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in L2(�−, �+), where δ(· − zk) is the Dirac delta-function 
supported at zk ∈ (�−, �+) and (�−, �+) is a bounded interval. 
It will be shown that the interaction strengths γk and the 
points zk can be chosen in such a way that the essential 
spectrum and a bounded part of the discrete spectrum of this 
self-adjoint operator coincide with prescribed sets on the real 
line.
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1. Introduction

Self-adjoint Laplace and Schrödinger operators on bounded domains typically have 
purely discrete spectrum, since in many situations the operator or corresponding form 
domain is compactly embedded in the underlying L2-space. In general, however, this 
is not true, and a well known example is the Neumann Laplacian on a bounded non-
Lipschitz domain discussed by R. Hempel, L. Seco, and B. Simon in [19]. More precisely, 
for an arbitrary closed set S ⊂ [0, ∞) a bounded domain Ω was constructed in [19] such 
that the essential spectrum of the Neumann Laplacian −ΔN

Ω on Ω coincides with the 
set S. In particular, in the case 0 ∈ S one can use a domain Ω consisting of a series of 
“rooms and passages”, see Fig. 1. These results were further elaborated by R. Hempel, 
T. Kriecherbauer, and P. Plankensteiner in [18], where also a prescribed bounded part 
of the discrete spectrum was realized by constructing a domain with a certain “comb” 
structure. Furthermore, in [29] B. Simon found a bounded domain of “jelly roll” form 
such that the spectrum of −ΔN

Ω is purely absolutely continuous and covers [0, ∞). Note 
that in the above situations the peculiar spectral properties of −ΔN

Ω are all caused by 
irregularity of ∂Ω. Another approach to construct Laplace or Schrödinger operators on 
bounded domains with non-standard spectral properties is to choose “unusual” boundary 
conditions; e.g. 0 is always an eigenvalue of infinite multiplicity of the Krein-von Neu-
mann realization of −Δ. In the abstract setting S. Albeverio, J. Brasche, M. Malamud, 
H. Neidhardt, and J. Weidmann [1,2,8–14] consider a symmetric operator S in a Hilbert 
space with infinite deficiency indices such that σ(S) has a gap, and discuss the possible 
spectral properties of self-adjoint extensions of S in the gap; cf. [2] for applications to 
the Laplacian. In this context we also refer the reader to the recent expository paper [6].

1.1. Setting of the problem and the main result

In the present paper we consider (one-dimensional) Schrödinger operators with δ-
interactions defined by the formal expression

Hγ = − d2

dx2 +
∑
k∈K

γkδ(· − zk); (1.1)

here δ(· − zk) is the Dirac delta-function supported at zk, γk ∈ R, and K is a countable 
set. Such operators can be regarded as so-called solvable models in quantum mechanics 
describing the motion of a particle in a potential supported by a discrete (finite or 
infinite) set of points; cf. the monograph [3] for more details. Now assume that all points 
zk are contained in a (bounded or unbounded) interval (�−, �+). If the set K is finite the 
formal expression (1.1) can be realized as a self-adjoint operator in L2(�−, �+) with the 
action

−(u �(�−,�+)\
⋃

k∈K

{zk})
′′
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defined for functions u ∈ H2((�−, �+) \
⋃

k∈K

{zk}) satisfying

u(zk − 0) = u(zk + 0) and u′(zk + 0) − u′(zk − 0) = γku(zk ± 0) (1.2)

at the points zk, and suitable conditions at the endpoints of the interval (�−, �+) (e.g., 
u(�−) = u(�+) = 0). If K is a countable infinite set, then the definition of Hγ is more 
subtle, in particular, if |zk − zk−1| → 0 as |k| → ∞; cf. [4,21]. If (�−, �+) is bounded 
and K is finite then the spectrum of Hγ is purely discrete, but if K is infinite then the 
essential spectrum of Hγ may be non-empty (even if (�−, �+) bounded).

The goal of the present paper is to show that for an arbitrary closed semibounded 
(from below) set Sess one can construct an operator Hγ of the form (1.1) on a bounded 
interval such that σess(Hγ) = Sess and, in addition, a bounded part of the discrete 
spectrum can be controlled. More precisely, assume that we have a set Sess ⊂ R, a 
sequence of real numbers Sdisc = (sk)k∈N and a bounded interval (T1, T2) ⊂ R such that

Sess is closed and bounded from below, (1.3)

Sess ∩ [T1, T2] = O, where O ⊂ (T1, T2) is an open set, (1.4)

sk ∈ (T1, T2) \ O, ∀k ∈ N, (1.5)

sk �= sl as k �= l, (1.6)

all accumulation points of Sdisc are contained in Sess. (1.7)

From (1.3)–(1.7) we conclude that

each sk has a punctured neighborhood containing no other points of Sess ∪ Sdisc. (1.8)

Also note that in view of (1.4) Sess has no isolated points in [T1, T2].
The following theorem is the main result of this paper, see also Theorem 4.4 for a 

slightly more rigorous formulation with the formal operator Hγ replaced by the precisely 
defined operator Hα,β from Section 4.

Theorem 1.1. There exists a bounded interval (�−, �+) ⊂ R, a sequence of points (zk)k∈Z
with zk ∈ (�−, �+), and a sequence of real numbers (γk)k∈Z such that the operator Hγ in 
L2(�−, �+) defined by the formal expression (1.1) satisfies

σess(Hγ) = Sess and σdisc(Hγ) ∩ (T1, T2) = Sdisc, (1.9)

and, moreover,

the eigenvalues σdisc(Hγ) ∩ (T1, T2) are simple. (1.10)
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Fig. 1. Rooms-and-passages domain Ω.

We mention that besides [18,19] our research is also inspired by a celebrated paper 
of Y. Colin de Verdiére [15], where a Riemannian metric g on a given compact manifold 
M is constructed such that the first m eigenvalues of the Laplace-Beltrami operator 
on (M, g) coincide with prescribed numbers; similar results were also obtained for the 
Neumann Laplacian and regular Schrödinger operators.

1.2. Sketch of the proof strategy

To construct the operator Hγ satisfying (1.9)–(1.10) we utilize ideas of the afore-
mentioned paper [19], where a bounded domain Ω was constructed such that the essen-
tial spectrum of the Neumann Laplacian −ΔN

Ω coincides with a predefined closed set 
S ⊂ [0, ∞). If 0 ∈ S the domain Ω consists of a sequence of rooms Rk connected by 
passages Pk, each room has a wall dividing it in two subsets connected via a door, see 
Fig. 1. The diameters of Rk and Pk tend to zero as k → ∞ in such a way that their 
union is a bounded domain.

The strategy of the proof in [19] is as follows: Choose a sequence (sk)k∈N such that 
S = {accumulation points of (sk)k∈N} and consider the “decoupled” operator

Hdec =
⊕
k∈N

(
(−ΔN

Rk
) ⊕ (−ΔDN

Pk
)
)

in the space L2(Ω) =
⊕

k∈N
(
L2(Rk) ⊕ L2(Pk)

)
. Here ΔN

Rk
is the Neumann Laplacian on 

Rk and ΔDN
Pk

is the Laplacian on Pk subject to the Dirichlet conditions on the parts 
of ∂Pk touching the neighboring rooms and Neumann conditions on the remaining part 
of ∂Pk. Denote by (λj(−ΔN

Rk
))k∈N and (λj(−ΔDN

Pk
))k∈N the sequence of eigenvalues of 

−ΔN
Rk

and −ΔDN
Pk

, respectively, numbered in ascending order with multiplicities taken 
into account. Then one has

σess(Hdec) =
{
accumulation points of (λj(−ΔN

Rk
))j,k∈N

}
∪
{
accumulation points of (λj(−ΔDN

Pk
))j,k∈N

}
.

(1.11)

We have

λ1(−ΔN
Rk

) = 0, λ1(−ΔDN
Pk

) = π2/(�(Pk))2,
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� � � � � � � � � � � � � �� � � �
�− x−2 x−1 x0 x1 x2 �+y−1 y0 y1 y2

︸ ︷︷ ︸
d−1

︸ ︷︷ ︸
d0

︸ ︷︷ ︸
d1

︸ ︷︷ ︸
d2

Fig. 2. Sequence of points supporting δ-interactions.

where �(Pk) is the length of the passage Pk. Next, the door in each Rk is adjusted in 
such a way that

λ2(−ΔN
Rk

) = sk

and it is not hard to show that

λ3(−ΔN
Rk

) ≥ C/(diam(Rk))2, (1.12)

where the constant C > 0 is the same for all rooms. Since �(Pk) → 0 and diam(Rk) → 0
as k → ∞ and 0 ∈ S, one concludes from (1.11)–(1.12) that

σess(Hdec) = {0} ∪ {accumulation points of (sk)k∈N} = {0} ∪ S = S.

Finally, if the thickness of the passages Pk tends to zero sufficiently fast as k → ∞, 
then the difference of the resolvents of −ΔN

Ω and Hdec is a compact operator, and thus 
σess(−ΔN

Ω ) = σess(Hdec) by Weyl’s theorem.
When constructing the operator Hγ in Theorem 1.1 we mimic the above idea. First 

of all the sequence (zk)k∈Z is split in two interlacing subsequences (xk)k∈Z and (yk)k∈Z
(see Fig. 2) such that ∑

k∈Z
dk < ∞, where dk = xk − xk−1

is sufficiently small (see (3.3)) and yk is the center of the interval Ik := (xk−1, xk). We 
also set

�− = −
∑

k∈Z\N
dk and �+ =

∑
k∈N

dk. (1.13)

For our purposes it is convenient to change the notation for the interaction strengths 
γk as follows: at the points yk they will be denoted by αk, at the points xk they will 
be denoted by βk, and instead of Hγ we will use the notation Hα,β for the Schrödinger 
operator. Now, roughly speaking, the intervals Ik play the role of the rooms, the inter-
actions at the points xk play the role of the passages, and the interactions at the points 
yk play the role of the doors. The desired operator is constructed in three steps.

1) Decoupled operator. We start from the case βk = ∞ for all k ∈ Z, which corresponds 
to Dirichlet decoupling at the points xk. In other words, we treat the operator
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Hα,∞ =
⊕
k∈Z

Hαk,Ik
in L2(�−, �+) =

⊕
k∈Z

L2(Ik),

where Hαk,Ik
is an operator in L2(Ik) (formally) defined by the differential expression

− d2

dx2 + αkδ(· − yk)

and Dirichlet boundary conditions at the endpoints of the interval Ik. Recall that the 
sequence Sdisc = (sk)k∈N is already given and, in addition, we assign to Sess a sequence 
(sk)k∈Z\N such that

Sess =
{
accumulation points of (sk)k∈Z\N

}
. (1.14)

If dk are sufficiently small (see the second condition in (3.3)), one can choose the 
constants αk such that λ1(Hαk,Ik

) = sk and, moreover, λ2(Hαk,Ik
) = (2π/dk)2 for all 

αk ∈ R. Therefore, since dk → 0 as |k| → ∞ and (1.7) holds, we conclude

σess(Hα,∞) = {accumulation points of (sk)k∈Z}
= {accumulation points of (sk)k∈Z\N} = Sess.

(1.15)

Similarly, if maxk∈Z dk is sufficiently small (see the first conditions in (3.3)), we obtain

σdisc(Hα,∞) ∩ (T1, T2) = Sdisc.

Moreover, due to (1.6),

all eigenvalues in σdisc(Hα,∞) ∩ (T1, T2) are simple. (1.16)

Thus, the decoupled operator Hα,∞ satisfies (1.9) and (1.10) in Theorem 1.1. However, 
this is not the desired singular Schrödinger operator as we have Dirichlet conditions at 
the points xk, k ∈ Z.

2) Partly coupled operator. Let β = (βk)k∈N be a sequence of real numbers. For n ∈ N we 
denote by Hn

α,β the operator, which is obtained from Hα,∞ by “inserting” δ-interactions 
of strengths βk at finitely many points xk, k ∈ Z ∩ [−n + 1, n − 1]. Then one has

∀n ∈ N : σess(Hn
α,β) = σess(Hα,∞), (1.17)

one can also guarantee that the discrete spectrum of Hn
α,β within (T1, T2) changes slightly 

provided βk are sufficiently large. More precisely, for an arbitrary sequence of positive 
numbers (δk)k∈N such that the neighborhoods [sk − δk, sk + δk] are pairwise disjoint and 
belong to (T1, T2) \ O one has
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σdisc(Hn
α,β) ∩ (T1, T2) ⊂

⋃
k∈N

[sk − δk, sk + δk]

and each [sk − δk, sk + δk] contains precisely one simple eigenvalue,
(1.18)

provided the entries of the sequence β are large enough (independent of n). It is important 
that the properties (1.15) and (1.18) remain valid if the coefficients αk, k ∈ N, chosen 
in the first step are slightly perturbed.

Now, we fix a sequence β for which (1.18) and some additional conditions for βk as 
|k| → ∞ hold; see the next step. Then one can show that for each n ∈ N there exist αk, 
k ∈ N, that in fact

for k ∈ Z ∩ [1, n] the eigenvalue of Hn
α,β in [sk − δk, sk + δk] coincides with sk. (1.19)

The proof of this fact is based on a multi-dimensional version of the intermediate value 
theorem proved in [18]. We denote the sequence α for which (1.19) holds by αn.

3) Fully coupled operator. Let αn = (αn
k )k∈Z, n ∈ N, be the sequences from above (see 

the end of the previous step). Using a standard diagonal process one concludes that there 
exists a sequence α = (αk)k∈Z such that for each k ∈ Z one has αn

k → αk as n → ∞
(probably, up to a subsequence which is independent k). As a result we get the operator 
Hα,β ; it is obtained from Hα,∞ by “inserting” δ-interactions of the strengths βk at all
points xk, k ∈ Z. We prove that, if limk→∞ βk = ∞ and this convergence is fast enough, 
then also σess(Hα,β) = σess(Hα,∞). Hence, due to (1.15), we get

σess(Hα,β) = Sess.

