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Abstract. We consider a family of two-dimensional self-adjoint Dirac op-

erators on Lipschitz domains subject to a class of quantum dot boundary
conditions and prove that the nonrelativistic limit is the Dirichlet Laplacian.

As an application a version of the classical Faber-Krahn inequality for Dirac

operators is discussed.

1. Introduction

The Dirac equation provides a quantum mechanical description of the propaga-
tion of spin-1/2 particles and appears as an illustration in many of Rainer’s works
on abstract boundary value problems and evolutionary systems in the Hilbert space
context, see, e.g., [47], [48], and the monograph [49]. The Dirac equation equipped
with certain boundary conditions is also used in the desription of graphene [1, 42, 45]
in the two-dimensional case and appears in the investigation of quarks in hadrons
in the three-dimensional situation [22, 27, 29, 38]; for a more mathematical modern
perspective we refer to [3, 5, 6, 15, 19, 20, 31, 46, 51] and the references therein.

The present paper is strongly inspired by the recent contributions [7, 12, 30],
where the eigenvalue curves and the nonrelativistic limit of a family of self-adjoint
Dirac operators on domains in the three-dimensional setting with so-called gener-
alized MIT bag boundary conditions were studied. In fact, here we consider the
two-dimensional counterparts of the operators in [7, 12, 30] with a class of quan-
tum dot boundary conditions on a bounded Lipschitz domain Ω+ ⊂ R2 or on the
unbounded Lipschitz domain Ω− = R2 \ Ω+, which have the form

HΩ±,c
κ = −ic(σ · ∇) +

c2

2
σ3,

dom HΩ±,c
κ =

{
f± ∈ H1(Ω±;C2) :

f± = ±i(sinh(κ)I2 − cosh(κ)σ3)(σ · ν)f± on ∂Ω±
}
,

(1.1)

where κ ∈ R is a paramater, c > 0 is the speed of light, σ · ∇ = σ1∂1 + σ2∂2
with the usual Pauli spin matrices σ1, σ2, σ3 ∈ C2×2, I2 ∈ C2×2 is the identity
matrix, and H1(Ω±;C2) denotes the first order L2-based Sobolev space. Observe

that the operators H
Ω±,c
κ , κ ∈ R, are unbounded and self-adjoint in L2(Ω±;C2),

and their spectra are contained in (−∞,−c2/2] ∪ [c2/2,∞); cf. Proposition 2.2 for
more details. Dirac operators with boundary conditions as in (1.1) are of particular
interest since they appear (in the massless case) in the analysis of graphene quantum
dots, see [19, 20] and also the very recent contribution [31] for further references.
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Our main objective is to investigate the nonrelativistic limit of H
Ω±,c
κ , that is,

we subtract the energy c2/2 of the resting particle and compute the limit of the

resolvent of H
Ω±,c
κ − c2/2 as c → ∞, which turns out to be the resolvent of the

Dirichlet Laplacian times a projection matrix. In this sense the nonrelativistic limit
connects the Dirac operators (1.1) with their nonrelativistic counterparts. More
precisely, if SΩ± denotes the self-adjoint Dirichlet Laplacian in L2(Ω±), z < 0 is
fixed, and P+ = diag(1, 0) is the projection onto the upper spinor, then for c > 0
sufficiently large we conclude in Corollary 3.7 that∥∥(HΩ±,c

κ − (z + c2/2)
)−1 − (SΩ± − z)−1P+

∥∥
L2(Ω±;C2)→L2(Ω±;C2)

≤ Cc−1/2,

where C > 0 is some constant (depending on the choice of z < 0). Although our
proof of the operator norm convergence of the resolvents follows a similar strategy
as in [12], where the three-dimensional situation is treated, we are more general here
in the sense that even Lipschitz domains (in contrast to C2-domains) are allowed.
Furthermore, the technical estimates in Lemma 3.4 are obtained in a more direct
and efficient way than in [12].

The nonrelativistic limit is of interest by itself, as it gives a physical interpretation

of the operators H
Ω±,c
κ , and it can also be used to transfer spectral inequalities

and spectral geometry results for sufficiently large c > 0 from Laplacians to Dirac
operators. We illustrate this aspect briefly in the end of Section 3, where a version

of the classical Faber-Krahn inequality is obtained for the Dirac operators H
Ω+,c
κ

with sufficiently large c > 0 (see Corollary 3.8). The interested reader is referred
to the monographs [34, 40, 50] for an introduction to general spectral geometry
and to [3, 7, 12, 20, 23, 31, 41, 56] for some recent related spectral inequality and

geometry results for Dirac operators. Note that, although also H
Ω−,c
κ converges in

the nonrelativistic limit to the Dirichlet Laplacian in Ω−, spectral implications are

only of interest for the bounded domain Ω+, as the spectrum of H
Ω−,c
κ is always

purely essential and given by (−∞,−c2/2] ∪ [c2/2,∞), see Proposition 2.2. Let
us also mention here that the nonrelativistic limit of Dirac operators has been
studied in many different settings in the mathematical literature. The classical
case of three-dimensional Dirac operators with regular potentials is treated in the
monograph [55], where also further references can be found. For one-dimensional
Dirac operators we refer the reader to [28] and the related papers [24, 25, 33, 36],
and for the nonrelativistic limit of Dirac operators with singular potentials in two
and three dimensions see [6, 9, 10, 11, 17].

