y (b, λ)φ]0 + Ψ[Y (b, λ)φ]1 = 0, φ ∈ C2m

}
, λ ∈ C \ R.

It is not difficult to see that the γ-field γ′ and the Weyl function M ′ in the above corollary are
connected via

γ′(λ) = Y (·, λ)

(
I

M ′(λ)

)
, λ ∈ C \ R;

cf. Proposition 5.3 and [35]. With the help of (5.21) one also obtains

M ′(λ) = −
(
ΦY01(b, λ) + ΨY11(b, λ)

)−1(
ΦY00(b, λ) + ΨY10(b, λ)

)
, λ ∈ C \ R.

5.3 Canonical systems in the limit-point case

One of the main motivations for the introduction of abstract γ-fields and Weyl functions has been
the Titchmarsh-Weyl theory for Sturm-Liouville equations in the limit-point case. In this subsection
the corresponding limit-point case for canonical systems is treated. This treatment is of independent
interest, but also serves as an introduction to the case of general singular canonical systems.

Let Tmax and Tmin be the maximal and minimal relation associated to the canonical system (2.4)
on ı and assume that the endpoint a is quasiregular and that the endpoint b is in the limit-point case.
Furthermore, suppose that the defect numbers of Tmin are equal, so that i+ = i− and n = 2m, where
m := i+; cf. Proposition 4.21. Then, in particular, by Lemma 2.4 there exists a 2m×2m unitary matrix
U such that

UJU∗ =

(
0 −Im
Im 0

)
. (5.22)

Recall that [φ]0, [φ]1 denote the first and second component of φ ∈ Cn = Cm × Cm, see (5.17).
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Theorem 5.10 Assume that a is a quasiregular endpoint, that b is a singular endpoint which is in
the limit-point case, and that the defect numbers of Tmin are equal. Let U be a unitary 2m× 2m matrix
such that (5.22) holds. Then {Cm,Γ0,Γ1} with

Γ0{f, g} := [Uf(a)]0, Γ1{f, g} := [Uf(a)]1,

is a boundary triplet for Tmax . Moreover, the γ-field γ and the Weyl function M associated to {Cm,Γ0,Γ1}
have the form

γ(λ) =
{
{[UY (a, λ)φ]0, Y (·, λ)φ} : φ ∈ B0(λ)

}
, λ ∈ C \ R,

and

M(λ) =
{
{[UY (a, λ)φ]0, [UY (a, λ)φ]1} : φ ∈ B0(λ)

}
, λ ∈ C \ R.

P r o o f. Since the endpoint a is quasiregular the elements {f, g}, {h, k} ∈ Tmax have boundary values
f(a), h(a) ∈ Cn which are of the form f(a) = Y (a, λ)φa and h(a) = Y (a, λ)ψa, where φa, ψa ∈ Cn,
respectively, see Proposition 4.14 and the observations following it; cf. (4.22). Moreover, according to
Proposition 4.19 {f, g}, {h, k} ∈ Tmax admit the decompositions

{f, g} = {f0, g0}+ Ya(·, λ)φa, {h, k} = {h0, k0}+ Ya(·, λ)ψa,

where {f0, g0}, {h0, k0} ∈ Tmin . Therefore the Lagrange identity has the form〈
{f, g}, {h, k}

〉
∆

=
〈
{f0, g0}+ Ya(·, λ)φa, {h0, k0}+ Ya(·, λ)ψa

〉
∆

=
〈
Ya(·, λ)φa,Ya(·, λ)ψa

〉
∆

= −
[
Y (·, λ)φa, Y (·, λ)ψa

]
(a)

= −h(a)∗Jf(a)

and from (5.22) one obtains

−h(a)∗Jf(a) = −(Uh(a))∗
(

0 −Im
Im 0

)
Uf(a) = [Uh(a)]∗0[Uf(a)]1 − [Uh(a)]∗1[Uf(a)]0.

Hence the abstract Lagrange identity (5.1) holds. The surjectivity of the mapping Γ = (Γ0,Γ1)> :
Tmax → Cm × Cm is a consequence of Proposition 4.14. Thus {Cm,Γ0,Γ1} is a boundary triplet for
Tmax .

To obtain expressions for the associated γ-field and Weyl function recall that

Nλ(Tmax) = {Y (·, λ)φ : φ ∈ B0(λ) },

where dimB0(λ) = m; see Proposition 4.21. Hence for f̂λ = {Y (·, λ)φ, λY (·, λ)φ}, φ ∈ B0(λ), one has

Γ0f̂λ = [UY (a, λ)φ]0, Γ1f̂λ = [UY (a, λ)φ]1, φ ∈ B0(λ).

Hence the statements about the γ-field and the Weyl function follow directly from Definition 5.2.

Remark 5.11 Observe the analogy between the boundary triplet and the formulas for the γ-field
and the Weyl function in Theorem 5.10 (with U = In) and the boundary triplet {Cm,Γ′0,Γ′1}, γ-field
γ′, and Weyl function M ′ below Corollary 5.8.

Let {Cn,Γ0,Γ1} be the boundary triplet for Tmax from Theorem 5.10. Then the selfadjoint relations
A0 = ker Γ0 and A1 = ker Γ1 are given by

Ai = ker Γi =
{
{f, g} ∈ Tmax : [Uf(a)]i = 0

}
, i = 0, 1.

In the next corollary the selfadjoint realizations of the canonical system in the limit-point case are
described with the help of Nevanlinna pairs {Φ,Ψ}; cf. (5.10) and (5.11).
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Corollary 5.12 Assume that a is a quasiregular endpoint, that b is a singular endpoint which is in
the limit-point case, and that the defect numbers of Tmin are equal. Moreover, let U be a unitary 2m×2m
matrix such that (5.22) holds and let Θ be a selfadjoint relation in Cm represented by a Nevanlinna pair
of m×m matrices {Φ,Ψ} as in (5.10). Then

AΘ =
{
{f, g} ∈ Tmax : Φ[Uf(a)]0 + Ψ[Uf(a)]1 = 0

}
(5.23)

is a selfadjoint realization of the canonical system (2.4) in L2
∆(ı), and conversely, each selfadjoint

realization of the canonical system can be written in the form (5.23).