Moreover, we show that

Hn
αn,β converges to Hα,β in the norm resolvent sense as n → ∞. (1.20)

Using (1.17)–(1.20) we arrive at

σdisc(Hα,β) ∩ (T1, T2) = Sdisc.

Thus the operator Hα,β satisfies (1.9) and (1.10); we have proved Theorem 1.1.
We note that for the rigorous definition of the singular Schrödinger operators above 

we will use the form approach, which is particularly convenient for our purposes. Al-
ternatively, one can use extension theory methods as in [21] or regard a sequence of 
δ-couplings as a distributional W−1,2

loc -potential; cf. [25,26].

1.3. Schrödinger operators with δ′-interactions

We mention that a result similar to Theorem 1.1 can also be proved for singular 
Schrödinger operators with δ′-interactions of the form
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H′
γ = − d2

dz2 +
∑
k∈K

γk〈· , δ′zk〉δ
′
zk
, (1.21)

where K ⊂ Z, δ′zk is the distributional derivative of the delta-function supported at 
zk ∈ R, 〈φ, δ′zk〉 denotes its action on the test function φ, and γk ∈ R ∪ {∞}. In contrast 
to (1.2) here the functions u in the operator domain satisfy

u′(zk − 0) = u′(zk + 0) and u(zk + 0) − u(zk − 0) = γku
′(zk ± 0).

For the rigorous mathematical treatment of δ′-interactions we refer to the standard 
monograph [3]. Among the subsequent contributions we mention the papers [21,22] deal-
ing with the more subtle case |zk − zk−1| → 0 as |k| → ∞.

One has the following counterpart of Theorem 1.1.

Theorem 1.2. Assume that the set Sess ⊂ R, the sequence of real numbers Sdisc = (sk)k∈N
and the interval (T1, T2) ⊂ R satisfy the conditions (1.3)–(1.7). Moreover, let 0 ∈ Sess. 
Then there exists a bounded interval (�−, �+) ⊂ R, a sequence of points (zk)k∈Z with 
zk ∈ (�−, �+), and a sequence of real numbers (γk)k∈Z such that the operator H′

γ in 
L2(�−, �+) defined by the formal expression (1.21) satisfies (1.9)–(1.10).

The proof of the above theorem is similar (except for some technical details) to the 
proof of Theorem 1.1, therefore we only sketch it briefly. Note that in [6, Section 3]
the “σess-part” of Theorem 1.2 was already shown (if S ⊂ [0, ∞)). Again we split the 
sequence (zk)k∈Z in (1.21) in two interlacing subsequences (xk)k∈Z and (yk)k∈Z, where 
yk is in the center of Ik = (xk−1, xk). Instead of γk we denote the interaction strengths 
at the points xk by βk and at the points yk by αk. We shall write H′

α,β instead of H′
γ

for the corresponding Schrödinger operator.
In the first step we set βk = ∞, which corresponds to Neumann decoupling at the 

points xk, and we consider

H′
α,∞ =

⊕
k∈Z

H′
αk,Ik

in L2(�−, �+) =
⊕
k∈Z

L2(Ik).

Here H′
αk,Ik

is the operator in L2(Ik) (formally) defined by the differential expression

− d2

dx2 + αk〈· , δ′zk〉δ
′
zk
,

and Neumann boundary conditions at the endpoints of Ik. In contrast to the operator 
Hαk,Ik

, the spectrum of H′
αk,Ik

always contains the eigenvalue 0 (and leads to the 
additional condition 0 ∈ S in Theorem 1.2). Moreover, if dk = xk − xk−1 is sufficiently 
small, one can choose αk such that the first nonzero eigenvalue of H′

αk,Ik
coincides with 

sk (recall that sk are the elements of the sequence Sdisc as k ∈ N, while for k ∈ Z \N the 
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numbers sk are defined in (1.14)). The second nonzero eigenvalue of H′
αk,Ik

is larger or 
equal to π2d−2

k . Thus the properties (1.15)–(1.16) hold for the decoupled operator H′
α,∞.

In the second step one perturbs H′
α,∞ by “inserting” δ′-interactions of strengths βk

at finitely many points xk, k ∈ Z ∩ [−n + 1, n − 1]. This perturbation does not change 
the essential spectrum, while the discrete spectrum will change slightly provided the 
constants βk are sufficiently large. Moreover, varying αk one can even achieve a precise 
coincidence of the discrete spectrum within (T1, T2) with a prescribed sequence Sdisc.

In the last step we pass to the limit n → ∞ and prove that the above properties 
remain valid if βk → ∞ as |k| → ∞ sufficiently fast (see the condition (3.18) in [6]).

1.4. Structure of the paper

The paper is organized as follows. In Section 2 we recall the definition and some 
spectral properties of Schrödinger operators with a single δ-interaction on a bounded 
interval. The decoupled operator Hα,∞ is treated in Section 3 and the rigorous definition 
of the coupled operator Hα,β and a precise formulation of our main result are contained 
in Section 4. In Section 5 we describe the essential spectrum of Hα,β. Section 6 is devoted 
to the partly coupled operator Hn

α,β and its spectral properties. In Section 7 we describe 
the discrete spectrum of Hα,β and complete the proof of our main result. Finally, in 
Appendix A we collect some useful material on the direct sum of semibounded closed 
forms and associated self-adjoint operators.

2. Single δ-interaction on a bounded interval

In this section we recall the definition of Schrödinger operators on a bounded interval 
with a δ-interaction supported at an internal point of the interval and either Dirichlet 
(this is the most important case for our constructions), Neumann or Robin boundary 
conditions; we also establish some spectral properties of these operators. For more details 
on δ-interactions we refer to [3, Section I.3].

Throughout this paper λj(H) denotes the jth eigenvalue of a self-adjoint operator H
with purely discrete spectrum bounded from below and accumulating at ∞; as usual the 
eigenvalues are counted with multiplicities and ordered as a nondecreasing sequence. In 
the following let I = (x−, x+) ⊂ R be a bounded interval of length d(I) = x+ − x− and 
middle point y = x−+x+

2 . For u, v ∈ W1,2(I), α, β−, β+ ∈ R, we consider

hI,α[u,v] = (u′,v′)L2(I) + αu(y)v(y),

hI,α,β−,β+ [u,v] = hI,α[u,v] + 1
2

(
β−u(x−)v(x−) + β+u(x+)v(x+)

) (2.1)

(recall that W1,2(I) ⊂ C(I), that is, the values of u, v at x−, x+, y are well-defined).



10 J. Behrndt, A. Khrabustovskyi / Journal of Functional Analysis 282 (2022) 109252
2.1. Endpoints with Dirichlet boundary conditions

In the space L2(I) we introduce the densely defined, symmetric sesquilinear form hD
I,α

by

hD
I,α[u,v] = hI,α[u,v], dom(hD

I,α) = W1,2
0 (I).

A standard form perturbation argument shows that this form is bounded from below 
and closed in L2(I), and the induced norm

‖u‖hD
I,α

:=
(
hD
I,α[u,u] − C‖u‖2

L2(I) + ‖u‖2
L2(I)

)1/2
, where C = inf

‖u‖L2(I)=1
hD
I,α[u,u],

on dom(hD
I,α) is equivalent to the usual norm on W1,2

0 (I). Therefore, by the first represen-
tation theorem (see, e.g. [20, Chapter 6, Theorem 2.1]) there exists a unique self-adjoint 
operator HD

I,α in L2(I) such that dom(HD
I,α) ⊂ dom(hD

I,α) and

(HD
I,αu,v)L2(I) = hD

I,α[u,v], u ∈ dom(HD
I,α), v ∈ dom(hD

I,α). (2.2)

By inserting suitable test functions v in (2.2) one can easily derive the following 
explicit characterization of the domain and the action of HD

I,α.

Proposition 2.1. The self-adjoint operator HD
I,α associated to the form hD

I,α via (2.2) is 
given by

(HD
I,αu) �I\{y} = −(u �I\{y})′′,

dom(HD
I,α) =

⎧⎪⎨⎪⎩u ∈ W2,2 (I \ {y}) :
u(x−) = u(x+) = 0,
u(y − 0) = u(y + 0),
u′(y + 0) − u′(y − 0) = αu(y ± 0)

⎫⎪⎬⎪⎭ .

By Rellich’s theorem the space (dom(hD
I,α), ‖ ·‖hD

I,α
) is compactly embedded in L2(I); 

recall that the norm ‖ · ‖hD
I,α

is equivalent to the usual norm on W1,2
0 (I). Hence (see, 

e.g., [27, Proposition 10.6]) the spectrum of the operator HD
I,α is purely discrete. Using 

Proposition 2.1 one can easily calculate all eigenvalues of HD
I,α. In order to formulate 

the related statement in Proposition 2.2 below we introduce for d > 0 the set

ΠD
d =

{(
2πk
d

)2

: k ∈ N

}

and the function FD
d : R \ ΠD

d → R,
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FD
d (λ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−2
√
λ cot

(
d
√
λ

2

)
, λ > 0,

−4
d
, λ = 0,

−2
√
−λ coth

(
d
√
−λ

2

)
, λ < 0.

(2.3)

For any fixed d > 0 the function FD
d is continuous and monotonically increasing on each 

connected component of R \ ΠD
d , moreover we have

lim
λ→−∞

FD
d (λ) = −∞ and lim

λ→μ∓0
FD

d (λ) = ±∞ for all μ ∈ ΠD
d . (2.4)

In particular, for d > 0 fixed and any α ∈ R the equation α = FD
d (λ) has a unique 

solution in (−∞, (2π/d)2); this solution will be denoted by ΛD
α,d in the following.

Proposition 2.2. The spectrum of the self-adjoint operator HD
I,α is given by

σ(HD
I,α) = ΠD

d(I) ∪
{
λ ∈ R \ ΠD

d(I) : FD
d(I)(λ) = α

}
and one has

λ1(HD
I,α) = ΛD

α,d(I), λ2(HD
I,α) =

(
2π
d(I)

)2

.

2.2. Endpoints with Neumann boundary conditions

Besides the form hD
I,α we also consider the densely defined, symmetric sesquilinear 

form

hN
I,α[u,v] = hI,α[u,v], dom(hD

I,α) = W1,2(I),

in L2(I). This form is also bounded from below and closed, and hence there exists a 
unique self-adjoint operator HN

I,α in L2(I) such that dom(HN
I,α) ⊂ dom(hN

I,α) and

(HN
I,αu,v)L2(I) = hN

I,α[u,v], u ∈ dom(HN
I,α), v ∈ dom(hN

I,α). (2.5)

The counterpart of Proposition 2.1 in the present situation reads as follows.

Proposition 2.3. The self-adjoint operator HD
I,α associated to the form hN

I,α via (2.5) is 
given by

(HN
I,αu) �I\{y} = −(u �I\{y})′′,

dom(HN
I,α) =

⎧⎪⎨⎪⎩u ∈ W2,2 (I \ {y}) :
u′(x−) = u′(x+) = 0,
u(y − 0) = u(y + 0),
u′(y + 0) − u′(y − 0) = αu(y ± 0)

⎫⎪⎬⎪⎭ .
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Fig. 3. The functions FD
d (solid plot) and FN

d (dashed plot), and the unique solutions ΛD
α,d of α = FD

d (λ)
in (−∞, (2π/d)2) and ΛN

α,d of α = FN
d (λ) in (−∞, (π/d)2).

It follows that the spectrum of HN
I,α is purely discrete. In a similar way as in the 

previous subsection we consider for d > 0 the set

ΠN
d =

{(
π(2k − 1)

d

)2

: k ∈ N

}

and the function

FN
d (λ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
2
√
λ tan

(
d
√
λ

2

)
, λ > 0,

0, λ = 0,

−2
√
−λ tanh

(
d
√
−λ

2

)
, λ < 0.

The function FN
d is continuous and monotonically increasing on each connected compo-

nent of R \ΠN
d , and the properties in (2.4) hold also for FN

d . In particular, for d > 0 fixed 
and any α ∈ R the equation α = FN

d (λ) has a unique solution ΛN
α,d in (−∞, (π/d)2); cf. 

Fig. 3.

Proposition 2.4. The spectrum of the self-adjoint operator HN
I,α is given by

σ(HN
I,α) = ΠN

d(I) ∪
{
λ ∈ R \ ΠN

d(I) : FN
d(I)(λ) = α

}
and one has

λ1(HN
I,α) = ΛN

α,d(I), λ2(HN
I,α) =

(
π

)2

.

d(I)
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2.3. Endpoints with Robin boundary conditions

In this subsection we consider the densely defined, symmetric sesquilinear form

hR
I,α,β−,β+

[u,v] = hI,α,β−,β+ [u,v], dom(hR
I,α,β−,β+

) = W1,2(I),

which is again bounded from below and closed in L2(I); we shall use later that the induced 
norm on dom(hR

I,α,β−,β+
) is equivalent to the usual norm on W1,2(I). The corresponding 

self-adjoint operator HR
I,α,β−,β+

in L2(I) has the following form.

Proposition 2.5. The self-adjoint operator HR
I,α,β−,β+

associated to the form hR
I,α,β−,β+

is given by

(HR
I,α,β−,β+

u) �I\{y} = −(u �I\{y})′′,

dom(HR
I,α,β−,β+

) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩u ∈ W2,2 (I \ {y}) :

u′(x−) = 1
2β−u(x−),

u′(x+) = −1
2β+u(x+),

u(y − 0) = u(y + 0),
u′(y + 0) − u′(y − 0) = αu(y ± 0)

⎫⎪⎪⎪⎬⎪⎪⎪⎭ .

The spectrum of the operator HR
I,α,β−,β+

is purely discrete. It can be determined in 
a similar way as in the previous subsections. However, the precise values are not needed 
for our purposes. Instead, we make use of the fact that for large β± the eigenvalues of 
HR

I,α,β−,β+
are close to the eigenvalues of the self-adjoint operator HD

I,α.