Notations. The Pauli spin matrices are given by

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
and σ3 =

(
1 0
0 −1

)
,

and they fulfil the relations

σkσj + σjσk = 2I2δjk, j, k ∈ {1, 2, 3}, (1.2)

where I2 denotes the 2× 2 identity matrix and δjk is the Kronecker delta. Further-
more, we use the abbreviations σ · ∇ := σ1∂1 + σ2∂2 and σ · v := σ1v1 + σ2v2 for
v = (v1, v2)

T ∈ C2.
Throughout this paper Ω+ ⊂ R2 is a bounded Lipschitz domain with boundary

denoted by Σ and we set Ω− := R2 \ Ω+. Moreover, ν is the unit outward normal
vector associated to Ω+. For an open set U ⊂ R2 and s ∈ R the Sobolev space
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of order s is denoted by Hs(U) and Hr(Σ) stands for the Sobolev space of order
r ∈ [−1, 1] on Σ; cf. [44, Chapter 3] for definitions and more details. Sobolev spaces
of vector-valued functions are defined component-wise and denoted by Hs(U ;Cn)
and Hr(Σ;Cn) for n ∈ N.

We use the notation t±Σ for the Dirichlet trace operator and recall that

t±Σ : Hs(Ω±) → Hs−1/2(Σ) (1.3)

is bounded for s ∈ (1/2, 3/2) and t±Σ is also bounded as an operator from Hs(Ω±)
to H1(Σ) for s > 3/2, see [44, Theorem 3.38] and [13, Theorem 3.6]. The Dirichlet
trace operator on Hs(R2) is defined as tΣ := t+ΣR+, where R+ is the operator which
restricts a function in Hs(R2) to Ω+, and has by definition analogous mapping
properties as t+Σ . Trace operators acting in vector valued Sobolev spaces are defined
component-wise.

Finally, we fix the branch of the complex square root such that Im
√
w > 0 for

all w ∈ C \ [0,∞) and mention that generic positive constants which may change
in-between lines are denoted by C.

Acknowledgements. This research was funded by the Austrian Science Fund
(FWF) 10.55776/P 33568-N.

2. Dirac operators, Laplacians, and associated integral operators

In this section we collect preparatory material on Dirac and Laplace operators,
and potential and boundary integral operators that are used throughout this paper.

2.1. The free Dirac and Laplace operator. The free Laplacian in R2 is defined
by

S := −∆, dom S := H2(R2) ⊂ L2(R2),

and the free Dirac operator is given by

Hc := −ic(σ · ∇) +
c2

2
σ3, dom Hc := H1(R2;C2) ⊂ L2(R2;C2),

where c > 0 is a constant which usually denotes the speed of light. Using the
relations from (1.2) one sees that S and Hc are connected via the formula

(Hc)2 =
(
c2S +

c4

4

)
I2. (2.1)

It is well-known that both operators, Hc and S, are self-adjoint in L2 and that
their spectra are given by

σ(S) = [0,∞) and σ(Hc) = (−∞,−c2/2] ∪ [c2/2,∞); (2.2)

see, e.g., [16, Section 1.2] and [53, Example 8.1]. In particular, S is a nonnegative
operator. For w′ ∈ ρ(S) = C \ σ(S) the resolvent Rw′ := (S − w′)−1 is an integral

operator with kernel Gw′(x) := (1/(2π))K0

(
− i

√
w′|x|

)
, x ∈ R2 \ {0}; i.e.

Rw′v(x) =

∫
R2

Gw′(x− y)v(y) dy, v ∈ L2(R2), x ∈ R2, (2.3)

see, e.g., [54, eq. (7.53)]. Here, K0 denotes the zeroth modified Bessel function of
second kind. Note that Rw′ is not only bounded as an operator in L2(R2), but also



4 J. BEHRNDT, M. HOLZMANN, AND C. STELZER-LANDAUER

acts as a bounded operator from L2(R2) to H2(R2). Using the identity (2.1) one
concludes for w ∈ ρ(Hc) that

Rc
w := (Hc − wI2)

−1 = c−2(Hc + wI2)Rw′I2, w′ = w2/c2 − c2/4. (2.4)

The above representation of Rc
w shows that Rc

w is bounded as an operator from
L2(R2;C2) to H1(R2;C2). Moreover, (2.3) implies

Rc
wu(x) =

∫
R2

Gc
w(x− y)u(y) dy, u ∈ L2(R2;C2), x ∈ R2,

with

Gc
w(x) :=

√
w2/c2 − c2/4

2πc
K1

(
− i

√
w2/c2 − c2/4|x|

)σ · x
|x|

+
1

2π
K0

(
− i

√
w2/c2 − c2/4|x|

)(1

2
σ3 +

w

c2
I2

)
,

(2.5)

where K1 is the first order modified Bessel function of second kind.

2.2. Potential operators and boundary integral operators. For w ∈ ρ(Hc)
and w′ ∈ ρ(S) the potential operators associated to the free Dirac and Laplace
operator are defined by

Φc
w : L2(Σ;C2) → L2(R2;C2),

Φc
wφ(x) :=

∫
Σ

Gc
w(x− yΣ)φ(yΣ) dσ(yΣ),

SLw′ : L2(Σ) → L2(R2),

SLw′ψ(x) :=

∫
Σ

Gw′(x− yΣ)ψ(yΣ) dσ(yΣ).

(2.6)

By [16, eq. (4.4)] (where Φz from [16] coincides with cΦc
w, w = zc, if one chooses

in [16] m = c/2) and [44, Theorem 6.12] (see also [35, eq. (19) and Lemma 2.6]
for the exterior domain) these operators are well-defined and bounded. Moreover,
according to [16, eq. (4.8)] and [35, Proposition 3.1 (ii)] their adjoints fulfil the
relations

(Φc
w)

∗ = tΣR
c
w and (SLw′)∗ = tΣRw′ . (2.7)

In particular, the mapping properties of tΣ, see below (1.3), and Rc
w as well as

Rw′ show that (Φc
w)

∗ : L2(R2;C2) → H1/2(Σ;C2) and (SLw′)∗ : L2(R) → H1(Σ)
are bounded. A duality argument implies that Φc

w and SLw′ can be extended to
bounded operators mapping from H−1/2(Σ;C2) to L2(R2;C2) and from H−1(Σ) to
L2(R2), respectively.
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Next, we introduce for w ∈ ρ(Hc) and w′ ∈ ρ(S) the following boundary integral
operators