The next theorem, which is a simple consequence of the previous theorem and Proposition 5.3, shows
that the Weyl function M singles out the square-integrable solutions of the homogeneous canonical
differential equation (2.5).

Theorem 5.13 Let {Cm,Γ0,Γ1} be the boundary triplet for Tmax from Theorem 5.10 and let γ and
M be the associated γ-field and the Weyl function. Then

γ(λ)η = Y (·, λ)Y (a, λ)−1U−1

(
η

M(λ)η

)
holds for all η ∈ Cm and λ ∈ C \ R.

P r o o f. Since the γ-field is defined everywhere on Cm the mapping φ 7→ [UY (a, λ)φ]0 is an isomor-
phism from B0(λ) onto Cm; cf. Proposition 5.3. Hence for every η ∈ Cm there exists a unique φ ∈ B0(λ)
such that η = [UY (a, λ)φ]0. Making use of the form of the Weyl function M from Theorem 5.10 and
Proposition 5.3 one concludes

γ(λ)[UY (a, λ)φ]0 = Y (·, λ)φ = Y (·, λ)Y (a, λ)−1U−1

(
[UY (a, λ)φ]0
[UY (a, λ)φ]1

)
= Y (·, λ)Y (a, λ)−1U−1

(
[UY (a, λ)φ]0

M(λ) [UY (a, λ)φ]0

)
,

which completes the proof.

Example 5.14 (Weighted Sturm-Liouville equations) Consider the Sturm-Liouville equation from
Examples 2.12, 4.4, and 4.22 on the interval ı = (0,∞) and assume r(t) > 0 for t ∈ ı. Then the
corresponding canonical system is definite and Tmax is (the graph of) an operator. Let the Sturm-
Liouville expression

` =
1

r

(
− d

dt
p
d

dt
+ q

)
be regular at 0 and in the limit-point case at∞. Then a+ = a− = 1 and b+ = b− = 0, and the boundary
triplet {C,Γ0,Γ1} in Theorem 5.10 (here U = I2) is given by

Γ0{f1,Tmax f1} = f1(0), Γ1{f1,Tmax f1} = (pf ′1)(0), f1 ∈ domTmax .

The selfadjoint realizations A0 and A1 coincide with the Sturm-Liouville operators corresponding to
Dirichlet and Neumann boundary conditions at 0, respectively. Let

Y (t, λ) =

(
u1(t, λ) v1(t, λ)
u2(t, λ) v2(t, λ)

)
, λ ∈ C \ R, t ∈ (0,∞),

be a fundamental matrix of the corresponding canonical system with Y (0, λ) = I2. Then u1(·, λ)
and v1(·, λ) are solutions of the differential equation `f = λf which satisfy the boundary conditions
u1(0, λ) = (pv1)′(0, λ) = 1 and (pu1)′(0, λ) = v1(0, λ) = 0. In this situation Theorem 5.13 implies

u1(·, λ) +M(λ)v1(·, λ) ∈ L2(0,∞), λ ∈ C \ R,

i.e., the Weyl function M coincides with the classical Titchmarsh-Weyl coefficient associated to the sin-
gular Sturm-Liouville expression which combines the solutions u1(·, λ) and v1(·, λ) to a square-integrable
solution; cf. [77, 78, 79] and [16, 33, 59].
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5.4 General canonical systems with equal defect numbers

In this subsection boundary mappings for the maximal relation Tmax associated to the canonical system
(2.4), see Section 4.1, are given under the assumption that the defect numbers of the symmetric minimal
relation Tmin are equal, that is,

m := a− + b+ = a+ + b− (5.24)

holds; cf. (4.8).
Fix a fundamental matrix Y (·, λ) of the canonical system and some λ0 ∈ C \ R. Recall that the

matrices D(a, λ0)s and D(b, λ0)s from Theorem 3.2 have a+ positive and a− negative eigenvalues, and
b+ positive and b− negative eigenvalues, respectively. Their restrictions to the corresponding positive
eigenspaces A+(λ0), B+(λ0) and negative eigenspaces A−(λ0), B−(λ0) will be denoted by D(a, λ0)+,
D(b, λ0)+, D(a, λ0)−, and D(b, λ0)−, respectively. Recall that A(λ0) = A+(λ0)⊕A−(λ0) and B(λ0) =
B+(λ0)⊕B−(λ0); cf. (4.13). As a consequence of the assumption (5.24), Lemma 2.4 implies that there
exists a (nonunique) invertible 2m× 2m matrix V in A(λ0)×B(λ0) such that

V ∗
(

0 −iIm
iIm 0

)
V =


−D(a, λ0)+ 0 0 0

0 −D(a, λ0)− 0 0
0 0 D(b, λ0)+ 0
0 0 0 D(b, λ0)−

 . (5.25)

The next theorem gives a description of the boundary triplets for general singular canonical systems
with equal defect numbers. Roughly speaking the Lagrange identity (4.11) will be rewritten with the
help of the decomposition in Theorem 4.12, the matrices D(a, λ0)± and D(b, λ0)±, and the identity
(5.25). The formulas for the boundary mappings in Theorem 5.15 below can be written in a more
explicit form by constructing V and applying Corollary 4.13, see also Section 5.5. As in (5.17) the
components of a vector φ ∈ C2m with respect to the decomposition C2m = Cm × Cm will written as
[φ]0 and [φ]1.

Theorem 5.15 Assume that the defect numbers of Tmin are equal. Let the fundamental matrix
Y (·, λ) and λ0 ∈ C \ R be fixed and decompose {f, g} ∈ Tmax according to Theorem 4.12 in the form

{f, g} = {f0, g0}+ Ya(·, λ0)φa + Yb(·, λ0)φb,

with {f0, g0} ∈ Tmin , φa ∈ A(λ0), φb ∈ B(λ0). Then the following statements hold:

(i) if V is a matrix which satisfies (5.25), then {Cm,Γ0,Γ1}, with

Γ0{f, g} =

[
V

(
φa
φb

)]
0

and Γ1{f, g} =

[
V

(
φa
φb

)]
1

,

is a boundary triplet for Tmax ;

(ii) if {Cm,Γ0,Γ1} is a boundary triplet for Tmax , then there exists a (nonunique) matrix V which
satisfies (5.25) such that Γ0 and Γ1 have the form in (i).