Proposition 2.6. For the j-th eigenvalue of the self-adjoint operators HR
I,α,β−,β+

and HD
I,α

one has

λj(HR
I,α,β−,β+

) → λj(HD
I,α) as min{β−, β+} → +∞. (2.6)

Proof. First we note that by the min-max principle (see, e.g., [17, Section 4.5]) the 
function

R2 � (β−, β+) �→ λj(HR
I,α,β−,β+

)

is monotonically increasing in each of its arguments. Therefore it suffices to show that

λj(HR
I,α,β,β) → λj(HD

I,α) as β → +∞. (2.7)

Without loss of generality we may assume in the following that β ≥ 0. Note first that 
for β ≤ β̃ we have hR

I,α,β,β ≤ hR
I,α,β̃,β̃ in the (usual) form sense. In the present situation 

this means

hR
I,α,β,β [u, u] ≤ hR ˜ ˜[u, u], u ∈ dom(hR ˜ ˜) = dom(hR

I,α,β,β).
I,α,β,β I,α,β,β
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Moreover, it is easy to see that

dom(hD
I,α) =

⎧⎨⎩u ∈
⋂
β≥0

dom(hR
I,α,β,β) : sup

β≥0
hR
I,α,β,β [u, u] < ∞

⎫⎬⎭
and that hR

I,α,β,β[u, u] = hD
I,α[u, u] holds for all u ∈ dom(hD

I,α). Therefore, [28, Theo-
rem 3.1] (see also [5, Theorem 4.2]) implies the strong resolvent convergence

∀f ∈ L2(I) :
∥∥(HR

I,α,β,β − μI)−1f − (HD
I,α − μI)−1f

∥∥
L2(I) → 0 as β → +∞, (2.8)

where μ ∈ ρ(HR
I,α,β,β) ∩ ρ(HD

I,α), and as usual I stands for the identity operator. Now 
observe that we can choose μ < min{σ(HD

I,α), σ(HR
I,α,β,β)}, β ≥ 0. Then hR

I,α,β,β ≤ hD
I,α

implies

(HD
I,α − μI)−1 ≤ (HR

I,α,β,β − μI)−1,

and since the resolvents (HR
I,α,β,β −μI)−1 and (HD

I,α−μI)−1 are both compact in L2(I), 
we conclude from [20, Theorem VIII-3.5] that the strong convergence in (2.8) becomes 
even convergence in the operator norm, i.e.∥∥(HR

I,α,β,β − μI)−1 − (HD
I,α − μI)−1∥∥ → 0 as β → +∞. (2.9)

It is well-known (see, e.g., [23, Corollary A.15]) that (2.9) implies (2.7), and hence 
(2.6). �
3. The decoupled operator Hα,∞

In this section we define and study the spectrum of the self-adjoint operator

Hα,∞ =
⊕
k∈Z

HD
Ik,αk

in
⊕
k∈Z

L2(Ik)

with suitably chosen interaction strengths αk and intervals Ik that are stacked in a row 
with finite total length.

3.1. Auxiliary sequence Ŝess and the intervals Ik

Recall that the set Sess and the sequence Sdisc = (sk)k∈N satisfying (1.3)–(1.7) are 
already given. It is easy to see that, due to (1.3)–(1.4), one can always find a sequence 
Ŝess = (sk)k∈Z\N such that

Sess =
{
accumulation points of Ŝess

}
, (3.1)

Ŝess ∩ [T1, T2] ⊂ O. (3.2)
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Note that the elements of Sdisc and Ŝess are both denoted by sk, but sk with index k ∈ N

belongs to Sdisc, while sk with index k ∈ Z \N is an element of Ŝess. Recall from (1.5)
that the sequence Sdisc = (sk)k∈N is contained in (T1, T2). For all k ∈ Z we fix dk > 0
such that

T2 < min
k∈Z

(π/dk)2 and sk < (π/dk)2, k ∈ Z, (3.3)

and we assume, in addition, that the numbers dk satisfy∑
k∈Z

dk < ∞. (3.4)

In particular, this implies

dk → 0 as k → ±∞. (3.5)

Note that for k ∈ N the first condition in (3.3) implies the second condition since 
sk ∈ (T1, T2) for k ∈ N, and hence the second condition is only needed for dk (and sk) 
with index k ∈ Z \N. Finally, we set (see Fig. 2)

Ik = (xk−1, xk), k ∈ Z,

where

x0 = 0, xk =
{

xk−1 + dk, k ∈ N,

xk+1 − dk+1, k ∈ Z \ (N ∪ {0}).

The intervals Ik satisfy ∪k∈Z Ik = [�−, �+] with �± in (1.13). Due to (3.4) the interval 
[�−, �+] is compact.

3.2. Choice of the interaction strengths αk

In what follows we denote by Bδ(s) the open δ-neighborhood of s ∈ R, i.e.

Bδ(s) = (s− δ, s + δ).

Let us fix a sequence (δk)k∈N of positive numbers with the properties

Bδk(sk) ⊂ (T1, T2) \ O, k ∈ N, (3.6)

Bδk(sk) ∩Bδk(sl) = ∅, k �= l. (3.7)

The above choice of δk is always possible due to (1.5) and (1.8). Moreover, we claim that 
δk can be chosen so small that
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α+
k − α−

k ≤ ckdk with ck → 0 as k → ∞, (3.8)

where

α±
k = FD

dk
(sk ± 1

2δk). (3.9)

In fact, (3.8) holds for δk small enough since the function FD
dk

in (2.3) is continuous on 
(−∞, (2π/dk)2), and

sk + 1
2δk < sk + δk < T2 < min

k∈Z
(π/dk)2 (3.10)

(cf. (3.3), (3.6)). Condition (3.8) will be required only in the last step of our construction; 
cf. Lemma 7.1. Note, that by (3.10)

α±
k < 0, k ∈ N, (3.11)

since FD
dk

((π/dk)2) = 0 and FD
dk

is strictly increasing on the interval (−∞, (2π/dk)2).
From now on we consider sequences (αk)k∈Z that satisfy the following hypothesis.

Hypothesis 3.1. The notation α = (αk)k∈Z is used for a sequence of real numbers with 
the properties

αk ∈ [α−
k , α

+
k ], k ∈ N,

αk = FD
dk

(sk), k ∈ Z \N.
(3.12)

3.3. The decoupled operator Hα,∞

Let α = (αk)k∈Z be a sequence satisfying Hypothesis 3.1. For each k ∈ Z we consider 
the sesquilinear form hD

Ik,αk
and the associated self-adjoint operator HD

Ik,αk
in Section 2.1

with α, I, x−, x+, and y replaced by αk, Ik, xk−1, xk, and yk = xk−1+xk

2 , respectively. 
The spectrum of HD

Ik,αk
is discrete and by Proposition 2.2 the first eigenvalue λ1(HD

Ik,αk
)

is the unique solution of the equation αk = FD
dk

(λ) in (0, (2π/dk)2). Therefore, taking 
into account the monotonicity and continuity of the function FD

dk
, (3.9), and (3.10) we 

conclude that

λ1(HD
Ik,αk

) ∈ Bδk/2(sk), k ∈ N, (3.13)

λ1(HD
Ik,αk

) = sk, k ∈ Z \N, (3.14)

and Proposition 2.2 also gives

λ2(HD
Ik,αk

) =
(

2π
dk

)2

, k ∈ Z. (3.15)
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It is clear from (3.13) and (3.14) that the forms hD
Ik,αk

are bounded from below by

sinf = inf
{

inf
k∈N

(sk − δk/2); inf
k∈Z\N

sk

}
, (3.16)

and from (1.3) and (3.6) we conclude sinf ≥ min{T1; minSess} > −∞.
Following Appendix A.3 we consider the densely defined, semibounded, closed form

hα,∞ =
⊕
k∈Z

hD
Ik,αk

in L2(�−, �+) =
⊕
k∈Z

L2(Ik)

and the corresponding self-adjoint operator Hα,∞. In the present situation Proposi-
tion A.4 and Theorem A.5 lead to the next statement.

Theorem 3.2. Let α = (αk)k∈Z be a sequence satisfying Hypothesis 3.1. Then the self-
adjoint operator Hα,∞ associated to the form hα,∞ in L2(�−, �+) is given by

(Hα,∞u) �Ik
= HD

Ik,αk
uk = −(uk �Ik\{yk})

′′,

dom(Hα,∞) =
{
u ∈ L2(�−, �+) : uk ∈ dom(HD

Ik,αk
) and

∑
k∈Z

‖HD
Ik,αk

uk‖2
L2(Ik) < ∞

}
,

where uk stands for the restriction of u on Ik. Furthermore, one has

σess(Hα,∞) = Sess. (3.17)

Proof. It is clear from Proposition A.4 and Proposition 2.1 that the self-adjoint oper-
ator Hα,∞ is given as in the theorem. Hence it remains to verify (3.17). In fact, by 
Theorem A.5 we have

σess(Hα,∞) =
{
accumulation points of S

}
, (3.18)

where S = (λj(HD
Ik,αk

))j∈N,k∈Z is the sequence of all eigenvalues of the operators HD
Ik,αk

. 
By (3.5) and (3.15) one has

λj(HD
Ik,αk

) → ∞ as |k| → ∞, j ≥ 2,

and using (3.1) and (3.14) we get{
accumulation points of (λ1(HD

Ik,αk
))k∈Z\N

}
= Sess.

Finally, it follows easily from (3.6), (3.7), and (3.13) that{
accumulation points of (λ1(HD

I ,α ))k∈N
}

=
{
accumulation points of (sk)k∈N

}
.

k k
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Therefore, taking into account (1.7), we get{
accumulation points of (λ1(HD

Ik,αk
))k∈N

}
⊂ Sess. (3.19)

Combining (3.18)–(3.19) we arrive at (3.17). �
Remark 3.3. If α = (αk)k∈Z is a sequence satisfying Hypothesis 3.1 and Hα,∞ is the 
self-adjoint operator in the previous theorem then one also has

σdisc(Hα,∞) ∩ (T1, T2) =
{
λ1(HD

Ik,αk
) : k ∈ N

}
and each of these eigenvalues is simple, i.e. dim ker(Hα,∞ − λ1(HD

Ik,αk
)I) = 1; these 

facts follow again from Proposition 2.2, (3.6), (3.7), (3.13), (3.15), and Theorem A.5. In 
particular, if αk = FD

dk
(sk) for all k ∈ Z, then

σdisc(Hα,∞) ∩ (T1, T2) = Sdisc.

The following lemma on the semiboundedness of the forms hIk,αk
will be used later.

Lemma 3.4. Let α = (αk)k∈Z be a sequence satisfying Hypothesis 3.1. Then there exists 
a constant C > 0 which depends only on the quantity sinf in (3.16) and the interval 
(�−, �+) such that for all k ∈ Z

hIk,αk
[u,u] + C

d2
k

‖u‖2
L2(Ik) ≥ 0, u ∈ W1,2(Ik). (3.20)

Proof. Consider the function FD
dk

defined by (2.3) and recall that it is monotonically 
increasing on (−∞, (2π/dk)2) and FD

dk
((π/dk)2) = 0. It follows from Hypothesis 3.1, the 

choice of dk in (3.3), and (3.16) that

0 > αk ≥ FD
dk

(sinf). (3.21)

In the case sinf ≥ 0 we have the estimate

FD
dk

(sinf) ≥ FD
dk

(0) = − 4
dk

,

and in the case sinf < 0 we make use of the fact that the function x �→ x coth(x) is 
increasing on [0, ∞) and dk < �+ − �− to derive

FD
dk

(sinf) = − 4
dk

· dk
√−sinf

2 coth dk
√−sinf

2

≥ − 4 · (�+ − �−)
√−sinf coth (�+ − �−)

√−sinf
.

(3.22)
dk 2 2
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Combining (3.21)–(3.22) we conclude that there exists a constant Ĉ > 0 which depends 
only on sinf and (�−, �+) such that

αk ≥ − Ĉ

dk
, k ∈ Z. (3.23)

By Proposition 2.4 we have

λ1(HN
Ik,αk

) = ΛN
αk,dk

,

where ΛN
αk,dk

is the unique solution of αk = FN
dk

(λ) in (−∞, (π/dk)2). Using (3.23) and 
the monotonicity of the function FN

d we obtain

λ1(HN
Ik,αk

) ≥ ΛN

− Ĉ
dk

,dk
= −4λ̂2

d2
k

, where λ̂ = dk
2

√
−ΛN

− Ĉ
dk

,dk

> 0

is the unique solution of 4λ̂ tanh λ̂ = Ĉ. From this we finally conclude that there exists 
C > 0 such that (3.20) holds. �
4. The coupled operator Hα,β

In this short section we introduce the self-adjoint operator Hα,β in L2(�−, �+) and 
reformulate our main result Theorem 1.1 in a more rigorous form. The operator Hα,β

corresponding to the form hα,β below will be our main object of interest in this paper, 
it can be viewed as perturbation of the decoupled operator Hα,∞ in the sense that all 
neighboring intervals Ik and Ik+1 are glued together via δ-couplings of sufficiently large 
interaction strengths.

Let α = (αk)k∈Z be a sequence which satisfies Hypothesis 3.1 and let β = (βk)k∈Z be 
another sequence of real numbers. In the space L2(�−, �+) we introduce the symmetric 
sesquilinear form hα,β by

hα,β [u, v] =
∑
k∈Z

hIk,αk,βk−1,βk
[uk,vk],

dom(hα,β) =
{
u ∈ W1,2

loc(�−, �+) ∩ L2(�−, �+) :
∑
k∈Z

|hIk,αk,βk−1,βk
[uk,uk]| < ∞

}
,

(4.1)

where uk = u �Ik
, vk = v �Ik

, and the forms hIk,α,βk−1,βk
are defined as in (2.1).

Lemma 4.1. There exists a sequence βinf = (βinf
k )k∈Z of real numbers such that for any 

sequence β = (βk)k∈Z satisfying
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βinf
k ≤ βk < ∞ (4.2)

and any sequence α = (αk)k∈Z satisfying Hypothesis 3.1 the form hα,β is densely defined, 
closed, and bounded from below by sinf − 1, where sinf is the quantity specified in (3.16).