Cc
w : L2(Σ;C2) → L2(Σ;C2),

Cc
wφ(xΣ) := lim

ε↘0

∫
Σ\B(xΣ,ε)

Gc
w(xΣ − yΣ)φ(yΣ) dσ(yΣ),

Sw′ : L2(Σ) → L2(Σ),

Sw′ψ(xΣ) :=

∫
Σ

Gw′(xΣ − yΣ)ψ(yΣ) dσ(yΣ),

Ww′ : L2(Σ) → L2(Σ),

Ww′ψ(xΣ) := lim
ε↘0

∫
Σ\B(xΣ,ε)

√
w′

2π
K1

(
− i

√
w′|xΣ − yΣ|

)
· xΣ − yΣ

|xΣ − yΣ|
ψ(yΣ) dσ(yΣ),

(2.8)

where we used the convention v = v1 + iv2 ∈ C for v = (v1, v2)
T ∈ R2. The

operators introduced above are well-defined and bounded, see [16, Theorem 4.3]
(where Cz from [16] coincides with cCc

w, w = zc, if one chooses in [16] m = c/2) and
[35, eqs. (25), (26) and (28), and Lemma 2.9]. Moreover, Sw′ can also be viewed
as a bounded operator from Hr(Σ) to Hr+1(Σ) for r ∈ [−1, 0]. Indeed, for r = 0
this follows from [35, eq. (25)]. Then, the cases r ∈ [−1, 0) can be proven by using
S∗
w′ = Sw′ , see [35, Propositions 2.13 (iii) and 3.1 (iii)], duality and interpolation.

Furthermore, later we shall also use that Sw′ : L2(Σ) → H1(Σ) is bijective and
according to [21, eq. (9)] Sw′ is nonnegative in L2(Σ) if w′ < 0. From (2.5) and

Gw′(x) = (1/(2π))K0

(
− i

√
w′|x|

)
we obtain that the just introduced boundary

integral operators are connected via

Cc
w =

((
1
2 + w

c2

)
Sw′

1
cWw′

1
c (Ww′)∗

(
− 1

2 + w
c2

)
Sw′

)
, w′ = w2/c2 − c2/4. (2.9)

We end this section by providing difference estimates for Ww′ and Sw′ .

Proposition 2.1. Let K ⊂ ρ(S) = C \ [0,∞) be compact. Then, there exists a
C = C(K) > 0 such that for all w′, v′ ∈ K

∥Ww′ −Wv′∥L2(Σ)→L2(Σ), ∥Sw′ − Sv′∥L2(Σ)→L2(Σ) ≤ C(K)|w′ − v′|.

Proof. Let c > 0 be fixed such that 0 < c2/4 < − supw′∈K∩R w
′ if K ∩ R ̸= ∅;

otherwise just assume c > 0. We consider the open set O = C \ [−c2/4,∞) and the
function

O ∋ w′ 7→ f(w′) := c
√
w′ + c2/4.

Note, that by the choice of c we have w′ + c2/4 < 0 for all w′ ∈ O ∩ R. Moreover,
our choice of the branch of the square root implies that f is holomorphic in O and
Im f(w′) > 0, in particular, f(w′) ∈ ρ(Hc) for w′ ∈ O. With the various definitions
from above one sees

Cc
f(w′) =

(
1
2 + f(w′)

c2

)
Sw′

1
cWw′

1
c (Ww′)∗

(
− 1

2 + f(w′)
c2

)
Sw′

 . (2.10)

Combining [18, Proposition 2.6] and [16, Theorem 4.3] (where Cz from [16] coincides
with cCc

w, w = zc, if one chooses in [16] m = c/2) the mapping ρ(Hc) ∋ w 7→ Cc
w ∈
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L(L2(Σ;C2)) is holomorphic. Thus, O ∋ w′ 7→ Cc
f(w′) ∈ L(L2(Σ;C2)) is also

holomorphic and the same holds for the individual blocks in the representation of
Cc
f(w′) in (2.10), which we denote by Cc

f(w′)[j, k], j, k ∈ {1, 2}. Hence, O ∋ w′ 7→
Ww′ = c Cc

f(w′)[1, 2] ∈ L(L2(Σ)) is holomorphic. Moreover, as 1/2+f(w′)/c2 ̸= 0 for

all w′ ∈ O, the mapping O ∋ w′ 7→ Sw′ = (1/2+f(w′)/c2)−1Cc
f(w′)[1, 1] ∈ L(L2(Σ))

is also holomorphic. Now, the assertion follows from the holomorphicity and the
fact that K is a compact subset of O by the choice of c > 0. □

2.3. Dirac operators on domains. Recall that Ω+ denotes a bounded Lipschitz
domain, Σ = ∂Ω+, Ω− = R2\Ω+ and ν is the unit outward normal vector associated
to Ω+. In this section we consider Dirac operators on Ω± with boundary conditions.
For c > 0 and κ ∈ R we define

HΩ±,c
κ := −ic(σ · ∇) +

c2

2
σ3,

dom HΩ±,c
κ :=

{
f± ∈ H1(Ω±;C2) :

t±Σf± = ±i(sinh(κ)I2 − cosh(κ)σ3)(σ · ν)t±Σf±
}
;

(2.11)

cf. (1.1). Dirac operators with such boundary conditions appear in the description
of graphene quantum dots, see [19, 20] and the references therein, and are the two-
dimensional counterpart of the generalized MIT bag models considered in [7, 12, 30].
Furthermore, these operators are also strongly connected to Dirac operators with

δ-shell potentials, since H
Ω+,c
κ ⊕HΩ−,c

κ coincides with the operator (formally) given
by −ic(σ · ∇) + (c2/2)σ3 + 2c(sinh(κ)I2 + cosh(κ)σ3)δΣ, where δΣ denotes the δ-
shell potential supported on Σ, see, e.g., [16, Section 5.2], [26, Section 5] or [52,
Section 7].