P r o o f. (i) Decompose {f, g}, {h, k} ∈ Tmax in the form

{f, g} = {f0, g0}+ Ya(·, λ0)φa + Yb(·, λ0)φb,

{h, k} = {h0, k0}+ Ya(·, λ0)ψa + Yb(·, λ0)ψb,
(5.26)

with {f0, g0}, {h0, k0} ∈ Tmin , φa, ψa ∈ A(λ0) and φb, ψb ∈ B(λ0). Then the Lagrange identity (4.11)
becomes 〈

{f, g}, {h, k}
〉

∆
=
〈
Ya(·, λ0)φa + Yb(·, λ0)φb,Ya(·, λ0)ψa + Yb(·, λ0)ψb

〉
∆

=
[
Y (·, λ0)φb, Y (·, λ0)ψb

]
(b)−

[
Y (·, λ0)φa, Y (·, λ0)ψa

]
(a).
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In a similar way as in the proof of Theorem 4.12 one concludes from (4.10), (3.1), and (3.6) that

lim
t↑b

ψ∗bY (t, λ0)∗JY (t, λ0)φb − lim
t↓a

ψ∗aY (t, λ0)∗JY (t, λ0)φa

= i lim
t↑b

ψ∗bD(t, λ0)φb − i lim
t↓a

ψ∗aD(t, λ0)φa

= iψ∗bD(b, λ0)sφb − iψ∗aD(a, λ0)sφa

= iψ∗b

(
D(b, λ0)+ 0

0 D(b, λ0)−

)
φb − iψ∗a

(
D(a, λ0)+ 0

0 D(a, λ0)−

)
φa.

Combing the previous two identities with the identity (5.25) and the definition of Γ0 and Γ1 one gets

〈
{f, g}, {h, k}

〉
∆

= i

(
ψa
ψb

)∗
−D(a, λ0)+ 0 0 0

0 −D(a, λ0)− 0 0
0 0 D(b, λ0)+ 0
0 0 0 D(b, λ0)−

(φaφb
)

=

(
ψa
ψb

)∗
V ∗
(

0 Im
−Im 0

)
V

(
φa
φb

)
=

((
0 Im
−Im 0

)(
Γ0{f, g}
Γ1{f, g}

)
,

(
Γ0{h, k}
Γ1{h, k}

))
=
(
Γ1{f, g},Γ0{h, k}

)
−
(
Γ0{f, g},Γ1{h, k}

)
.

Since dimA(λ0) × B(λ0) = 2m and V is invertible, the mapping Γ = (Γ0,Γ1)> : Tmax → Cm × Cm is
onto. Hence {Cm,Γ0,Γ1} is a boundary triplet for Tmax .

(ii) Suppose that {Cm,Γ0,Γ1} is a boundary triplet for Tmax and let V be a fixed matrix which
satisfies (5.25). Then there exists a unique 2m × 2m matrix W such that (5.12) and (5.13) hold with
Im = IH = IH′ and(

Γ0

Γ1

)
{f, g} = WV

(
φa
φb

)
, {f, g} ∈ Tmax .

It is not difficult to check that the matrix Ṽ := WV also satisfies (5.25) which implies (ii).

For completeness the analogue of Corollary 5.7 and Corollary 5.12 is stated in the general case.

Corollary 5.16 Let {Cm,Γ0,Γ1} be a boundary triplet for Tmax from Theorem 5.15 and let Θ be
a selfadjoint relation in Cm represented by a Nevanlinna pair of m ×m matrices {Φ,Ψ} as in (5.10).
Then

AΘ =

{
{f, g} ∈ Tmax : Φ

[
V

(
φa
φb

)]
0

+ Ψ

[
V

(
φa
φb

)]
1

= 0

}
(5.27)

is a selfadjoint realization of the canonical system in L2
∆(ı), and conversely, each selfadjoint realization

of the canonical system can be written in the form (5.27).

To derive the formulas for the corresponding γ-field and the Weyl function, the m-dimensional space
D(a, λ)∩D(b, λ), λ ∈ C \ R, will be identified with a subspace of the 2m-dimensional space A(λ0)×B(λ0)
with λ0 ∈ C \ R fixed. Recall that

N̂λ(Tmax ) =
{
{Y (·, λ)φ, λY (·, λ)φ} : φ ∈ D(a, λ) ∩D(b, λ)

}
, λ ∈ C \ R,

see (4.3). It follows from Theorem 4.12 that for φ ∈ D(a, λ) ∩ D(b, λ) there exist unique elements
{f0(λ), g0(λ)} ∈ Tmin , φa(λ) ∈ A(λ0), and φb(λ) ∈ B(λ0) such that

f̂λ = {Y (·, λ)φ, λY (·, λ)φ} = {f0(λ), g0(λ)}+ Ya(·, λ0)φa(λ) + Yb(·, λ0)φb(λ) (5.28)
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holds. Hence the mapping

Z(λ) : D(a, λ) ∩D(b, λ)→ A(λ0)×B(λ0), φ 7→
(
φa(λ)
φb(λ)

)
,

is injective and ranZ(λ) is an m-dimensional subspace of the 2m-dimensional space A(λ0)×B(λ0).

Proposition 5.17 Assume that the defect numbers of Tmin are equal, let V be a matrix which satisfies
(5.25), and let {Cm,Γ0,Γ1} be the corresponding boundary triplet for Tmax from Theorem 5.15. Then
the associated γ-field γ and the Weyl function M have the form

γ(λ) =
{
{[V Z(λ)φ]0 , Y (·, λ)φ} : φ ∈ D(a, λ) ∩D(b, λ)

}
, λ ∈ C \ R,

and

M(λ) =
{
{[V Z(λ)φ]0 , [V Z(λ)φ]1} : φ ∈ D(a, λ) ∩D(b, λ)

}
, λ ∈ C \ R.

P r o o f. Decompose the element f̂λ ∈ N̂λ(Tmax ) as in (5.28) with φ ∈ D(a, λ) ∩D(b, λ) and φa(λ) ∈
A(λ0), φb(λ) ∈ B(λ0). Then the definition of the mappings Γi, i = 0, 1, in Theorem 5.15 shows that

Γif̂λ =

[
V

(
φa(λ)
φb(λ)

)]
i

= [V Z(λ)φ]i, i = 0, 1.