Proof. For k ∈ Z consider the densely defined, closed, semibounded form hR
Ik,αk,βk−1,βk

and the associated self-adjoint operator HR
Ik,αk,βk−1,βk

as in Section 2.3, with α, I, β−, 
and β+ replaced by αk, Ik, βk−1, and βk, respectively. By Proposition 2.6 we have

λ1(HR
Ik,αk,βk−1,βk

) ↗ λ1(HD
Ik,αk

) as min{βk−1, βk} → ∞ (4.3)

for any k ∈ Z. Hence we conclude from (4.3) that there exists a sequence βinf = (βinf
k )k∈Z

such that

λ1(HR
Ik,αk,βk−1,βk

) ≥ λ1(HD
Ik,αk

) − 1.

Taking into account (3.13)–(3.14), we get

hR
Ik,αk,βk−1,βk

[u,u] ≥ (sinf − 1)‖u‖2
L2(Ik), u ∈ W1,2(Ik), k ∈ Z,

for any sequence β = (βk)k∈Z satisfying (4.2) and any sequence α = (αk)k∈Z satisfying 
Hypothesis 3.1.

Following Appendix A.3 we introduce in L2(�−, �+) the densely defined, closed form

h̃α,β =
⊕
k∈Z

hR
Ik,αk,βk−1,βk

,

that is,

h̃α,β [u, v] =
∑
k∈Z

hR
Ik,αk,βk−1,βk

[uk,vk],

dom(h̃α,β) =
{
u ∈ L2(�−, �+) : uk ∈ W1,2(Ik),

∑
k∈Z

|hR
Ik,αk,βk−1,βk

[uk,uk]| < ∞
}
,

which is bounded from below by sinf − 1. Observe that the form hα,β in (4.1) is the 
restriction of h̃α,β onto

dom(hα,β) = dom(h̃α,β) ∩ W1,2
loc(�−, �+). (4.4)

This implies that hα,β is also bounded from below by sinf − 1 and it is clear from (4.1)
that hα,β is densely defined in L2(�−, �+). It remains to verify that hα,β is closed. For 
this consider dom(hα,β) equipped with the form norm
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‖v‖α,β =
(
hα,β [v, v] − (sinf − 1)‖v‖2

L2(�−,�+) + ‖v‖2
L2(�−,�+)

)1/2

and let (un)n∈N be a Cauchy sequence in dom(hα,β) with respect to this norm. Then 
(un)n∈N is also a Cauchy sequence in dom(h̃α,β) equipped with the form norm

‖v‖
α̃,β

=
(
h̃α,β [v, v] − (sinf − 1)‖v‖2

L2(�−,�+) + ‖v‖2
L2(�−,�+)

)1/2

and as h̃α,β is closed there exists a limit u ∈ dom(h̃α,β). It is clear that for each k ∈ Z

the restrictions (un
k )n∈N are Cauchy sequences in dom(hR

Ik,αk,βk−1,βk
) equipped with the 

corresponding form norm, which is equivalent to the usual W1,2(Ik)-norm, and we have 
un
k → uk as n → ∞ in W1,2(Ik), where uk = u �Ik

. Then by the trace theorem

un
k (xk − 0) → uk(xk − 0) and un

k (xk−1 + 0) → uk(xk−1 + 0) as n → ∞. (4.5)

Since un ∈ W1,2
loc(�−, �+) we have the continuity condition

un
k (xk−1 + 0) = un

k−1(xk−1 − 0), k ∈ Z,

and together with (4.5) and uk ∈ W1,2(Ik) for each k ∈ Z, we conclude

u ∈ W1,2
loc(�−, �+). (4.6)

It follows from (4.4) and (4.6) that u ∈ dom(hα,β), thus the form hα,β is closed. �
Besides Hypothesis 3.1 we will also assume that the next hypothesis is satisfied.

Hypothesis 4.2. The sequence β = (βk)k∈Z satisfies the condition βinf
k ≤ βk < ∞ in (4.2)

and moreover, without loss of generality, we assume that

βk > 0, k ∈ Z. (4.7)

It is clear that any sequence β̂ = (β̂k)k∈Z such that βk ≤ β̂k for all k ∈ Z also satisfies 
(4.2) and (4.7).

The self-adjoint operator associated to the form hα,β is denoted by Hα,β. It is not 
difficult to verify the next statement.

Proposition 4.3. Let α = (αk)k∈Z and β = (βk)k∈Z be sequences satisfying Hypothesis 3.1
and Hypothesis 4.2. Then the self-adjoint operator Hα,β in L2(�−, �+) associated to the 
form hα,β is bounded from below by sinf − 1 and is given by
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(Hα,βu) �Ik\{yk}= (−uk �Ik\{yk})
′′,

dom(Hα,β) =

⎧⎪⎨⎪⎩u = (uk)k∈Z ∈ L2(�−, �+),
uk ∈ W2,2 (Ik \ {yk}) :

u(yk + 0) = u(yk − 0),
u(xk + 0) = u(xk − 0),

u′(yk + 0) − u′(yk − 0) = αku(yk ± 0),
u′(xk + 0) − u′(xk − 0) = βku(xk ± 0)

⎫⎪⎬⎪⎭ .

Now we are ready to formulate a rigorous version of our main result Theorem 1.1.

Theorem 4.4 (Main Theorem). There exist sequences α = (αk)k∈Z and β = (βk)k∈Z
satisfying Hypothesis 3.1 and Hypothesis 4.2 such that the essential spectrum of the self-
adjoint operator Hα,β coincides with Sess,

σess(Hα,β) = Sess, (4.8)

the discrete spectrum in (T1, T2) coincides with Sdisc,

σdisc(Hα,β) ∩ (T1, T2) = Sdisc, (4.9)

and each eigenvalue λ ∈ σdisc(Hα,β) ∩ (T1, T2) is simple, i.e. dim(ker(Hα,β − λI)) = 1.

In the next section we will prove (4.8). The assertion (4.9) and the multiplicity state-
ment will be shown in Section 7.

5. Essential spectrum of Hα,β

In this section we prove the identity (4.8) in Theorem 4.4. More precisely, we will 
show that for any sequence α satisfying Hypothesis 3.1 the essential spectra of Hα,β

and Hα,∞ coincide provided (βk)−1 decays sufficiently fast as |k| → ∞. Then (3.17) in 
Theorem 3.2 implies (4.8).

Theorem 5.1. Let α = (αk)k∈Z and β = (βk)k∈Z be sequences satisfying Hypothesis 3.1
and Hypothesis 4.2, and assume that for

ρk = 1
D2

k

max
{

1
βkD3

k

,
1

βk−1D3
k−1

}
, where Dk = min{dk, dk+1}, k ∈ Z,

one has

ρk → 0 as |k| → ∞. (5.1)

Then the essential spectrum of the self-adjoint operator Hα,β is given by

σess(Hα,β) = σess(Hα,∞) = Sess.
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Remark 5.2. Condition (5.1) can be easily achieved by taking βk converging fast enough 
to ∞ as |k| → ∞. For example, (5.1) holds if we choose βk such that

βk ≥ 1
min{D5+ε

k , D2
k+1D

3+ε
k }

with ε > 0.

Proof of Theorem 5.1. We set

μ = sinf − 2, (5.2)

where sinf is the quantity specified in (3.16). Recall that the form hα,∞ is bounded from 
below by sinf and the form hα,β is bounded from below by sinf − 1. Hence μ belongs to 
the resolvent set of both operators Hα,β and Hα,∞, and we have

1 ≤ dist(μ, σ(Hα,β)) and 1 ≤ dist(μ, σ(Hα,∞)). (5.3)

We introduce the resolvent difference

Tα,β = (Hα,β − μI)−1 − (Hα,∞ − μI)−1.

Our goal is to prove that Tα,β is a compact operator; then by virtue of Weyl’s theorem 
(see, e.g., [24, Theorem XIII.14]) and Theorem 3.2 we immediately obtain the statement 
of Theorem 5.1.

For f, g ∈ L2(�−, �+) we set

u = (Hα,β − μI)−1f and v = (Hα,∞ − μI)−1g.

Then one has

(Tα,βf, g)L2(�−,�+) =
(
(Hα,β − μI)−1f, g

)
L2(�−,�+) −

(
f, (Hα,∞ − μI)−1g

)
L2(�−,�+)

=
(
u, (Hα,∞ − μI)v

)
L2(�−,�+) −

(
(Hα,β − μI)u, v

)
L2(�−,�+)

= (u,Hα,∞v)L2(�−,�+) − (Hα,βu, v)L2(�−,�+)

=
∑
k∈Z

⎛⎜⎝−
yk∫

xk−1

uv′′ dx−
xk∫

yk

uv′′ dx +
yk∫

xk−1

u′′v dx +
xk∫

yk

u′′v dx

⎞⎟⎠
and integration by parts leads to
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(Tα,βf, g)L2(�−,�+) = −
∑
k∈Z

(
u(yk − 0)v′(yk − 0) − u(xk−1 + 0)v′(xk−1 + 0)

)
−
∑
k∈Z

(
u(xk − 0)v′(xk − 0) − u(yk + 0)v′(yk + 0)

)
+
∑
k∈Z

(
u′(yk − 0)v(yk − 0) − u′(xk−1 + 0)v(xk−1 + 0)

)
+
∑
k∈Z

(
u′(xk − 0)v(xk − 0) − u′(yk + 0)v(yk + 0)

)
.

Since both u and v satisfy the conditions

u(yk + 0) = u(yk − 0), u′(yk + 0) − u′(yk − 0) = αku(yk ± 0), k ∈ Z,

v(yk + 0) = v(yk − 0), v′(yk + 0) − v′(yk − 0) = αkv(yk ± 0), k ∈ Z,

v(xk) = 0 and u(xk − 0) = u(xk + 0) for all k ∈ Z, the expression for (Tα,βf, g)L2(�−,�+)
reduces to

(Tα,βf, g)L2(�−,�+) =
∑
k∈Z

u(xk)v′(xk + 0) − v′(xk − 0). (5.4)

We introduce the operators Γα,β : L2(�−, �+) → l2(Z), Γα,∞ : L2(�−, �+) → l2(Z), by

(Γα,βf)k = D
−3/2
k

[(
(Hα,β − μI)−1f

)
(xk)

]
, k ∈ Z,

(Γα,∞g)k = D
3/2
k

[(
(Hα,∞ − μI)−1g

)′(xk + 0) −
(
(Hα,∞ − μI)−1g

)′(xk − 0)
]
, k ∈ Z,

on their natural domains

dom(Γα,β) =
{
f ∈ L2(�−, �+) : Γα,βf ∈ l2(Z)

}
,

dom(Γα,∞) =
{
g ∈ L2(�−, �+) : Γα,∞g ∈ l2(Z)

}
.

Below we prove in Lemma 5.3 and Lemma 5.4 that both operators Γα,β and Γα,∞ are 
bounded and everywhere defined, and moreover Γα,β is compact. Hence (5.4) can be 
rewritten as

(Tα,βf, g)L2(�−,�+) = (Γα,βf,Γα,∞g)l2(Z) = (Γ∗
α,∞Γα,βf, g)L2(�−,�+), f, g ∈ L2(�−, �+),

and we conclude that the resolvent difference Tα,β = Γ∗
α,∞Γα,β is compact.

Thus, to finish the proof of Theorem 5.1 we have to prove the lemmata below.

Lemma 5.3. The operator Γα,β is bounded, defined on the whole space L2(�−, �+), and 
compact.
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Proof. First we prove that Γα,βf is well-defined for any f ∈ L2(�−, �+). As before we 
consider u = (Hα,β − μI)−1f ∈ dom(Hα,β) ⊂ dom(hα,β). Then one has for each n ∈ N

∑
k: |k|≤n

|(Γα,βf)k|2 =
∑

k: |k|≤n

|u(xk)|2
D3

k

=
n+1∑
k=−n

D−3
k |u(xk)|2 + D−3

k−1|u(xk−1)|2
2 −

D−3
n+1|u(xn+1)|2

2 −
D−3

−n−1|u(x−n−1)|2
2

≤
n+1∑
k=−n

ρkD
2
k

(
βk|u(xk)|2 + βk−1|u(xk−1)|2

2

)

≤
n+1∑
k=−n

ρkD
2
k

(
hIk,αk

[uk,uk] + C

d2
k

‖uk‖2
L2(Ik) + βk|u(xk)|2 + βk−1|u(xk−1)|2

2

)
,

(5.5)

where we have used Lemma 3.4 and the corresponding constant C > 0 from there in the 
last estimate. Taking into account the definition of the forms hIk,αk,βk−1,βk

and hα,β we 
continue the above estimates by

=
n+1∑
k=−n

ρkD
2
k

(
hIk,αk,βk−1,βk

[uk,uk] − μ‖uk‖2
L2(Ik) +

(
C

d2
k

+ μ

)
‖uk‖2

L2(Ik)

)
≤ max

k∈Z

(
ρkD

2
k

) (
hα,β [u, u] − μ‖u‖2

L2(�−,�+)

)
+ max

k∈Z

(
Cρk

D2
k

d2
k

+ |μ|ρkD2
k

)
‖u‖2

L2(�−,�+)

(5.6)

and using maxk∈Z ρk < ∞ (this follows from (5.1)) and

Dk ≤ dk < �+ − �−

we conclude∑
k: |k|≤n

|(Γα,βf)k|2 ≤ C1

(
hα,β [u, u] − μ‖u‖2

L2(�−,�+)

)
+ C2‖u‖2

L2(�−,�+), (5.7)

where

C1 = max
k∈Z

(
ρkD

2
k

)
and C2 = max

k∈Z

(
Cρk

D2
k

d2
k

+ |μ|ρkD2
k

)
.