We summarize some important properties of H
Ω±,c
κ in the next proposition.

Proposition 2.2. Let κ ∈ R and H
Ω±,c
κ be defined by (2.11). Then, H

Ω±,c
κ is

self-adjoint in L2(Ω±;C2) and the following holds:

(i) σdisc(H
Ω+,c
κ ) = σ(H

Ω+,c
κ ) ⊂ (−∞,−c2/2] ∪ [c2/2,∞).

(ii) σ(H
Ω−,c
κ ) = (−∞,−c2/2] ∪ [c2/2,∞).

(iii) Define D = diag(
√
2eκ/2,

√
2e−κ/2). Then, for w ∈ ρ(Hc) the operator

c−1σ3 +DCc
wD is boundedly invertible in L2(Σ;C2) and the resolvent for-

mula

(HΩ+,c
κ ⊕HΩ−,c

κ − wI2)
−1 = Rc

w − Φc
wD(c−1σ3 +DCc

wD)−1D(Φc
w)

∗

holds.

Proof. Let A0, A
±
η,τ,λ, Φz, Cz and Pη,τ,λ be the operators from [16, eqs. (1.4),

(5.17), (4.4), (4.5) and (5.1)]. If one chooses in [16] m = c/2, η = 2 sinh(κ), τ =

2 cosh(κ), λ = 0 and w = zc, then Hc = cA0, H
Ω±,c
κ = cA±

η,τ,λ, Cc
w = c−1Cz, Φc

w =

c−1Φz, R
c
w = c−1(A0 − z)−1 and 2 sinh(κ)I2 + 2 cosh(κ)σ3 = σ3D

2 = Pη,τ,λ. Using
these relations, we start by proving that c−1σ3 + DCc

wD is boundedly invertible
in L2(Σ;C2) for all w ∈ ρ(Hc). It follows from [16, Proposition 5.5 (i)] that
I + cσ3D

2Cc
w is boundedly invertible for w ∈ C \ R. Thus, the same is true for

c−1σ3 +DCc
wD = c−1σ3D

−1(I2 + cσ3D
2Cc

w)D. (2.12)
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It remains to consider w ∈ R ∩ ρ(Hc) = (−c2/2, c2/2). Since, (Cc
w)

∗ = Cc
w, see [16,

eq. (2.3) and Theorem 4.3 (iii)], Cc
w is self-adjoint in this case. Thus,

∥(c−1σ3 +DCc
wD)f∥2L2(Σ;C2)

= c−2∥f∥2L2(Σ;C2) + c−1(D(σ3Cc
w + Cc

wσ3)Df, f)L2(Σ;C2)

+ ∥DCc
wDf∥

2
L2(Σ;C2)

≥ c−2∥f∥2L2(Σ;C2) + c−1(D(σ3Cc
w + Cc

wσ3)Df, f)L2(Σ;C2).

(2.13)

Moreover, using (2.9) shows

σ3Cc
w + Cc

wσ3 =

(
1 + 2w

c2 0
0 1− 2w

c2

)
Sw2/c2−c2/4, (2.14)

which is a nonnegative operator since |w/c2| < 1/2, and also Sw2/c2−c2/4 ≥ 0 as

w2/c2 − c2/4 < 0; cf. below (2.8). Thus,

∥(c−1σ3 +DCc
wD)f∥2L2(Σ;C2) ≥ c−2∥f∥2L2(Σ;CN ),

and hence c−1σ3+DCc
wD is boundedly invertible in L2(Σ;C2). By (2.12) the same

is true for I + cσ3D
2Cc

w.
Now, combining [16, Theorem 5.6, Lemma 5.11 (ii) and Proposition 5.13] yields

the main assertion, (i), (ii) and the resolvent formula

(HΩ+,c
κ ⊕HΩ−,c

κ − wI2)
−1 = Rc

w − Φc
w(I2 + cσ3D

2Cc
w)

−1cσ3D
2(Φc

w)
∗

for w ∈ ρ(Hc). Applying (2.12) shows that this formula coincides with the formula
from item (iii). □

2.4. The Dirichlet Laplacian. The Dirichlet Laplacian on Ω± is defined by

SΩ± := −∆,

dom SΩ± := {f ∈ H3/2(Ω±) : ∆f ∈ L2(Ω±), t
±
Σf = 0}.

(2.15)

It is well known that SΩ± is a nonnegative self-adjoint operator in L2(Ω±) associ-
ated to the closed nonnegative form

sΩ±(g±, h±) = (∇g±,∇h±)L2(Ω±), g±, h± ∈ dom sΩ± = H1
0 (Ω±);

cf. [13, Theorem 6.9] and [37] (and for the unbounded Lipschitz domain Ω− this
can be found in, e.g, [4, Section 3]).

The next proposition contains a useful resolvent formula for the orthogonal sum
SΩ+ ⊕ SΩ− of the Dirichlet Laplacians in L2(R2) = L2(Ω+) ⊕ L2(Ω−). In the
terminology of boundary triplets, Weyl functions (or Q-functions and Dirichlet-to-
Neumann maps) similar results can be found in, e.g., [2, Theorem 4.4], [8, Theo-
rem 3.2], [12, Lemma 2.6] or [14, Theorem 8.6.3]. However, for the convenience of
the reader we provide a short direct proof.