Hence the expressions for the γ-field and Weyl function follow from Definition 5.2.

The following statement shows that also in the general singular case with equal defect numbers
the Weyl function associated to a boundary triplet singles out the square-integrable solutions of the
homogeneous canonical differential equation. Here the inverse mapping Z(λ)−1 : ranZ(λ)→ D(a, λ) ∩
D(b, λ) will be used.

Theorem 5.18 Let {Cm,Γ0,Γ1} be a boundary triplet for Tmax from Theorem 5.15 and let γ and
M be the associated γ-field and Weyl function from Proposition 5.17. Then

γ(λ)η = Y (·, λ)Z(λ)−1V −1

(
η

M(λ)η

)
holds for all η ∈ Cm and λ ∈ C \ R.

P r o o f. Since the γ-field is defined everywhere on Cm the mapping φ 7→ [V Z(λ)φ]0 is an isomorphism
from D(a, λ) ∩ D(b, λ) onto Cm; cf. Proposition 5.3. Hence for every η ∈ Cm there exists a unique
φ ∈ D(a, λ) ∩D(b, λ) such that η = [V Z(λ)φ]0. Now Proposition 5.17 implies

γ(λ) [V Z(λ)φ]0 = Y (·, λ)φ = Y (·, λ)Z(λ)−1V −1V Z(λ)φ,

where Z(λ)φ ∈ A(λ0) × B(λ0). Making use of the Weyl function M in Proposition 5.17 and Proposi-
tion 5.3 one obtains

γ(λ) [V Z(λ)φ]0 = Y (·, λ)Z(λ)−1V −1

(
[V Z(λ)φ]0
[V Z(λ)φ]1

)
= Y (·, λ)Z(λ)−1V −1

(
[V Z(λ)φ]0

M(λ)[V Z(λ)φ]0

)
,

which completes the proof.

The result in Theorem 5.18 holds for any boundary triplet for Tmax : if W is a matrix which satisfies
(5.12) and (5.13), then WV satisfies (5.25) and hence the γ-field γW and the Weyl function MW associate
to WV via the boundary triplet in Theorem 5.15 satisfy by Theorem 5.18

γW (λ)η = Y (·, λ)Z(λ)−1(WV )−1

(
η

MW (λ)η

)
for all η ∈ Cm and λ ∈ C \ R; cf. (5.15) and (5.16).
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5.5 Boundary triplets in terms of the limit relations

In this subsection boundary triplets for singular canonical systems with equal defect numbers (m,m)
in two typical cases are expressed in terms of the limit relations D(a, λ0) and D(b, λ0), λ0 ∈ C \ R.
More specifically, these boundary triplets are obtained by constructing a 2m× 2m matrix V satisfying
(5.25), see Theorem 5.15, in terms of the restrictions D(a, λ0)+, D(a, λ0)−, D(b, λ0)+, and D(b, λ0)− of
D(a, λ0)s and D(b, λ0)s, respectively; cf. Section 5.4.

Define the 2m× 2m matrix C by

C =


(D(a, λ0)+)

1
2 0 0 0

0 (−D(a, λ0)−)
1
2 0 0

0 0 (D(b, λ0)+)
1
2 0

0 0 0 (−D(b, λ0)−)
1
2

 .

Furthermore, define the 2m× 2m matrix S and the unitary 2m× 2m matrix U by

S =


0 Ia− 0 0
0 0 Ib+ 0
Ia+ 0 0 0
0 0 0 Ib−

 , U =
1√
2


Ia− 0 Ia+ 0
0 Ib+ 0 Ib−

iIa− 0 −iIa+ 0
0 iIb+ 0 −iIb−

 .

Then it is not difficult to check that the matrix V := USC satisfies (5.25). This matrix can be computed
for the general case when Tmin has equal defect numbers. However, for the sake of simplicity only the
special case a+ = a−, or equivalently b+ = b−, is considered. In this situation one has

V =
1√
2


(D(a, λ0)+)

1
2 (−D(a, λ0)−)

1
2 0 0

0 0 (D(b, λ0)+)
1
2 (D(b, λ0)−)

1
2

−i(D(a, λ0)+)
1
2 i(−D(a, λ0)−)

1
2 0 0

0 0 i(D(b, λ0)+)
1
2 −i(−D(b, λ0)−)

1
2

 .

In the following the elements φa ∈ A(λ0) and φb ∈ B(λ0) are decomposed in φ±a ∈ A±(λ0) and
φ±b ∈ B±(λ0), respectively.

Corollary 5.19 Suppose, in addition to (5.24), that a+ = a− or, equivalently, b+ = b− holds, and
decompose {f, g} ∈ Tmax according to Theorem 4.12 in the form

{f, g} = {f0, g0}+ Ya(·, λ0)φa + Yb(·, λ0)φb,

with {f0, g0} ∈ Tmin , φa ∈ A(λ0), and φb ∈ B(λ0). Then {Cm,Γ0,Γ1}, with

Γ0{f, g} =
1√
2

(
(D(a, λ0)+)

1
2φ+

a + (−D(a, λ0)−)
1
2φ−a

(D(b, λ0)+)
1
2φ+

b + (D(b, λ0)−)
1
2φ−b

)
and

Γ1{f, g} =
1√
2

(
−i(D(a, λ0)+)

1
2φ+

a + i(−D(a, λ0)−)
1
2φ−a

i(D(b, λ0)+)
1
2φ+

b − i(−D(b, λ0)−)
1
2φ−b

)
,

is a boundary triplet for Tmax .

If the endpoint a is quasiregular and b is in the limit-point case, then the boundary triplet in Corol-
lary 5.19 can be transformed into the one in Theorem 5.10.

Similar considerations as above show that in the special case a+ = b+, or equivalently a− = b−, the
matrix

1√
2


(D(a, λ0)+)

1
2 0 (D(b, λ0)+)

1
2 0

0 (−D(a, λ0)−)
1
2 0 (−D(b, λ0)−)

1
2

−i(D(a, λ0)+)
1
2 0 i(D(b, λ0)+)

1
2 0

0 i(−D(a, λ0)−)
1
2 0 −i(−D(b, λ0)−)

1
2


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also satisfies (5.25). This leads to the following corollary, which can be regarded as a generalization of
the quasiregular case from Section 5.2.