Since (Hα,β − μI)u = f we have

hα,β [u, u] − μ‖u‖2
L2(�−,�+) = (f, u)L2(�−,�+) (5.8)



26 J. Behrndt, A. Khrabustovskyi / Journal of Functional Analysis 282 (2022) 109252
and (5.3) implies

‖u‖L2(�−,�+) = ‖(Hα,β − μI)−1f‖L2(�−,�+)

≤ 1
dist(μ, σ(Hα,β))‖f‖L2(�−,�+)

≤ ‖f‖L2(�−,�+),

(5.9)

so that (5.7) leads to ∑
k: |k|≤n

|(Γα,βf)k|2 ≤ (C1 + C2)‖f‖2
L2(�−,�+),

and hence ‖Γα,βf‖l2(Z) ≤
√
C1 + C2‖f‖L2(�−,�+). Therefore, the operator Γα,β is 

bounded and well-defined on the whole space L2(�−, �+).
In order to prove the compactness of Γα,β we consider for n ∈ N the finite rank 

operators

Γn
α,β : L2(�−, �+) → l2(Z), (Γn

α,βf)k =
{

(Γα,βf)k, |k| ≤ n,

0, |k| ≥ n + 1.

Then for f ∈ L2(�−, �+) one has

‖Γn
α,βf − Γα,βf‖2

l2(Z) =
∑

|k|≥n+1

D−3
k |u(xk)|2, (5.10)

where as before u = (Hα,β − μI)−1f . Repeating verbatim the arguments in (5.5) and 
(5.6) we obtain

∑
|k|≥n+1

D−3
k |u(xk)|2 ≤ max

|k|≥n+1

(
ρkD

2
k

) (
hα,β [u, u] − μ‖u‖2

L2(�−,�+)

)

+ max
|k|≥n+1

(
Cρk

D2
k

d2
k

+ |μ|ρkD2
k

)
‖u‖2

L2(�−,�+).

(5.11)

From (5.1) it is clear that max|k|≥n+1 ρk → 0 as n → ∞ and hence

max
|k|≥n+1

(
ρkD

2
k

)
→ 0 and max

|k|≥n+1

(
Cρk

D2
k

d2
k

+ |μ|ρkD2
k

)
→ 0 (5.12)

as n → ∞. Using (5.8) and (5.9) we conclude for (5.10) from (5.11)–(5.12)

‖Γn
α,βf − Γα,βf‖2

l2(Z) =
∑

|k|≥n+1

D−3
k |u(xk)|2 ≤ Cn‖f‖2

L2(�−,�+) (5.13)
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with Cn → 0 as n → ∞. Thus Γn
α,β → Γα,β in the operator norm as n → ∞. Since Γn

α,β

are finite rank operators, the operator Γα,β is compact. �
Lemma 5.4. The operator Γα,∞ is bounded and defined on the whole space L2(�−, �+).

Proof. For g ∈ L2(�−, �+) we consider v = (Hα,∞ −μI)−1g ∈ dom(Hα,∞) ⊂ dom(hα,∞). 
For k ∈ Z we denote by wk the linear function defined on Ik which has the value 0 at 
the left endpoint xk−1 and the value 1 at the right endpoint xk, i.e.

wk(x) = x− xk−1

xk − xk−1
, x ∈ Ik.

Integrating by parts, taking into account that v satisfies v(yk +0) = v(yk−0), and using 
the notation vk = v �Ik

we get

(
(Hα,∞v) �Ik

,wk

)
L2(Ik) = −

yk∫
xk−1

v′′
kwk dx−

xk∫
yk

v′′
kwk dx

=
xk∫

xk−1

v′
kw′

k dx + αkvk(yk)wk(yk) − v′
k(xk − 0),

which leads to

v′
k(xk − 0) =

xk∫
xk−1

v′
kw′

k dx + αkvk(yk)wk(yk) −
(
(Hα,∞v) �Ik

,wk

)
L2(Ik)

=
[
hIk,αk

[vk,wk] +
C

d2
k

(vk,wk)L2(Ik)

]
−
(
(Hα,∞v) �Ik

,wk

)
L2(Ik)

− C

d2
k

(vk,wk)L2(Ik),

(5.14)

where C is the positive constant in Lemma 3.4. It is easy to compute

‖wk‖2
L2(Ik) = dk

3 and hIk,αk
[wk,wk] = 1

dk
+ αk

4 ≤ 1
dk

,

where (3.11) was used in the last estimate. Due to Lemma 3.4 we then obtain the 
following Cauchy-Schwarz inequality and corresponding estimate∣∣∣∣hIk,αk

[vk,wk] + C

d2
k

(vk,wk)L2(Ik)

∣∣∣∣2
≤
(
hIk,αk

[vk,vk] + C

d2
k

‖vk‖2
L2(Ik)

)(
hIk,αk

[wk,wk] +
C

d2
k

‖wk‖2
L2(Ik)

)
≤ C ′ (

hIk,αk
[vk,vk] + C

2 ‖vk‖2
L2(Ik)

) (5.15)
dk dk
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with C ′ > 0. Combining (5.14) and (5.15), and taking into account that dk < �+ − �−
we arrive at the estimate

|v′
k(xk − 0)|2 ≤ C ′′

(
d−1
k hIk,αk

[vk,vk] + ‖(Hα,∞v) �Ik
‖2

L2(Ik) + d−3
k ‖vk‖2

L2(Ik)

)
.

(5.16)

With wk replaced by 1 −wk we obtain with the same arguments the estimate

|v′
k(xk−1 + 0)|2 ≤ C ′′′

(
d−1
k hIk,αk

[vk,vk] + ‖(Hα,∞v) �Ik
‖2

L2(Ik) + d−3
k ‖vk‖2

L2(Ik)

)
.

Now we obtain

‖Γα,∞g‖2
l2(Z) =

∑
k∈Z

D3
k|v′(xk − 0) − v′(xk + 0)|2

≤ 2
∑
k∈Z

D3
k|v′

k(xk − 0)|2 + 2
∑
k∈Z

D3
k−1|v′

k(xk−1 + 0)|2

and using Dk−1 ≤ dk < �+ − �− and Dk ≤ dk < �+ − �−, k ∈ Z, we conclude

‖Γα,∞g‖2
l2(Z) ≤ C̃

(
hα,∞[v, v] + ‖Hα,∞v‖2

L2(�−,�+) + ‖v‖2
L2(�−,�+)

)
with some C̃ > 0. Since (Hα,∞ − μI)v = g,

hα,∞[v, v] = (Hα,∞v, v)L2(�−,�+) = (g + μv, v)L2(�−,�+),

and ‖v‖L2(�−,�+) ≤ ‖g‖L2(�−,�+) by (5.3) (see also (5.9)), we obtain finally

‖Γα,∞g‖2
l2(Z) =

∑
k∈Z

D3
k|v′(xk + 0) − v′(xk − 0)|2 ≤ C‖g‖2

L2(�−,�+). (5.17)

This shows that Γα,∞ is bounded and well-defined on the whole space L2(�−, �+). �
6. Partly coupled operators and their spectra

In this section we take another step towards the proof of the main result in this 
paper. Here our objective is to study a partly coupled operator Hn

α,β for n ∈ N that is 
obtained from the decoupled operator Hα,∞ by introducing finitely many δ-couplings of 
strengths βk at the points xk, k = −n + 1, . . . , n − 1. After some technical preparations 
in Section 6.1 it will be shown in Theorem 6.7 that one can pick sequences αn and β
such that σess(Hn

αn,β) = Sess and σdisc(Hn
αn,β) ∩ (T1, T2) = Sdisc, that is, Theorem 4.4

holds for the partly coupled operator Hn
α,β.

In the following we use the notation

K =
{
k ∈ Z \N : sk ∈ [T1, T2]

}
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and for n ∈ N we set

Kn =
{
k ∈ {−n + 1, . . . , 0} : sk ∈ [T1, T2]

}
.

Recall that we have already fixed a sequence (δk)k∈N which satisfies (3.6)–(3.8). In 
addition, we now introduce a sequence (δk)k∈Z\N such that

Bδk(sk) ⊂
{
O, k ∈ K,

R \ [T1, T2], k ∈ Z \ (N ∪ K),
(6.1)

which is possible since sk ∈ O for k ∈ K (see (3.2)) and sk ∈ R \[T1, T2] for k ∈ Z \(N∪K). 
To avoid technical difficulties below we sometimes discuss the situation K = Z \ N, in 
which case Kn = {−n + 1, . . . , 0}; in other words we treat the situation sk ∈ (T1, T2) for 
all k ∈ Z, which appears if Sess ⊂ [T1, T2].

6.1. The operator Hn
α,β and its spectrum

Let again α = (αk)k∈Z be a sequence satisfying Hypothesis 3.1, while β = (βk)k∈Z is a 
sequence of real numbers. For n ∈ N we consider the densely defined, closed, symmetric 
sesquilinear form

hn
α,β [u, v] =

n∑
k=−n+1

hIk,αk
[uk,vk] +

n−1∑
k=−n+1

βku(xk)v(xk),

dom(hn
α,β) = W1,2

0 (x−n, xn),

in L2(x−n, xn) and the corresponding self-adjoint operator Hn
α,β in L2(x−n, xn) with 

δ-interactions of strengths βk and αk on

Zk :=
{
xk : −n + 1 ≤ k ≤ n− 1

}
∪
{
yk : −n + 1 ≤ k ≤ n

}
,

which is given by

(Hn
α,βu) �Ik\{yk}= (−uk �Ik\{yk})

′′, −n + 1 ≤ k ≤ n,

dom(Hn
α,β) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
u ∈ W2,2((x−n, xn) \ Zk)

u(x−n) = u(xn) = 0 :

u(yk + 0) = u(yk − 0),
u(xk + 0) = u(xk − 0),

u′(yk + 0) − u′(yk − 0) = αku(yk ± 0),
u′(xk + 0) − u′(xk − 0) = βku(xk ± 0),

for all xk, yk ∈ Zk

⎫⎪⎪⎪⎬⎪⎪⎪⎭ .

It is clear that Hn
α,β is independent of αk with k /∈ {−n + 1, . . . , n} and βk with k /∈

{−n + 1, . . . , n − 1}. Furthermore, the spectrum of Hn
α,β is purely discrete.
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The main result of this subsection is Theorem 6.4 for which some preparatory state-
ments are needed. The first lemma shows that the eigenvalues of Hn

α,β are close to the 
eigenvalues of the self-adjoint operator

n⊕
k=−n+1

HD
Ik,αk

, (6.2)

provided βk are sufficiently large. Moreover, the eigenvalues satisfy the additional useful 
inequalities (6.5) below, where we consider sequences α = ((αn,k)l)l∈Z, α = ((αn,k)l)l∈Z, 
k = 1, . . . , n, that satisfy Hypothesis 3.1 and are of the particular form (6.4) with the 
numbers α±

k defined by (3.9). The inequalities (6.5) will be needed later, when applying 
the intermediate value theorem from [18] in the proof of Lemma 6.2.

Lemma 6.1. There exists a sequence β′ = (β′
k)k∈Z of real numbers such that the following 

holds: for any sequence α = (αk)k∈Z satisfying Hypothesis 3.1, for any sequence β =
(βk)k∈Z satisfying β′

k ≤ βk, k ∈ Z, and for any n ∈ N, one has

σ(Hn
α,β) ∩ (T1, T2) =

{
snα,β; k : k ∈ Kn ∪ {1, . . . , n}

}
, (6.3)

where snα,β; k ∈ Bδk(sk) are simple eigenvalues of Hn
α,β. Moreover, for sequences αn,k

and αn,k, k = 1, . . . , n, that satisfy Hypothesis 3.1 and are of the particular form

αn,k =
(
. . . , α−1, α0, α

+
1 , . . . , α

+
k−1, α

−
k , α

+
k+1, . . . , α

+
n , αn+1, . . .

)
,

αn,k =
(
. . . , α−1, α0, α

−
1 , . . . , α

−
k−1, α

+
k , α

−
k+1, . . . , α

−
n , αn+1, . . .

) (6.4)

one has

snαn,k,β; k < sk − 1
4δk and sk + 1

4δk < snαn,k,β; k, k = 1, . . . , n. (6.5)

Proof. To avoid further technical difficulties we assume that K = Z \N, which leads to 
Kn = {−n + 1, . . . , 0}. Hence

sk ∈ O ⊂ (T1, T2), k ∈ Z \N, (6.6)

and, in particular, it follows from (6.6) that Sess ⊂ [T1, T2]. The general case needs only 
slight modifications.

We prove (6.3) and (6.5) below by induction. For convenience, we restrict ourselves 
to the sequences β = (βk)k∈Z such that

βk ≥ βinf
k and βk > 0 (6.7)

(in other words, the sequence β satisfies Hypothesis 4.2). This assumption implies, in 
particular, that for each n ∈ N the form hn

α,β is bounded from below by sinf − 1. In fact, 
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for u ∈ dom(hn
α,β) = W1,2

0 (x−n, xn) and its extension ũ by zero on all of (�−, �+) one has 
ũ ∈ dom(hα,β) and Lemma 4.1 implies

hn
α,β [u, u] = hα,β [ũ, ũ] ≥ (sinf − 1)‖ũ‖L2(�−,�+) = (sinf − 1)‖u‖L2(x−n,xn).

Therefore, μ = sinf − 2 defined in (5.2) belongs to the resolvent set of the self-adjoint 
operator Hn

α,β and we have

1 ≤ dist(μ, σ(Hn
α,β)), n ∈ N. (6.8)

It is also clear from (3.13)–(3.14) and (3.16) that μ belongs to the resolvent set of the 
operator in (6.2) and the same estimate holds.
Base case (n = 1). We consider the bounded operator

Tβ0 = (H1
α,β − μI)−1 −

(
(HD

I0,α0
⊕ HD

I1,α1
) − μI

)−1

in L2(I0 ∪ I1). For f, g ∈ L2(I0 ∪ I1) we set

u = (H1
α,β − μI)−1f and v =

(
(HD

I0,α0
⊕ HD

I1,α1
) − μI

)−1
g.