Proposition 2.3. For w′ ∈ C \ [0,∞) let SLw′ and Sw′ be the integral operators
defined in (2.6) and (2.8). Then, the resolvent formula

(SΩ+ ⊕ SΩ− − w′)−1 = Rw′ − SLw′S−1
w′ (SLw′)

∗

holds.
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Proof. Recall first that Sw′ , w′ ∈ C \ [0,∞), is bijective as an operator from L2(Σ)
to H1(Σ) and that (SLw′)∗ : L2(R2) → H1(Σ); cf. (2.7). Now fix w′ ∈ C \ [0,∞),
let h ∈ L2(R2) and consider

f := Rw′h− SLw′S−1
w′ (SLw′)

∗h. (2.16)

Then it follows from the mapping properties of Rw′ and SLw′ discussed below
(2.3) and in [35, Lemma 2.6 (i)], respectively, that f ∈ H3/2(R2 \Σ)∩H1(R2) and
∆f ∈ L2(Σ). Moreover, applying the trace operator yields

tΣf = tΣRw′h− Sw′S−1
w′ (SLw′)

∗h = (SLw′)
∗h− (SLw′)

∗h = 0,

and hence f ∈ dom (SΩ+ ⊕ SΩ−). Furthermore, since (−∆ − w′)(SLwf)|Ω± = 0
holds, see [35, Lemma 2.6 (ii)], we conclude

(SΩ+ ⊕ SΩ− − w′)f = h,

which together with (2.16) implies the resolvent formula. □

3. The nonrelativistic limit

In this section we show that the nonrelativistic limit of H
Ω±,c
κ is given by the

Dirichlet Laplacian on Ω±; cf. Theorem 3.6 and Corollary 3.7. In order to simplify
the presentation we usually fix z < 0 and formulate the estimates and statements
for all c > 0 sufficiently large; in fact, here we always tacitly assume that c > 0
is chosen such that z + c2/2 ∈ (−c2/2, c2/2) and z + z2/c2 < 0, and hence the
resolvents of Hc and S and all corresponding integral operators are well defined;
cf. (2.2).

We start by considering the nonrelativistic limit of the free Dirac operator. The
following lemma is the two-dimensional counterpart of [12, Proposition 3.1]. For
the convenience of the reader we provide a short direct proof.

Lemma 3.1. Fix z < 0, let Rc
z+c2/2 and Rz be the resolvents of Hc and S in

Section 2.1, let P+ = diag(1, 0), and let c > 0 be sufficiently large. Then,

∥Rc
z+c2/2 −RzP+∥L2(R2;C2)→H1(R2;C2)

≤ Cc−1.

Proof. According to (2.4) we have

Rc
z+c2/2 = c−2(Hc + (z + c2/2)I2)Rz+z2/c2I2

= (−i(σ · ∇)/c+ (z/c2)I2 + P+)Rz+z2/c2I2

and hence

Rc
z+c2/2 −RzP+ = c−1(−i(σ · ∇) + (z/c)I2)Rz+z2/c2I2 + P+Rz+z2/c2I2 −RzP+

For the first term on the right hand side we estimate

∥c−1(−i(σ · ∇) + (z/c)I2)Rz+z2/c2I2∥L2(R2;C2)→H1(R2;C2)

≤ c−1∥−i(σ · ∇) + (z/c)I2∥H2(R2;C2)→H1(R2;C2)∥Rz+z2/c2∥L2(R2)→H2(R2)

≤ Cc−1∥Rz+z2/c2∥L2(R2)→H2(R2)

(3.1)
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and for the remaining part we obtain

∥P+Rz+z2/c2I2 −RzP+∥L2(R2;C2)→H1(R2;C2)

=
z2

c2
∥Rz+z2/c2Rz∥L2(R2)→H1(R2)

≤ Cc−2∥Rz+z2/c2∥L2(R2)→H1(R2)
∥Rz∥L2(R2)→L2(R2)

≤ Cc−2∥Rz+z2/c2∥L2(R2)→H2(R2)
.

(3.2)

Furthermore, we use that Rz is bounded as an operator from L2(R2) to H2(R2)
(see the comments below (2.3)) and S − (z + z2/c2) ≥ −(z + z2/c2) ≥ |z|/2, where
the last estimate holds for c > 0 sufficiently large. We then obtain

∥Rz+z2/c2∥L2(R2)→H2(R2) = ∥Rz(I + (z2/c2)Rz+z2/c2)∥L2(R2)→H2(R2)

≤ ∥Rz∥L2(R2)→H2(R2)

(
1 +

z2

c2
∥Rz+z2/c2∥L2(R2)→L2(R2)

)
≤ ∥Rz∥L2(R2)→H2(R2)

(
1 +

2|z|
c2

)
≤ C.

(3.3)

Now, combining (3.1), (3.2), and (3.3) yields the assertion. □

In the following corollary we use the obtained results to compute the limit of
Φc

z+c2/2 and (Φc
z+c2/2)

∗, as c→ ∞.

Corollary 3.2. Fix z < 0, let Φc
z+c2/2 and SLz be the potential operators from

(2.6), let P+ = diag(1, 0), Mc = diag(1,
√
c), and let c > 0 be sufficiently large.

Then,

∥(Φc
z+c2/2)

∗ − (SLz)
∗P+∥L2(R2;C2)→H1/2(Σ;C2)

≤ Cc−1,

∥Φc
z+c2/2 − SLzP+∥H−1/2(Σ;C2)→L2(R2;C2)

≤ Cc−1,

and Mc(Φ
c
z+c2/2)

∗ as well as Φc
z+c2/2Mc are uniformly bounded operators from

L2(R2;C2) to H1/2(Σ;C2) and from H−1/2(Σ;C2) to L2(R2;C2), respectively.

Proof. The first inequality is a consequence of the previous lemma, (2.7) and the
mapping properties of the trace operator discussed below (1.3). The second in-
equality follows by duality. Moreover, since P+Mc = P+, the assertions regarding
the uniform boundedness are simple consequences of the two inequalities. □

Having suitable estimates for the resolvent of the free Dirac operator, the po-
tential operator and its adjoint, it remains to consider the convergence of the term
(c−1σ3 +DCc

z+c2/2D)−1; cf. Proposition 2.2 (iii).

Lemma 3.3. Fix z < 0, let Cc
z+c2/2 and Sz be the boundary integral operators from

(2.8), let P+ = diag(1, 0), and let c > 0 be sufficiently large. Then,

∥Cc
z+c2/2 − SzP+∥L2(Σ;C2)→L2(Σ;C2) ≤ Cc−1.