Corollary 5.20 Suppose, in addition to (5.24), that a+ = b+ or, equivalently, a− = b− holds, and
decompose {f, g} ∈ Tmax according to Theorem 4.12 in the form

{f, g} = {f0, g0}+ Ya(·, λ0)φa + Yb(·, λ0)φb,

with {f0, g0} ∈ Tmin , φa ∈ A(λ0), and φb ∈ B(λ0). Then {Cm,Γ0,Γ1}, with

Γ0{f, g} =
1√
2

(
(D(a, λ0)+)

1
2φ+

a + (D(b, λ0)+)
1
2φ+

b

(−D(a, λ0)−)
1
2φ−a + (−D(b, λ0)−)

1
2φ−b

)
and

Γ1{f, g} =
1√
2

(
−i(D(a, λ0)+)

1
2φ+

a + i(D(b, λ0)+)
1
2φ+

b

i(−D(a, λ0)−)
1
2φ−a − i(−D(b, λ0)−)

1
2φ−b

)
,

is a boundary triplet for Tmax .

Remark 5.21 The boundary triplets in Corollaries 5.19 and 5.20 can be written in a more explicit
form by expressing φ±a and φ±b in terms of {f, g} ∈ Tmax . More precisely, if λ0 ∈ C \ R is fixed and
{f, g} ∈ Tmax is decomposed in the form

{f, g} = {f0, g0}+ Ya(·, λ0)

(
φ+
a

φ−a

)
+ Yb(·, λ0)

(
φ+
b

φ−b

)
,

where {f0, g0} ∈ Tmin , then it follows that

(D(a, λ0)±s φ
±
a , χ

±
a ) = −i

[
f, Y (·, λ0)χ±a

]
(a),

(D(b, λ0)±s φ
±
b , χ

±
b ) = −i

[
f, Y (·, λ0)χ±b

]
(b),

hold for all χ±a ∈ A(λ0)± and χ±b ∈ B(λ0)±, respectively; cf. Corollary 4.13. Therefore, by introducing

bases in A(λ0)± and B(λ0)± the elements φ±a and φ±b can be computed in terms of {f, g}.

6 Boundary triplets and Weyl functions for singular canonical systems with
unequal defect numbers.

The notion of boundary triplets can be extended to symmetric operators and relations with unequal
defect numbers; cf. [57] and [58]. In this section the definition and some properties of such boundary
triplets and the associated γ-fields and Weyl functions are briefly recalled and the class of boundary
triplets for singular canonical systems with unequal defect numbers is characterized. Furthermore it is
shown that also in the general singular case with unequal defect numbers the Weyl function singles out
the square-integrable solutions of the homogeneous canonical differential equation.

6.1 Boundary triplets in the case of unequal defect numbers

Let S be a closed symmetric relation with unequal defect numbers in the Hilbert space (H, (·, ·)H).
Without loss of generality it will be assumed that n+(S) < n−(S). The following definition of a
boundary triplet for this case is taken from [57]. The range H0 of the first boundary mapping will be
decomposed in subspaces H1 ⊕ H2 and the orthogonal projections from H0 onto H1 and H2 will be
denoted by P1 and P2, respectively.

Definition 6.1 Assume that n+(S) < n−(S). A boundary triplet {H0 ×H1,Γ0,Γ1} for the adjoint
relation S∗ consists of an auxiliary Hilbert space (H0, (·, ·)H0

) which decomposes into the orthogonal
sum H0 = H1 ⊕H2, and two mappings Γj : S∗ → Hj , j = 0, 1, such that

(f ′, g)H − (f, g′)H = (Γ1f̂ ,Γ0ĝ)H0
− (Γ0f̂ ,Γ1ĝ)H0

+ i(P2Γ0f̂ , P2Γ0ĝ)H2
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holds for all f̂ = {f, f ′}, ĝ = {g, g′} ∈ S∗ and the mapping Γ : f̂ → {Γ0f̂ ,Γ1f̂} from S∗ to H0 ×H1 is
surjective.

Boundary triplets in the case of unequal defect numbers have similar properties as boundary triplets
for symmetric relations with equal defect numbers. In the following some basic facts from [57] are
recalled for the convenience of the reader. If {H0 ×H1,Γ0,Γ1} is a boundary triplet for S∗, then

dimH0 = n−(S) and dimH1 = n+(S).

Furthermore, if A0 = ker Γ0 and A1 = ker Γ1, then A0 and A∗1 are maximal symmetric. The mapping
Θ 7→ AΘ in (5.8) establishes a bijective correspondence between the closed linear relations in H0 ×H1

and the closed extensions AΘ ⊂ S∗ of S. In particular, the maximal symmetric, maximal dissipative, or
maximal accumulative extensions AΘ can be described with the help of similar properties of the relation
Θ ⊂ H0 ×H1; cf. [57, Proposition 3.9]. Moreover, if {H′0 ×H′1,Γ

′
0,Γ
′
1} is a second boundary triplet

for S∗, then there exists an operator matrix W with similar properties as (5.12) and (5.13) such that
(Γ′0,Γ

′
1)> = W (Γ0,Γ1)> holds, see [57, Proposition 3.12] for details.

Remark 6.2 Note that in [57] the defect numbers of a closed symmetric relation T are defined as
ñ±(T ) := dim ker (T ∗−λ), λ ∈ C±, whereas in this paper the usual definition n±(T ) = dim ker (T ∗−λ),
λ ∈ C∓, is used; cf. (A.3).

The following definition is a generalization of Definition 5.2. Note that the dimension of the eigenspace

N̂λ(S∗) from (5.5) is given by

dim N̂λ(S∗) =

{
dimH0, λ ∈ C+,

dimH1, λ ∈ C−.