Following the arguments that led to (5.4) one verifies in the present situation that

(Tβ0f, g)L2(I0∪I1) = u(x0)v′(x0 + 0) − v′(x0 − 0). (6.9)

Taking into account that β0 > 0 (see (6.7)), using Lemma 3.4 with the constant C from 
there, and the definition of the form h1

α,β we obtain

|u(x0)|2 ≤ 1
β0

[
hI0,α0 [u0,u0] + C

d2
0
‖u0‖2

L2(I0) + hI1,α1 [u1,u1]

+ C

d2
1
‖u1‖2

L2(I1) + β0|u(x0)|2
]

= 1
β0

[
h1
α,β [u, u] + C

d2
0
‖u0‖2

L2(I0) + C

d2
1
‖u1‖2

L2(I1)

]
= 1

β0

[
(f + μu, u)L2(I0∪I1) + C

d2
0
‖u0‖2

L2(I0) + C

d2
1
‖u1‖2

L2(I1)

]
.

Since ‖uk‖L2(Ik) ≤ ‖u‖L2(I0∪I1) ≤ ‖f‖L2(I0∪I1) by (6.8) for k = 0, 1, we conclude

|u(x0)|2 ≤ C0

β0
‖f‖2

L2(I0∪I1), (6.10)

where the constant C0 depends on d0, d1, μ, and C from Lemma 3.4, but is independent 
of α0, α1, β0. As in the proof of Lemma 5.4 (cf. (5.16)) one obtains the estimate
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|v′(x0 − 0)|2 ≤ C ′′
(
d−1
0 hI0,α0 [v0,v0] + ‖HD

I0,α0
v0‖2

L2(I0) + d−3
0 ‖v0‖2

L2(I0)

)
with the constant C ′′ being independent of α0. Using this estimate, and also taking into 
account that HD

I0,α0
v0 = g0 + μv0, hI0,α0 [v0, v0] = (g0 + μv0, v0)L2(I0), and

‖v0‖L2(I0) ≤ ‖g0‖L2(I0) ≤ ‖g‖L2(I0∪I1),

we conclude

|v′(x0 − 0)|2 ≤ C−
0 ‖g‖2

L2(I0∪I1), (6.11)

and similarly

|v′(x0 + 0)|2 ≤ C+
0 ‖g‖2

L2(I0∪I1), (6.12)

where the constants C−
0 and C+

0 depend, respectively, on d0 and d1, but are independent 
of α0, α1 and β0. Using (6.10)–(6.12) we conclude from (6.9) that

‖(H1
α,β − μI)−1 − ((HD

I0,α0
⊕ HD

I1,α1
) − μI)−1‖ ≤ C̃0β

−1/2
0 , (6.13)

where again the constant C̃0 > 0 is independent of α0, α1, β0. It follows from (6.13) that 
for each j ∈ N

sup
α0,α1

|λj(H1
α,β) − λj(HD

I0,α0
⊕ HD

I1,α1
)| → 0 as β0 → ∞. (6.14)

Recall, that

λ1(HD
I0,α0

) = s0, λ1(HD
I1,α1

) ∈ Bδ1/2(s1),

λ2(HD
I0,α0

) =
(

2π
d0

)2

, λ2(HD
I1,α1

) =
(

2π
d1

)2

;

cf. (3.13)–(3.14). In particular (cf. Proposition 2.2 and (3.9)), we get

λ1(HD
I1,α

−
1
) = s1 −

1
2δ1 and λ1(HD

I1,α
+
1
) = s1 + 1

2δ1. (6.15)

Combining (6.14)–(6.15), and taking into account that Bδ0(s0) ∩ Bδ1(s1) = ∅ (since 
Bδ1(s1) ⊂ (T1, T2) \ O and Bδ0(s0) ⊂ O; cf. (3.6), (6.1), (6.6)) we conclude that there 
exists a positive β′

0 ≥ βinf
0 such that for any β0 ∈ [β′

0, ∞) one has

• λj(H1
α,β) > T2 for j ≥ 3,

• if s0 < s1, then λ1(H1
α,β) ∈ Bδ0(s0) and λ2(H1

α,β) ∈ Bδ1(s1), and, moreover,

λ2(H1
α1,1,β) < s1 −

1
δ1 and s1 + 1

δ1 < λ2(H1
α1,1,β).
4 4
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• if s1 < s0, then λ1(H1
α,β) ∈ Bδ1(s1) and λ2(H1

α,β) ∈ Bδ0(s0), and, moreover,

λ1(H1
α1,1,β) < s1 −

1
4δ1 and s1 + 1

4δ1 < λ1(H1
α1,1,β)

(recall from (6.4) that 
(
(α1,1)l

)
l∈Z and 

(
(α1,1)l

)
l∈Z are sequences satisfying Hypothe-

sis 3.1 with the property (α1,1)1 = α−
1 , (α1,1)1 = α+

1 ). Evidently, the above properties 
yield (6.3), (6.5) for n = 1 (recall, that the operator H1

α,β does not dependent on βk

with k �= 0).

Induction step (N → N + 1). Assume that (6.3) and (6.5) hold for some fixed N ∈ N, 
that is, there exist β′

k, k = −N + 1, . . . , N − 1, such that for β′
k ≤ βk the spectrum of 

HN
α,β in (T1, T2) consists of 2N simple eigenvalues which are contained in Bδk(sk), and, 

moreover, the inequalities (6.5) hold with n = N . It is no restriction to assume that β′
k, 

k = −N + 1, . . . , N − 1, are positive and satisfy β′
k ≥ βinf

k . Recall that HN
α,β does not 

dependent on βk with |k| > N − 1.
Now let the sequence β = (βk)k∈Z (which of course satisfies Hypothesis 4.2) be chosen 

such that β′
k ≤ βk holds for k = −N +1, . . . , N − 1. We denote ĨN+1 := (x−N−1, xN+1). 

For f, g ∈ L2(ĨN+1) we set

u = (HN+1
α,β − μI)−1f and v =

((
HD

I−N ,α−N
⊕ HN

α,β ⊕ HD
IN+1,αN+1

)
− μI

)−1
g.

Following the arguments that led to (6.9) we get the similar equality(
(HN+1

α,β − μI)−1f −
((

HD
I−N ,α−N

⊕ HN
α,β ⊕ HD

IN+1,αN+1

)
− μI

)−1
f, g

)
L2(ĨN+1)

= u(xN )v′(xN + 0) − v′(xN − 0) + u(x−N )v′(x−N + 0) − v′(x−N − 0).
(6.16)

Let C be the constant from Lemma 3.4 and let d̂N = min {d−N , d−N+1, . . . , dN+1}. 
Taking into account that βk > 0 (cf. (4.7)) we get

|u(xN )|2 ≤ 1
βN

[
βN |u(xN )|2 +

N+1∑
k=−N

(
hIk,αk

[uk,uk] + C

d2
k

‖uk‖2
L2(Ik)

)]

≤ 1
βN

[
hN+1
α,β [u, u] + C

(d̂N )2
‖u‖2

L2(ĨN+1)

]
= 1

βN

[
(f + μu, u)L2(ĨN+1) + C

(d̂N )2
‖u‖2

L2(ĨN+1)

]
.

Using (6.8) we then arrive at the estimate

|u(xN )|2 ≤ CN

βN
‖f‖2

L2(ĨN+1)
,
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and, similarly,

|u(x−N )|2 ≤ C−N

β−N
‖f‖2

L2(ĨN+1)
,

with the constants C−N , CN being independent of α and β (however, they depend on 
d̂N , and C from Lemma 3.4). Similarly to (6.11)–(6.12) we get the estimates

|v′(x−N − 0)|2 ≤ C−
−N‖g‖2

L2(ĨN+1)
,

|v′(xN + 0)|2 ≤ C+
N‖g‖2

L2(ĨN+1)
,

with the constants C−
−N , C+

N , which depend on d−N and dN+1, respectively, but are 
independent of α and β. Further, denote ṽ = v �(x−N ,xN ). As in the proof of Lemma 5.4
(cf. (5.16)) one obtains the estimate

|v′(xN − 0)|2 ≤ C ′′
(
d−1
N hIN ,αN

[vN ,vN ] + ‖(HN
α,β ṽ) �IN

‖2
L2(IN ) + d−3

N ‖vN‖2
L2(IN )

)
with the constant C ′′ being independent of α and β. Using Lemma 3.4 and taking into 
account that βk > 0 we can extend the above estimate as follows,

|v′(xN − 0)|2 ≤ C ′′
[
d−1
N

(
hN+1
α,β [v, v] + C

(d̂N )2
‖v‖2

L2(ĨN+1)

)
+ ‖HN+1

α,β v‖2
L2(ĨN+1)

+ d−3
N ‖v‖2

L2(ĨN+1)

]
,

where again C is the constant from Lemma 3.4. Using

HN+1
α,β v = g + μv, hN+1

α,β [v, v] = (g + μv, v)L2(ĨN+1), and ‖v‖L2(ĨN+1) ≤ ‖g‖L2(ĨN+1)

we conclude that

|v′(xN − 0)|2 ≤ C−
N‖g‖2

L2(x−N−1,xN+1)

and, similarly,

|v′(x−N + 0)|2 ≤ C+
−N‖g‖2

L2(x−N−1,xN+1), (6.17)

where the constants C−
N and C+

−N depend on dk, k = −N, . . . , N+1, but are independent 
of the sequences α and β. Combining (6.16)–(6.17) we arrive at the estimate∥∥∥(HN+1

α,β − μI)−1 −
((

HD
I−N ,α−N

⊕ HN
α,β⊕HD

IN+1,αN+1

)
− μI

)−1
∥∥∥

≤ C̃ max
{
β
−1/2

, β
−1/2}

,

(6.18)

N −N N
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where C̃N is independent of the sequences α and β. Consequently, for each j ∈ N

sup
α−N ,...,αN+1

∣∣λj(HN+1
α,β ) − λj

(
HD

I−N ,α−N
⊕ HN

α,β ⊕ HD
IN+1,αN+1

)∣∣ → 0 as β−N , βN → ∞.

(6.19)

By construction the set

σ
(
HD

I−N ,α−N
⊕ HN

α,β ⊕ HD
IN+1,αN+1

)
∩ (T1, T2)

consists of 2N + 2 simple eigenvalues (we denote them by γα,β;k, k = −N, . . . , N + 1) 
such that

γα,β;−N = λ1(HD
I−N ,α−N

), γα,β;N+1 = λ1(HD
IN+1,αN+1

)

γα,β;k ∈ Bδk(sk), k = −N + 1, . . . , N,
(6.20)

where γα,β;k, k = −N + 1, . . . , N , are the 2N simple eigenvalues of the operator HN
α,β

inside (T1, T2). Moreover, we then have

λ1(HD
I−N ,α−N

) = s−N and λ1(HD
IN+1,αN+1

) ∈ BδN+1/2(sN+1)

(cf. (3.13)–(3.14)). By induction hypothesis, for n = N one has

γαn,k,β;k < sk − 1
4δk and sk + 1

4δk < γαn,k,β;k, k = 1, . . . , N. (6.21)

Since the eigenvalues γα,β;k, k = 1, . . . , N , of HN
α,β are independent of αl with l > N it 

is clear that

(6.21) holds also with n = N + 1. (6.22)

Moreover, the property γα,β;N+1 = λ1(HD
IN+1,αN+1

) in (6.20) shows that

γαN+1,N+1,β;N+1 = sN+1 −
1
2δN+1 and γαN+1,N+1,β;N+1 = sN+1 + 1

2δN+1. (6.23)

Hence, using (6.19) we conclude from (6.20), (6.22), (6.23) that there exist positive 
β′
−N ≥ βinf

−N and β′
N ≥ βinf

N such that for β−N ∈ [β′
−N , ∞) and βN ∈ [β′

N , ∞) the 
operator HN+1

α,β also has precisely 2N + 2 simple eigenvalues γ̃α,β;k, k = −N, . . . , N + 1, 
in the interval (T1, T2) that satisfy γ̃α,β;k ∈ Bδk(sk) as k = −N, . . . , N+1, and, moreover,

γ̃αn,k,β;k < sk − 1
4δk and sk + 1

4δk < γ̃αn,k,β;k, k = 1, . . . , N + 1, n = N + 1.

Consequently, (6.3) and (6.5) hold for n = N + 1 and (βk)k∈Z satisfying βk ∈ [β′
k, ∞) as 

k = −N, . . . , N . Note that HN+1
α,β is independent of βk with |k| > N . This completes the 

induction step and the proof of Lemma 6.1. �
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Recall that the eigenvalues snα,β; k, k = 1, . . . , n, of the operator Hn
α,β are independent 

of αk with k /∈ {−n + 1, . . . , n} and that the entries αk with k = −n + 1, . . . , 0 are fixed; 
cf. Hypothesis 3.1. Therefore, for a fixed sequence β the eigenvalues snα,β; k, k = 1, . . . , n, 
can be regarded as functions of α1, α2, . . . , αn. Bearing this in mind, for the following 
considerations we shall denote the eigenvalues snα,β; k, k = 1, . . . , n, by

sβk [α1, α2, . . . , αn];

of course we assume here that the sequence (βk)k∈Z satisfies β′
k ≤ βk < ∞. In particular, 

the property (6.5) now reads as follows:

sβk [α+
1 , . . . , α

+
k−1, α

−
k , α

+
k+1, . . . , α

+
n ] ≤ sk − 1

4δk, k = 1, . . . , n,

sβk [α−
1 , . . . , α

−
k−1, α

+
k , α

−
k+1, . . . , α

−
n ] ≥ sk + 1

4δk, k = 1, . . . , n.
(6.24)

It is easy to see that the function

f : (α1, α2, . . . , αn) �→

⎛⎜⎝sβ1 [α1, α2, . . . , αn]
...

sβn[α1, α2, . . . , αn]

⎞⎟⎠ (6.25)

is continuous and each coordinate function fk(·) = sβk [·] is monotonically increasing in 
each of its arguments. Indeed, using the same arguments as in the proof of (6.18) we get 
the following estimate for two sequences (αk)k∈Z and (α̃k)k∈Z:

∥∥(Hn
α,β − μI)−1 − (Hn

α̃,β − μI)−1∥∥ ≤ C̃ max
k=1,...,n

|αk − α̃k|, (6.26)

where C̃ is independent of αk and α̃k (but it depends on dk, k = −N + 1, . . . , N). 
Taking into account that sk[α1, . . . , αn] ∈ Bδk(sk), k = 1, . . . , n, are simple eigenvalues 
we conclude from (6.26) the continuity of the function f . The monotonicity of fk in each 
of its arguments follows from the min-max principle (see, e.g., [17, Section 4.5]).