Proof. In the following we consider c > 0 sufficiently large such that z + z2/c2 is

contained in the compact set B(z, |z|/2) ⊂ ρ(S). Hence, by using the representation
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of Cc
z+c2/2 from (2.9) (with w = z + c2/2) and the convergence estimates from

Proposition 2.1 we obtain

∥Cc
z+c2/2−SzP+∥L2(Σ;C2)→L2(Σ;C2)

=

∥∥∥∥((1 + z
c2

)
Sz+z2/c2 − Sz

1
cWz+z2/c2

1
c (Wz+z2/c2)

∗ z
c2Sz+z2/c2

)∥∥∥∥
L2(Σ;C2)→L2(Σ;C2)

≤ C
(
c−1∥Wz+z2/c2∥L2(Σ)→L2(Σ)

+ c−2∥Sz+z2/c2∥L2(Σ)→L2(Σ)

+ ∥Sz+z2/c2 − Sz∥L2(Σ)→L2(Σ)

)
≤ Cc−1.

□

Lemma 3.4. Fix z < 0, let Cc
z+c2/2 and Sz be the boundary integral operators

from (2.8), let D = diag(
√
2eκ/2,

√
2e−κ/2), Mc = diag(1,

√
c), and let c > 0 be

sufficiently large. Then,

∥M−1
c (c−1σ3 +DCc

z+c2/2D)−1∥L2(Σ;C2)→H−1/2(Σ;C2) ≤ C
√
c,

∥(c−1σ3 +DCc
z+c2/2D)−1M−1

c ∥H1/2(Σ;C2)→L2(Σ;C2) ≤ C
√
c.

Proof. In the following let f ∈ L2(Σ;C2). Using (2.13) (with w = z + c2/2) gives

∥(c−1σ3 +DCc
z+c2/2D)f∥2L2(Σ;C2)

≥ c−2∥f∥2L2(Σ;C2) + c−1(D(σ3Cc
z+c2/2 + Cc

z+c2/2σ3)Df, f)L2(Σ;C2)

and from (2.14) (with w = z + c2/2) and P+ = diag(1, 0) we obtain

σ3Cc
z+c2/2 + Cc

z+c2/2σ3 =

(
2 + 2z

c2 0
0 − 2z

c2

)
Sz+z2/c2 = 2(P+ + (z/c2)σ3)Sz+z2/c2 ,

so that

∥(c−1σ3 +DCc
z+c2/2D)f∥2L2(Σ;C2)

≥ c−1
((
c−1 + 2D(P+ + (z/c2)σ3)Sz+z2/c2D

)
f, f

)
L2(Σ;C2)

.

Using the Cauchy-Schwarz inequality we see that((
c−1 + 2D(P+ + (z/c2)σ3)Sz+z2/c2D

)
f, f

)
L2(Σ;C2)

=
(
(c−1 + 2DP+SzD)f, f

)
L2(Σ;C2)

−
((
2DP+SzD − 2D(P+ + (z/c2)σ3)Sz+z2/c2D

)
f, f

)
L2(Σ;C2)

≥
(
(c−1 + 2DP+SzD)f, f

)
L2(Σ;C2)

− 2∥D(P+Sz − (P+ + (z/c2)σ3)Sz+z2/c2)D∥
L2(Σ;C2)→L2(Σ;C2)

∥f∥2L2(Σ;C2),

and hence

∥(c−1σ3 +DCc
z+c2/2D)f∥2L2(Σ;C2)

≥ c−1
((
c−1 + 2DP+SzD

)
f, f

)
L2(Σ;C2)

− 2c−1∥D(P+Sz − (P+ + (z/c2)σ3)Sz+z2/c2)D∥
L2(Σ;C2)→L2(Σ;C2)

∥f∥2L2(Σ;C2).

(3.4)
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It follows from Proposition 2.1 that

∥P+Sz − (P+ + (z/c2)σ3)Sz+z2/c2∥L2(Σ;C2)→L2(Σ;C2)
≤ Cc−2

and, in particular, for c > 0 sufficiently large we conclude

∥D(P+Sz − (P+ + (z/c2)σ3)Sz+z2/c2)D∥
L2(Σ;C2)→L2(Σ;C2)

≤ c−1

4
.

Plugging this observation in (3.4) yields

∥(c−1σ3 +DCc
z+c2/2D)f∥2L2(Σ;C2)

≥ c−1
(
(c−1 + 2DP+SzD)f, f

)
L2(Σ;C2)

− c−2

2
∥f∥2L2(Σ;C2)

≥ c−1
(
(c−1/2 + 2DP+SzD)f, f

)
L2(Σ;C2)

.

We continue estimating and make use of [43, Lemma 3.2] in the penultimate in-
equality below

∥(c−1σ3 +DCc
z+c2/2D)f∥2

L2(Σ;C2)

≥ c−1
(
(M−2

c P−/2 + 2DP+SzD)f, f
)
L2(Σ;C2)

= c−1
(
∥M−1

c P−f∥
2

L2(Σ;C2)/2 + 2
(
SzP+Df, P+Df

)
L2(Σ;C2)

)
= c−1

(
∥M−1

c P−f∥
2

L2(Σ;C2)/2 + +2
(
SzP+DM−1

c f, P+DM−1
c f

)
L2(Σ;C2)

)
≥ Cc−1

(
∥M−1

c P−f∥
2

H−1/2(Σ;C2) + ∥P+DM−1
c f∥2H−1/2(Σ;C2)

)
≥ Cc−1∥M−1

c f∥2H−1/2(Σ;C2).