Definition 6.3 Let {H0×H1,Γ0,Γ1} be a boundary triplet for S∗. The associated γ-field is defined
by

γ(λ) =

{{
{Γ0f̂λ, fλ} : f̂λ ∈ N̂λ(S∗)

}
, λ ∈ C+,{

{P1Γ0f̂λ, fλ} : f̂λ ∈ N̂λ(S∗)
}
, λ ∈ C−,

and the associated Weyl function is defined by

M(λ) =


{
{Γ0f̂λ,Γ1f̂λ} : f̂λ ∈ N̂λ(S∗)

}
, λ ∈ C+,{{

P1Γ0f̂λ,

(
Γ1f̂λ

iP2Γ0f̂λ

)}
: f̂λ ∈ N̂λ(S∗)

}
, λ ∈ C−.

The above definition parallels Definition 5.2 and differs only for λ ∈ C− from this definition. Note that
for λ ∈ C− the element in ranM(λ) is decomposed with respect to the decomposition H0 = H1 ⊕H2.
The next proposition is the analogue of Proposition 5.3 and served as definition in [57]. The orthogonal
projection in H⊕ H onto the first component is denoted by π1.

Proposition 6.4 The restriction Γ0 �N̂λ(S∗), λ ∈ C \ R, of the mapping Γ0 to N̂λ(S∗) is a bijective
mapping onto H0 or H1 if λ ∈ C+ or λ ∈ C−, respectively. In particular, the values of γ(λ) are in
B(H0,H) or B(H1,H) if λ ∈ C+ or λ ∈ C−, respectively, and are given by

γ(λ) =

{
π1

(
Γ0 �N̂λ(S∗)

)−1
, λ ∈ C+,

π1

(
P1Γ0 �N̂λ(S∗)

)−1
, λ ∈ C−.

The values M(λ) of the Weyl function M are in B(H0,H1) or B(H1,H0) if λ ∈ C+ or λ ∈ C−,
respectively, and are given by

M(λ) =


Γ1(Γ0 �N̂λ(S∗))−1, λ ∈ C+,(

Γ1(P1Γ0 �N̂λ(S∗))−1

iP2Γ0(P1Γ0 �N̂λ(S∗))−1

)
, λ ∈ C−.

The analogues of the formulas (5.6), (5.7), and more details on the properties of γ and M can be
found in [57].
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6.2 General singular canonical systems with unequal defect numbers

In this subsection boundary triplets for singular canonical systems which do not satisfy the assumption
n+(Tmin ) = n−(Tmin ), i.e., a+ +b− = a−+b+ will be characterized. Corresponding to Section 6.1 only
the case n+(Tmin ) < n−(Tmin ) is treated, i.e., a+ + b− < a− + b+; cf. (4.8). Let m = a+ + b− and let
r be a positive integer such that

m = a+ + b− < a− + b+ = m+ r. (6.1)

Before stating an analogue of Theorem 5.15 in the case (6.1) of unequal defect numbers a suitable
generalization of the identity (5.25) will be provided. For this fix a fundamental matrix Y (·, λ) of
the canonical system and some λ0 ∈ C+. Denote by D(a, λ0)+, D(a, λ0)−, D(b, λ0)+, and D(b, λ0)−

the restrictions of D(a, λ0)s and D(b, λ0)s onto the subspaces A+(λ0), A−(λ0), B+(λ0), and B−(λ0)
corresponding to positive and negative eigenvalues, respectively. A variant of Lemma 2.4 shows that
there exists an invertible (2m+ r)× (2m+ r) matrix V such that

V ∗

 0 0 −iIm
0 Ir 0
iIm 0 0

V =


−D(a, λ0)+ 0 0 0

0 −D(a, λ0)− 0 0
0 0 D(b, λ0)+ 0
0 0 0 D(b, λ0)−

 , (6.2)

since the (2m+r)×(2m+r) matrix on the righthand side has m+r positive and m negative eigenvalues.
The vectors φ ∈ Cm+r+m = Cm+r × Cm will be decomposed into vectors [φ]0 ∈ Cm+r and [φ]1 ∈ Cm;
cf. (5.17). Furthermore, Pm[φ]0 and Pr[φ]0 denote the orthogonal projections of [φ]0 onto Cm × {0}
and {0} × Cr, respectively. For φ, ψ ∈ Cm+r+m one gets the identity

ψ∗

 0 0 −iIm
0 Ir 0
iIm 0 0

φ = −i
(
(Pm[ψ]0)∗[φ]1 − [ψ]∗1(Pm[φ]0)

)
+ (Pr[ψ]0)∗Pr[φ]0. (6.3)

The next theorem is the analogue of Theorem 5.15 for the case (6.1).

Theorem 6.5 Assume that the defect numbers of Tmin satisfy (6.1). Let the fundamental matrix
Y (·, λ) and λ0 ∈ C \ R be fixed and decompose {f, g} ∈ Tmax according to Theorem 4.12 in the form

{f, g} = {f0, g0}+ Ya(·, λ0)φa + Yb(·, λ0)φb,

with {f0, g0} ∈ Tmin , φa ∈ A(λ0), φb ∈ B(λ0). Then the following statements hold:

(i) if V is a matrix which satisfies (6.2), then {Cm+r × Cm,Γ0,Γ1}, with

Γ0{f, g} =

[
V

(
φa
φb

)]
0

and Γ1{f, g} =

[
V

(
φa
φb

)]
1

,

is a boundary triplet for Tmax ;

(ii) if {Cm+r × Cm,Γ0,Γ1} is a boundary triplet for Tmax , then there exists a (nonunique) matrix V
which satisfies (6.2) such that Γ0 and Γ1 have the form in (i).

P r o o f. (i) Decompose the elements {f, g}, {h, k} ∈ Tmax in the form (5.26) with {f0, g0}, {h0, k0} ∈
Tmin , φa, ψa ∈ A(λ0), φb, ψb ∈ B(λ0). As in the proof of Theorem 5.15 with (5.25) replaced by (6.2) if
follows that

〈
{f, g}, {h, k}

〉
∆

=

(
ψa
ψb

)∗
V ∗

 0 0 Im
0 iIr 0
−Im 0 0

V

(
φa
φb

)

=

 0 0 Im
0 iIr 0
−Im 0 0

(Γ0{f, g}
Γ1{f, g}

)
,

(
Γ0{h, k}
Γ1{h, k}

)
= (Γ1{f, g},Γ0{h, k})− (Γ0{f, g},Γ1{h, k}) + i(PrΓ0{f, g}, PrΓ0{h, k}),
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where in the first two inner products in Cm only the first m entries of Γ0{h, k} ∈ Cm+r and Γ0{f, g} ∈
Cm+r appear (see (6.3)). Since V is invertible, the map Γ = (Γ0,Γ1)> : Tmax → Cm+r × Cm is onto.