The next lemma is an important ingredient for Theorem 6.4.

Lemma 6.2. Let β = (βk)k∈Z be such that β′
k ≤ βk, k ∈ Z, where (β′

k)k∈Z is a sequence 
as in Lemma 6.1. Then for n ∈ N the entries α1, . . . , αn of the sequence α = (αk)k∈Z
(satisfying Hypothesis 3.1) can be chosen such that

sβk [α1, α2, . . . , αn] = sk, k = 1, . . . , n.

The proof of the above lemma is based on the following multi-dimensional version of 
the intermediate value theorem, which was established in [18, Lemma 3.5].
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Lemma 6.3. Let D = Πn
k=1[ak, bk] with ak < bk, k = 1, . . . , n, assume that f : D → Rn

is continuous and each coordinate function fk of f is monotonically increasing in each 
of its arguments. If F−

k < F+
k , k = 1, . . . , n, where

F−
k = fk(b1, b2, . . . , bk−1, ak, bk+1, . . . , bn), F+

k = fk(a1, a2, . . . , ak−1, bk, ak+1, . . . , bn),

then for any F ∈ Πn
k=1[F

−
k , F+

k ] there exists x ∈ D such that f(x) = F .

Proof of Lemma 6.2. We fix n ∈ N and set D = Πn
k=1[α

−
k , α

+
k ]; the points in D will be 

denoted in the form (α1, α2, . . . , αn). Now consider the function f : D → Rn given by 
(6.25). As noted above, this function is continuous and each coordinate function fk(·)
is monotonically increasing in each of its arguments. Moreover, according to (6.24) we 
have

F−
k := sβk [α+

1 , . . . , α
+
k−1, α

−
k , α

+
k+1, . . . , α

+
n ] ≤ sk − 1

4δk

and

F+
k := sβk [α−

1 , . . . , α
−
k−1, α

+
k , α

−
k+1, . . . , α

−
n ] ≥ sk + 1

4δk

for k = 1, . . . , n, and hence, in particular, F−
k < sk < F+

k for k = 1, . . . , n. Therefore, by 
Lemma 6.3 there exists (α1, α2, . . . , αn) ∈ D such that

f(α1, α2, . . . , αn) = (s1, s2, . . . , sn);

this completes the proof of Lemma 6.2. �
Combining Lemma 6.1 and Lemma 6.2 we immediately arrive at the main result of 

this subsection.

Theorem 6.4. Let αn = (αn
k )k∈Z be a sequence satisfying Hypothesis 3.1, and assume that 

β = (βk)k∈Z is such that β′
k ≤ βk, k ∈ Z, where (β′

k)k∈Z is a sequence as in Lemma 6.1. 
Then for n ∈ N the entries αn

k ∈ [α−
k , α

+
k ], k = 1, . . . , n, can be chosen such that

σ(Hn
αn,β) ∩ (T1, T2) =

{
snαn,β; k : k ∈ Kn ∪ {1, . . . , n}

}
, (6.27)

where snαn,β; k are simple eigenvalues of Hn
αn,β satisfying

snαn,β; k ∈ Bδk(sk), k ∈ Kn,

snαn,β; k = sk, k ∈ {1, . . . , n}.
(6.28)

Remark 6.5. We mention that the entries αn
k , k = 1, . . . , n, in the sequence αn = (αn

k )k∈Z
chosen above depend on the choice of the sequence β.
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6.2. Spectrum of the operator Hn
αn,β

Let n ∈ N and let Hn
α,β be the self-adjoint operator in L2(x−n, xn) from the previous 

subsection. In this subsection we will investigate the self-adjoint operator

Hn
α,β =

⎛⎝ ⊕
k≤−n

HD
Ik,αk

⎞⎠⊕ Hn
α,β ⊕

⎛⎝ ⊕
k≥n+1

HD
Ik,αk

⎞⎠ (6.29)

acting in

L2(�−, �+) =

⎛⎝ ⊕
k≤−n

L2(Ik)

⎞⎠⊕ L2(x−n, xn) ⊕

⎛⎝ ⊕
k≥n+1

L2(Ik)

⎞⎠ .

Informally speaking the operator Hn
α,β is obtained from the decoupled operator Hα,∞

in Section 3.3 by adding δ-couplings of the strengths βk at finitely many points xk, 
k = −n + 1, . . . , n − 1. It is clear that Hn

α,β (and Hn
α,β) is independent of βk with 

k /∈ {−n + 1, . . . , n − 1}.
It is convenient to strengthen Hypothesis 4.2 and from now on to consider sequences 

β = (βk)k∈Z that satisfy the following condition.

Hypothesis 6.6. The sequence β = (βk)k∈Z satisfies Hypothesis 4.2 and, in addition, it 
is assumed that (5.1) holds and β′

k ≤ βk, k ∈ Z, where (β′
k)k∈Z denotes the sequence in 

Lemma 6.1.

The following theorem is a consequence of Theorem 6.4 and the considerations in 
Section 3 and Section 5.

Theorem 6.7. Let αn = (αn
k )k∈Z and β = (βk)k∈Z be sequences satisfying Hypothesis 3.1

and Hypothesis 6.6, and assume that αn = (αn
k )k∈Z is chosen such that (6.27)–(6.28)

hold, and

αn
k = FD

dk
(sk), k ∈ N \ {1, . . . , n}. (6.30)

Then one has

σess(Hn
αn,β) = Sess and σdisc(Hn

αn,β) ∩ (T1, T2) = Sdisc, (6.31)

and, moreover, each sk, k ∈ N, is a simple eigenvalue of Hn
αn,β.

Proof. It is not difficult to see that the resolvent difference

(Hn
αn,β − λI)−1 − (Hαn,∞ − λI)−1
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is a finite rank operator for any λ ∈ ρ(Hn
αn,β) ∩ ρ(Hαn,∞), and hence, in particular, 

a compact operator in L2(�−, �+); this follows, e.g., by observing that both operators 
Hn

αn,β and Hαn,∞ can be viewed as self-adjoint extensions of the symmetric operator 
Hn

αn,β ∩Hαn,∞, which has finite defect. Hence we have

σess(Hn
αn,β) = σess(Hαn,∞) = Sess

by Theorem 3.2 and this shows the first assertion in (6.31).
Now we study the discrete spectrum of the operator Hn

αn,β in (T1, T2). It is clear from 
(6.29) that

σ(Hn
αn,β) = σ

⎛⎝ ⊕
k≤−n

HD
Ik,αn

k

⎞⎠ ∪ σ(Hn
αn,β) ∪ σ

⎛⎝ ⊕
k≥n+1

HD
Ik,αn

k

⎞⎠ .

Recall from Proposition 2.2 that λ1(HD
Ik,αn

k
) coincides with the unique solution of the 

equation αn
k = FD

dk
(λ) on the interval (0, (2π/dk)2). Thus, taking into account (6.30) and 

the second property in (3.12), we arrive at

λ1(HD
Ik,αn

k
) = sk, k ∈ Z \ {1, . . . , n}. (6.32)

Furthermore, we have λj(HD
Ik,αk

) > T2 for j ≥ 2 by Proposition 2.2 and (3.3). Observe 
that for k ∈ Z \N the eigenvalues in (6.32) do not contribute to the discrete spectrum 
of Hn

αn,β in (T1, T2) since either sk ∈ O ⊂ Sess or sk /∈ [T1, T2]; cf. (6.1) and (1.4). It 
follows that

σ

⎛⎝ ⊕
k≤−n

HD
Ik,αn

k

⎞⎠ ∩ (T1, T2) ⊂ Sess.

The above considerations also show

σ

⎛⎝ ⊕
k≥n+1

HD
Ik,αn

k

⎞⎠ ∩ (T1, T2) =
{
sk : k = n + 1, n + 2, . . .

}
,

and all the eigenvalues sk, k = n +1, n +2, . . . , are simple by the assumption (1.6). Finally, 
by Theorem 6.4 the spectrum of Hn

α,β in (T1, T2) consists of the simple eigenvalues sk, 
k = 1, . . . , n, and the eigenvalues snαn,β; k ∈ Bδk(sk) for k ∈ Kn. However, it follows from 
(6.1) and (1.4) that snαn,β; k ⊂ Sess for k ∈ Kn. Summing up we conclude

σdisc(Hn
αn,β) ∩ (T1, T2) =

{
sk : k ∈ N

}
= Sdisc. �
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7. Discrete spectrum of the operator Hα,β

In this section we complete the proof of our main result Theorem 4.4. Recall that the 
ultimate aim is to show the existence of sequences α = (αk)k∈Z and β = (βk)k∈Z such 
that (4.8) and (4.9) hold. We have already shown in Theorem 5.1 that the assertion (4.8)
on the essential spectrum of Hα,β holds for all sequences α = (αk)k∈Z and β = (βk)k∈Z
that satisfy Hypothesis 3.1 and Hypothesis 4.2, respectively.

From now on we fix a sequence β = (βk)k∈Z that satisfies Hypothesis 6.6 (and hence 
also Hypothesis 4.2). Now we define a sequence α = (αk)k∈Z such that Hypothesis 3.1
holds and the statement (4.9) on the discrete spectrum of Hα,β is valid: By Theorem 6.7
there exists for each n ∈ N a sequence αn = (αn

k )k∈Z such that Hypothesis 3.1, (6.30)
and (6.31) hold, and, in particular, we have

α−
k ≤ αn

k ≤ α+
k , k ∈ Z. (7.1)

A usual diagonal process shows that there exist nm ∈ N with nm < nm+1 and 
limm→∞ nm = ∞, and a sequence α = (αk)k∈Z such that

αnm

k → αk as m → ∞, k ∈ Z. (7.2)

It also follows that αk ∈ [α−
k , α

+
k ] for k ∈ Z, moreover, by the second property in (3.12) we 

have αk = αn
k = FD

dk
(sk) for k ∈ Z \N. In other words, the sequence α = (αk)k∈Z satisfies 

Hypothesis 3.1. Note also that α depends on the sequence β fixed above; cf. Remark 6.5.

Lemma 7.1. For the sequence α defined by (7.2) one has

‖(Hnm

αnm ,β − μI)−1 − (Hα,β − μI)−1‖ → 0 as m → ∞,

where μ is defined by (5.2).

Before we prove the above lemma, we observe that Theorem 5.1, Theorem 6.7 together 
with Lemma 7.1 immediately imply the main result of this section.

Theorem 7.2. For the sequence α defined by (7.2) one has

σdisc(Hα,β) ∩ (T1, T2) = Sdisc,

moreover, each sk, k ∈ N, is a simple eigenvalue.

Proof of Lemma 7.1. To simplify the presentation we assume that nm = m for m ∈ N. 
Now let f, g ∈ L2(�−, �+), and consider u = (Hα,β − μI)−1f and v = (Hm

αm,β − μI)−1g. 
Denote

Tm = (Hα,β − μI)−1 − (Hm
αm,β − μI)−1.
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In the same way as in the proof of Theorem 5.1 one computes

(Tmf, g)L2(�−,�+) = (u,Hm
αm,βv)L2(�−,�+) − (Hα,βu, v)L2(�−,�+)

=
∑
k∈Z

u(yk)
(
v′(yk + 0) − v′(yk − 0)

)
−
∑
k∈Z

(
u′(yk + 0) − u′(yk − 0)

)
v(yk)

+
∑
k∈Z

u(xk)
(
v′(xk + 0) − v′(xk − 0)

)
−
∑
k∈Z

(
u′(xk + 0) − u′(xk − 0)

)
v(xk).

(7.3)

Using the boundary conditions for u ∈ dom(Hα,β) and v ∈ dom(Hm
αm,β) we obtain

(Tmf, g)L2(�−,�+) =
∑
k∈N

(αm
k − αk)u(yk)v(yk)︸ ︷︷ ︸

Im
1 :=

+
∑

|k|≥m

u(xk)
(
v′(xk + 0) − v′(xk − 0)

)
︸ ︷︷ ︸

Im
2 :=

.

(7.4)
Indeed, the first two sums on the right hand side in (7.3) reduce to the first sum in 
(7.4) since u and v satisfy the δ-jump conditions at yk, k ∈ Z, of the strength αk and 
αn
k , respectively (recall that αn

k = αk = FD
dk

(sk) as k ∈ Z \ N). Also, since u and v
satisfy the same δ-jump conditions at xk, k = −m + 1, . . . , m − 1, and v(xk) = 0 for all 
k ∈ Z \ {−m + 1, . . . , m − 1} the last two sums on the right hand side in (7.3) reduce to 
the second sum in (7.4).

First we estimate the term Im1 . Fix ε > 0. It is clear that

|Im1 | ≤
(∑

k∈N
|αm

k − αk| · |u(yk)|2
)1/2 (∑

k∈N
|αm

k − αk| · |v(yk)|2
)1/2

. (7.5)

Let (ck)k∈N be the sequence from (3.8). Since ck → 0 as k → ∞, there exists K(ε) ∈ N

such that

ck ≤ ε as k > K(ε). (7.6)

Moreover, due to (7.2) there exists M(ε) such that

for 1 ≤ k ≤ K(ε) : |αm
k − αk| < εdk as m ≥ M(ε). (7.7)

Combining (3.8), (7.1), (7.6)–(7.7) we obtain for m ≥ M(ε):

∑
k∈N

|αm
k − αk| · |u(yk)|2

≤
K(ε)∑

|αm
k − αk| · |u(yk)|2 +

∞∑
(α+

k − α−
k ) · |u(yk)|2 ≤ ε

∑
dk|u(yk)|2.