Recall from Proposition 2.2 (iii) that the operator c−1σ3+DCc
z+c2/2D is boundedly

invertible in L2(Σ;C2) since z + c2/2 ∈ ρ(Hc) for c > 0 sufficiently large. Now, let
g ∈ L2(Σ;C2) and f = (c−1σ3 +DCc

z+c2/2D)−1g ∈ L2(Σ;C2). Then,

∥M−1
c (c−1σ3 +DCc

z+c2/2D)−1g∥
H−1/2(Σ;C2)

= ∥M−1
c f∥H−1/2(Σ;C2)

≤ C
√
c∥(c−1σ3 +DCc

z+c2/2D)f∥
L2(Σ;C2)

= C
√
c∥g∥L2(Σ;C2),

which proves the first norm estimate. The second norm estimate follows by duality.
□

Lemma 3.5. Fix z < 0, let Cc
z+c2/2 and Sz be the boundary integral operators from

(2.8), let D = diag(
√
2eκ/2,

√
2e−κ/2), P+ = diag(1, 0), and let c > 0 be sufficiently

large. Then,

∥P+(c
−1σ3 +DCc

z+c2/2D)−1P+ −D−1S−1
z P+D

−1∥H1(Σ;C2)→H−1/2(Σ;C2) ≤ Cc−1/2.

Proof. The identity

P+(c
−1σ3 +DCc

z+c2/2D)−1P+ −D−1S−1
z P+D

−1

= P+(c
−1σ3 +DCc

z+c2/2D)−1(DSzP+D − c−1σ3 −DCc
z+c2/2D)D−1S−1

z P+D
−1

= P+M−1
c (c−1σ3 +DCc

z+c2/2D)−1(DSzP+D − c−1σ3 −DCc
z+c2/2D)D−1S−1

z P+D
−1



12 J. BEHRNDT, M. HOLZMANN, AND C. STELZER-LANDAUER

together with the estimates from the two previous lemmas and the fact that Sz acts
as an isomorphic operator from L2(Σ) to H1(Σ) (see Proposition 2.3) leads to the
assertion. □

Theorem 3.6. Let H
Ω±,c
κ be defined by (2.11) and let SΩ± be the Dirichlet Lapla-

cian on Ω± from (2.15). Fix z < 0, let P+ = diag(1, 0), and let c > 0 be sufficiently
large. Then,

∥(HΩ+,c
κ ⊕HΩ−,c

κ − (z + c2/2))−1

− (SΩ+ ⊕ SΩ− − z)−1P+∥L2(R2;C2)→L2(R2;C2) ≤ Cc−1/2.

Proof. Applying the resolvent formulas from Proposition 2.2 (iii) and Proposi-
tion 2.3 gives us

(HΩ+,c
κ ⊕HΩ−,c

κ − (z + c2/2))−1 − (SΩ+ ⊕ SΩ− − z)−1P+

= Rc
z+c2/2 −RzP+

− Φc
z+c2/2D(c−1σ3 +DCz+c2/2D)−1D(Φc

z+c2/2)
∗

+ SLzP+DD
−1S−1

z P+D
−1D(SLz)

∗P+,

which can be rewritten as

(HΩ+,c
κ ⊕HΩ−,c

κ − (z + c2/2))−1 − (SΩ+ ⊕ SΩ− − z)−1P+ =

4∑
j=1

Dj (3.5)

with

D1 := Rc
z+c2/2 −RzP+,

D2 := (SLzP+ − Φc
z+c2/2)D(c−1σ3 +DCc

z+c2/2D)−1D(Φc
z+c2/2)

∗,

D3 := SLzP+D(c−1σ3 +DCc
z+c2/2D)−1D((SLz)

∗P+ − (Φc
z+c2/2)

∗),

D4 := SLzP+D
(
D−1S−1

z P+D
−1 − (c−1σ3 +DCc

z+c2/2D)−1
)
D(SLz)

∗P+.

Next, we estimate D1, . . . , D4 separately. It follows from Lemma 3.1 that D1 can
be estimated by

∥D1∥L2(R2;C2)→L2(R2;C2) ≤ Cc−1.
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Furthermore, with Corollary 3.2 and Lemma 3.4 we obtain for D2

∥D2∥L2(R2;C2)→L2(R2;C2)

= ∥(SLzP+ − Φc
z+c2/2)D(c−1σ3 +DCc

z+c2/2D)−1D(Φc
z+c2/2)

∗∥L2(R2;C2)→L2(R2;C2)

= ∥(SLzP+ − Φc
z+c2/2)D

· (c−1σ3 +DCc
z+c2/2D)−1M−1

c DMc(Φ
c
z+c2/2)

∗∥L2(R2;C2)→L2(R2;C2)

≤ ∥(SLzP+ − Φc
z+c2/2)D∥L2(Σ;C2)→L2(R2;C2)

· ∥(c−1σ3 +DCc
z+c2/2D)−1M−1

c ∥H1/2(Σ;C2)→L2(Σ;C2)

· ∥DMc(Φ
c
z+c2/2)

∗∥L2(R2;C2)→H1/2(Σ;C2)

≤ ∥(SLzP+ − Φc
z+c2/2)D∥H−1/2(Σ;C2)→L2(R2;C2)

· ∥(c−1σ3 +DCc
z+c2/2D)−1M−1

c ∥H1/2(Σ;C2)→L2(Σ;C2)

· ∥DMc(Φ
c
z+c2/2)

∗∥L2(R2;C2)→H1/2(Σ;C2)

≤ Cc−1c1/2

≤ Cc−1/2.