(ii) This statement can be proved in the same way as Theorem 5.15 (ii).

Next the γ-field and Weyl function corresponding to the boundary triplet in Theorem 6.5 will be spec-
ified and related to the square-integrable solutions of the canonical system. Recall that the dimension
of the space D(a, λ) ∩D(b, λ) coincides with the corresponding defect number of Tmin ,

dim
(
D(a, λ) ∩D(b, λ)

)
=

{
m+ r, λ ∈ C+,

m, λ ∈ C−.

As in Section 5.4 the space D(a, λ)∩D(b, λ), λ ∈ C \ R, can be identified with subspaces of the (2m+r)-
dimensional space A(λ0)×B(λ0), where λ0 ∈ C \ R fixed. Since

N̂λ(Tmax ) =
{
{Y (·, λ)φ, λY (·, λ)φ} : φ ∈ D(a, λ) ∩D(b, λ)

}
, λ ∈ C \ R,

it follows from Theorem 4.12 that for φ ∈ D(a, λ) ∩ D(b, λ) there exist unique {f0(λ), g0(λ)} ∈ Tmin ,
φa = φa(λ) ∈ A(λ0) and φb = φb(λ) ∈ B(λ0), such that

f̂λ = {Y (·, λ)φ, λY (·, λ)φ} = {f0(λ), g0(λ)}+ Ya(·, λ0)φa(λ) + Yb(·, λ0)φb(λ)

holds. Hence the mapping

Z(λ) : D(a, λ) ∩D(b, λ)→ A(λ0)×B(λ0), φ 7→
(
φa(λ)
φb(λ)

)
,

is injective and ranZ(λ) is an (m + r)-dimensional subspace of A(λ0) × B(λ0) if λ ∈ C+, and an
m-dimensional subspace of A(λ0)×B(λ0) if λ ∈ C−. The next proposition is the analogue of Proposi-
tion 5.17 for the case of unequal defect numbers. The proof remains the same, except that the definition
of the γ-field and Weyl function from Section 6.1 have to be used.

Proposition 6.6 Assume that the defect numbers of Tmin are n+(Tmin ) = m and n−(Tmin ) = m+r,
r > 0, let V be a matrix with which satisfies (6.2), and let {Cm+r × Cm,Γ0,Γ1} be the corresponding
boundary triplet for Tmax from Theorem 6.5. Then the associated γ-field γ and Weyl function M have
the form

γ(λ) =

{{
{[V Z(λ)φ]0, Y (·, λ)φ} : φ ∈ D(a, λ) ∩D(b, λ)

}
, λ ∈ C+,{

{Pm[V Z(λ)φ]0, Y (·, λ)φ} : φ ∈ D(a, λ) ∩D(b, λ)
}
, λ ∈ C−,

and

M(λ) =


{
{[V Z(λ)φ]0, [V Z(λ)φ]1} : φ ∈ D(a, λ) ∩D(b, λ)

}
, λ ∈ C+,{{

Pm[V Z(λ)φ]0,

(
[V Z(λ)φ]1

iPr [V Z(λ)φ]0

)}
: φ ∈ D(a, λ) ∩D(b, λ)

}
, λ ∈ C−.

The following statement shows that also in the general singular case with unequal defect numbers
the Weyl function associated to a boundary triplet singles out the square-integrable solutions of the
homogeneous canonical differential equation; cf. Theorem 5.18. As a consequence of the definition of
the Weyl function the following matrix J appears when λ ∈ C−:

J :=

Im 0 0
0 0 Im
0 iIr 0

 .
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Theorem 6.7 Let {Cm+r ×Cm,Γ0,Γ1} be a boundary triplet for Tmax from Theorem 6.5 and let γ
and M be the associated γ-field and Weyl function from Proposition 6.6. Then

γ(λ)η = Y (·, λ)Z(λ)−1V −1

(
η

M(λ)η

)
holds for all η ∈ Cm+r and λ ∈ C+, and

γ(λ)η = Y (·, λ)Z(λ)−1V −1J−1

(
η

M(λ)η

)
holds for all η ∈ Cm and λ ∈ C−, respectively.

P r o o f. For λ ∈ C+ the statement coincides with the one in Theorem 5.18. Hence only the case
λ ∈ C− will be shown. The same reasoning as in the proof of Theorem 5.18 shows that the mapping
φ 7→ Pm[V Z(λ)φ]0 is an isomorphism from D(a, λ) ∩ D(b, λ) onto Cm and hence for every η ∈ Cm
there exists a unique φ ∈ D(a, λ) ∩ D(b, λ) such that η = Pm[V Z(λ)φ]0; cf. Proposition 6.4. Now
Proposition 6.6 implies

γ(λ)Pm [V Z(λ)φ]0 = Y (·, λ)φ = Y (·, λ)Z(λ)−1V −1J−1JV Z(λ)φ,

where Z(λ)φ ∈ A(λ0) × B(λ0). With the help of Proposition 6.4 and the particular form of the Weyl
function from Proposition 6.6 one concludes

γ(λ)Pm [V Z(λ)φ]0 = Y (·, λ)Z(λ)−1V −1J−1J

Pm[V Z(λ)φ]0
Pr[V Z(λ)φ]0
[V Z(λ)φ]1


= Y (·, λ)Z(λ)−1V −1J−1

Pm[V Z(λ)φ]0
[V Z(λ)φ]1

iPr[V Z(λ)φ]0


= Y (·, λ)Z(λ)−1V −1J−1

(
Pm[V Z(λ)φ]0

M(λ)Pm[V Z(λ)φ]0

)
,

which completes the proof.