(7.8)
k=1 k=K(ε)+1 k∈N
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In what follows, we denote by uk and vk, k ∈ Z, the restrictions of the functions u and 
v to the interval Ik. Recall that Ĉ is a positive constant for which (3.23) holds. Without 
loss of generality we may assume that Ĉ ≥ 1. We shall also use the following standard 
Sobolev inequality (see, e.g. [7, Lemma 1.3.8]):

∀w ∈ W1,2(a, b) : |w(a)| ≤ L‖w′‖2
L2(a,b) + 2L−1‖w‖2

L2(a,b), (7.9)

where a < b < ∞, L ∈ (0, b − a]. Applying (7.9) with (a, b) = (yk, xk) ⊂ Ik and L = dk

2Ĉ
we get

|u(yk)|2 ≤ dk

2Ĉ
‖u′

k‖2
L2(yk,xk) + 4Ĉ

dk
‖uk‖2

L2(yk,xk) ≤
dk

2Ĉ
‖u′

k‖2
L2(Ik) + 4Ĉ

dk
‖uk‖2

L2(Ik).

It is straightforward to check that the above estimate is equivalent to the estimate

dk|u(yk)|2 ≤
(

1 + dkα
m
k

2Ĉ

)−1 (
d2
k

2Ĉ
hIk,αm

k
[uk,uk] + 4Ĉ‖uk‖2

L2(Ik)

)
.

Therefore, since αm
k ∈ [−Ĉd−1

k , 0) by (3.23), dk < �+ − �−, and

hIk,αm
k

[uk,uk] ≤ hIk,αm
k ,βk−1,βk

[uk,uk]

(this inequality holds since βk ≥ 0), we obtain

dk|u(yk)|2 ≤ C1hIk,αm
k ,βk−1,βk

[uk,uk] + C2‖uk‖2
L2(Ik),

where C1 = (�+−�−)2

Ĉ
, C2 = 8Ĉ. From the above estimate and (7.8) we conclude

∑
k∈N

|αm
k − αk| · |u(yk)|2 ≤ C1εhα,β [u, u] + C2ε‖u‖2

L2(�−,�+)

≤ Cε‖f‖2
L2(�−,�+), m ≥ M(ε).

(7.10)

Similarly,

∑
k∈N

|αm
k − αk| · |v(yk)|2 ≤ Cε‖g‖2

L2(�−,�+), m ≥ M(ε). (7.11)

Combining (7.5), (7.10), (7.11) we conclude that

∀ε > 0 ∃M(ε) ∈ N : |Im1 | ≤ Cε‖f‖L2(�−,�+)‖g‖L2(�−,�+) as m ≥ M(ε). (7.12)
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It remains to estimate the term Im2 . Recall that Dk = min{dk, dk+1}, k ∈ Z. One has

|Im2 | ≤

⎛⎝ ∑
|k|≥m

D−3
k |u(xk)|2

⎞⎠1/2 ⎛⎝ ∑
|k|≥m

D3
k|v′(xk + 0) − v′(xk − 0)|2

⎞⎠1/2

. (7.13)

Repeating verbatim the arguments of the proofs of (5.13) and (5.17) we obtain∑
|k|≥m

D−3
k |u(xk)|2 ≤ Cm‖f‖2

L2(�−,�+), where Cm → 0 for m → ∞, (7.14)

and ∑
k∈Z

D3
k|v′(xk + 0) − v′(xk − 0)|2 ≤ C‖g‖2

L2(�−,�+) (7.15)

(note that the function v in the estimate (5.17) vanishes at xk for all k ∈ Z, however this 
property is not utilized in the proof of (5.17)). Combining (7.14) and (7.15) we arrive at

|Im2 |2 ≤ C Cm ‖f‖2
L2(�−,�+)‖g‖2

L2(�−,�+), where Cm → 0 for m → ∞. (7.16)

The statement of the lemma follows immediately from (7.4), (7.12), (7.16). �
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Appendix A

For the convenience of the reader we briefly discuss in this appendix infinite orthogonal 
sums of densely defined, closed, uniformly semibounded forms in Hilbert spaces and the 
associated self-adjoint operators.

A.1. Direct sums of Hilbert spaces

Let (Vk)k∈Z be a family of Hilbert spaces and let 
∏

k∈Z Vk be the Cartesian product 
of Vk, k ∈ Z. The elements of 

∏
k∈Z Vk will be denoted by roman letters, while bold 

https://www.cost.eu
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letters are used for their components, e.g., u = (uk)k∈Z, uk ∈ Vk. The direct sum of 
Vk,

V =
⊕
k∈Z

Vk,

consists of all u = (uk)k∈Z ∈
∏
k∈Z

Vk such that

‖u‖2
V =

∑
k∈Z

‖uk‖2
Vk

< ∞. (A.1)

Due to (A.1) one can introduce a scalar product on V by

(u, v)V =
∑
k∈Z

(uk, vk)Vk
. (A.2)

It then turns out that V is a Hilbert space; cf. [16, Chapter 1.6, Theorem 6.2].

Proposition A.1. The space V equipped with the scalar product (A.2) is a Hilbert space.

A.2. Direct sums of non-negative forms and associated operators

Let (Vk)k∈Z be a family of Hilbert spaces and let (hk)k∈Z be a family of closed, 
non-negative, densely defined sesquilinear forms (for each k ∈ Z the form hk acts in the 
space Vk). By the first representation theorem [20, §-VI. Theorem 2.1] there exists a 
unique self-adjoint operator Hk associated with the form hk, i.e. dom(Hk) ⊂ dom(hk)
and

hk[u,v] = (Hku,v)Vk
, u ∈ dom(Hk), v ∈ dom(hk).

In the space V we define the form h by

h[u, v] =
∑
k∈Z

hk[uk,vk],

dom(h) =
{
u = (uk)k∈Z ∈ V : uk ∈ dom(hk),

∑
k∈Z

hk[uk,uk] < ∞
}
.

The form h is referred to as the direct sum of the forms hk; we also use the notation

h =
⊕
k∈Z

hk.

Proposition A.2. The form h is non-negative, densely defined, and closed in V .
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Proof. It is clear that the form h is non-negative. In order to prove that h is densely 
defined in V fix v = (vk)k∈Z ∈ V and assume that

(u, v)V = 0, u ∈ dom(h). (A.3)

For arbitrary l ∈ Z and w ∈ dom(hl) we consider

wl = (wl
k)k∈Z =

{
w if k = l,

0 if k �= l.

Then wl ∈ dom(h) and (A.3) holds with u = wl, which implies (w, vl)Vl
= 0. As the 

form hl is densely defined in Vl it follows that vl = 0. Since l ∈ Z is arbitrary we 
conclude v = (vl)l∈Z = 0, which implies that h is densely defined in V .

Finally, we verify that h is closed. Let us equip dom(hk) with the scalar product

(u,v)dom(hk) = hk[u,v] + (u, v)Vk
, u,v ∈ dom(hk). (A.4)

Since hk is closed by assumption dom(hk) equipped with the scalar product (A.4) is a 
Hilbert space. On dom(h) we consider the scalar product

(u, v)dom(h) := h[u, v] + (u, v)V =
∑
k∈Z

(uk,vk)dom(hk) (A.5)

for u = (uk)k∈Z, v = (vk)k∈Z ∈ dom(h). By Proposition A.1 dom(h) together with the 
scalar product (A.5) is also a Hilbert space, that is, the form h is closed. �

The proposition above implies that there exists a unique self-adjoint and non-negative 
operator H associated to the form h. We refer to H as the direct sum of Hk and use the 
notation

H =
⊕
k∈Z

Hk.

As a consequence one obtains the following statement.

Proposition A.3. The non-negative self-adjoint operator H associated to h in V is given 
by

Hu = (Hkuk)k∈Z,

dom(H) =
{
u = (uk)k∈Z ∈ V : uk ∈ dom(Hk),

∑
‖Hkuk‖2

Vk
< ∞

}
.

k∈Z
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A.3. Direct sums of uniformly semibounded forms and associated operators

Let again (Vk)k∈Z be a family of Hilbert spaces and let (hk)k∈Z be a family of densely 
defined, semibounded, closed forms. We assume, in addition, that there is a uniform lower 
bound

Cinf = inf
k∈Z

inf
u∈dom(hk): ‖u‖Vk

=1
hk[u,u] > −∞,

and consider the family of densely defined, non-negative, closed forms

h̃k[u,v] = hk[u,v] − Cinf(u,v)Vk
, dom(h̃k) = dom(hk).

By Proposition A.2 the form

h̃ =
⊕
k∈Z

h̃k

is non-negative, densely defined, and closed in V = (Vk)k∈Z.
Now, we define the direct sum h =

⊕
k∈Z hk in V by

h[u, v] = h̃[u, v] + Cinf(u, v)V , dom(h) = dom(h̃).

It is clear that the form h is densely defined, semibounded, and closed in V ; moreover 
dom(h) consists of all u = (uk)k∈Z ∈ V such that

uk ∈ dom(hk) and
∑
k∈Z

|hk[uk,uk]| < ∞. (A.6)

As in the non-negative case the self-adjoint operator H associated to h is referred to as 
the direct sum of the operators Hk. Then one obtains the following variant of Proposi-
tion A.3.

Proposition A.4. The semibounded self-adjoint operator H associated to h in V is given 
by

Hu = (Hkuk)k∈Z,

dom(H) =
{
u = (uk)k∈Z ∈ V : uk ∈ dom(Hk),

∑
k∈Z

‖Hkuk‖2
Vk

< ∞
}
.

Let us now assume that the spectrum of each semibounded self-adjoint operator Hk

is discrete; we denote the corresponding eigenvalues (in nondecreasing order with mul-
tiplicities taken into account) by sjk, j ∈ N. Furthermore, we introduce the sequence 
S = (sjk)j∈N,k∈Z. The next goal is to describe the spectrum of the operator H.
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Theorem A.5. Assume that the spectra of all Hk are discrete and let S = (sjk)j∈N,k∈Z
be the set of all eigenvalues. Then the following assertions hold for the spectrum of the 
semibounded self-adjoint operator H in Proposition A.4.

(i) λ is an eigenvalue of H if and only if λ ∈ σ(Hk) for some k ∈ Z. More precisely, 
one has

ker(H− λI) =
⊕
k∈Z

ker(Hk − λI) (A.7)

and, in particular,

dim
(
ker(H− λI)

)
= # {(j, k) ∈ N × Z : sjk = λ} ; (A.8)

(ii) σ(H) = S;
(iii) σess(H) = {accumulation points of S}.

Proof. (i) Let λ be an eigenvalue of H and let u = (uk)k∈Z ∈ V be a corresponding 
eigenfunction. Then one has Hkuk = λuk for all k ∈ Z by Proposition A.4. Moreover, 
since u �= 0 there exists k ∈ Z such that uk �= 0. Therefore, λ is an eigenvalue of Hk. 
Conversely, if λ ∈ σ(Hk) for some k ∈ Z then λ is an eigenvalue of Hk. If w is a 
corresponding eigenvector then λ is an eigenvalue of H

u = (uk)k∈Z =
{

w if l = k,

0 if l �= k,

is a corresponding eigenvector. This also shows the equality (A.7) and the last statement 
(A.8) is obvious.

(ii) The inclusion σ(H) ⊃ S follows from (i). Since σ(H) is closed we conclude σ(H) ⊃ S. 
To prove the reverse inclusion assume that λ ∈ R \ S. Then there exists δ > 0 such that

dist(λ, σ(Hk)) > δ, k ∈ Z,

and, in particular, λ belongs to the resolvent set of each operator Hk. Now pick some 
f = (fk)k∈N ∈ V and consider uk = (Hk − λI)−1fk ∈ dom(Hk) ⊂ dom(hk). Then 
‖uk‖Vk

≤ δ−1‖fk‖Vk
and for u = (uk)k∈Z one has Hkuk = fk + λuk and
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∑
k∈Z

|hk[uk,uk]| =
∑
k∈Z

|(Hkuk,uk)Vk
|

=
∑
k∈Z

∣∣(fk,uk)Vk
+ λ‖uk‖2

Vk

∣∣
≤

∑
k∈Z

(
1
δ
‖fk‖2

Vk
+ |λ|

δ2 ‖fk‖
2
Vk

)

≤
(

1
δ

+ |λ|
δ2

)
‖f‖2

V .

Thus, u ∈ dom(h); cf. (A.6). Furthermore, for v = (vk)k∈Z ∈ dom(h) a similar argument 
shows

h[u, v] =
∑
k∈Z

hk[uk,vk] =
∑
k∈Z

[(fk,vk)Vk
+ λ(uk,vk)Vk

] = (f + λu, v)V ,

and we conclude u ∈ dom(H) and Hu = f + λu from the first representation theorem. 
Consequently, ran(H − λI) = V and as H is self-adjoint this shows that λ is in the 
resolvent set of H. Therefore, we conclude σ(H) ⊂ S.

(iii) Let λ be an accumulation point of S. Then any open neighborhood of λ contains 
infinitely many elements of S. Therefore, either

(a) there is a sequence (λl)l∈N such that λl ∈ σ(Hkl
)l∈N with λl �= λ and λl → λ as 

l → ∞, or
(b) there exists an infinite set K ⊂ Z such λ ∈ σ(Hk) for k ∈ K.

Using (i) we conclude in the case (a) that each punctured neighborhood of λ contains an 
eigenvalue of H, or in the case (b) λ is an eigenvalue of σ(H) with dim(ker(H−λI)) = ∞. 
In both situations we have λ ∈ σess(H).

Conversely, we have σess(H) = σ(H) \ σdisc(H) = S \ σdisc(H) by (ii). One concludes 
from (i) that the set σdisc(H) consists of those λ ∈ S which are isolated and satisfy

# {(j, k) ∈ N × Z : sjk = λ} < ∞.

Now, if λ ∈ σess(H) then it follows that λ ∈ S but λ is not isolated or

# {(j, k) ∈ N × Z : sjk = λ} = ∞.

In both cases we conclude that λ is an accumulation point of S. �
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