Next, let us consider D3. Similar as above we get

∥D3∥L2(R2;C2)→L2(R2;C2) = ∥SLzP+D(c−1σ3 +DCc
z+c2/2D)−1

·D((SLz)
∗P+ − (Φc

z+c2/2)
∗)∥L2(R2;C2)→L2(R2;C2)

= ∥SLzP+DM−1
c (c−1σ3 +DCc

z+c2/2D)−1

·D((SLz)
∗P+ − (Φc

z+c2/2)
∗)∥L2(R2;C2)→L2(R2;C2)

≤ ∥SLzP+D∥H−1/2(Σ;C2)→L2(R2;C2)

· ∥M−1
c (c−1σ3 +DCc

z+c2/2D)−1∥L2(Σ;C2)→H−1/2(Σ;C2)

· ∥D((SLz)
∗P+ − (Φc

z+c2/2)
∗)∥L2(R2;C2)→L2(Σ;C2)

≤ ∥SLzP+D∥H−1/2(Σ;C2)→L2(R2;C2)

· ∥M−1
c (c−1σ3 +DCc

z+c2/2D)−1∥L2(Σ;C2)→H−1/2(Σ;C2)

· ∥D((SLz)
∗P+ − (Φc

z+c2/2)
∗)∥L2(R2;C2)→H1/2(Σ;C2)

≤ Cc1/2c−1

≤ Cc−1/2.

Finally, we estimate D4 using Lemma 3.5 and the mapping properties of SLz (see
below (2.7)) as follows

∥D4∥L2(R2;C2)→L2(R2;C2)

= ∥SLzP+D
(
D−1S−1

z P+D
−1 − (c−1σ3 +DCc

z+c2/2D)−1
)

·D(SLz)
∗P+∥L2(R2;C2)→L2(R2;C2)

≤ ∥SLzP+D∥H−1/2(Σ;C2)→L2(R2;C2)

·
∥∥D−1S−1

z P+D
−1 − P+(c

−1σ3 +DCc
z+c2/2D)−1P+

∥∥
H1(Σ;C2)→H−1/2(Σ;C2)

· ∥D(SLz)
∗P+∥L2(R2;C2)→H1(Σ;C2)

≤ Cc−1/2.

These four separate estimates together with (3.5) lead to the assertion. □
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As an immediate consequence we obtain that the Dirichlet Laplacian on Ω± is

the nonrelativistic limit of H
Ω±,c
κ from (2.11).

Corollary 3.7. Let H
Ω±,c
κ be defined by (2.11) and let SΩ± be the Dirichlet Lapla-

cian on Ω± from (2.15). Fix z < 0, let P+ = diag(1, 0), and let c > 0 be sufficiently
large. Then,

∥(HΩ±,c
κ − (z + c2/2))−1 − (SΩ± − z)−1P+∥L2(R2;C2)→L2(R2;C2) ≤ Cc−1/2.

As an interesting application of Corollary 3.7 we conclude below that the Faber-

Krahn inequality is valid for H
Ω+,c
κ if c > 0 is sufficiently large. Here, the essential

observation is that by Corollary 3.7 the positive eigenvalues ofH
Ω+,c
κ −c2/2 converge

to the eigenvalues of SΩ+ ; this can be shown in the same way as in [12, Section 3.4].

More precisely, if we denote the positive discrete eigenvalues of H
Ω+,c
κ by

c2

2
≤ λ1(H

Ω+,c
κ ) ≤ λ2(H

Ω+,c
κ ) ≤ . . . ,

cf. Proposition 2.2 (i), and the positive discrete eigenvalues of SΩ+ , which are the
only elements in the spectrum of SΩ+ , see, e.g., [53, below eq. (10.34)], by

0 < µ1(S
Ω+) ≤ µ2(S

Ω+) ≤ . . . ,

then for j ∈ N

λj(H
Ω+,c
κ )− c2

2
→ µj(S

Ω+) as c→ ∞. (3.6)

Based on this observation one can transfer spectral geometry results and spectral

inequalities from the Dirichlet Laplacian on Ω+ to H
Ω+,c
κ for c > 0 sufficiently

large. As an example, we present the Faber-Krahn inequality for Dirac operators
for sufficiently large c > 0; see [12, Corollary 1.3] for the three-dimensional analogue
and further eigenvalue inequalities.

Corollary 3.8. Let H
Ω+,c
κ be defined by (2.11) and let λ1(H

Ω+,c
κ ) be the first pos-

itive eigenvalue H
Ω+
κ . Furthermore, let HD,c

κ and λ1(H
D,c
κ ) be the same quantities

for the choice Ω+ = D, where D denotes a disc in R2 with |D| = |Ω+|, and c > 0 be

sufficiently large. Then, λ1(H
D,c
κ ) ≤ λ1(H

Ω+,c
κ ) with equality for all c large enough

if and only if Ω+ = D.

Proof. The statement follows from the classical Faber-Krahn inequality for the
Dirichlet Laplacian in [32, 39], see also [34, Theorem 3.2.1], and (3.6). □
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[53] K. Schmüdgen. Unbounded Self-adjoint Operators on Hilbert Space. Graduate Texts in Math-

ematics. Springer Netherlands, 2012.
[54] G. Teschl. Mathematical Methods in Quantum Mechanics. With Applications to Schrödinger

Operators. American Mathematical Society, Providence, 2014.
[55] B. Thaller. The Dirac Equation. Texts and Monographs in Physics. Springer-Verlag, Berlin,

1992.

[56] T. Vu. Spectral inequality for Dirac right triangles. J. Math. Phys. 64: 041502, 2023.

Technische Universität Graz, Institut für Angewandte Mathematik, Steyrergasse

30, 8010 Graz, Austria
Email address: behrndt@tugraz.at

Technische Universität Graz, Institut für Angewandte Mathematik, Steyrergasse
30, 8010 Graz, Austria

Email address: holzmann@math.tugraz.at

Technische Universität Graz, Institut für Angewandte Mathematik, Steyrergasse
30, 8010 Graz, Austria

Email address: christian.stelzer09@gmail.com


	1. Introduction
	Notations
	Acknowledgements

	2. Dirac operators, Laplacians, and associated integral operators
	2.1. The free Dirac and Laplace operator
	2.2. Potential operators and boundary integral operators
	2.3. Dirac operators on domains
	2.4. The Dirichlet Laplacian

	3. The nonrelativistic limit
	References