A Some general facts concerning linear relations

This appendix contains a brief outline of linear relations in Hilbert spaces; for more information, see
for instance [15, 31]. A (closed) linear relation T in a Hilbert space H is a (closed) linear subspace of
the product space H× H. The elements in a linear relation are usually written in the form {f, g}. The
domain, range, kernel, and multivalued part of a linear relation T in H are defined by

domT =
{
f ∈ H : {f, g} ∈ T for some g ∈ H

}
,

ranT =
{
g ∈ H : {f, g} ∈ T for some f ∈ H

}
,

ker T =
{
f ∈ H : {f, 0} ∈ T

}
,

mulT =
{
g ∈ H : {0, g} ∈ T

}
,

respectively. A linear relation T is (the graph of) a linear operator if and only if mulT is trivial. The
inverse T−1 of a linear relation T is defined as T−1 = {{k, h} : {h, k} ∈ T}, so that domT−1 = ranT ,
ranT−1 = domT , ker T−1 = mulT , and mulT−1 = ker T . It is not difficult to check that with the
above notions the following identity holds:

(T−1 − λ)−1 = − 1

λ
− 1

λ2

(
T − 1

λ

)−1

, λ ∈ C, λ 6= 0. (A.1)
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The resolvent set ρ(T ) of a closed linear relation T is the set of all λ ∈ C such that (T − λ)−1 ∈
B(H). Here B(H) = B(H,H), where B(H,K) stands for the linear space of bounded everywhere defined
operators from the Hilbert space H to the Hilbert space K. The complement of ρ(T ) in C is the spectrum
σ(T ) of T . A point λ ∈ C is said to be an eigenvalue of a linear relation T if Nλ(T ) := ker (T − λ) is
nontrivial, i.e., {fλ, λfλ} ∈ T for some fλ 6= 0. The following notation will be used

N̂λ(T ) =
{
f̂λ = {fλ, λfλ} : fλ ∈ Nλ(T )

}
.

The adjoint T ∗ of a linear relation T is defined by

T ∗ :=
{
{h, k} : (g, h) = (f, k) for all {f, g} ∈ T

}
. (A.2)

If T is a densely defined operator this definition reduces to the usual definition of the adjoint operator.
It follows immediately from the definition that T ∗ is closed and that the identities (domT )⊥ = mulT ∗

and (ranT )⊥ = ker T ∗ hold.
A linear relation A is said to be selfadjoint if A = A∗. Each selfadjoint relation A induces an

orthogonal decomposition H = domA ⊕ mulA, where domA stands for the closure of the domain of A
in H. The selfadjoint relation A itself decomposes accordingly

A = As ⊕̂ Amul

where As and Amul are given by

As = { {f, g} ∈ A : g ∈ H	mulA }, Amul = {0} ×mulA.

The above sum is a componentwise sum which is orthogonal, so that As is a selfadjoint operator in
domA and Amul is a purely multivalued selfadjoint relation in mulA.

A linear relation S is said to be symmetric if S ⊂ S∗. The defect subspace of S is defined by
Nλ(S∗) = ker (S∗ − λ) and the defect numbers of S are defined by

n+(S) = dimNλ(S∗), λ ∈ C−,
n−(S) = dimNλ(S∗), λ ∈ C+.

(A.3)

The numbers n±(S) are well defined since the dimension of ker (S∗ − λ) is constant for λ ∈ C+ and for
λ ∈ C−, respectively. Recall that a symmetric relation S has selfadjoint extensions in H if and only if
the defect numbers of S are equal. Since H = ran (S − λ) ⊕ ker (S∗ − λ̄), λ ∈ C \ R, the adjoint S∗ of
S can be decomposed via von Neumann’s decomposition.

Proposition A.1 Let S be a closed symmetric linear relation in a Hilbert space H and let µ ∈ C \ R.
Then

S∗ = S +̂ N̂µ(S∗) +̂ N̂µ̄(S∗), direct sums,

where +̂ stands for the componentwise sum in H× H. The sums are orthogonal when µ = ±i.
For each symmetric relation one can construct a so-called symmetric bounded right inverse, for

instance by means of the above von Neumann decomposition. Conversely, each symmetric bounded
right inverse gives rise to a symmetric relation.

Proposition A.2 Let T be a linear relation in a Hilbert space H. Let µ ∈ C+ and assume that for
λ ∈ {µ, µ̄} the eigenspace Nλ(T ) is closed and that there exists a bounded everywhere defined linear
operator G(λ) such that G(λ)∗ = G(λ̄) and

{G(λ)g, (I + λG(λ))g} ∈ T, g ∈ H. (A.4)

Then T is closed and T ∗ ⊂ T is a closed symmetric relation in H.
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P r o o f. Define the relation H(λ), λ ∈ {µ, µ̄}, by

H(λ) =
{
{G(λ)g, (I + λG(λ))g} : g ∈ H

}
, (A.5)

so that

(H(λ)− λ)−1 = G(λ). (A.6)

Since G(λ) is bounded and everywhere defined, (A.6) implies that ran (H(λ) − λ) = H and hence a
direct, algebraic, argument shows that

T = H(λ) +̂ N̂λ(T ), direct sum. (A.7)

To see that T is closed, assume there is a sequence {hn, kn} ∈ T converging to {h, k} ∈ H × H. Then
by (A.7) there exist χn ∈ H and ϕn ∈ Nλ(T ) such that

{hn, kn} = {G(λ)χn, (I + λG(λ))χn}+ {ϕn, λϕn}.

Hence it follows that χn = kn − λhn converges to χ := k− λh. The above decomposition together with
the boundedness of G(λ) show that ϕn converges to ϕ := h−G(λ)χ. Therefore

{h, k} = {G(λ)χ, (I + λG(λ))χ}+ {ϕ, λϕ}. (A.8)

The first element in the righthand side of (A.8) belongs to H(λ) by (A.5) and the assumption that

Nλ(T ) is closed shows that {ϕ, λϕ} ∈ N̂λ(T ). Hence it follows from (A.7) that {h, k} ∈ T and therefore
T is closed.

It remains to show that T ∗ ⊂ T holds. Observe for this that G(λ)∗ = G(λ̄) implies H(λ)∗ = H(λ̄).
Since (A.4) implies H(λ), H(λ̄) ⊆ T one obtains

T ∗ ⊂ H(λ)∗ = H(λ̄) ⊂ T.

This completes the proof of Proposition A.2.
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